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Abstract

We describe an extremely simple paradigm that we have used to explore the graphic

qualities of recursive forms, forms developed by recursively replicating a motif. Our

emphasis is on form exploration, as opposed to form generation, which has been the focus

of related work in this area. In spite of the simplicity of the paradigm, an enormous Variety

of forms and phenomena can be explored with it, including spirals, branching structures,

plane symmetries and tilings, "reptiles", iterated function systems, space-filling curves,

"squigs", meanders, textures, phylotaxis and organic forms.

The components of this method are a representation for 2 1/2-dimensional recursive forms,

an algorithm for drawing them, a "hands-on" method of performing affine transformations,

and a guiding principle of interaction. The synthesis of these components yields a tool for

form exploration that is not merely quantitatively, but qualitatively better than has been

reported to date. This paradigm has been used effectively on personal computers, and yet it

scales well to take advantage of more computing power when it is available.
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Introduction

This paper is founded on two premises: (1) that an exceedingly simple representation

suffices to describe a broad spectrum of forms of interest in computer graphics, and (2) that

these forms can be effectively explored with minimal computing resources. We discuss the

rationale behind the design of a program that we have used to conduct such explorations

and exhibit the results of several investigations.

Rule-based formalisms for the generation of form will be familiar to readers of the

computer graphics literature. Many authors have described systems for creating complex

images by the repeated action of rules on simple sets of data [Fou82, Kaw82, Smi84,

Dem85, Opp86, Bar88, Vie89]. In contrast to these efforts, which have focused on image

generation, the emphasis of our work is on image exploration. We combine a simple

representation, an efficient generation algorithm, an intuitive mode of graphic interaction,

and a guiding principle of interaction to yield a qualitatively better tool for exploring the

graphic qualities of a fundamental class of rule-based forms than has been reported to date.

This paradigm, implemented as the program discoverForm, has been used effectively on

low-end Apple® Macintosh™ computers, not merely to draw forms, but to learn about



them and discover new ones. The forms we present in this paper were all discovered in the

course of explorations using Macintosh Plus and Macintosh II computers.

The paradigm we present distinguishes itself from similar work by its combination of

generality with interactive implementation on low-power hardware. Most formalisms of

similar intent are limited to a particular domain of forms, such as terrain models [Fou82] or

branching forms [Kaw82, Smi84, Op86, Vie89]. Other formalisms encompass a variety of

forms but require high-performance hardware for interactive response [Sti8O, Kri80,

Kri81, Dem85, Bar88]. In spite of the simplicity of the discoverForm paradigm, an ,

enormous variety of forms and phenomena can be explored with it, including spirals

[Coo79], branching structures [Man83], plane symmetries and tilings [Ste81, Grii87],

"reptiles" [Gar63], iterated function systems [Dem85, Bar88], space-filling curves,

"squigs", and meanders [Man83], textures, phylotaxis [Coo79], and organic forms

[Ste74].

Recursive forms

We are concerned with 2 1/2-dimensional recursive forms, forms that are developed by

recursively copying a 2-dimensional motif according to a single replication rule. The

resulting motif copies arc arranged in layers that arc conceptually ordered along a third

dimension; the limited use of the third dimension gives rise to the term "2 1/2-

dimensional". The replication rule specifies the spatial relationships of a fixed number of

motif copies, called clones, to the original motif. Recursive application of a rule to a motif

produces successive generations of motif copies, the first generation being the motif itself,

the second generation the clones, the third generation the copies of the clones, and so fonh



(see figure 1). A form is completely determined by a motif, a replication rule, and the

recursive depth to which the rule is applied.*

In formal linguistic terms, the forms we describe are expressions of context-free parallel

rewriting systems. They are akin to the OL-systems [Hop79] that Lindenmayer proposed to

model developmental processes in biology, with the important difference that where OL-

systems deal with the adjacency relationships of symbols in strings, recursive forms deal

with the spatial relationships of motif copies in compositions.

