
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An introduction to structure and structure grammars

by

C. Carlson, R. McKelvey, R.F. Woodbury

48-20-90 C. 3

An introduction to structure and structure grammars
Christopher Carlson*, Roy McKelveyt, and Robert Woodbury*

Departments of Architecture* and Designt
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

Structures represent relationships between parts in configurations. We define the concepts

of structure and structure rewriting and show in several examples how these are applied to

performing computations on designs and describing design languages. ,

Introduction

A structure is a symbolic representation of discrete parts and their relationships in a

configuration. Structures typically represent spatial relationships between graphic motifs or

three-dimensional components, although they can represent non-spatial objects as well. By

representing parts in configurations symbolically, structures abstract away from the

constitutions of the parts themselves, distilling the essence of the relationships between

them.

Like Stiny's shapes (1980), structures are a fundamental representation for spatial designs.

Their associated computational mechanisms — structure rewriting systems and structure

grammars — describe algorithms, languages of design, and design search spaces. Stiny

has outlined a formalism called set grammars that is similar in spirit to structure grammars

(1982); to our knowledge, though, no one has explored their properties. There are at least

two reasons that recommend doing so. First, the symbolic nature of structure grammars

This work has been supported by the Engineering Design Research Center, an NSF Engineering Research
Center, and by NSF grant MS M 8717307.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH. PENNSYLVANIA 152L-

makes them close relatives of production systems, which are described in a large body of

literature. We may draw on that experience to implement efficient, interactive structure

grammar interpreters. Second, structure grammars can be put into correspondence with

Chomsky's phrase-structure grammars via an analogy of objects to symbols and spatial

composition to string concatenation. Thus many of the methods and theoretical results of

formal linguistics can be brought to bear on problems of spatial composition and design.

As it turns out, this analogy is good enough to suggest intriguing avenues of inquiry, but it

is not so complete that it answers all of the questions it raises. T

Structure

Formally, a structure is a finite set of ordered pairs called structure elements. Each

structure element consists of a symbol drawn from a finite set V, called a vocabulary, and

an element drawn from a transformation group F. We use lower-case Greek letters to

denote structures and boldface type to denote the symbols in a vocabulary. The structure

a= {(c, /z), (c, -/*), (s, v)} may represent many different configurations, depending on

the parts and transformations to which its symbols and group elements are mapped. One

such configuration is shown in figure 1. The symbols c and s in the structure correspond

to column and span motifs in the configuration; the symbols h and v to transformations —

horizontal and vertical translations — that map the motifs to their positions in the

configuration.

Since structures are sets, any operation or relation on sets applies also to structures; we use

the same notation to denote both. The union of structures a and /J, written

a u j3, is the set of structure elements contained in either a or p. Structure intersection

(anp) and difference (a - p) are defined similarly. We say that a is a substructure of P

(cc^p) when a is a subset of /?, and that a and p are equal when each is a substructure of

the other.

We define the composition of transformations by gf(x) = gtf(x))> anc* represent the

identity transformation by L A structure element is transformed by composing a

transformation on the left of the element's transformation: g[(a,f)] = (a, gf). A structure

is transformed by transforming each of its elements individually:

g(cc) = {(a, gf) | (a,/) e a } . We denote by (V, F)+ the smallest set that contains the set

of singleton structures {{(a, i)} \ ae V) and is closed under structure union and

transformation by elements of F. Informally, (V, F)+ is the universe of structures that can

be constructed by composing elements of V under transformations in F. We obtain the set

(V, Ff by adding to (V, F)+ the empty structure, 0. It is straightforward to verify that (V,

F)* is the power set of V x F> and that it is closed under structure union, intersection,

difference, complement, and transformation by elements of F.

Realizations

A depiction such as figure 1 necessarily involves mapping a structure's symbols to images

and its group elements to transformations of the images. We call such a pair of mappings a

realization and the result of applying them to a structure a realization of the structure. In

general, realizations may be defined in terms of the action of any group on a set. Group

actions abound in spatial contexts; common examples are the action of translations on the

real number line, the action of affine transformations on the plane, and the action of direct

isometries on components positioned in a 3-dimensional space. But since realizations of

structures are not restricted to spatial domains, we define realization in a more general

sense.

Consider a group H that acts on a set 5. We denote the action ofHonS by rand the

transformation of S that corresponds to an element he H by Tfc. If H is the group of 3x3

homogeneous matrices and S is the set of points in the plane, then Xh is the transform$ti<5n

of the plane corresponding to the matrix h. A realization p maps structures in a universe

(V, F)* to sets of transformed subsets of S. It does so via two mappings: a group

homomorphism ft F -> //, and a mapping a: V -> 2s from V to subsets of S. The

realization of a structure a e (V, F)* is the set

P(a) = {*0(f)[o(*)] I («»/) e a).

