
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Generative Geometric Design
and

Boundary Solid Grammars

by

Jeff Heisserman

EDRC 48-21-90

r •'

Generative Geometric Design
and

Boundary Solid Grammars

Thesis Proposal

by

JefF A. Heisserman

Department of Architecture
and

Engineering Design Research Center
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

T. '

Abstract

This proposal introduces boundary solid grammars, a formalism for generating complex mod-
els of rigid solid objects. Solids are represented by their boundary elements, i.e. vertices, edges
and faces, with coordinate geometry associated with the vertices. Labels may be associated
with any of these elements. Rules match conditions of a solid or collection of solids and may
modify them or create additional solids. A boundary solid grammar uses an initial solid and a
set of rules to produce a language of solid models.

Unary operations are introduced to ensure the validity of the boundary representations.
These operations take models that may have self-intersections, interpret the models considering
the given geometry and face orientations, and produce valid models. The unary operations allow
the use of boolean operations together with Euler, sweeping, tweaking and gluing operations in
a unified, valid scheme.

The proposed formalism has been implemented. Grammars have been demonstrated that
generate simple geometric forms including snow flakes, recursive octahedrons, "fractal" moun-
tains, and spirals. Queen Anne houses have been characterized in a more extensive grammar.

This work has been supported by the Engineering Design Research Center, an NSF Engineering Research Center.

UNIVERSITY LIBRARIES
CARNEGJE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

1 Introduction

Geometric design is central to the architectural and engineering disciplines. Practioners in these
fields continually encounter geometric design problems. A few examples these problems are:

• Compose the rooms of a house according to a particular style and construct a massing model.
From this model, construct the roof, floors, ceilings, and interior and exterior walls, and locate
doors and windows.

• Given a volumetric model of the bays of a high-rise dffice building, place the structural
columns, beams, shear walls and floor slabs.

• Given a model of a part, generate support structures for manufacturing the part using a
stereo lithography process.

• Construct a model of a set of dies to manufacture a given part.

• Given a set of components for a computer, lay out the components and design aioasing to
enclose them.

Current solid modeling systems provide users with little assistance in accomplishing these tasks.
They generally provide operations to create, manipulate, and modify models. However, in order to
construct the models previously mentioned, a user must examine the model, consider what parts
should be added, and determine where and how to apply provided modeling operations to create
the new components. Programming facilities are often added, however they provide little more
than the ability to create designs with parametric variations.

This proposal introduces boundary solid grammars, a formalism for generating complex models
of rigid solid objects. Solids are represented by their boundary elements, i.e. vertices, edges and
faces, with coordinate geometry associated with the vertices. Labels may be associated with any
of these elements. Rules match conditions of a solid or collection of solids and may modify them
or create additional solids. A boundary solid grammar uses an initial solid and a set of rules
to produce a language of solid models. The boundary representation, rules, and boundary solid
grammar (BSG) formalism are presented in Sections 3 through 5.

Solid grammars use both local operations and global operations. However, local operations may
cause a model to have self-intersections, thus be a source of geometric invalidity. Unary operations
are introduced to ensure the validity of the boundary representations. These are global operations
that take any topologically valid model and interpret the model, considering the given geometry
and face orientations, to produce valid models. These operations are described in Section 6.

The proposed formalism has been implemented. Grammars have been demonstrated that gen-
erate simple geometric forms including snowflakes, recursive octahedrons, "fractal" mountains, and
spirals. Queen Anne houses have been characterized in a more extensive grammar. A brief descrip-
tion of the "Genesis" boundary solid grammar interpreter and the demonstration grammars can be
found in Section 7.

2 Related Work

Previous research related to boundary solid grammars can be grouped into the following areas:
generative formalisms, solid modeling representation, operations and validity, and feature recogni-
tion.

The most influential work in the architectural domain is the shape grammar formalism [Sti80].
This formalism uses a representation of "shapes", or line segments, composing line drawings.
Rewrite rules are defined by two shapes, the first, when matched, is removed and replaced by
the second. Boundary solid grammars draw heavily on the ideas of shape grammars, while using a
solid modeling representation and highly parametric rule matching and application.

Much of the application of shape grammars has been for composition and analysis in archi-
tectural design, including Palladian villas [SM78], Frank Lloyd Wright's Prairie Houses [KE81J,
Queen Anne houses [Fle87, FCPG85], bungalows [DF81], modern Italian apartments (after the
Casa Giuliani Frigerio) [Fle81], and Japanese tea houses [Kni81]. Additional shape grammars have
been written to generate Chinese ice ray designs [Sti77], Moghul gardens [SM80], and chair-back
designs [Kni80]. T

Graph grammars and L-systems, although not geometric representations, have been used to
generate graphs or arrays that are mapped to polygons, lines, or primitive solids. Much of this work
has been directed at describing biological growth, especially of plants and trees [PLH88, dREF+88].

Solid modeling representations have been investigated for several years now. Overviews of this
work can be found in [BEH80, RV82, Req88]. [Req80] details the foundations of solid representa-
tions. A more recent presentation is given in [Hof89].

Local and boolean operations have been used previously in many solid modeling systems. Euler
operations were introduced by Baumgart [Bau75] for use on his winged edge polyhedron representa-
tion. They have since been adopted by several research groups [ELS75, BHS80, Hil82, MS82]. The
topological validity and completeness of Euler operations has been presented in [EW79, ManS4].
Euler operators have also been represented as graph productions [Fit87]. Early use of boolean op-
erations on solid models are found in TIPS [OKK73] and PADL [V+74, VR77]. They are currently
found in almost all solid modeling systems.