7, '
The spatial relationships of the clones to the original in a replication rule give rise, through

the recursive application of the rule to a motif, to the spatial structure of a form. These

relationships are specified as plane transformations that map the motif onto the clones. We

are concerned here with affine transformations (translation, scaling, rotation, reflection,

shear, and strain), since they suffice to explore a wide range of basic structures and since

they are easily specified by intuitive graphic interactions.

We represent a recursive form as an ordered display list of motif primitives and clones.

Primitives are either lines, represented by their endpoints, or polygons, represented by

vertex lists. We limit motif primitives to linear elements because the line-preserving

property of affine transformations makes them easy to transform: the image of a line

segment is the segment connecting the images of its endpoints. Other primitives, for

example ellipses, could be handled equally efficiently, but linear primitives have proven

entirely adequate for form explorations in practice. The graphic image of a motif is obtained

by drawing the primitives in list order, thus primitives at the tail of the list are drawn on top

of primitives at the head. Interspersed with the motif primitives are clones, represented by

t Some forms are depicted as a superposition of all generations, others as only the last generation. This
distinction is clarified later on.



3x3 homogeneous transformations. A clone marks a place in the list at which a transformed

copy of the motif is drawn.

To generate a form, the display list is traversed recursively and each motif primitive or

clone is drawn as it is encountered. Informal pseudocode for the generation algorithm is

shown in figure 2. The parameter dispiayTransf orm functions like a transform stack

onto which clone transformations are pushed and popped; it is the identity when the

generation routine is initially invoked. Motif primitives are transformed by the value of

dispiayTransf orm before they are drawn. The flag allGans determines whether all

generations of a form are drawn, or only the last generation. For forms such as trees and

spirals, it is appropriate to draw a superposition of all of the generations of the form. For

forms such as squigs and space-filling curves that involve recursive refinement of the parts

of the form to smaller parts, only the last generation is of interest

Figure 3 shows the correspondence of a display list to the form it generates. The motif

consists of several filled polygons that together depict orthogonal intersecting planes. Three

octants of the motif are occupied by half-size clones. The spatial relationships of the clones

to the motif give rise to a recursive partitioning of the cube; the order of polygons and

clones in the display list ensures that the parts of the form nest properly to depict a three-

dimensional form.

A sense of the variety of recursive forms is given by figure 4. Some of the depicted forms

are chosen to demonstrate the relationship of recursive forms to the work of other

researchers. Iterated function system transformations based on simple polygonal shapes

[Bar88, pp 134-135] are easily obtained by interactively transforming clones of a polygon

so that they approximately cover the original polygon. Substituting a point for the

polygonal motif then yields an approximation to an iterated function system with equally-



weighted transformations. Form (d) is such a form, obtained by self-tiling a randomly

drawn polygon. Some 3-dimensional forms, such as Kawaguchi's biomorphs [Kaw82]

and Reynold's "Monument to Recursion" [Rey81], can be explored by means of 2 1/2-

dimensional mock-ups ((b), (e), and (p)). Many of the constructions in Mandelbrot's The

Fractal Geometry of Nature [Man83] are recursive forms ((f) and (k)) and many of the line

and plane symmetries [Ste81, Grii87] can be formulated as such (g). In spite of the strict

regularity of the mechanism by which they are developed, recursive forms need not have a

geometrically regular appearance. Smith has pointed out that deterministic mechanisms

suffice to generate forms whose appearance is convincingly random [Smi84]. As fonp&>

(d), (h), and (i) illustrate, his observation holds even in the limiting case of a single context

-free replication rule.

The enormous variety of forms that recursive display lists can represent is a consequence of

their geometric, rather than topological, basis. The representation does not prescribe a

particular topological class, such as trees, to which forms must belong, and consequently,

explorations of forms are not restricted by the boundaries between topological classes. To

be sure, our perception supplies topological interpretations to some spatial configurations

of parts; we perceive in figure 1 (b), for example, a branching structure rather than an

assembly of unrelated parts. However, such topological interpretations are not embedded in

the recursive display list representation. In fact, a fixed set of spatial relationships between

the parts of a form may give rise to considerably different perceived topologies, depending

on how its spatial structure is articulated by a motif. Recursive display lists provide a clean

separation between the geometric structure of a form (determined by the transformations of

the clones) and the motif through which the structure is expressed; they are geometric

abstractions of structure, in contrast to topological abstractions, exemplified by Smith's

graftals [Smi84].



