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Abstract

We describe an extremely simple paradigm that we have used to explore the graphic
qualities of recursive forms, forms developed by recursively replicating a motif. Our
empbhasis is on form exploration, as opposed to form generation, which has been the focus
of related work in this area. In spite of the simplicity of the paradigm, an enormous vgri"ety
of forms and phenomena can be explored with it, including spirals, branching structures,
plane symmetries and tilings, “reptiles”, iterated function systems, space-filling curves,

“squigs”’, meanders, textures, phylotaxis and organic forms.

The components of this method are a representation for 2 1/2-dimensional recursive forms,
an algorithm for drawing them, a “hands-on” method of performing affine transformations,
and a guiding principle of interaction. The synthesis of these components yields a tool for
form exploration that is not merely quantitatively, but qualitatively better than has been
reported to date. This paradigm has been used effectively on personal computers, and yet it

scales well to take advantage of more computing power when it is available.

CR Categories and Subject Descriptors
F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other

Rewriting Systems - Parallel rewriting systems; 1.3.5 [Computer Graphics]:

This work has been supported by the Engineering Design Research Center, an NSF Engineering Research
Center, and by NSF grant MSM8717307.
UNIVERSITY LIBRARIES

CARNEGIE-MELLGN GiHiVERSITY

PITISBURGH, PENNSYLVANIA 15213




Computational Geometry and Object Modeling - Hierarchy and geometric transformations;
1.36 [Computer Graphics]: Methodology and Techniques - Interaction techniques; J.5
[Computer Applications]: Arts and Humanities - Arts, fine and performing; K.3
[Computing Milieux]: Computers and Education; K.8 [Computing Milieux]:

Personal Computing.

Additional Key Words and Phrases
computer imagery, affine transformation, fractal, symmetry, reptile, tree, spiral, tiling,

recursive form, self-similarity

Introduction

This paper is founded on two premises: (1) that an exceedingly simple representation
suffices to describe a broad spectrum of forms of interest in computer graphics, and (2) that
these forms can be effectively explored with minimal computing resources. We discuss the
rationale behind the design of aprogram that we have used to conduct such explorations

and exhibit the results of several investigations.

Rule-based formalisms for the generation of form will be familiar to readers of the
computer graphics literature. Many authors have described systems for creating complex
images by the repeated action of rules on simple sets of data [Fou82, Kaw82, Smi84,
Dem85, Opp86, Bar88, Vie89]. In contrast to these efforts, which have focused on image
generéti on, the emphasis of our work is on image exploration. We combine a simple
representation, an efficient generation algorithm, an intuitive mode of graphic interaction,
and a guiding principle of interaction to yield aqualitatively better tool for exploring the
graphic qualities of a fundamental class of rule-based forms than has been reported to date.
This paradigm, implemented as the program discover Form, has been used effectively on

low-end Apple® Macintosh™ computers, not merely to draw forms, but to learn about




them and discover new ones. The forms we present in this paper were all discovered in the

course of explorations using Macintosh Plus and Macintosh |1 computers.

The paradigm we present distinguishes itself from similar work by its combination of
generality with interactive implementation on low-power hardware. Most formalisms of
similar intent are limited to a particular domain of forms, such as terrain models [Fou82] or
branching forms [Kaw82, Smi84, Op86, Vie89]. Other formalisms encompass a variety of
forms but require high-performance hardware for interactive response [Sti80, Kri80,
Kri81, Dem85, Bar88]. In spite of the simplicity of the discover Form paradigm, an Y r
enormous variety of forms and phenomena can be explored with it, including spirals
[Coo?9] , branching structures [Man83], plane symmetries and tilings [ Ste81, Grii87],
"reptiles” [Gar63], iterated function sysxem's [Dem85, Bar88], space-filling curves,
"squigs’, and meanders [Man83], textures, phylotaxis [Coo79], and organic forms

[Ste74].

Recursive forms

We are concerned with 2 1/2-dimensiona recursiveforms, forms that are developed by
recursively copying a 2-dimensional motifaccording to a single replication rule. The
resulting motif copies arc arranged in layers that arc conceptually ordered along a third
dimension; the limited use of the third dimension gives rise to the term "2 1/2-
dimensional”. The replication rule specifies the spatia relationships of a fixed number of
motif copies, called clones, to the original motif. Recursive application of arule to a motif
produces successive generations of motif copies, the first generation being the motif itsdlf,

the second generation the clones, the third generation the copies of the ¢lones, and so fonh




(see figure 1). A form is completely determined by a motif, a replication rule, and the
recursive depth to which the rule is applied.