The quest for validity in boundary representations, and the development of the unary operations,
have benefitted from the work demonstrating validity of constructive solid geometry (CSG) schemes
and the boolean operations. Many of those ideas apply here to the unary operations. The unary
operations also use methods for checking the validity of a boundary models [BEH80].

Checking match conditions for appling a solid grammar rule is equivalent to recognizing foat
of a solid. Some of the recent feature recognition research uses methods similar to those usod in
boundary solid grammars. De Floriani used a face-based boundary representation and features
described as topology graphs [DF89]. Pinilla used an edge-based representation augmented with
arcs representing primitive geometric relations (parallel and perpendicular), and located subgraphs
generated from a graph grammar description of features [PFP89]. The method of feature roco^ni
tion presented here allows more flexible description of features and efficient implementation than
previous methods.

3 Boundary Representation of Solids

A boundary solid grammar uses a boundary representation of rigid solid objects. The topology is
represented as a graph composed of nodes and arcs, where the nodes are topological elements, and
the arcs represent the adjacencies between elements. The geometry consists of vertex coordinates
and plane equations for polyhedral solids. The topology and geometry together define a boundary
representation solid model [Req80].

Our BSG uses a representation consisting of:

• a topology graph with vertex, edgehalf, loop, face, shell and solid nodes corresponding to the
split-edge data structure [Eas82], and arcs representing their adjacencies;

• sets of design labels associated with topology nodes, as desired; and

• coordinate geometry in Si3 associated with each vertex, and a plane equation in ft4 associated
with each face.

7
The split-edge data structure is a variation of the winged edge structure [Bau72]. It differs in that
each edge is separated into two edge-half structures. One face and one vertex is associated with
each edge-half, and each edge-half is associated with its other half.

Design labels distinguish topological elements of solids, and have several uses. Labels may be
required as conditions in rules to restrict rule application. This is illustrated in an example grammar
presented later in this proposal. Design labels may be used to reduce search by marking conditions
needed in future operations. They also allow completed constructions of solids to terminate, while
prohibiting termination of incomplete or invalid solids.

The graph notation used here, and graph operators and graph production definitions used later,
are adapted from [LY78], which was originally introduced in [Nag76a, Nag76b].

Definition: A b-graph over the alphabet E* = En U Ea U EA U K3 U R4 is a tuple
b = (K,(pa)a£j:a,T,\,'y,<f)) where

1. En = {VERTEX, EDGEHALF, LOOP, FACE,SHELL, SOLID} is the alphabet of topological element types;

2. Ea = {vertex.eh, vcrtexj, edgeh.v, cw.eh, ccw.eh, oMer.cA, cdgchj, loop-v, loop.th, loopJ, faceJ, face^h, shellJ,

skciUolid, solidjsheii) specifies the alphabet of relations between topological elements;

3. EA is the alphabet of design labels;

4. K is a finite set of nodes;

5. Pa Q K X K are relations (arcs) over Jif, one for each a in Ea;

6. T : K —• En is a function from nodes to types;

7. A : K —• Y\ is a function from nodes to sets of design labels;

8. 7 : Kv -» K3 is a function that maps vertex nodes to vertex coordinates, where
Kv = {v | v 6 K A j(v) = VERTEX} is the set of vertex nodes; and

Figure 1: A cube represented with a b-graph.

9. <f>: Kf -+ R4 is a function that maps face nodes to face equations, where
Kj — { / | / G K A <f>(f) = FACE} is the set of face nodes.

Let &(£*) denote the set of all b-graphs over the alphabet £* and 6C, the empty b-graph.

A b-graph can be interpreted as a directed graph with labeled nodes and arcs in the following
sense: (k\, ^2) € pa means there is an arc from k\ to &2 of the type a; each node k is labeled with a
type r(k) (E En and a (possibly empty) set of design labels A(/;); each vertex node kv G Kv has an
associated coordinate i(kv); and each face node kf € Kj has an associated face equations 4>{kj).
Figure 1 illustrates the representation with the b-graph for a cube.

Not all b-graphs represent rigid solid objects. A b-graph may have nodes and arcs that do not
correspond to a physical solid. For example, we can construct a b-graph with an "EDOEHALF" node
connected to more than one "VERTEX" node with "edgeh-v" arcs. This is clearly invalid, since an edge
connects exactly two vertices. A b-graph that is topologically valid must satisfy these conditions:

1. Every "VERTEX" is related to one "EDGEHALF" by an "vtrtcx-th" arc or one "LOOP" by an "verter.r
arc (in the case of a loop with no edges).

2. Every "EDGEHALF" is related to exactly one "VERTEX" by an "edgeh-v" arc.

3. Every "EDGEHALF" is related with its other "EDGEHALF" by an "ofAer.e*" arc.

4. Every "EDGEHALF" is related to exactly one "EDGEHALF" by a "cw.eh" arc.

5. Every "EDGEHALF" is related to exactly one "EDGEHALF" by a "ccw.ĉ " arc.

6. Every "EDGEHALF" is related to exactly one "LOOP" by an "edgehj" arc.

7. Every "LOOP" is related to one "EDGEHALF" by an "/oop.eA" arc or one "VERTEX" by an "hop.v"
arc (in the case of a loop with no edges).