One is tempted to call recursive forms "self-similar", but this is, strictly speaking, a

misnomer. Mandelbrot uses the term "self-similar" to refer to point sets that are completely

covered by non-overlapping transformed copies of themselves, admitting similarity

transformations only ([Man83], pp 349-350). Our forms do not conform to his definition

for.at least three reasons: (1) motif primitives are treated as atomic units rather than as point

sets, (2) we admit non-similarity transformations, and (3) a form may not completely cover

itself, leaving what Mandelbrot calls a "residue". The cumbersome term "self-affine with

residue" is more precise, but even this description requires amending Mandelbrot's

definition of "self-affine" to include shear transformations. We prefer to call these

simply "recursive", a term that captures their essence.

Affine transformations

To construct a form, one draws the parts of the motif, clones the motif, and affinely

transforms the clones. Part of the effectiveness of the discoverForm paradigm derives from

the immediacy of interaction between the user and the forms he is exploring.3 An illusion

of manipulating forms "hands-on" is provided by a model of interaction based on the fixed

points of affine transformations.

Under a rule of parsimony, an affine transformation is uniquely determined by specifying

the points that it fixes Gcaves unchanged) plus the image of one additional point. The rule

of parsimony states that when more than one transformation maps these points as desired,

we choose the simplest one. Transformations that fix no points are thus assumed to be pure

translations, without, for example, rotation or scaling components. Similarly,

transformations that fix exactly one point are assumed to be combinations of rotation and

non-negative scaling about the fixed point, without an additional reflection component If

3 We regretfully use the generic "he" throughout this paper without wishing to imply that the
discoverForm user is necessary masculine.



an affine transformation fixes two distinct points, then it fixes the line passing through the

points pointwise. If an affine transformation fixes three or more non-colinear points, it is

the identity. Consequently, at most two fixed points are needed to specify a non-identity

affine transformation (of the plane).

These properties map nicely onto a method of interactively effecting affine transformations

in which tacks hold fixed points while an additional point is dragged to its image. To

affinely transform an object, a user positions up to two tack icons on the screen image of a

form. Then the user selects parts of the form, either motif primitives or clones, and drags a

point on them to a destination point As the point is dragged, the relationship of its current

position to its initial position determines, together with the points fixed by the tacks, a

unique affine transformation. The form is regenerated while the user drags so that it

remains consistent with the transformation determined by the position of the cursor. With

the generation level set to an appropriately low level, current generation personal computers

can compute and redraw forms quickly enough to convey to the user the illusion that he is

manipulating a physical model of a form.

The effects of the zero-, one-, and two-tack affine transformations on a square are shown

in figure 5. Translations (a) are effected without tacks by dragging a point to its image.

Rotation (b) and scaling (c) are effected by tacking a point and dragging about it with a

cursor. As the user drags around the tack, the object rotates; as he drags toward and away

from the tack, the object scales down and up. Shear (d) and strain (e) require two tacks,

which fix the points on the axis passing through them. Shear is effected by dragging

parallel to the tacked axis and strain by dragging perpendicular to it Reflection (f) is a

significant special case of strain. Because reflection about an axis and reflections and

halfturns that interchange tacked points are often used in form explorations, the user is

provided with menu items to perform these transformations directly.
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Exploring recursive forms

Our work is motivated by our desire to explore the universe of recursive forms, a multi-

dimensional conceptual space whose dimensions are calibrated by motif shape, number of

clones, and clone transformations. To use a two-dimensional metaphor, we seek pinnacles

of visual interest among the hills and valleys of the terrain of recursive forms. And we seek

paths between these which will develop our understanding of the lay of the land. Our

vehicle for exploration is a computer program, built upon the recursive display list

representation, that implements hands-on affine transformations of motif primitives and

clones. To clarify the nature of this task, we ask three questions: "What does the terrain

look like?", "How are we able perceive and comprehend it?", and "How does our vehicle

of exploration move about in it?".

