
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Design genes

by

Robert F. Woodbury

48-18-90 6.3

7 '

Design genes

Robert F. Woodbury
Department of Architecture / Engineering Design Research Center

Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, 15213.

Tel: 412-26S-S853
Fax: 412-268-7819

E-mail: rw^cad.cs.cmu.edu

Appeared in the proceedings of the International Round-Table Confer-
ence on Modeling Creativity and Knowledge-Based Creative Design,
Queensland Australia, Dec. 11-14, 1989.

Abst rac t . This paper proposes an organization for a genetic de-
sign system (CDS) that is derived from two sources: (1) the search
paradigm in computer-aided design, (2) the structure of natural evo-
lution. Both sources are presented in an abstract form that exposes
their mechanism. The components of the search mechanism are re-
lated to those of natural evolution, and a system design based on this
correspondence is advanced. A critical discussion of the design and a
proposed research program are presented.

This work has been supported by the Engineering Design Research
Center, an NSF Engineering Research Center, and by NSF grant
MSM-8717307.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

Design genes

Robert F. Woodbury
Department of Architecture / Engineering Design Research Center

Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, 15213.

Tel: 412-268-8853
Fax: 412-268-7819 "

E-mail: rw@cad.cs.cmu.edu

Abstract. This paper proposes an organization for a genetic de-
sign system (GDS) that is derived from two sources: (1) the search
paradigm in computer-aided design, (2) the structure of natural evo-
lution. Both sources are presented in an abstract form that exposes
their mechanism. The components of the search mechanism are re-
lated to those of natural evolution, and a system design based on this
correspondence is advanced. A critical discussion of the design and a
proposed research program are presented.

1 Introduction

Two distinctly different research programs coexist in computer aided design (at
least in architecture). I shall call these respectively: cognitive modeling and de-
sign mechanics. The former takes as its goal the explanation of human designing
in information processing terms. The latter seeks computable mechanisms for
making designs, and is indifferent to their source. To be sure, these strands of re-
search overlap and enrichen each other. For example, cognitive models of design
are extremely useful if one proposes to build an effective human computer inter-
face. Conversely, computational mechanisms provide the substrate upon which
cognitive simulations are built. The results of both are necessary in building
'symbiotic' human computer systems in which labor is divided between humans
and computers according to their respective capabilities. A problem arises when
the two emphases are confused and particularly when an attempt to simultane-
ously advance both of them is made. Put bluntly, human cognition is a poor
sole basis upon which to build automatic design systems. Humans and comput-
ers have fundamentally different information processing architectures, the latter
much more malleable than the former. Blindly adopting a human model only

hamstrings the search for mechanisms that take full advantage of computation.
With this opening blast, I reveal my initial bias to the question of creativity

in computer based design. I am baldly interested in mechanisms that create,
irrespective of their source1. I will judge a mechanism interesting by its invention
of the unexpected, by its computational clarity, and by the absence of heuristics
at its core. From these three criteria I argue for several constraints on any
mechanism that might be proposed:

• The first constraint is that of the use of constructive rules. In this constraint
lies my sole use of human cognitive models of design. Two arguments
support the constraint:

1. Appreciation of computational clarity is a function (however partial)
of human cognitive structure. A clear model for creativity is likely to
be used over a murky one. The rule-like behaviour of human prob-
lem solvers seems to me to be a crucial constraint to be respected in
searching for clear mechanisms.

2. Human cognitive models have been a rich source of analogy for design
mechanics in its search for new computer aided design approaches.
As design mechanics has matured, it has become more discriminating.
Some parts of the analogy have been adopted and transformed, and
have become a part of the foundations of design mechanics. Other
parts have been (or should be) discarded as the need for the crutch of
analogy has diminished. A principal retained concept from the analogy
to human cognition is that of rule-like behaviour. Rules appear to have
distinct advantages when compared with other means of organizing
generative knowledge. (1) Rules support the incremental build-up of
knowledge. (2) Rules can be applied in unexpected circumstances.
(Serendipity seems to be important to creativity.) (3) Rules act locally,
yet their consequences may be global. Thus they can potentially create
the unexpected.

• Using rules would appear to imply that a form of search is the main mech-
anism for design. Rules specify allowable moves, and these moves form a
derivation tree. Moving through the derivation tree to find designs requires
search. In architectural design, the enormity of the derivation tree for any
significant problem would appear to eliminate any search procedure that
depends solely upon exhaustive search, however discriminating its pruning
rules might be. Obvious extensions to exhaustive search, for example, hi-
erarchical decomposition, seem to me to embody heuristics that are too
intertwined with the method. I prefer a heuristic free mechanism, so must
adopt a different form of search.