In formal linguistic terms, the forms we describe are expressions of context-free parallel
rewriting systems. They are akin to the OL-systems [Hop79] that Lindenmayer proposed to
model developmental processes in biology, with the important difference that where OL-
systems deal with the adjacency relationships of symbols in strings, recursive forms deal

with the spatial relationships of motif copies in compositions.

ey
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The spatial relationships of the clones to the original in a replication rule give rise, through

the recursive application of the rule to a motif;, to the spatial structure of a form. These
relationships are specified as plane transformations that map the motif onto the clones. We
are concerned here with affine transformations (translation, scaling, rotation, reflection,
shear, and strain), since they suffice to explore a wide range of basic structures and since

they are easily specified by intuitive graphic interactions.

We represent a recursive form as an ordered display list of motif primitives and clones.
Primitives are either lines, represented by their endpoints, or polygons, represented by
vertex lists. We limit motif primitives to linear elements because the line-preserving
property of affine transformations makes them easy to transform: the image of a line
segment is the segment connecting the images of its endpoints. Other primitives, for
example ellipses, could be handled equally efficiently, but linear primitives have proven
entirely adequate for form explorations in practice. The graphic image of a motf is obtained
by drawing the primitives in list order, thus primitives at the tail of the list are drawn on top

of primitives at the head. Interspersed with the motif primitives are clones, represented by

T Some forms are depicted as a superposition of all generations, others as only the last generation. This
distinction is clarified later on.




3x3 homogeneous trangormations. A clone marks aplacein thelist at which atrandormed

copy of the motif is drawn.

- Togenerate aform, the display list istraversed recursvely and each motif primitive or
cloneisdrawn asit isencountered. Informal pseudocode for the generation algorithm is
shown in figure 2. The parameter dispiayTransf orm functions like a transform sack
onto which clone transformations are pushed and popped; it is theidentity when the
generation routine is inifially invoked. Moatif primitives are trandormed by the value of
dispiayTransform before they are drawn. The flag allGans determines whah?r all
generations of aform are drawn, or only the last generation. For forms such astreesénd
spirals, it is appropriate to draw a superpostion of all of the generations of the form. For

forms such as squigs and space-filling curves that involve recursive refinement of the parts

of the form to smaller parts, only the last generation is of interest

Figure 3 shows the correspondence of adisplay list to the form it generates. The motif
consists of several filled polygons that together depict orthogonal inter secting planes. Three
octants of the motif are occupied by half-size clones. The gatial reationships of the clones
to the motif give rise to arecursive partitioning of the cube; the order of polygons and
clonesin thedisplay list ensures that the parts of the form nest properly to depict a three-

dimensional form.

A sense of the variety of recursive forms is given by figure 4. Some of the depicted forms
are chosen to demongrate the reationship of recursveformsto th_e work of other
researchers. Iterated function system transformations based on smple polygonal shapes
[Bar88, pp 134-135] are easly obtained by interactively trangforming clones of a polygon
S0 that they approximatdy cover the original polygon. Subgtituting a point for the

polygonal motif then yields an approximation to an iterated function system with equally-




weighted transformations. Form (d) is such aform, obtained by sdf-tiling arandomly
drawn polygon. Some 3-dimensional forms, such as Kawaguchi's biomorphs [Kaw82]

and Reynold's " Monument to Recurson” [Rey81], can be explored by meansof 2 1/2-
dimensional mock-ups ((b), (e), and (p)). Many of the consgtructionsin Mandebrot's The
Fractal Geometry of Nature[M an83] arerecursve forms ((f) and (k)) and many of theline
and plane symmetries [Ste81, Grii87] can be formulated as such (g). In spite of the Srict
regularity of the mechanism by which they are developed, recursve forms need not have a
geometrically regular appearance. Smith has pointed out that deter ministic mechanisms
auffice to generate forms whose appearance is convincingly random [Smi84]. As fap&>

(d), (h), and (i) illustrate, his observation holds even in the limiting case of a single context

-free replication rule.