With the benefit of hindsight, having explored a great deal of the terrain already, we can

say that the landscape of recursive forms is rich in visual heights and depths, having

ridges, peaks, plateaus, basins, and valleys in all directions. It is often precipitous. Small

steps in some directions may plummet one from exhilarating heights to the depths of visual

chaos (or inversely). As the number of clones increases, plateaus and ridges give way to

more sparsely scattered peaks, since the likelihood that all of the components of a form will

be in just the right relative positions to yield a visually meaningful result decreases with

their number. However, the peaks of such rare coincidences are often correspondingly

high.

Our means of moving about in the landscape and our perception of it are closely linked to

the complexity-compounding effect of recursion, a phenomenon that has become known as

"database amplification". Subtle changes to a form's motif or clones may cause

uncorrespondingly large changes in the form that they generate. In terms of our vehicle of



exploration, database amplification means that we move through the landscape extremely

fast; small motions at the controls may send us rocketing through the visual countryside.

Or, equivalently formulated, our speed effectively compresses the landscape into a small

area, which has the effect of exaggerating the roughness of an already irregular terrain.

This compression has a paradoxical effect on exploration. We are able to cover a lot of

territory quickly, but the peaks and valleys fly by so fast that we are bound to miss a lot of

scenery on the way.

A further consequence of database amplification is shown in figure 6, which illustrates liow

the recursive application of a replication rule to a simple motif may give rise to

unexpectedly intricate forms. In all but the simplest instances, the human mind is not

equipped to predict the outcome of such recursion. It is all but impossible to predict from

the motif and clones of figure 6 (a) that they will give rise to the pattern in (b), the

boundary in (c), or the mottled shading in (d), even though the mechanism by which those

forms are developed is deterministic and immediately comprehensible. This shortcoming

cannot be ascribed to a mere lack of experience with recursive forms; our several years of

working with discover Form and its predecessors have developed our intuition of where to

look for interesting forms, but not our ability to predict the appearance of a form from its

motif and replication rule. Rather, the prediction problem seems to transcend the

fundamental computing power of the human mind, which has not evolved to deal with deep

recursion. An interesting consequence of this is that, as we noted above, forms with a

random appearance may be generated by deterministic mechanisms. If the forms are

sufficiently deeply recursive, we are unable to detect the underlying regularity.

In terms of the terrain metaphor, we cannot determine our height in the landscape

(corresponding to the visual interest of a form) from our position in it (indexed by the

generation level, motif shape, and spatial relationships of the clones). We can evaluate a

10



form by looking at it, but not by performing thought experiments. Worse yet, we often

cannot extrapolate the visual interest of a form to its neighbors due to the roughness of the

terrain. A visually dissonant form may be brought into splendid resonance by a slight

adjustment of a clone, and yet the direction of the adjustment is not suggested by the

dissonant form. In effect, we arc extremely nearsighted explorers of the landscape, able to

perceive and evaluate only those forms that we manage to steer into direct view on the

computer screen.

Exploration is venturing forth without a definite goal in the hope of discovering interesting

phenomena. The explorer seizes on serendipitous events that suggest new paths of

exploration. The success of an exploration depends a great deal on such opportunism.

Imagine the difficulty of exploring a rough continent if your visibility was an arm's length

and at each step of the way you had to say how far and in what direction you intended to

go, and then go there blindfolded. You would miss interesting sights along the way and,

more importantly, opportunities that you could not have anticipated. As myopic explorers

of recursive forms, the productivity of our explorations depends less on where we intend to

explore and more on the incidental forms we see along the way, since, given our

shortsightedness with respect to recursive forms, the only opportunities for exploration we

are likely to recognize are the ones that appear on the screen before us. In order to present

these opportunities to the discoverForm user, we follow a simple principle of interaction:

all changes to motifs and clones are immediately reflected in the forms they generate.