1 After finding a mechanism that can create, I would hope to look at leveraging its powf r
through interaction with humans.

• Architecture is concerned with the creation of spatial compositions, so ge-
ometry must be a main preoccupation of any search. Representations for
geometry are thus needed, and such representations appropriate to search
remain rare in the literature. It seems to me that any representation of ge-
ometry must have a certain 'richness' (about which I shall be more precise
later) if it is to be used at the core of a creative system. It must be capable
of representing many if not all configurations that might be of interest in
a particular problem. Especially, it must be able to model the appropriate
spatial coincidences that seem so pervasive in architecture. This last point
appears to require less abstract representations than are usual, for example,
in layout problems.

• A form of generate-and-test search mechanism seems inevitable, for the
following reasons:

1. Designs are composed in terms of their spatial (and other physical)
properties, but are evaluated according to a range of criteria, that
rely upon (but are not defined by) these properties. It is beyond the
range of current theory (at the least) to devise synthesis procedures
that simultaneously create form directly from a variety of performance
criteria.

2. Serendipity seems to be an important aspect of creative design. Find-
ing a concept by accident is only likely to happen when a wide variety
of 'accidents' are floating about.

Together, constructive rules, search, geometric richness, spatial coincidences,
and generate-and-test present a tall order for a mechanism for design. However, I
believe that just such a mechanism can be proposed by analogy to evolution and
genetics. Evolution has produced astounding variation in the natural world, and
much of this variation would be called creative were it the construct of man. Vet
evolution is an absolutely blind process that proceeds mechanically, with neither
guidance nor goal.

In outline, I suggest that an object called a design space constitutes the geno-
type, development process, and selection environment of designs. Genes are cap-
tured by grammars; development by search strategies. Selection of genotype
occurs on the phenotype; selection of grammars occurs by testing members of
their language in simulated environments. Designs are evolved by introducing
mutative changes to either the search space operators, the development procs*.
or the simulated environment and by selection on the resulting developed do-
signs. The product of an evolutionary design process is a design space that ran
be 'turned on' to create a set of designed objects.

Before building an analogy to biological evolution, I present a brief sketch
of the mechanics of evolution (largely following the popular book by Dawkin^
[Daw87, l pl l 1-137']).

2 'Natural eyolution
Evolution occurs by cumulative selection; new structures in organism's emerge
through a pr6cess of many small changes over generations of reproduction. Each
change must be spontaneously plausible. Successful changes will be reproductiuely
effective. For cumulative selection to work three things must simultaneously exist.
(1) There must be entities (replicators) that are capable of producing replicas of
themselves. (2) There must be a source of error (essentially ran4am in accounty
of biological evolution) in the replication process. These errors must be passed
on to the replicas, so that they are reproduced when the replica replicates. (3)
Entities must be able to exert influence over their likelihood of being replicated.
The new entities that are produced be the replication process will be different
from their progenitors. Some differences will have no effect on entities' ability to
reproduce. Other differences will have have positive or negative effect. Entities
inheriting changes that have positive effect will, over generations of replication,
become prevalent over entities that inherit changes having neutral or negative
effect.

Living things (at least the multicellular ones) realize these requirements via
a process that employs a genetic code2 (the genotype, stored in genes) and a
process of embryonic development governed by that code. The genetic code in
these systems is akin to a program for creating individuals. This program governs
a process of cell division, growth, and death that creates an actual living thing
(the phenotype). Replication is accomplished by pannt(s) providing a seed (or
egg) that contains a genetic code and an appropriate development environment
for its growth into another living thing (a child). Errors in replication can oc-
cur either in the seed where they are called mutations, or in the development
process, where (at least in mammals) they are called congenital defects. Only
the former are transmitted through the replication process from one generation
to the next. Individuals inheriting changed genetic information are more or less
likely to reproduce in the environment in which they live. The successful ones
are said to be selected to reproduce; the unsuccessful ones produce no descen-
dents. Over time the result is a population of individuals that are increasingly
adapted to the environment in which they live. Thus the genetic errors that 'im-
prove1 the individual are retained from generation to generation. Genotypes are
recipes rather than blueprints; they specify a set of directions, not a miniature
model for an individual. Through the development process specified (in part)
by the recipe in the genotype, a living thing that bears no physical resemblance
to the recipe emerges. Sexual reproduction, or crossover (as it is euphemistically
known in the genetic algorithm literature), is a combining of part of the genetic
code from each of two parent individuals to produce a seed, different from that
of either parent, that, through development, becomes an individual in its own
right. Crossover allows a small population of actual individuals to effectively
store a very large population of possible individuals through the combinatorial