The enormous variety of forms that recurgve display lists can represent is a consequence of
their geometric, rather than topological, basis. Therepresentation does not prescribe a
particular topological class, such astrees, to which forms must belong, and consequently,
explorations of forms are not regtricted by the boundaries between topological classes. To
be sure, our perception supplies topological inter pretations to some patial configur ations
of parts, we perceivein figure 1 (b), for example, a branching Sructure rather than an
assembly of unrelated parts However, such topological interpretations are not embedded in
therecursive display list representation. In fact, a fixed set of spatial relationships between
the parts of aform may giveriseto condderably different perceived topologies, depending
on how its spatial sructureisarticulated by a moatif. Recursive display lists provide a clean
separation between the geometric sructure of a form (determined by the transformations of
the clones) and the motif through which the Sructure is expressed; they are geometric
abgractions of gructure, in contrast to topological absractions, exemplified by Smith's
graftals [Smi84].




Oneistempted tocall recursve forms™" sdf-amilar”, but thisis, grictly speaking, a
misnomer. Mandebrot usestheterm " self-amilar™ torefer to point setsthat are completely
cover ed by non-overlapping transformed copies of themsalves, admitting smilarity
transformations only ([Man83], pp 349-350). Our forms do not conform to his definition
for.at least three reasons. (1) motif primitives are treated as atomic unitsrather than as point
sets, (2) we admit non-similarity transformations, and (3) a form may not completely cover
itself, leaving what Manddbrot calls a" resdue’. The cumbersome term " sdf-affine with
resdue’ ismoreprecise, but even thisdescription requires amending Manddbrat's
definition of " sdf-affin€’ to include shear trans‘orrhétions We prefer to call these for

amply "recurgve', aterm that capturesther essence.

Affine transformations

To condruct aform, one draws the parts of the matif, clones the motif, and affinely
trangforms the clones. Part of the effectiveness of the discover Form paradigm derives from
theimmediacy of interaction between the user and the forms he is exploring.® An illusion
of manipulating forms " hands-on" is provided by a mode of interaction based on the fixed

points of affine transformations.

Under arule of parsmony, an affine transformation is uniquely determined by specifying
the pointsthat it fixes Gecaves unchanged) plus the image of one additional point. Therule
of parsmony states that when more than one transformation maps these points as desired,
we choose the smplest one. Transfor mations that fix no points are thus assumed to be pure
trandations, without, for example, rotation or scaling components. Similarly,
transformations that fix exactly one point are assumed to be combinations of rotation and

non-negative scaling about the fixed point, without an additional reflection component If

3 Weregretfully use the generic "he" throughout this paper without wishing to imply that the -
discoverForm user is necessary masculine.




an affine transformation fixes two distinct points, then it fixes the line passing through the
points pointwise. If an affine transformation fixes three or more non-colinear points, it is
the identity. Consequently, at most two fixed points are needed to specify a non-identity

- affine transformation (of the plane).

These properties map nicely onto a method of interactively effecting affine transformations
in which zacks hold fixed points while an additional point is dragged to its image. To
affinely transform an object, a user positions up to two tack icons on the screen image of a
form. Thpn the user selects parts of the form, either motif primitives or clones, and drags a
point on them to a destination point. As the point is dragged, the relationshfp of its current
position to its initial position determines, together with the points fixed by the tacks, a
unique affine transformation. The form is regenerated while the user drags so that it
remains consistent with the transformation determined by the position of the cursor. With
the generation level set to an appropriately low level, current generation personal computers
can compute and redraw forms quickly enough to convey to the user the illusion that he is

manipulating a physical model of a form.

The effects of the zero-, one-, and two-tack affine transformations on a square are shown
in figure 5. Translations (a) are effected without tacks by dragging a point to its image.
Rotation (b) and scaling (c) are effected by tacking a point and dragging about it with a
cursor. As the user drags around the tack, the object rotates; as he drags toward and away
from the tack, the object scales down and up. Shear (d) and strain (e) require two tacks,
which fix the points on the axis passing through them. Shear is effected by dragging
parallel to the tacked axis and strain by dragging perpendicular to it. Reflection (fisa
significant special case of strain. Because reflection about an axis and reflections and
halfturns that interchange tacked points are often used in form explorations, the user is

provided with menu items to perform these transformations directly.