Adherence to this principle implies that as one draws new parts of a motif, the parts are

drawn simultaneously in every copy of the motif; as parts of the motif are transformed,

they are simultaneously transformed in every copy of the motif; and as clones are

transformed, every motif copy whose compound transformation depends on the clone's

transformation moves accordingly. Ruled out are interactions whose effect on the form is

11



not apparent until they are completed It is not permissible, for example, to refrain from

updating a form until the user has finished drawing a motif part The program thus

functions as a kind of super-kaleidoscope whose pattern structure (determined by the

spatial relationships of the clones) can be changed as well as the scene viewed through it

(the motif). In our experience with discoverFormy the largest source of ideas for new

explorations and of insight into the connections between forms have been the incidental,

unexpected forms we have encountered while performing motif and clone transformations.

Interactive response is achieved with even minimal computing power by adjusting the?: '

generation level of a form downward. Because of the approximate self-similarity of

recursive forms, most features of interest in higher-level forms are also apparent in lower

generations of the forms. We have found it useful to explore forms at low generation

levels, increasing the level to flesh out forms that prove interesting. This strategy permits a

great deal of terrain to be investigated effectively with relatively low-power hardware. As

more powerful hardware becomes available, higher-order features of recursive forms, such

as the boundary and shading effects illustrated in figure 6, can be explored with the same

interactive paradigm.

Some explorations

We now turn to some sample explorations. As figure 7 illustrates, the simplest

manipulations of recursive forms quickly suggest paths of exploration leading to diverse

structures. At the center of the figure is a binary tree, a form generated by recursively

attaching two clone branches to a trunk motif. The forms that encircle the tree are derived

from the basic tree by rotating the branch fork about its attachment point to the trunk. In

one cycle of rotation, we encounter explorations leading to the golden ratio and a

generalization of it, diverse spiral forms, a plane symmetry, space-filling canal structures,

and a dragon curve.
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Starting with the symmetric tree (a), a rotation of 45° clockwise yields a tree whose

branches enclose squares (b). Scaling down the branches just slightly brings the

overlapping and jumbled squares into coincidence (c) so that each square has exactly two

adjacent squares above it and to the right. Anyone familiar with the standard construction of

the golden rectangle [Ghy77, Ch. II] will recognize that the lengths of the sides of the

squares are related by the golden ratio, O. Form (f) is a three-dimensional expression of the

same structure in which the squares are replaced by cubes. Scaling the branches further

yields an infinite series of visual resonances in which squares have an integer numbero£

adjacent squares (d). The limiting case (e) is reached when the ratio of sides of successive

squares is 0.5. Taking the side length of the largest square as 1, the ratios at which the

resonances occur can be read off of the forms as the positive real solutions of the equations

in the sequence 1 = r, 1 = r + r2, 1 = r + r2 + r3 , . . . , namely, 1,0, 0.5437, The

golden ratio is seen to be the first non-trivial ratio of this series.

As the branches are rotated further (g-n), the embeddedness of spirals in trees and of trees

in spirals becomes evident Forms (h), (j), and (o) are derived from forms (g), (i), and (n)

by scaling the clones to bring higher-order branches of the tree into coincidence and then

using the tree as a template to construct the implied spiral structure. These constructions

make dear that the visually distinct forms (h), (j), and (o) are simple parametric variations

of a common theme. Form (j), nested squares, suggests two avenues of further

explorations, one of changing the nesting relationship of the squares (m) and the other of

nesting higher-order regular polygons in the same fashion (k, 1).

The stepwise transformation of one fonn to another by manipulating the motif and clones is

a powerful technique for discovering connections between diverse forms. Although forms
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(f) and (h) are visually quite disparate, they share similar structures, a commonality which

is made evident by tracing the path of forms (fHc)-(b)-(g)-(h).

Continuing the cycle of rotation, at the halfway point (p) the tree is a compact structure

whose branches lie on a regular rectilinear grid. In fact, the last-generation branches of this

form obey the p4mm symmetry of the plane [Ste81, Ch. 34], as do the last-generation

branches of form (q). By displaying only the last generation of the latter form (r) and

replacing the trunk with an asymmetric arrow motif (s), we can use the form as a

kaleidoscope through which to explore the visual richness of the p4mm symmetry greup.