2Storcd in DNA molecules.

possibilities of gejjetic composition.
A group.of similar3 living things constitutes a species. Over time (and space) _

species bifurcate, to create new species; this process is called speqation. If
the speciation process is considered as a mathematical graph (the phytogeny of
species), its properties are those of a a tree: it branches, and branches never
merge.

The process of natural evolution is goalless in that it has no final arrival
point. It is a continuous process of adapting to an environment, that in itself
may also be continually changing. Once started, it requires no guidance, and
it depends upon no vision of its future. It produces astonishing variations and
marvellous levels of adaption. It does, however, require a certain stability in the
environment in which it operates. The environment must not change so quickly
or drastically that many individuals fail to survive and replicate. Such chaftges
lead to a collapse, from which diversity must emerge anew, if at all.

Before proceeding any further with the analogy I present the a summary of the
notion of design spaces and arguments for its relevancy. I will use (and italicize)
terms that have a precise meaning with respect to design spaces, definitions for
which may be found in Appendix A.

3 Design spaces

Informally, a design space is all the machinery required to computationally search
for designs. It consists of a search space and a search strategy. A search space
is a way of describing the possible configurations that might be considered as
solutions to a design problem. A search strategy is a policy for making the
decisions required in search as well as a problem context in which that policy
applies.

There are three main reasons for using design spaces as the basis for a ge-
netically inspired design system: preservation of meaning under mutation and
crossover, leveraging of change through rules, and explicit description of a search
process.

In a design space, the representation space is defined by a grammar (or al-
gebra), but is searched by a (possibly) separate set of search operators. The
representation space itself can be much larger than the set of objects that can
be reached by the operators, yet under certain restrictions (those of the repre-
sentation scheme), all of its members retain the ability to actually repnsent a
design. If the search operators are defined in terms of the representation space
grammar, and if mutations are similarly defined, the operators can be mutated
without fear that the objects they produce will become malformed in an essential
way. This is in contrast to prototype based approaches to representation in which
the meaning of the component symbols is internally arbitrary.

3There are several measures of sufficient similarity.

Search spaces <do not define designs directly; they rather specify derivation
sequencesby which designs c«i be developed. Simple changes to rules can create
complex and far-reaching changes to the designs that they imply. Thus, muta-
tions can be small (randomly plausible), but can have large effect. Search space
specification by rules parallels the biological development process governed by
g«nes; both can magnify the effect of small changes.

Search spaces define not a single design, but a design collection. A search
strategy must control rule applications to guide the way to an individual design
or a set of designs that are only a tiny fraction of the entire representation space.
A strategy is explicitly part of a design space, and its presence as data means
that it too can be subject to change, both mutative and crossover, in the genetic
search process. y '

In the next part of the paper I build an analogy between biological evolu-
tion and a proposed mechanism for generating creative designs. As the analogy
emerges in the discussion, so will an number of constructs that, in addition to
design spaces, constitute the organization of a proposed genetic design system,
GDS4. My construction uses biology more as a point of departure than as a tar-
get for complete analogy. Wherever computational capabilities suggest changes
I freely make them, subject to the constraint of maintaining a capability that
provides for replication, error, and power.

4 The genetic analogy

In building my analogy between biological evolution and a proposed design mech-
anism, my first step is to posit two representations for any design, one implicit
and one explicit.

• The implicit representation is a design space, and corresponds to the bio-
logical genotype. Several of the entities in a design space carry genotypic
information. The search space operators are the closest analogue to bi-
ological genes. These describe the allowable mechanisms for synthesizing
various parts of a design. They operate locally, but produce global or emer-
gent form. Three other design space components: the search strategy, the
goals, and the evaluation devices, can all be considered to carry genotypic
information5. The search strategy of a design space is closely analogous to
the embryonic development process of biology, in that it is an implicit spec-
ification of the process by which a design space is tranlated into a design.
However, it is genotypic as well, in that changes to it can be preserved in
a copy and can therefore be transmitted between generations. Goals guide
the search strategy and questions concerning them are answered by the
evaluation devices in a design space. Like operators and search strategies,

4Pun intended.
Here is my first departure from natural evolution.

these can be freely copied, but at the expense of changing the environment
for which a design is intended.