Informally, p(a) is the set obtained by mapping structure element symbols to subsets of 5,

mapping abstract group elements to transformations of S, and applying the transformations

to the subsets. In the realization of figure 1,5 is the set of points in the plane; H is the

group of plane translations; (7 is a mapping of the symbols c and s to column and span

images; 0is a mapping of the group elements h and v to plane translations; and th and rv

are the translations that position the images in the figure. The realization of the structure is

a set of transformed images:

These are combined by taking their union to yield figure 1.

A realization's group homomorphism may, of course, be the identity. It may, for example,

be convenient in a structure grammar implementation to use the same groups in structures

as are used to calculate their realizations. But by uncoupling abstract groups from

particular groups via a homomorphism, we achieve greater purity in the abstract formalism.

This raises the question whether structure grammar implementations can in principle work

exclusively with abstract groups, mapping them to particular groups only to produce

realizations of structures. Whether or not they can hinges on the ability to determine the

equality of structures algorithmically. But as a consequence of the decidability of the word

problem for groups, a composition of abstract group elements can be reduced

algorithmically to canonical form given the generators of the group (see, for example, Le

Chenadec, 1986); it follows that the equality of abstract structures can also be determined

algorithmically.

Structure grammars

New structures may be derived from old ones by means of structure rewriting rules. A

rewriting rule consists of a precedent, which specifies the conditions under which the rule

applies to a target structure, and a consequent, which specifies the effect of applying the

rule to the target The precedent divides further into inclusive and exclusive parts. All

three parts of a rule are themselves structures.

A rewriting rule r with inclusive precedent a, exclusive precedent 5, and consequent (5 is

denoted r: (a, 8) —> /J. When the exclusive precedent is the empty structure, we also write

r: a—> p. The rule r is said to apply to a structure /via transformation/when

f(oc) c 7 and /(<5) n / = 0 , f '

that is, when/(a) is a substructure of yand/(5) has no elements in common with / Under

this condition, r may be applied to / to derive a new structure co by removing the inclusive

precedent from /and adding the consequent:

co = [/ -

Grammar and language

The action of a set of rewriting rules on an initial structure defines a set of structures called

a language; the rules and initial structure constitute the grammar of the language. A

grammar is a compact representation of a potentially infinite language of structures; its rules

may, in addition, reveal significant aspects of the structure of the language.

Formally, a structure grammar G consists of five components:

Vff a vocabulary of non-terminal symbols;

VT a vocabulary of terminal symbols, with Vy n Vjv = 0;

F a group of transformations;

P a set of rewriting rules whose structures are drawn from (V, F)*9

where V = V>/ u Vj ;

K) an initial structure in (V, F)*.

The vocabulary V and group F contain the building blocks of the structures the grampiaf

generates. The vocabulary is partitioned into terminal and non-terminal vocabularies in

order to distinguish completed structures, which belong to the grammar's language, from

intermediate structures, which do not.

To define the concept of language more precisely, we first define two relations on

structures in (V, F)*. The relation ^ holds between structures /and co whenever a rule in

G can be applied to / t o yield ax We write y^? co, and say that ydirectly derives co in G.

The relation derives, written ^?, is the reflexive and transitive closure of ^?. That is, ^?

holds between structures y and co when a sequence of zero or more rules in G can be

applied to y to yield co. The language L(G) generated by G is the set of structures that

derive from the initial structure and contain only terminal symbols:

L(G)={cce (VT,F)*\yo%<x).-

The application of these concepts in practice is demonstrated by the following grammar,

which was inspired by the stylized sports figures designed by Otl Aicher for the 1972

Olympic Games (Jacob & Kazumie, 1969). Aicher's use of a limited vocabulary of

geometric body parts that are combined in canonical ways led to remarkable success in

satisfying seemingly contradictory objectives: each of his figures is clearly distinguishable

from the others, yet all of the figures belong, unmistakably, to the same family.

The rules of the grammar are depicted in figure 2. The inclusive parts of rule precedent*

are rendered in black, the exclusive parts in gray. Rules that share a common precedent are

combined into a single diagram with the consequents separated by vertical lines. The

grammar's terminal vocabulary comprises the solid elements of the rules — a head, a torso,

an arm, and a leg; the non-terminal vocabulary consists of a single "U"-shaped marker that

indicates the attachment points of extremities to the torso.