Rotating and translating the motif within this structure gives rise to patterns (t) and (u).

Shortly before the branch rotation comes full-cycle, the tree assumes the shape of a

rectangle (v), the highest-generation branches evenly spaced within it. The white spaces

between the branch groups suggest trying to position the motif so that the branches of the

tree are non-intersecting. Rotating and translating the trunk motif reveals that this is indeed

possible, and yields a canal structure that evenly waters the rectangle (w). Further

exploration of motif positions reveals a related canal structure (x) in which the motif is

centrally placed and the clone branches radiate from either end The symmetry of the clones

in this form suggests exploring other angular relationships of the clones to the motif. One

of the resulting forms (y) has an interesting boundary, which the high-order branches of

the tree appear to fill evenly. By displaying only the last generation of the form and

increasing the generation level (z), we are able to confirm that the form is the twindragon

described by Mandelbrot [Man83, pp 66-67].

Articulating the structure of a form by varying its motif is powerful technique of

exploration whose use is further illustrated in figure 8, which depicts variations on a theme

by Hilbert. The Hilbert curve is developed by recursively replacing an inverted "IT* motif

14



by copies of the motif centered at the vertices of the "U" (a). The copies are joined with

connecting segments to form a connected path (b). Ignoring the connecting segments,

Hilbert's form is recursive. We replace the inverted "U" with an asymmetric motif (c) to

reveal the form's structure in terms of the orientations of the motif copies. It is this

structure that we are interested in exploring.

Using the form as a kaleidoscope as we have done before, we begin to explore the form's

structure by translating vertical line motifs. This quickly reveals a structure of regions that

are delimited by connected paths through the form (d). Rotating the vertical line motif by

90° yields a structure of branching paths that are orthogonal to the region boundaries. The

structure of this form is elegantly expressed by a parallelogram motif ((e), shown one

generation level lower than form (d)). Tracing three sides of the parallelogram yields a

slanted "U" motif, which when appropriately translated gives rise to an illusory form (0

that appears to be 3-dimensional, but is not realizable. We did not anticipate, and indeed

could not have anticipated, that any such structures as forms (d), (e), and (f) lurk in the

Hilbert curve. Yet we were quickly and naturally led to their discovery by the visual

coincidences we observed when we more or less randomly transformed motifs while

viewing them through the structure of the curve.

In a final example, we recount the exploration that led to the discovery of the space-filling

curve shown in figure 6. The curve is a "squig", a term introduced by Mandelbrot [Man83,

Ch. 24] to describe paths that are developed by recursively replacing the linear segments of

an initial path by scaled copies of the path. Some interesting squigs are based on paths

through the points of regular grids; we were exploring these when we encountered the

form.
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Our exploration is diagrammed in figure 9. We began with a three-segment motif based on

a square grid (a). Qoning the motif and positioning the clones on the path segments yielded

an initial squig (b). Each of the three path segments can be replaced by a clone in four

distinct ways, for a total of 43 = 64 distinct squigs. We explored these more or less

randomly, on the alert for interesting patterns, by tacking the endpoints of clones and

transforming them with the reflection and halfturn operations described earlier. One

configuration yielded a space-filling curve (c) with an unusual boundary. We investigated

the structure of this curve by varying the motif as in the Hilbert curve exploration above.

When we mirrored the last two segments of the path about the axis passing through ttyeit

endpoints, the awkward curve (c) was transformed into the elegant form (d). From our

previous experience with squigs, we had conjectured that every space-filling curve fills an

area that is self-tiling. To determine if the conjecture held in the present case, we traced an

approximation to the boundary of (d). This indeed revealed a reptile and its self-tiling

scheme (e).

Conclusion

We have demonstrated that a diverse class of visually interesting forms can be profitably

explored with minimal computing resources. By using a 2 1/2-dimensional, geometrically-

based representation, we are able to describe a wide variety of forms, and more

importantly, to discover connections between diverse forms by interactively transforming

one to another̂  By putting the user in direct contact with the forms he is exploring and by

providing immediate response to his manipulations, we foster the discovery of

unanticipated avenues of inquiry, an important aspect of creative exploration.