• The explicit representation is the result of 'executing' a design space, it
is a representation of some design or set of designs, and it corresponds to
the biological phenotype. Design space 'execution' is thus in analogy to
the process~of embryonic development. Designs are members of the repre-
sentation space of a design space, and they correspond (in a mathematical
sense) to some possible artifacts. They are generated, through a search
strategy, with the intention of meeting the goals in a design space, and this
is the second departure from strict analogy with biology. Biological systems
have no goals; embryos develop quite independently (modulo environmental
poisons, etc.) of the outside environment that they will eventually inhfbit.
Goal constructs in design are added here to provide: (1) a means of reducing
the language of possibilities implicit in the search space to a manageable set %

and (2) a mechanism for direct intervention into a genetic design system.

The next part of the analogy equates heredity with copying, not of designs
or artifacts[Ste79, 4p. 79*], but of design spaces. Any design space can be copied
to create a new space that is identical with the original. The requisite copying
errors are introduced through 'mutation operators' that can act on any (or all)
of search space operators, search strategies, goals, and evaluation devices. These
mutation operators may be purely random with respect to the selection process,
as in they are in biology. More interestingly, and without disturbing the overall
organization of the system, they might themselves be knowledge based6. When
search space operators are mutated, they imply a different language of designs in
which the eventual design phenotypes exist7.

Finally, selection is equated with testing designs against their goals (and usin^
the evaluation devices in the process). The goals and evaluation devices form a
simulated environment in which designs either 'live* or 'die'8. Those that live' arc

. selected for the next generation; those that 'die' are simply discarded. Actually.
it is not the explicit representation of a design that is selected, it is the design
space (the implicit specification).

The entire process is captured in a single infinite loop that respectively:

• Copies and mutates each element of a set A of design spaces. Includes ul
copies in A.

• Develops the spaces into individual designs.

'Another departure from strict analogy. Knowledge based mutations are to C D S as -in
intrusive God would be to natural evolution.

7See [MS85,l\ni81,I\ni83a,Kni83b,Kni83c.I\ni88] for a formal discussion of related ideas m
shape grammar sy>tems.

'Thi s introduces complexities if the design goals thcmsevles are subject to mutation. I wanii I
to include such a potential for completeness and for its suggestion of possibilities, particular! \
those of environmental and d o i g n problem change.

i

f Mutation J

i
k f Development J

, ' v
1 Selection I

r Search strategy ^

TGoals ")

TEvaluators r ^ |

lo o o oJ
V J

rSearch ^ V
space rs

• •

V. ! l J
V

J
J

\

/
/

Figure 1: The organization of GDS

• Tests these designs against the design space goals.

• Selects a subset of designs and places their corresponding design spaces in
A.

As shown in Figure 1, GDS thus consists, in the abstract, of a collection of
design spaces, mechanisms for mutation, development, and selection (the latter
largely accomplished by design space goals and evaluators). and a infinite loop
that implements the overall evolutionary process. In more concrete terms. I
would expect an implementation of GDS to use a particular kind of design space
that may be characterized as a spatial grammar. Spatial grammars allow the
capture, in a set of rules, of knowledge that is explicit and particular about its
manipulation of spatial form. They provide, in essence, a programming language
for constructive rules and an interpreter for their application. Such rules can be
modified (mutated) into other rules. Also, as I shall argue later, spatial grammar
systems seem to be the best candidates for capturing the property of emergent
form.

5 Relation to other work

The biological analogy in architecture is not new: it has a history that is far old^r
than Darwinian theories of evolution. One book length [Ste79] and numerous
shorter works have been published in the area. To my knowledge, none of these
build an analogy to evolution in the manner that I do here. In particular, tlu?
papers I have encountered do not take a computational view of the evolutionary
analogy.

There has been much work in genetically inspired methods for optimization
and search; [Gol89] presents an overview, a historical survy, and an extensive
bibliography. The work and applications that he reports only encounter design
tangentially, but provide what appears to be a rich source for insight into mecha-
nisms within the genetic analogy. The basic material on genetic algorithms treats
the coding of representations quite informally; as a point of departure, I main-
tain that the coding sould be as formal as possible, so that the units of genetic
code that are manipulated might be, to the greatest extent possible, semantically
relevant to a design domain.