Exploring recursive forms

Our work is motivated by our desire to explore the univer se of recursive forms, a multi-
dimensional coﬁceptual space whose dimensions are calibrated by motif shape, number of
clones, and clone transformations. To use a two-dimensional metaphor, we seek pinnacles
of visual interest among the hills and valleys of the terrain of recursive forms. And we seek
paths between these which will develop our understanding of the lay of the land. Our
vehiclefor exploration is a computer program, built upon the recursive display list
representation, that implements hands-on affine transfor mations of motif primitives and
clones. To clarify the nature of this task, we ask three questions: "What does the terrdin
look like?", " How are we able perceive and comprehend it?", and " How does our vehicle

of exploration move about in it?".

With the benefit of hindsight, having explored a great deal of the terrain already, we can
say that the landscape of recursiveformsisrich in visual heights and depths, having
ridges, peaks, plateaus, basins, and valleysin all directions. It is often precipitous. Small
steps in some directions may plummet one from exhilarating heights to the depths of visual
chaos (or inversely). As the number of clones increases, plateaus and ridges give way to
mor e spar sely scattered peaks, since the likelihood that all of the components of a form will
~ beinjust theright relative positions to yield a visually meanihgful result decreases with
their number. However, the peaks of such rare coincidences are often correspondingly

high.

Our means of moving about in the landscape and our perception of it are closely linked to
the complexity-compounding effect of recursion, a phenomenon that has become known as
" database amplification". Subtle changes to a form's motif or clones may cause

uncorrespondingly large changesin the form that they generate. In terms of our vehicle of




explor ation, database amplification means that we move through the landscape extremey
fagt; small motions at the controls may send usrocketing through the visual countrysde.
Or, equivalently formulated, our speed effectively compr esses the landscape into a small
area, which has the effect of exaggerating the roughness of an already irregular terrain.
This compression has a paradoxical effect on exploration. We are ableto cover alot of
territory quickly, but the peaks and valleys fly by so fast that we are bound tomissa lot of

scenery on the way.

A further consequence of database amplification is shown in figure 6, which illustrates flow
the recurgve application of areplication rule to a smple motif may giveriseto
unexpectedly intricate forms. In all but the smplest insténces the human mind is not
equipped to predict the outcome of such recursion. It is all but impossible to predict from
the motif and clones of figure 6 (a) that they will giveriseto the patternin (b), the
boundary in (c), or the mottled shading in (d), even though the mechanism by which those
forms are developed is deterministic and immediately comprehensible. This shortcoming
cannot be ascribed to a mere lack of experience with recursveforms, our several years of
wor king with discover Form and its predecessor s have develobed our intuition of whereto
look for interesting forms, but not our abi-lity to predict the appearance of aform from its
motif and replication rule. Rather, the prediction problem seems to transoend the

| fundamental computing power of the human mind, which has not evolved to deal with deep
recursion. An interesting consequence of thisis that, as we noted above, forms with a
random appearance may be gener ated by deterministic mechanisms. If the forms are

sufficiently deeply recursive, we are unable to detect the underlying regularity.

In terms of the terrain metaphor, we cannot determine our height in the landscape
(corresponding to the visual interest of a form) from our position in it (indexed by the

generation level, motif shape, and spatial relationshipsof the clones). We can evaluate a
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form by looking at it, but not by performing thought experiments. Wor se yet, we often
cannot extrapolate the visual interest of aform to its neighbor s due to the roughness of the
terrain. A visually dissonant form may be brought into splendid resonance by a dight
“adjugment of a clone, and yet the direction of the adjusgment is not suggested by the
dissonant form. In effect, we arc extremely nearsighted explorers of the landscape, able to
per ceive and evaluate only those forms that we manage to seer intodirect view on the

computer screen.