8. Every "LOOP" is related to exactly one "FACE" by an "hopj" arc.

9. Every "FACE" is related to exactly one "LOOP" by an "facej" arc.

10. Every "FACE" is related to exactly one "SHELL" by an "facesh" arc.

11. Every "SHELL" is related to exactly one "FACE" by an "aheiu" arc.

12. Every "SHELL" is related to exactly one "SOLID" by an "sktiUolid" arc.

13. Every "SOLID" is related to exactly one "SHELL" by an "*o/t(L«Ae//" arc.

These conditions are necessary, but not sufficient, to ensure topological validity. It is still possible
to generate b-graphs that do not correspond to valid plane models and have faces with in&nsistent
orientations. Euler operators are used in order to construct only topologically valid b-graphs.

The next section introduces the graph grammar notation and graph productions to implement
the Euler operators on b-graphs.

A solid is geometrically valid if it satisfies these additional conditions [Man86]:

1. Faces of the solid may not intersect each other at their internal points.

2. Some edges of the solid may be entirely coincident, however their edge neighborhoods must
be distinct.

3. Some edges may lie on a face. In this case, both faces adjacent to the edge must lie on the
same side of the face.

4. Some vertices may lie on a face. In this case, all edges and faces adjacent to the vertex must
lie on the same side of the face.

5. Some vertices may lie on an edge or on a vertex. In theses cases, all edges and faces adjacent
to the vertex must lie on the same side of the surface defined by the faces of the incident edge
or vertex.

A b-graph must be both topologically and geometrically valid in order to be a valid representation
of a rigid solid object.

4 The Composition of Solid Rules

Solid rules are defined to allow abstract expression of complex match conditions and operators. This
is accomplished using three levels of rules. Primitive match conditions correspond to matching in
the b-graph. Primitive operations modify the b-graph with graph productions, and modifying the
mappings of design labels and geometry. Logic rules or predicates are used to combine the primi-
tive match conditions into higher ones, and to compose higher level operators from the primitive
operations and conditions. Solid rules are composed of a set of match conditions that define where
it is to be applied, and a series of operations that describe the modifications. We present the
formulation of each of these three types of rules and their derivations in this section.

Primitive Matching and Operations

Primitive matching on b-graphs is a straightforward task of finding nodes and arcs, and accessing
their type, labeling, and geometric functions. For example, we can find an edge-half e in a b-graph
by finding a node of type EDGEHALF, that is r(e) = EDGEHALF. We can find the vertex vjLsfociated
with that edge-half by finding a e<fyeA.varc in the b-graph from e t o v . A label / on our edge-half
can be found in the set of labels associated with that edge-half, / £ A(e). Finally, the coordinates
of the vertex can be accessed with the geometric function 7, with (x, y,z) == 7(1;).

Labeling and geometric functions can be modified with primitive operations. Adding a label / to
an element e is accomplished by modifying the labeling function A to A' such that A; = A(e) U {/}.
Killing a label / modifies the labeling function A to A' such that A' = A(e) — {/}. Assigning
coordinates c to a vertex v is equivalent to changing 7 to 7' such that 7'(i>) = c. Face equations
are assigned with a similar modification to <f>. Element types and the type function r cannot be
modified.

Primitive operations on the topological representation require more explanation. Euler opera-
tions modify boundary representation by adding and removing topological elements and relations,
while maintaining topological validity. The Euler operations included here create minimal solids
(MSSFLV), insert strut edges (MEV), split edges (ESPLIT), and split faces (MEFL). We present thoso
Euler operations on b-graphs using graph productions.

A graph production has three parts: a subgraph that will be matched and removed from the
graph being matched; a subgraph that will be inserted in place of the removed subgraph; and an
embedding which specifies the connections between the inserted subgraph and the original graph.
The embedding is specified using graph operators.

Definition: For the node set K of any b-graph with the node set K1 of a given subgraph and
any node x G K, the graph operator A yields a subset of K, written as A(x) according to the
following recursive definition:

1. L{(x) = {y E K — K' A(y,x) 6 Pi) specifies the set of nodes with i-labeled arcs that terminate
in x.

2. Ri(x) = {y e K - K' A (x, y) € pi} denotes the set of nodes with i-labeled arcs leaving x.

3 . A B (x) = { y I 3 z (z G B (x) A y e A { z)) A y , z e K - K 1 } s p e c i f i e s t h e s u b s e t o f n o d e s o f
K — K' which are generated by sequencing graph operators.

F
E: < none >

Figure 2: The MSSFLV graph production.

: redgeU = (E 1 , E 3 ; L O O P L / O O P - V (V 1))

hoop.eh = (L ()

v, • -* „ ^ fflll^.. ' '

Figure 3: The MEV graph production when there are no edges in the loop.

4. (AUl))(x) = A(x)UB(x),
specifies the subset of nodes of K — K' which are generated by the branching of operators.

Definition: A graph production is a triple P = (6/,6r»E) with 6/,6r G &(£*) and an embedding
transformation E = ((/a,ra))a€£a , with ^ i e embedding components /a and ra having the following
form:

'. = U MK) x {*i)

where yj G /0» ^j € AV, îj is an graph operator, and pyq > 1. The b-graph 6/ is the left hand
side and br the right hand side of the graph production. KiyKr are the sets of nodes in 6/%6r,
respectively. We may abbreviate A(y) x {z} by (A(y);z) and {z} x /l(y) by (z;A(y)). (A;a,b) is
used to represent (A;a)U (A;b) with a similar notation for r-operators.