Lenat[LB84] has built a series of programs that learn by discovery. The ear-
liest of these, AM, combines a frame-like data structure (with inheritance) and a
set of constructive rules, indexed to their locations of applicability, that opefate
on the frame. The frame-like structures represent mathematical concepts and the
rules: (1) refine these or transform (mutate) them to form other concepts, and
(2) propose new tasks to be performed . Control of the rules is accomplished by
a scheduler that acts upon priority ratings of tasks. AM was able to discover in-
teresting mathematical knowledge, beginning from basic definitions of set theory.
A later program, EURISKO, developed similar capabilities for non-mathematical
domains (including 3-D VLSI design) by developing frame structures and muta-
tions whose form closely mimicked knowledge of heuristics. A main lesson from
Lenat's work is that:

"... it's important to find a representation in which the form*-con tent
mapping is as natural (i.e., efficient) as possible, a representation
that mimics (analogically) the conceptual underpinnings of the task
domain being theorized about."[LBS4, ;p. 276']

Within design research, there have been several forays into a "discovery"
approach to design, in which mutation operators are introduced into what are
essentially prototype based design representations and processes. Murthy and
Addanki [MAST] report modifications to prototypes by moving between nodes in
a graph of models. They use modification operators that capture heuristics for
(1) recognizing applicability. (2) calling appropriate analysis procedures, and (3)
direct changes to the prototype. Maher and Zhao[MZGS9] propose analogy and
mutation on search space operators as mechanisms for enlarging the design space
of a prototype based design system. They note that their mutation operators
tend to be domain specific. Both of these works appear to gain much of their
capability from the structure of the prototypes and operators that are available
to the system, neither of which are addressed formally. To me, this is a crucial
question in the search for a clear design mechanism; if much of the mystery is
buried in a structure of knowledge that can be critiqued only by example, tlun
how much insight is really gained? In this paper I attempt to set some "ground
rules*' for more explicit capture of meaning.

6 Implications of the analogy

It appears to me that the organization of GDS presents a possible mechanism for
the generation of designs that could be judged creative. In this Section I present,
in no particular order, a number of observations and arguments that support my
contention, as well as some of the problems that I see.

At the beginning of this paper I set out three criteria for a proposed creative
design system: invention of the unexpected, computational clarity, and absence
of heuristics. The organization of GDS is, I believe, remarkable in its achievement
of the latter two. (1) The mechanism I propose is, at its highest level, simple.
It consists of nothing more than an infinite loop, and a small set of conceptually
simple mechanisms for mutation, development, and selection. It does reauije
design space machinery, but several exemplars of this have, to greater or lesser
degrees, been created, for example shape, structure, and solid grammars, and
rectangular layout systems. (2) The mechanism, by itself, contains no heuristics,
although there is ample opportunity to introduce them, and to imagine hybrid
human-computer systems, without disturbing the organization in any essential
way. Search space operators, search strategies, mutation operators, goals, and
evaluators are the chief vehicles for such insertions.

Whether GDS can meet my first criterion, creation of the unexpected, can
only be determined experimentally. However, natural evolution provides a strong
existence demonstration of the potentials of the GDS organization.

Rules appear to have a magnification effect on designs. As demonstrated in
[Kni83a,Kni83b,KniS3c], changes to rules lead to substantial changes in the cor-
pora of designs specified by those rules. As a specific example consider Figure 2.
The initial rule (a) simply rotates a square about its centroid by 45 degrees. Some
of its (well-known) derivations are shown. A simple mutation of this rule involves
adding a translation of less than \ /2/8 times the side length of the square alon<*
the vector (1,1). When combined with the original rule9, the mutated rule pro-
duces a new sequence of derivations whose geometry is very different from that
of the first derivation set. Such magnification gives me hope that insights into
creative acts in terms of simple rule changes could be a welcome serendipitous
result of an implementation of the GDS organization.

Other researchers[CRRG87] have drawn distinctions of creativity in designs
by the method of design generation employed. These methods appear to me
to be based upon the behaviour of human designers, and to provide plausible
and interesting explanations of such behaviour. To me they do not prescribe
how creation by computer might best be accomplished, but do introduce a lot
of machinery in the process. GDS is more parsimonious in this regard; it u>es a
single method for all design generation.