Rule 1 rewrites the initial structure, a torso and head marker, to a torso with a head and

markers for the limbs. By removing and adding markers, the rule ensures that the head is

attached to a figure before the arms, which is required for the arm rules to function

properly. Rules 2 and 3 attach arms, as does rule 4, which uses an exclusive precedent to

prevent the attachment of an arm when it would overlap the head. Rules 5 and 6 complete a

figure by attaching the legs; the exclusive precedent of rule 6 prevents both legs from being

attached horizontally at the bottom of the torso, a configuration that is graphically

awkward. The derivation of a running figure is shown in figure 3. The language

generated by the grammar is shown in its entirety in figure 4.

8

Observant readers may ask why figures in the language have limbs on both sides when the

grammar's rules appear to attach limbs only to the right sides of torsos. The answer lies in

the representation of the torso. We represent the torso as two mirror-symmetric halves; the

union of their graphic representations yields the black rectangle shown in the figures.

Since the composite torso is mirror symmetric, the rules that attach limbs apply to both

halves: to the right half directly, and to the left half via a mirror reflection. Thus one rule

suffices to handle both cases. Rather than split the torso in two, we could also have jidfled

explicit rules to the grammar to attach limbs to the left sides of figures. But it is generally

more elegant to embed the symmetry of a figure in its representation than in the rules that

apply to it We use the same technique in subsequent examples without comment

Structure rewriting systems

A set of structure rewriting rules encodes an algorithm that computes over structures.

When it is packaged with an initial structure, such an algorithm defines a language of

structures. But it is also useful to regard sets of rewriting rules as algorithms in their own

right, algorithms that compute relations and functions on the domain (V, F)*. We call such

rule sets structure rewriting systems.

A structure rewriting system has all of the components of a grammar except the initial

structure. The relations derives and directly derives are defined for rewriting systems as

they are for grammars. We define the a-language of a rewriting system W as the set of

structures that derive from the structure a e (V, F)* and contain only terminal symbols:

We regard W in this sense as an algorithm that computes a function from structures to sets

of structures. We may also regard W as computing a relation, the relation R(W) between

structures given by

R<W)={(a,P)\ cce (V,F)*and/}eL a(W)}. f ,

That is, p is related to a in R(\V) when p is in the a-language of W. In some contexts, it

may make sense to consider restrictions of R(W) to smaller domains than (V, F)*: we may

not want to treat every structure in (V, F)* as a valid input to the algorithm. When every

structure in the domain of R(W) occurs only once as the first element of a pair in the

relation, we may regard W as computing a function from structures to structures. -

An example of a rewriting system is shown in figure 5. As in the previous example, the

inclusive parts of rule precedents are rendered in black and the exclusive parts in gray. The

rewriting system enumerates the brick patterns that fill an input grid without leaving voids.

More precisely, when a is a rectangular array of cells with a marker-distinguished corner,

the a-language of the system is the set of distinct packings of bricks in a.

The rules of the system emulate how a mason might procede, laying courses of bricks from

one side of the grid to the other and back again. One such derivation is shown in figure

10

5(b). The sole element of the non-terminal vocabulary, a triangular marker, indicates the

position of the next brick to be laid. Rules 1 and 2 lay horizontal and vertical bricks and

advance the marker, rule 3 advances the marker across already-filled grid elements. Rules

4 and 5 detect when the marker reaches the end of a row and advance it to the next higher

row. When the marker reaches the end of the top row, rule 6 removes it; the resulting

structure is a member of the language of the input grid. If an input grid has an odd number

of cells, every derivation will eventually reach a structure that contains the non-terminal

marker but to which no rules apply; the language of an odd grid is therefore empty. The

language of an even grid contains every pattern of bricks that fills the grid without leaving

voids. Some input grids and their languages are shown in figure 5(c)

Parametric structure grammars

Some operations on structures that are useful in practice are awkward or even impossible to

formulate with the rule formalism we have described. Consider, for example, a structure

representation of Rubik's cube. Each facet is represented by a structure element whose

symbol gives its color and whose group element gives its position on the cube. Although

in practice the particular configuration of facets on a face does not affect how one rotates

the face by 90°, the formalism we have described requires a separate rewriting rule for each

configuration. A similar problem exists with structure element transformations. It is not

possible, for example, to formulate a rule whose precedent matches the corners of boxes of

unspecified dimensions.