Informally, la specifies the a-labeled arcs from the existing graph to the newly inserted subgraph.
Aj(yj) selects a subset of nodes in K - A'/, and connects these nodes to each of the nodes {z3}. in
the new subgraph with an a-labeled arc. Similarly, ra specifies vhe a-labeled arcs from the subgraph
to the existing graph.

Graph productions implementing Euler operators for the split edge data structure are presented
in Figures 2 through 7. The node types in the embedding rules are redundant since the arcs usod
are type specific, but the types are included here for clarity. These graph productions are used here

redgeh_v =

V.

= (E D G E H A L F L C U ; .))

= (EDGEHALFLCU;_c/t(E2); E2)

= (E4; EDGEHALF/?CU, _e

)
= (EDGEHALFLC C W_c / i(E2); E2)

- (EI;EDGEHALF/?C C U ; ^
= (E 2 ; EDGEHALF/?CCW, ^

= (Ei,E3 f E4;Loop/2
= (E2; LoopRedgek j (

(L ()

); E2)

Figure 4: The general MEV graph production.

E.

E:

(EDGEHALFLCU;

(EDOEHALFLcu;-

(E 4;EDGEHALF/2C U ,

Et)
E2)

ccw-eh —

redgehJ
redgehj
'loop-eh
'loop.ch

(
= (Ei, E3;

E3)
E4)

; E2)

Figure 5: The ESPLIT graph production.

: lface-1 = ; Li)

Figure 6: Tlie MEFL graph production when there are no edges in the loop.

: reigth_v = (Ei; VERTEX Redgeh_v (Ei))

f ()
= (EDC5EHALFLe<fycA_v(V2); V2)
= (EDQEHALFLcu;-eA(Ei);El)
= (EDGEHALFLctl/^(E2); E4)
= (E2I EDGEHALF«cu/_eA(E2))

= (EDGE!IALFLCCU,_cA(E5); E5)

= (EDOEHALFL C C U , - C A (E 2) ; E2)

Kthtr.th =
l0lhtr.th =
Kthtr.th =

; E2)
; E5)

'/aceJ = (FACEL/aceL/(Li); Li)
(L ()

(EDaEHALFU{I
=1

(EDOEHALF Uf=1

'/ace./ (FACEL/ace_/(Li); Li)
L2); L2)

; L2)

Figure 7: General MEFL as two sequentially applied graph productions.

as operators by binding key nodes of 6/ to specific nodes in a graph. Matching occurs first, followed
by graph replacement and embedding.

Definition: A b-graph V € 6(E*) is directly derivable from another b £ 6(£*) by an operator
O (abbreviated 6==>6') iff

o

1. 6/ C b and br C 6';

2. b - 6/ = 6' - 6r; and

3. Ina(brjb') = /a and Outa(bryb') = ra for a G Ea

where Ina{br,b
f) is the set of all a-labeled incoming arcs originating in 6' - br and terminating in 6,

and Outa(br,b') is the set of all a-labeled outgoing arcs originating in br and terminating in b - 6r.

Logical Compos i t ion of Pr imit ives

We can construct complex matching conditions on b-graphs. In this section I explain how graph
nodes, arcs and labels are represented as primitive predicates, and how to combine them with logic

rules into more useful and complex conditions.

Determining the type of topological elements may be represented as

t(*) = r(k) = t

for a node k € K and t £ En. For example, if a node k is of type VERTEX, then r(ifc) = VERTEX,

and this is equivalent to the predicate vertex(fc). Similarly, relations between topological elements
may be represented as

a(fci,&2) = (*i>*2) e p a

for nodes &i,A;2 € K. Then the predicate eh_vertex(e,v) is equivalent to finding an uedgehj»n arc
from e to v in pedgch.v Design labels may be represented as

label(e,/) = / € A(e).

Coordinates may be represented as

v.coord(r;,c) = 7(1;) = c. r *

Face equations may be represented as

face.equation(/,e) =

Predicates representing topological element types and relations, coordinates, and labels are consid-
ered primitive conditions.

Euler operations are specified as predicates that relate to the graph productions presented. For
example,

mev(Vi,E1,E3,V2)

is equivalent to the general mev graph production shown in Figure 3 with Vi, Ei, E3, V2 bound to
the corresponding key nodes. The simple mev graph production in Figure 2 is equivalent to

mev(Vi,nw//,Ei,V2).

Similarly for

mssflv(S,II,F,L,V),

esplit(Ei ,E3 ,V),

mef 1(V, null, V, null, E3, L2, F)

for the simple mef 1 graph production, and

mefl(V1,E1,V2,E2,E3,L2,F)

for the general one. Element labels are created using

make_label(e,/),

which is equivalent to changing A to A' such that A'(e) = A(e) U {/}, or

which modifies A to A' such that A'(e) = A(e) - {/}. Vertex coordinates are assigned using

set-vertex(v,c),

10

which is equivalent to modifying 7 to 7' such that Y(v) = c. Similarly, face equations are modified
with

set «f ace.equat ion(/ , c),

which is equivalent to modifying <f> to <f>' such that <f/{f) = e. The predicates representing Euler
operators, design label addition and removal, vertex coordinate assignment, and face equations
assignment are primitive operations.