The GDS organization is not guaranteed to produce creative designs, nor are
tests of completion or exhaustion likely to be easy (or possible) to find. In this
matter it is very much like human designers, who also can provide no guarantees

Admitting that genes in nature are mutated and replaced.

10

(a)

- • >

(b)

(a) (a) (a)

Figure 2: A mutation of a single rule can have a large effect on the derivations it
might generate.

of creativity. I suspect that an implementation would be a tool, qualitatively
different from any that exist, for exploring vast design spaces, and would be
quite likely to find creative solutions.

GDS provide opportunities for experimentation with knowledge based ap-
proaches to increasing its capabilities. Through changes to search space opera-
tors, search strategies, mutation operators, goals and evaluation devices, heuris-
tics can be introduced, without in any way changing the overall structure of GDS.
I would contend that this distinguishes GDS from current proposals for extending
systems based upon exhaustive enumeration[CoyS9].

Formal extensions to GDS in terms of grammars that act upon mutations
seem plausible.

Different types of reproduction can be imagined within GDS. Design spaces for
different designs can be merged, resulting in 'genotypes' that are widely different
from their parents. For these the criteria for survival can be relaxed10 for several
generations, until new successful adaptations emerge. An implication of merging

DIn c o n t r a s t to t h e s i t u a t i o n in n a t u r a l e v o l u t i o n .

11

of design spaces is that the 'phylogeny' of designs can be reticulated and need not
be limited to the tree that must occur naturally. This would bring the behaviour
of GDS in accord with observed 'cultural evolution' of designs[Ste79, 'p.lOT].

New technologies can be introduced as new rule sets for forming and combin-
ing parts. Thus the GDS organization can be responsive to technological change
in a manner uniform with its basic mechanisms.

The process requires mimimal bootstrapping. As long as designs that can be
evaluated are produced, then the process starts and is thereafter self-sustaining.

GDS presents a goal-less process in the sense that it wanders wherever 'fitness
for survival' takes it. The goals and evaluation devices of design only provide a
simulated environment. The larger process has no goals; and is utterly mecha-
nistic, f

With correct technical formulation, the process will work. There is in biolog-
ical evolution an existence demonstration (if not proof) for it. The vast spans of
time required for biological evolution can be greatly reduced because: (1) designs
(at least in architecture) are much simpler than living things, (2) the generation
cycle can be greatly shortened, and (3) the mutation rate can be increased.

Several properties of design spaces seem to be required by the GDS. The
'genotype' of designs must be potentially expressive. It is important to be able to
represent a wide range of variations (if not all of them). Thus the representation
scheme of the design space needs to be highly expressive. For realistic systems this
would seem to preclude simple attribute selection schemes that are obvious when
naively using frames. The search space operators must be semantically relevant.
If the behaviour of GDS is to be transparent to humans, then the search space
operators in a design space should specify plausible 'design moves'. Of all current
formal approaches, that of spatial grammars seem to best fit this requirement. A
consequence of using rules of this type is that properties of the phenotype cannot
in general be predicted, but I do not see this as a problem, in that 'genotypes'
will change constantly as 'evolution' in GDS progresses. .4 representation scheme
appears to be a necessity. The representations manipulated by GDS must have
a correspondence with real designs. If they did not, the necessary evaluation
mechanisms could not be built and the loop at the heart of GDS could not be
closed. This requirement appears to pose certain problems for drawing based
representations (but see [StiSl]). The search space operators should be based on a
grammar (or algebra) that makes a strong sense of emergent form possible. Tin*
stronger the sense of surprise in the process of generating the 'phenotype' from
the 'genotype', the more leverage the 'embryonic development process' will havo.
Shapes from shape grammars (being individuals) and the algebra of r-sets (bein«
based on point sets) are two extant examples. The mutation opemtors must Ix
highly redundant. It must be possible to mutate one form into a large variety of
others by- a series of small mutations. In other words, the transitive closure of
the mutation relation between design spaces must be as dense as possible.

A problem with the evolutionary analogy is its absolute requirement for some1

mutations that present survival enhancement (or at least neutrality) at ovny

12

step. Without this, the mechanism breaks down. Thus, in its most naive form,
GDS would display some of the shortcomings of hill-climbing search strategies11,
although the pertubations introduced by random mutation should partially sur-
mount this problem.