Exploration is venturing forth without a definite goal in the hope of discovering intere}ging
phenomena. The explorer seizes on serendipitous events that suggest new paths of
exploration. The success of an exploration depends a great deal on such opportunism.
Imagine the difficulty of exploring arough continent if your visibility was an arm's length
and at each step of the way you had to say how far and in what direction you intended to
go, and then go there blindfolded. Y ou would miss interesting sights along the way and,
mor e impor tantly, opportunities that you could not have anticipated. As myopic explorers
of recursive forms, the productivity of our explorations depends less on where we intend to
explore and more on the incidental forms we see along the way, since, given our
shortsightedness with respect to recursiveforms, the only opportunities for exploration we
arelikely to recognize are the onesthat appear on the screen before us. In order to present
these opportunities to the discover Form user, we follow a smple principle of interaction:

all changes to motifsand clones areimmediately reflected in the forms they generate.

Adherence to this principle implies that as one draws new parts of a matif, the parts are
drawn smultaneoudy in every copy of the matif; as parts of the motif are transformed,
they are smultaneoudy transformed in every copy of the matif; and as clones are
transformed, every motif copy whose compound transformation depends on the clon€'s

trangformation moves accordingly. Ruled out are interactions whose effect on the form is
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not apparent until they are completed. It is not permissible, for example, to refrain from
updating a form until the user has finished drawing a motif part. The program thus
functions as a kind of super-kaleidoscope whose pattern structure (determined by the
spatial relationships of the clones) can be changed as well as the scene viewed through it
(the motif). In our experience with discoverForm, the largest source of videas for new
explorations and of insight into the connections between forms have been the incidental,

unexpected forms we have encountered while performing motif and clone transformations.

Interactive response is achieved with even minimal computing power by adjusting they, *
generation level of a form downward. Because of the approximate self-similarity of
recursive forms, most features of interest in higher-level forms are also apparent in lower
generations of the forms. We have found it useful to explore forms at low generation
levels, increasing the level to flesh out forms that prove interesting. This strategy permits a
great deal of terrain to be investigated effectively with relatively low-power hardware. As
more powerful hardware becomes available, higher-order features of recursive forms, such
as the boundary and shading effects illustrated in figure 6, can be explored with the same
interactive paradigm.

Some explorations

We now turn to some sample explorations. As figure 7 illustrates, the simplest
manipulations of recursive forms quickly suggest paths of exploration leading to diverse
structures. At the center of the figure is a binary tree, a form generated by recursively
attaching two clone branches to a trunk motif. The forms that encircle the tree are derived
from the basic tree by rotating the branch fork about its attachment point to the trunk. In
one cycle of rotation, we encounter explorations leading to the golden ratio and a
generalization of it, diverse spiral forms, a plane symmetry, space-filling canal structures,

and a dragon curve.
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Starting with the symmetric tree (a), arotation of 45° clockwise yields atree whose
branches enclose squares (b). Scaling down the branchesjust slightly brings the
overlapping andjumbled sguares into coincidence (c) so that each square has exactly two
adjacent squares above it and to theright. Anyone familiar with the standard construction of
the golden rectangle [Ghy77, Ch. I1] will recognize that the lengths of the sides of the
squares are related by the golden ratio, O. Form (f) is athree-dimensiona expron of the
same structure in which the squares are replaced by cubes. Scaling the branches further
yields an infinite series of visual resonances in which sgquares have an integer numbeﬁr_o{i
adjacent squares (d). The limiting case (€) is reached when the ratio of sides of successive
squares is 0.5. Taking the side length of the largest square as 1, theratios at which the
resonances occur can be read off of the forn.ws as the positive real solutions of the equations
inthesequence 1 =r, 1 =r+r% 1=r+r?+r%..., namely, 1,0,0.5437,  The

goldenratio is seen to be the first non-trivial ratio of this series.

As the branches are rotated further (g-n), the embeddedness of spirasin trees and of trees
in spirals becomes evident Forms (h), (j), and (o) are derived from forms (g), (i), and (n)
by scaling the clones to bring higher-order branches of the tree into coincidence and then
using the tree as atemplate to construct the implied spiral structure. These constructions
make Qéar that the visually distinct forms (h), (j), and (0) are simple parametric variations
of acommon theme. Form (j), nested squares, suggests two avenues of further
explorations, one of changing the nesting relationship of the squares (m) and the other of

nesting higher-order regular polygons in the same fashion (k, 1).

The stepwise transformation of one fonn to another by manipulating the motif and clones is

apowerful technique for discovering connections between diverse forms. Although forms
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(f) and (h) arevisually quite disparate, they share smilar gructures, acommonality which
Is made evident by tracing the path of forms (fHc)-(b)-(g)-(h).