11

To address these shortcomings, we extend the structure grammar machinery by admitting

to rules parametric structures, structures that may have variables in place of symbols and

transformations. Variables are drawn from disjoint vocabularies: one for those that stand

for symbols, and another for those that stand for transformations. A parametric rule

r: (a, S,p) —» p has in addition to the usual precedent structures a predicate p that tests

assignments of values to its variables; the predicate provides a means of attaching

constraints to a rule. An assignment that satisfies the predicate is called an instantiation of

the rule, which we denote by r: (a(x), 8(x)) -»p(x), where x represents the tuple ofvalues

assigned to the variables. An instantiation is a conventional rule which is applied to a target

structure in the usual way. More precisely, a parametric rule r: (a, 5, p) —» /J applies to a

structure 7 when

p{x) and f(a(x)) c 7 and /(#*)) n 7= 0.

Under this condition, r may be applied to 7to derive a new structure co given by

Figure 6(a) shows the rules of a parametric grammar that generates the language of

rectangular partitions of a rectangle.1 It is not difficult to prove by induction on the number

of steps in a derivation that the grammar generates every partition; that, ignoring the last

1 This grammar is adapted from a shape grammar by Ulrich Hemming (personal communication).

12

"cleanup" rule, every partition has a unique derivation; and that the grammar generates no

"dead-ends," derivations that end with a structure that contains non-terminals, but to which

no rule applies. The grammar is in these respects an efficient representation of its

language.

The grammar's rules have empty exclusive precedents. Black and gray rectangles are non-

terminal elements; white rectangles are terminals. The derivation of a partition begins with

a single black rectangle and ends with a configuration of white rectangles. Each application

of rule 1 increases the number of rectangles by one; rule 2 rearranges rectangles to generate

topologically distinct partitions. The black rectangle constrains rules 1 and 2 to apply to the

upper left corner of a partition; this restriction maintains sufficient control over the

partitioning process to guarantee that each partition is generated uniquely. When rule 3

replaces the black rectangle by a white one, it initiates a cleanup phase that replaces the

remaining non-terminal gray rectangles by terminal white ones. An example of a derivation

is shown in figure 6(b); some members of the language generated by the grammar are

shown in figure 6(c).

The simplicity of this grammar derives from its use of parametric rules. By representing

geometric quantities as variables, its rule precedents abstract away from the geometries of

particular configurations of rectangles to match infinite classes of topologically identical

patterns. Similarly, its consequent variables enable single rules to act on patterns of

rectangles with an infinity of topologically identical, but geometrically distinct, effects.

13

Discussion

Efficiency is a central concern in the construction of systems for interactively exploring

spaces of designs. For doing design is more than exploring within fixed spaces; it is also

exploring among alternative spaces by manipulating the rules that define them (see, for

example, Archea, 1987; Knight, 1983a, 1983b, 1983c). Consequently, a structure

grammar implementation must be able to map out new spaces quickly as its users explore

alternative rule sets. In the domain of production systems, efficient rule application is

achieved through partial match techniques that keep track of partially satisfied rule

predecents as a database evolves (Forgy, 1982). Structure grammars are sufficiently close

cousins to production systems that they should yield to the same techniques.

Realization mappings support two additional avenues of exploration that are common in

design: one of exploring alternative components in a configuration, the other of exploring

alternative relationships between the components. Figure 7 illustrates both kinds of

exploration applied to the arch structure of figure 1. Stiny has rightly pointed out that

describing designs in terms of discrete parts limits the ways in which they may be explored

(Stiny, 1987). Nevertheless, it is advantageous in some situations to trade this flexibility

against the efficiency and theoretical tractability of a symbolic representation. In these

situations, structures are appropriate.

14

Acknowledgements

We are indebted to Prof. Erwin Steinberg for his guidance in the preparation of this

manuscript.

References
Archea J, 1987, "Puzzle-making: what architects do when no one is looking" in Computability of Design,

Yehuda Kalay, ed. (Wiley, New York)
Forgy C, 1982, "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem"

Artificial Intelligence 19 17-37
Jacob H, Kazumie M, 1969, "Sign Systems for International Events: Munich, Sapporo, Osaka & Co/'

Print 23:6 40-49 I '
Knight TW, 1983a, "Transformations of languages of designs: part 1" Environment and Planning B 10

125-128
Knight TW, 1983b, 'Transformations of languages of designs: part 2" Environment and Planning B 10

129-154
Knight TW, 1983c, "Transformations of languages of designs: part 3" Environment and Planning B 10

155-177
Le Chenadec P, 1986, Canonical Forms in Finitely Presented Algebras (John Wiley & Sons, New York)
Stiny G, 1980, "Introduction to shape and shape grammars" Environment and Planning B 7 343-351
Stiny G, 1982, "Spatial relations and grammars" Environment and Planning B 9 113-114
Stiny G, 1987, "Composition counts: A + E = AE" Environment and Planning B 14 167-182

15