7 Features of a research program on genetic design
systems

To my knowledge, only toy genetically inspired design systems have been imple-
mented (see [MZG89] and [LB84]), and few direct theoretical results have been
achieved (see [Gol89]). However, much of the requisite formal machinery, e*p<*-
cially that related to design spaces, does exist in some form. A research program
on genetic design systems would be constrained by this state of affairs.

I see two somewhat conflicting issues that should be addressed in a research
program on genetic design systems. The first is a requirement for further for-
malization. It would be very useful to precisely describe the structure of a GDS
in some mathematical form. Having definitions for each class of computational
object and precise abstract descriptions of the overall process would greatly aid
both understanding of the known theoretical problems and implementation of
prototype systems. The second issue is the importance of having an experimen-
tal laboratory for GDS research. It is through a working implementation12 that
insights to the crucial research questions will arise. An implementation would
also provide measures of the performance of the idea, and these would not-easily
be found in another way. Genetic design systems essentially perform search in a
space of rule-sets, and are sufficiently abstract that insights, at least in the be-
ginning, will come most easily through empirical (in contrast to analytic) means.

I propose then a research program with two parallel (but interconnecting)
threads. The first (THEORY) would aim at mathematical description, and would
meet its a major milestone with the production of a set of precise definitions of all
of the components in a GDS. The second {APPLICATIOX) would aim initially
to produce a minimal GDS, containing all components of the architecture, and
making the necessary technical compromises to quickly achieve an operational
system. Care would be taken to make this initial application as modular as pos-
sible, so parts of it could be independently replaced. At this point the two threads
would hopefully begin to inform each other. From the implementation, THEORY
would learn what questions are important and what theories should be formu-
lated and proved; these would be the second major task for THEORY. From the
theoretical results, APPLICATION would fine-tune its implementation, rewrit-
ing some modules and replacing others, but this would not be its major second

11 Genetic design systems can be viewed as performing hill-climbing search in a space of dcM^n
spaces; their power may lie entirely in their realization of a meta-level.

12Such an implementation would need to need to achieve an entire mechanism; it would IK*
important to have a base case of purely automatic behaviour.

13

task. APPLICATION would embark on a series of experiments in design, posing
problems, observing results, and gaining insight into the operation of the genetic
system. At some point, all of the implementation of APPLICATION would be
discarded, and the two parts of the research program would come together with
the goal of creating and using a theoretically sound implementation.

The research of each thread would have different criteria against which success
would be measured. For THEORY the criteria are the relevance and quality of its
formal results. For APPLICATION, the criteria must be more vague; a partial
list is: performance in terms of example generated designs, discovery of new
mechanisms and effects, and the quality of the system design.

A The design space formalism lf

The view of design as search is well-known and needs no introduction here. In
this section I present, in summary form, a set-theoretical characterization of the
design search view. A more lengthy account may be found in [\Voo90]13.

Whether done by human or machine, design search operates on symbol struc-
tures, that is, organized collections of symbols. The collection of all symbol struc-
tures that might be considered in a design task constitutes a representation space
R and each member r G R is called a representation. Each r G R may have inter-
pretations as one or more actual designs. If these interpretations are to be precise.
a crisp characterization of designs must be made, and for this, the concept of a
mathematical modeling space M is employed. M is usually described by pred-
icates, universally quantified over M, that describe properties (of all m £ M).
These predicates capture only certain properties of physical objects, leaving oth-
ers undescribed. For example, the well-known oriented 2-manifold conditions
describe the idealized geometry of physical solids, but do not describe materials,
surface textures, reflectance, or a host of other properties. The semantics of rep-
resentations are defined by building a relation 0 : M — R on the sets M and R
that associates elements of R with elements of M. If (m G M.r G R) G 0 then
r is said to model or represent m. 0 itself is called a representation scheme.

In interesting design problems, the set R cannot be directly enumerated; its
size is typically huge (or infinite). Various techniques of indirect specification, for
example, algebra and grammar notations, are typically used instead. All mem-
bers of R are generated by these indirect syntactical methods and are therefore
syntactically correct. Members of the set M are not directly generated at all; they
are only known by the existence of members of R that can be shown to represent
them.

Since only members of R are directly available to any computational process
it is convenient to define 0 in terms of its inverse relation 0 ~] , for mapping
members of R to members of My and this is shown in Figure 3. It is useful to

13T\vo more fundamental sources are [ReqSOj for representation schemes and [NS72] for search.