Continuing the cycle of rotation, at the halfway point (p) the treeis a compact sructure
whose branches lie on aregular rectilinear grid. In fact, the last-gener ation branches of this
form obey the pAmm symmetry of the plane [Ste81, Ch. 34], as do the last-generation
branches of form (q). By displaying only the last geheration of the latter form (r) and
replacing the trunk with an asymmetric arrow motif (s), we can use theform as a
kaleidoscope through which to explore the visual richness of the pAmm symmetry grgup.

Rotating and trandating the motif within this gructure givesriseto patterns (t) and (u).

Shortly before the branch rotation comes full-cycle, the tree assumes the shape of a
rectangle (v), the highest-gener ation branches evenly spaced within it. The white spaces
between the branch groups suggest trying to position the motif so that the branches of the
tree.are non-inter secting. Rotating and trandating the trunk motif revealsthat this is indeed
possible, and yields a canal sructure that evenly wétersthe rectangle (w). Further
expioration of motif positionsreveals ardated canal sructure (x) in which the motif is
centrélly r;laced and the clone branchesradiate from ether end The symmetry of the clones
in thisform suggests exploring other angular relationships of the clones to the motif. One
of the resulting forms (y) has an interesting boundary, which the high-order branches of
the tree appear tofill evenly. By displaying only the last generation of the form and
increasing the generation level (z), we are able to confirm that the form is the twindragon

described by Mandelbrot [Man83, pp 66-67].

Articulating the gructure of a form by varying its motif is power ful technique of
exploration whose use is further illustrated in figure'8, which depicts variations on a theme

by Hilbert. The Hilbert curve is developed by recursvely replacing an inverted " 1T* motif
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by copies of the motif centered at the vertices of the” U" (a). The copies arejoined with
connecting segmentsto form a connected path (b). Ignoring the connecting segments,
Hilbert'sformisrecursive. Wereplacetheinverted " U" with an asymmetric motif (c) to
reveal theform's gructurein terms of the orientations of the motif copies. It is this

dructure that we areinterested in exploring.

Using the form as a kaleidoscope as we have done béfore, we begin to explore the form's
dructure by trandating \}ertical line motifs. This quickly reveals a gructure of regionsthat
aredelir_nited by connected paths through the form (d). Rotating the vertical line motif__bx
90° yields a sructure of branching paths that are orthogonal to the region boundaries!The
dructure of this form is elegantly expressed by a paralldogram matif ((e), shown one
generation level lower than form (d)). Tracing three sides of the paralldogram yields a
danted " U" moatif, which when appropriatdy trandated givesriseto an illusory form (O
that appears to be 3-dimensional, but is not realizable. We did nat anticipate, and indeed
could not have anticipated, that any such sructures asforms (d), (e), and (f) lurk in the
Hilbert curve. Y et we were quickly and naturally led to ther discovery by the visual
coincidences we observed when we more or lessrandomly transformed motifs while

viewing them through the sructure of the curve.

In afinal example, werecount the exploration that led to the discovery of the space-filling
curve shown in figure 6. Thecurveisa" squig", aterm introduced by Mandebrot [Man83,
Ch. 24] todescribe paths that are developed by recursively replacing the linear segments of
an initial path by scaled copies of the path. Some interdsting squigs are based on paths
through the points of regular grids, we were exploring these when we encountered the

form.




Our exploration is diagrammed in figure 9. We began with a three-segment motif based on
a square grid (a). Cloning the motif and positioning the clones on the path segments yielded
an initial squig (b). Each of the three path segments can be replaced by a clone in four
distinct ways, for a total of 43 = 64 distinct squigs. We explored these more or less
randomly, on the alert for interesting patterns, by tacking the endpoints of clones and
transforming them with the reflection and halfturn operations described earlier. One
configuration yielded a space-filling curve (c) with an unusual boundary. We investigated
the structure of this curve by varying the motif as in the Hilbert curve exploration above.
When we mirrored the last two segments of the path about the axis passing through theit
endpoints, the awkward curve (c) was transformed into the elegant form (d). From our
previous experience with squigs, we had conjectured that every space-filling curve fills an
area that is self-tiling. To determine if the conjecture held in the present case, we traced an
approximation to the boundary of (d). This indeed revealed a reptile and its self-tiling

scheme (e).