These primitive conditions and operations may be combined using logic rules. Predicates of the
form

A:-Bu...,Bn.

can be constructed with predicates J3i , . . . , l?n . For example, the implicit "other.v" relation, the
relation between an edge-half and the vertex associated to its other edge-half, is a conjunction of
the "oiher.tk" relation and the "edgch^v" relation:

other_v(Eh, Vertex):-
other_eh(Eh, OtherEh), ^ #
edgeh_v(OtherEhf Vertex).

Similarly, we express the length of an edge-half as the distance between the coordinates of the
vertices associated with that edge-half and its other edge-half:

eh.length(Eh, Length):-
edgeh_v(Eh, VI),
other.v(Eh, V2),
distance.v(Vl, V2, Length).

where distance_v(Vl, V2,Length) calculates the euclidean distance between the coordinates of
two vertices VI and V2.

In this way, diverse graph matching conditions and conditions on the geometry can be combined
to form higher level match conditions. Some of these match conditions include:

• the lengths of edges (as demonstrated), areas of faces, volumes and mass of solids;

• angles between edges and faces;

• orientations of faces and solids;

• coincident, colinear or coplanar vertices, edges and faces;

• the centers of edges, faces and solids;

• the moment of inertia of faces and solids;

• intersections of lines, planes, surfaces, edges, faces, and solids, including the intersection of
two solids (boolean intersection) and self-intersection of a solid (unary intersection - described
later in this proposal).

11

A single condition may be used to express the match conditions of an infinite set of graphs using
recursive rules. Alternately, a condition may match greatly varied topology graphs using several
predicates with the same head.

Logic rules define high level operators from primitive operators and match conditions. The
match conditions allow an operator to respond to the context in which it is applied. For example,
a single extrude_f ace operator extrudes any face of a solid, properly considering the number of
edges in the face. Powerful operators, such as offsetting, boolean, and unary operators, may be
constructed in this way. In addition, we can construct a single operator to be used in place of a set
of rules. However, unlike match conditions, operators are required to succeed for any valid input.

Solid Rules

We have developed the methods for describing flexible matching conditions and useful operations.
We use these conditions and operations to define solid rules.

Definition: A solid rule 1Z is a pair a —• /?, where ^ #

• a = C i , . . . ,C n for C, G C. C is a finite set of conditions of the form A :- B\,..., Bn where
each B{ is the head of one or more predicates in C or a primitive condition; and

• (3 = O i , . . . , O n is a sequence of operations, and each O, G C or O, G O . O is a finite
set of operations. Each operation in O is a sequence of conditions and operations of the
form A :- B\,..., Bn where Bx; G O U C is a primitive condition, a primitive operation, or an
operation in O. Each O, is required to succeed for any valid input.

Solid rules derive one b-graph from another according to the following definition:

Definition: A b-graph br G &(£*) is directly derivable from another 6 G b(E+) by a-solid rule R
(abbreviated 6 ==* b!) iff

1. all of the conditions C i , . . . ,C n in an are satisfied with respect to 6;

2. for each of the operations 0\,... ,O n in (in

• O{ is a condition and is satisfied with respect to 6t-_i thus 6,_i ==» 6, and &,_i = 6,, or

• Oi is an operation and 6,_i ==> &,,

and b ==> 6i ==» 62 . . . bn— \ =̂ - 6 .
Oj O2 On

12

v_coord(t/i,(2,0,0))
v_coord(t/2,(-l,\/3,()))
v.coord(v3, (-1, -\/3,0))
v.coord(t;4, (0,0,2^2))

Iabel(/i3,|,a)

label(/234,a)

Figure 8: An initial solid.

5 Boundary Solid Grammar Formalism

With the representation and solid rule definition in hand, we can now define a boundary solid
grammar.

Definition: A boundary solid grammar is a tuple Q = (E*, TV,/,/?), where:

r. •

1. E* as defined for b-graphs;

2. TV C EA is the set of non-terminal nodes;

3. / £ b(E+) U {be} is a topologically valid initial b-graph;

4. R is a finite set of solid rules.

The initial solid is a topologically valid solid or collection of solids in the above representation.
Modifications of the initial solid, and subsequent solids, are accomplished by the application of the
set of solid rules.

We can abbreviate Q = (E*,JV,J, R) to Q = (EXyNJ,R) since En , Ea , W3and ft4 (of E*) are
fixed for a given representation.

A boundary solid grammar Q generates a language L(G) of b-graphs. The BSG formalism is
intended to provide a mechanism for generating languages that satisfy some design criteria, specified
as constructive rules of design.

A n E x a m p l e G r a m m a r

We can demonstrate the formalism with a simple grammar that generates a three dimensional
analogue to Koch snowflakes. For the grammar Q = (E/,iV,/, R), E/ = {a} is the design label
alphabet and none are non-terminals (N = 0) . / is an initial model of the simplest snowHak<\ a
tetrahedron (Figure 8). The four faces of the tetrahedron have "a" labels. R contains a single rule
(shown in Figure 9). The rule matches on a face with an "a" label, a cycle of three edge-halves, and
three vertices. It modifies the topology of the face by introducing four new vertices, nine edges, and
five faces. These topoiogical modifications are represented by the application of Euler operators as
follows:

• Apply e s p l i t three times, splitting each of the original edges and creating three new vertices.

13

S6t_VGrtGx(t>5, |
set.vertex(v6,
SGt_VGrtGx(v7, 3(7(^1) + 7(^2) +

1 - l{v\)\ f ace_normal(/i23)

label(/123,a)
S6t-lab6l(/356,a)

SGt.labGl(/567,a)
SGt_labGl(/467,a)

Figure 9: The example rule modifies a triangular face.