The success of this paradigm rests on the recursiveness of recursive forms. Small changes

to a motif or replication rule often cause uncorrespondingly large changes to the form they

generate, due to the complexity-compounding effect of recursion. This enables the explorer

16



to cover a large and diverse territory with relatively simple manipulations. Recursion also

means that features of interest in higher-generation forms are often visible in lower-

generations of the same forms. Hence, most explorations can be carried out at low

generation levels where interactive response is almost always possible.

We would like to suggest three extensions to the discoverForm paradigm that would open

up even greater domains of form to exploration. First, generalization of the representation

and generation algorithm to three dimensions is straightforward. We chose not to

investigate three-dimensional forms in order to avoid the difficult problem of designing #

intuitive manipulations of three-dimensional objects on a two-dimensional medium.

However, our experience with discoverForm has led us to believe that the additional effort

to design a 3-dimensional extension would be justified by the results of the explorations

that could be conducted with it

Second, we were surprised that in spite of the simplicity of the recursive display list

representation, it suffices to explore such a broad range of forms. It is the simplest

representation of its sort, admitting only one motif and one context-free replication rule.

Extensions to multiple motifs and multiple rules would permit equally efficient explorations

of more complex systems such as Penrose tilings [Grii87, §10.3]. The admission of

context-sensitive rules would permit modeling cellular automata, although the generation

algorithm for context-sensitive forms might be considerably less efficient than the algorithm

that we have presented here.

Finally, although our goal in designing discoverForm was to foster creative search, we.

have not included in it explicit support for keeping track of the course of an exploration.

The shape of an exploration and the connections between forms that it reveals is at least as

interesting as the forms themselves (see, for example, figure 7). The discoverForm user
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must construct such a map in his head or on paper, although the computer could semi-

automatically chart the paths the user explores. Mechanisms for maintaining a search map,

attaching annotations to it, and presenting it to the user as an aid to planning future

explorations and resuming old ones could contribute a great deal to the productivity of his

explorations.
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(a) (b)

Figure 1. A recursive form: (a) replication
rule and (b) fifth generation form.



generate(displayList, displayTransform, depth, allGens)
if depth 2> 1

for item in displayList
if primitive (item)

if allGens or depth=l

draw (item, displayTransform)
else /* item is a clone transformation */

generate(displayList,

concat(displayTransform, item) ,
depth-1, allGens)

Figure 2. The generation algorithm.



displayList :- {
polygon 1,
polygon 2,
don* 3,
polygon 4,
polygon 5,
polygon 6,
don« 7,
polygon 8,
done 9

(a)

Figure 3. A recursive display list and the form that it generates, (a) Display list, (b) motifpfimitives
and clones (exploded view), and (c) fourth generation form.



(a) Ammonite (b) Arches (c)Mesht (d) Meandert

(e) Kawaguchiesque (0 Monkey Treet (g) p4 Symmetryt (h) Evergreent

(i) Bamboo Texture (j) Phylotaxis (k) Bronchus (l)Tree

(m) Half-square (n) Woven Texturef (o) Koch Tiling (p) Pyramid

Figure 4. Some recursive forms. Forms marked with a dagger (f) are shown last generation only.



(a) Translation

(b) Rotation (c) Scaling

(d) Shear (e) Strain (0 Reflection

Figure 5. Performing affine transformations of
the plane by tacking fixed points and dragging.



1

(a) Motif and clones (b) Third generation (c) Sixth generation (d) Ninth generation

Figure 6. Recursion compounds complexity, (a) Motif and clones, (b) resulting pattern, (c) emer-
gence of a boundary, (d) emergence of shading effects.



Figure 7. Exploring the binary tree.
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Figure 8. Variations on a theme by Hilbert: articulating the structure of a form by varying its motif.



(a) (b)

Figure 9. Discovery of a space-filling curve and reptile.