Conclusion

We have demonstrated that a diverse class of visually interesting forms can be profitably
explored with minimal computing resources. By using a 2 1/2-dimensional, geometrically-
based representation, we are able to describe a wide variety of forms, and more
importantly, to discover connections between diverse forms by interactively transforming
one to another. By putting the user in direct contact with the forms he is exploring and by
providing immediate response to his manipulations, we foster the discovery of

unanticipated avenues of inquiry, an important aspect of creative exploration.

The success of this paradigm rests on the recursiveness of recursive forms. Small changes
to a motif or replication rule often cause uncorrespondingly large changes to the form they

generate, due to the complexity-compounding effect of recursion. This enables the explorer
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to cover alarge and diverse territory with relatively simple manipulations. Recursion also
means that features of interest in higher-generation forms are often visible in lower-
generations of the same forms. Hence, most explorations can be carried out at low

generation levels where interactive response is amost always possible.

We would like to sijggest three extensions to the discover Form paradigm that would open
up even greater domains of form to exploration. First, generalization of the representation
and generation agorithm to three dimensions is straightforward. We chose not to
investigate three-dimensional forms in order to avoid the difficult problem of designi ng #
intuitive manipulations of three-dimensional objects on atwo-dimensiona medium.
However, our experience with discover Form has led us to believe that the additional effort
to design a 3-dimensional extension would bejustified by the results of the explorations

that could be conducted with it

Second, we were surprised that in spite of the simplicity of the recursive display list
representation, it suffices to explore such a broad range of forms. It is the ssimplest
representation of its sort, admitting only one motif and one context-free replication rule.
Extensions to multiple motifs and multiple rules would permit equally efficient explorations
of more complex systems such as Penrose tilings [Grii87, 810.3]. The admission of
context-sensitive rules would permit modeling cellular automata, although the generation
agorithm for context-sensitive forms might be considerably less efficient than the algorithm

that we have presented here.

Finally, athough our goal in designing discover Form was to foster creative search, we.
have not included in it explicit support for keeping track of the course of an exploration.
The shape of an exploration and the connections between forms that it revealsis at least as

interesting as the forms themselves (see, for example, figure 7). The discover Form user
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must congtruct such amap in hishead or on paper, although the computer could semi-

automat

ically chart the paths the user explores. M echanismsfor maintaining a search map,

attaching annotationsto it, and presenting it to the user asan aid to planning future

" explorat

explorat

ions and resuming old ones could contribute a great deal to the productivity of his

ions.
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Figure 1. A recursiveform: (a) replication
ruleand (b) fifth generation form.




generate(displayList, displayTransform, depth,
if depth 2 1
for item in displayList
if primitive(item)
if allGens or depth=1
draw(item, displayTransform)
- else /* item is a clone transformation */
generate (displayList,

allGens) :

concat (displayTransform, item),

depth-1, allGens)

Figure 2. The generation algorithm.
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di spl ayLi st : - {
pol ygon 1,
pol ygon 2,
don* 3,

" pol ygon 4,
pol ygon 5,
pol ygon 6,
don« 7,
pol ygon 8,
done 9

(3

©

Figure 3. A recursive display list and the form that it generates, (a) Display list, (b) motifpfimitives
and clones (exploded view), and (c) fourth generation form.




(@) Ammonite

(e) Kawaguchiesque

(i) Bamboo Texture (k) Bronchus

(m) Half-square (n) Woven Texturef (o) Koch Tiling (p) Pyramid

Figure4. Some recursive forms. Forms marked with a dagger (f) are shown last generation only.




(a) Trandation

(b) Rotation

(d) Shear (e) Strain

(0 Reflection

Figure 5. Performing affine transformations of
the plane by tacking fixed points and dragging.
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/

(a) Motif and clones (b) Third generation (c) Sixth generation (d) Ninth generation .

Figure 6. Recursion compounds complexity. (a) Motif and clones, (b) resulting pattern, (c) emer-
gence of a boundary, (d) emergence of shading effects.
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Figure7. Exploring the binary tree.
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Figure 8. Variations on atheme by Hilbert: articulating the structure of a form by varying its maotif.
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Figure 9. Discovery of a space-filling curve and reptile.
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