• Apply mQf 1 three times, once to each pair of newly created vertices. This divides the original
face into four faces.

• Apply mQV to one of the new vertices to create the final (center) vertex.

• Apply mGf 1 (twice) to the center vertex and each of the two new vertices not used in the last
operation. This divides the center face into three faces.

The rule finishes by calculating coordinates for the new vertices, and attaching labels to the now
faces, f acGJiormal calculates the surface normal of a face. A language of snowflakes is produced by
this solid grammar that includes both regular and irregular examples. A portion of this language is
shown in Figure 10. A more detailed snowllake, shown in Figure 11, was produced by the Conosis
solid grammar interpreter.

14

Figure 10: A portion of the language of snowflakes.

Figure 11: Another snowflake.

6 Unary Operations

The formalism described so far guarantees that the topologies constructed are valid, but allows
arbitrary assignment of geometry. We can arbitrarily assign coordinates to vertices and construct
models that have self-intersections and inconsistent face descriptions.

We would like an operation that takes any model with a valid topology and arbitrary geometry

15

Figure 12: Stretching the boundaries of a solid inward.

V

0

Figure 13: Stretching the boundaries of a solid outward.

and produces a model with a valid topology and geometry. In addition, the operation should leave a
valid model unchanged. Changes introduced to an invalid model should correspond to our intuition
of physical solids.

We can ask, "Why would a solid intersect itself?" One reason may be that two surfaces of
a solid stretch inward enough that they overlap.1 This is illustrated in Figure 12 . The volume
between the two intersecting parts of the boundary is to the outside of both. Since the boundary
separates the outside from itself, we really have a hole through the solid. The intersecting portions
of the boundary are unwanted. Alternately, two parts of a solid may stretch outward far enough to
intersect. We can see this in Figure 13 . Then we have parts of the boundary inside what we think
of as solid. Since the boundary separates interior points of the inside, the intersecting portion of
the boundary is unnecessary. It is also undesirable, since the computation of the volume based on
the boundary would be incorrect with the intersecting elements.

The proposed unary union operator has the described characteristics. That is, the unary union
of a solid (defined by its boundary) is the solid that contains all the points enclosed at least onro
by the boundary. The unary intersection of a solid is the solid that contains all the points enrlosnd
more than once by the boundary. Unary union together with unary intersection comprise the unary
operations.

We can define the unary operations more precisely using winding or enclosing numbers. A

'This example appears when constructing "fractal" mountains. Local modification of the boundary followed by %
unary union operation allows caves to intersect and form holes in the mountain, and spires to intersect back into lh«-
mountain forming arches.

16

Figure 14: Classification of boundary elements using enclosing numbers.

winding number corresponds to the number of times a curve winds around a point not on the
curve. The winding number of a point relative to a closed curve will always be an integer. Since
we are working with (closed) 2-manifold surfaces, we will always have integer winding numbers. I
will use the term enclosing number, which is more intuitive when our curves are enclosing surfaces
in 3D [CS66]. The enclosing number of a point with respect to multiple 2-manifold sujffales is the
sum of the enclosing numbers of that point with respect to each of the individual surfaces. This
definition is necessary since we are representing multi-shell manifold solids.

We can now define the unary union of a solid as the solid defined by the boundary separating
points with enclosing numbers zero or less from points with enclosing numbers one or greater.
The unary intersection of a solid is the solid defined by the boundary separating points with
enclosing numbers one or less from points with enclosing numbers two or greater. The generalized
unary intersection of a solid 5, nJJ(5), is the solid defined by the boundary separating points with
enclosing numbers n - 1 or less from points with enclosing numbers n or greater. The unary union
is then Uu(5) = n£(5), and unary intersection is nu(S) = nl(S).

Following the semantics outlined, any valid solid 5 will be identical to its unary union:

Utt(S) = 5,

and the unary intersection of a valid solid is null:

nu(5) = 0.

Our hypothesis is that the unary operations are closed on boundary representations of r sets
[Req80]. The present representation is based on 2-manifolds, however the relaxed geometric con-
ditions (of pseudo-manifolds [Man86]) described earlier allow implicit representation of r-sets. A
set of generalized Euler operators for r-sets has been proposed [DS88] that should allow this work
to be extended from 2-manifold to r-set representation. With the unary operators, we will bo able
to build a system that is valid and constructs models using Euler, sweeping, tweaking and gluing
operators, followed by unary operators (ensuring a valid model), then successively applying boolran
operations or additional local and unary operations.

Initially, we propose the following algorithm for computation of the unary operations:

• Find all intersections between the faces, edges and vertices.

17

• Modify the b-graph with Euler operators to represent these intersections explicitly in the
topology.

• Separate the newly intersected shells.

• Calculate the enclosing numbers of points within each separated shell.

• Remove all unnecessary shells. For unary union, remove the shells not between the outside
(points with enclosing numbers zero or less) and the inside (points with enclosing numbers
one or greater). For unary intersection, remove all shells but those between singly enclosed
points (with enclosing numbers one or less) and multiply enclosed points (with numbers two
or greater).

A more detailed algorithm is currently being developed and implemented, and will be presented in
the thesis.

r. '

18

7 Research Plan

Work So Far

The Genesis boundary solid grammar interpreter has been under construction since November 1988.
The first version was operational in January 1989. It was written in C-Prolog, and had facilities for
boundary representation of solids, matching, local operations, rule representation and application,
and wireframe display graphics. The boundary representation used the split-edge data structure
with vertex, edge, face and solid elements. Local operations modified the representation via Euler
operators (Msfv, Mev, Mef, Esplit) and coordinate geometry assignment.

Two grammars were constructed to run on the Version I interpreter. The first generated a 3D
variant of the Koch snowflake. The second grammar generated 3-D volume layouts for Queen Anne
houses, following Flemming's work [FCPG85, Fle87].

Development of the second version of the interpreter began in April 1989. The representation
was extended to include loops and shells. The Euler operators were rewritten to use the new
elements (Mssflv, Mev, Mefl, Esplit), and their operation was made to be consistent with the
documentation for Vega II2. Many predicates were developed for extended solid rule matching
and rule operations, allowing easier grammar construction. The implementation language was
changed from C-Prolog to CLP(3?), a superset of prolog with constraints on real numbers, using
the interpreter developed at Monash University. Surface rendering of models was added using HP
Starbase graphics routines (in C).

Additional grammars were constructed to run on the Version II interpreter. Snowflake grammars
generate both uniform and non-uniform snowflakes. An associated grammar generates uniform
subdivisions of octahedrons. Solid models of "fractal" mountains are generated by a third grammar
(a variant of the uniform snowflake grammar). A large variety of conch-like shells are generated
by a spiral grammar. Finally, Queen Anne houses are generated with additional layout rules, room
naming, roofs, room articulation, and porches.

W h a t Remains T o B e D o n e

The proposed third implementation will use a C-based CAD database (using parts of Vega II)
integrated into the solid grammar interpreter to provide efficient access to the topological represen-
tation. This will provide a complete set of Euler operators as primitive operations. It will use the
IBM CLP(3?) compiler in place of the Monash interpreter. An implementation of the unary opera-
tions will need to be added to the interpreter. We expect to implement additional calculations, for
example area, volume, center of mass, and moment of inertia, that will allow for more interesting
match conditions. Display routines will directly access the C based topological representation.

We propose to make several improvements to the demonstration grammars: additional detail on
Queen Anne houses (construction of interior and exterior walls, porch wrapping, locate chimneys,
roof detail, room layout based on areas); construct a grammar to automatically generate supports
for models to be made by stereo lithography (sla); modify the existing grammars to operate within
the new implementation - snowflakes, octahedrons, mountains, and spirals.

2Vega II is a solid modeling toolkit that was developed jointly by the Center of Art k. Technology and the
Departments of Architecture and Design at Carnegie Mellon University. A programmer's reference manual [Lyo89j
is available.

19

r •'

Figure 15: A house from the language of Queen Anne houses.

The unary union and unary intersection operations require complete description and precise
algorithms for their computation. This algorithm will be demonstrated in an implementation. We
intend to show that every topologically valid model can be correctly interpreted by the unary
operations and will result in a valid model or models.

The BSG formalism has a form of the composition/decomposition problem found in shape
grammars. The thesis will contain a presentation of the problem as it exists in BSG's and a
solution within the formalism.

Finally, an analysis of the complexity of the rule matching algorithms will be presented in the
thesis.

Schedule

• Jul 1990 - Complete interpreter with unary operations.

• Aug 1990 - Complete demonstration grammars and analysis.

• Dec 1990 - Complete thesis.

Expected Contributions

• Theory

• The formal definition of boundary solid grammars.

• The definition of unary operations on boundary representations.

• A proof that topologically valid boundary models can be interpreted as valid boundary
representations.

20

• A valid representation scheme for boundary representations using local operations, or a
combination of local operations and boolean operations.

• Implementation

• An implementation of a boundary solid grammar interpreter.

• Algorithms for the computation of the unary operations.

• An implementation of the unary operations.

• Application

• A characterization of Queen Anne houses using boundary solid grammars.

• Automated construction of supports for solid models being built using stereo lithography.

References

[Bau72] B. G. Baumgart. Winged-edge polyhedron representation. Technical Report £S-320,
Stanford AI Laboratory, Stanford University, October 1972. *'

[Bau75] B. G. Baumgart. A polyhedron representation for computer vision. In AFIPS Conf.
Proc, volume 44, pages 589-596, 1975.

[BEH80] A. Baer, C. Eastman, and M. Henrion. Geometric modelling: A survey. Technical
Report IBS Research Report No. 4, Department of Architecture, Carnegie Mellon
University, February 1980.

[BHS80] I. C. Braid, R. C. Hillyard, and I. A. Stroud. Stepwise construction of polyhedra in
geometric modeling. In K. W. Brodlie, editor, Mathematical Methods in Computer
Graphics and Design, pages 123,141. Academic Press, New York, 1980.

[CS66] W. G. Chinn and N. E. Steenrod. First Concepts of Topology. Random House, New
York, 19G6.

[DF81] F. Downing and U. Flemming. The bungalows of Buffalo. Environment and Planning
D, 8:269-293, 1981.

[DF89] Leila De Floriani. Feature extraction from boundary models of three-dimensional ob-
jects. IEEE Transactions on Pattern Analysis and Machine Intelligence, ll(8):785-798,
1989.

[dREF+88] Philippe de Reffye, Claude Edelin, Jean Francon, Marc Jaeger, and Claude Puech.
Plant models faithful to botanical structure and development. ACM Computer Graph-
ics, 22(4):151-158, 1988.

[DS88] II. Desaulniers and N. F. Stewart. Generalized Euler operators for r-sets. Technical
Report 649, Department d'Informatique et de Recherche Operationnelle, Universite de
Montreal, April 1988.

[Eas82] C. M. Eastman. Introduction to computer aided design. Technical Report Course
Notes, Carnegie Mellon University, 1982.

[ELS75] C. Eastman, J. Lividini, and D. Stoker. A database for designing large physical sys-
tems. In Proc. 1975 National Computer Conference, pages 603-611. AFIPS Press, New
Jersey, 1975.

21

[EW79] C. M. Eastman and K. Weiler. Geometric modeling using the euler operators. In
Proc. First Ann. Conf. Computer Graphics and CAD/CAM Systems, pages 248-254,
Cambridge, Mass., April 1979. M.I.T. Press.

[FCPG85] U. Flemming, Robert Coyne, Shakunthala Pithavadian, and Raymond Gindroz. A
pattern book for Shadyside. Technical report, Department of Architecture, Carnegie
Mellon University, December 1985.

[Fit87] Patrick Fitzhorn. A linguistic formalism for engineering solid modeling. In Graph-
Grammars and Their Application to Computer Science, pages 202-215, Berlin, 1987.
Springer-Verlag.

[Fle8l] U. Flemming. The secret of the Casa Guiliani Frigerio. Environment and Planning B,
8:87-96, 1981.

[Fle87] U. Flemming. More than the sum of parts: the grammar of Queen Anne houses.
Environment and Planning B, 14:323-350, 1987.

[Hil82] Robin Hillyard. The build group of solid modelers. IEEE Computer Graphics and
Applications, 2(2):43-52, March 1982.

[Hof89] Christoph M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann Publishers,
San Mateo, 1989.

[KE81] II. Koning and J. Eizenberg. The language of the prairie: Frank Lloyd Wright's prairie
houses. Environment and Planning B, 8:295-323, 1981.

[Kni80] T. W. Knight. The generation of llepplewhite-style chair-back designs. Environment
and Planning B, 7:227-238, 1980.

[Kni81] T. W. Knight. The forty-one steps. Environment and Planning B, 8:97-114, 1981.

[LY78] L. S. Levy and Kang Yueh. On labelled graph grammars. Computing, 20:109-125,
1978.

[Lyo89] Elizabeth Lyons. Vegall programmer's reference guide. Technical report, Center for
Art and Technology, Carnegie Mellon University, May 1989.

[Man84] Martii Mantyla. A note on the modeling space of Euler operators. Computer Vision,
Graphics, and Image Processing, 2G(l):45-60, April 1984.

[Man86] Martii Mantyla. Boolean operations of 2-manifolds through vertex neighborhood clas-
sification. ACM Transactions on Graphics, 5(l):l-29, January 1986.

[MS82] M. Mantyla and R. Sulonen. GWB: A solid modeler with Euler operators. IEEE
Computer Graphics and Applications, 2(7):17-31, September 1982.

[Nag76a] M. Nagl. Formal languages of labelled graphs. Computing, 16:113-137, 1976.

[Nag76b] M. Nagl. Graph rewriting systems and their application in biology. In Lecture Notes
in Biomathematics, volume 11, pages 135-156, Berlin, 1976. Springer-Verlag.

[OKK73] N. Okino, Y. Kakazu, and II. Kubo. Tips-1: Technical information processing sys-
tem for computer aided design and manufacturing. In J. Hatvany, editor, Computer
Languages for Numerical Control, pages 141-150. North Holland, Amsterdam, 1973.

22

[PFP89] J. M. Pinilla, S. Finger, and F. B. Prinz. Shape feature description and recognition
using an augmented topology graph grammar. In NSF Engineering Design Research
Conference, pages 285-300. University of Massachusetts, Amherst MA, June 11-14
1989.

[PLH88] Przemyslaw Prusinkiewicz, Aristid Lindemayer, and James Han an. Developmental
models of herbateous plants for computer imagery purposes. ACM Computer Graphics,
22(4):141-150, 1988.

[Req80] A. A. G. Requicha. Representation of rigid solids: Theory, methods, and systems.
ACM Computing Surveys, 12(4):437-464, 1980.

[Req88] A. A. G. Requicha. Solid modeling - a 1988 update. In B. Ravani, editor, CAD Based
Programming for Sensory Robots, pages 3-22. Springer Verlag, New York, 1988.

[RV82] A. A. G. Requicha and II. B. Voelcker. Solid modeling: A historical summary and con-
temporary assessment. IEEE Computer Graphics and Applications, 2(2):9-24, March
1982.

[SM78] George Stiny and William J. Mitchell. The Pailadian grammar. Environment and
Planning B, 5:5-18, 1978.

[SM80] George Stiny and William J. Mitchell. The grammar of paradise: on the generation of
Mughul gardens. Environment and Planning B, 7:209-226, 1980.

[Sti77] George Stiny. Ice-ray: a note on the generaation of Chinese lattice designs. Environment
and Planning B, 4:89-98, 1977.

[Sti80] George Stiny. Introduction to shape and shape grammars. Environment and Planning
B, 7:343-351, 1980.

[V+74] II. B. Voelcker et al. An introduction to PADL: Characteristics, status, and rationale.
Technical Report Tech. Memo No. 22, Production Automation Project, University of
Rochester, 1974.

[VR77] II. B. Voelcker and A. A. G. Requicha. Geometric modeling of physical parts and
processes. IEEE Computer, 10:48-57, 1977.

23