14

Grammar
derivation tree

representation scheme

M Modeling space D Domain

R Representation space V Range

Figure 3: An abstract depiction of a representation scheme

describe 0 l as a characteristic predicate:

I 0 otherwise

that determines if a symbol structure in R represents an element of M. This
predicate can be thought of as a test that can be implemented as computer
program. 0 is defined as 0 - 1 \ The domain of 0, denoted by D, is the set of
all elements of M that have corresponding elements in /?. The codomain of 0 is
R. The range of 0, denoted by V, is the set of all members of R (by definition
syntactically correct), that correspond to elements in D.

With these preliminaries in place it is possible to more formally describe
certain properties of a representation scheme, namely: extent of domain (expres-
siveness), syntactic validity, well-formedness, completeness (unambujuousness).
uniqueness, and abstraetness.

15

When compared to the entire modeling space M, the size of the domain D of
a representation scheme is a measure of the descriptive power of the scheme. D
is that part of the modeling space that is accessible by construction of represen-
tations in R. If D = M the representation scheme is semantically exhaustive.

Every element of V (the range of the representation scheme) is considered
to be valid, as it is both syntactically and semantically correct (i.e. - it can be
constructed by the rules that define R and has corresponding elements in D). If
V = R then the representation scheme is syntactically valid, as every syntactically
correct representation corresponds to an element of D.

If, in addition to syntactic validity, a representation scheme is semantically
exhaustive, then the scheme is well-formed. A consequence of well-formedness
is that the characteristic predicate of 0 - 1 is always TRUE. With a well-foipn£d
scheme, it is theoretically possible to generate a representation that corresponds
to an arbitrary member of the modeling space, using only the syntax rules that
define the representation space14.

A representation r 6 V is unambiguous, or complete, if it corresponds to a
single element in D. It is unique if its corresponding objects in D have no other
representations in V. Intuitively a valid representation is ambiguous if it mod-
els several objects in D, and an object in D has non-unique representations if
corresponds to more than on element of V. A representation scheme is unam-
biguous, or complete, if all members of its range are unambiguous. Similarly, a
representation scheme is unique if all members of its range are unique.

Related to unambiguousness is the property of abstractness. In constructing
representation schemes for design it is very useful to keep the size of either or
both of the representation space R or the range V of the representation scheme
as small as possible. This implies a smaller space to search. Given a particular
modeling space M, a common way of achieving this is to introduce a kind of con-
trolled ambiguity into the representation scheme. Figure 4 provides an example,
the LOOS system[FCG*S9], in which the modeling space is the set of all ar-
rangements of loosely packed, non-overlapping, orthogonally oriented rectangles
in two dimensional euclidean space Ji2. The representation space consists of a set
of graphs, where the nodes of the graph denote rectangles and the arcs denote
the spatial relations to-the-right-of, to-the-Ieft-of, above, and below. Each graph
in the representation space represents an entire class of rectangular layouts in
the modeling space that differ in the dimensions and locations of the constituent
rectangles but are the same with respect to the spatial relations specified in the
graph. Thus the representation scheme for LOOS is decidely ambiguous, as every
representation corresponds to an infinite set of rectangles, yet the ambiguity is
precisely controlled, since specific spatial relationships are faithfully modeled.

Another, less formal, way of looking at the concepts of abstractness and un-
ambiguousness is to employ the ideas of instance and class. An instance is a single
object and an unambiguous representation scheme can be said to model instances

Well-formedness is an essential quality for exhaustive search strategies.

16

Figure 4: Ambiguity in the representation scheme of LOOS

in modeling space. A class is a group of objects and an abstract scheme models
classes, where all instances in a class have some (hopefully relevant) common
properties. With the ideas of instance and class another relation, the same-class
relation T : M —• M, can be constructed between elements of the modeling
space. Two objects are in T if both correspond to the same representation in
V. If T is an equivalence relation then all representations in V unambiguously
denote blocks (alternatively pieces) of a partition of M.

The formal properties of a representation scheme can be used to describe
properties of the search operators that act in representation space, but another
formal construct, the search space, is also required. A search space S is a com-
prised of a modeling space M, a representation space /?, a representation schem*1

O, a set of operators O, and a set of initial representations f C R. An opemtor
application within 5 consists of an operator from O applied to a representation
from /?. More formally, when an operator from O is applied to a representation
r G R to yield another representation r G /?, then r is said to directly derive r'
in O, or symbolically r => r . If there exists a sequence of direct derivations using

CMI r0 derives rn in O.operators from O, such that 7*o => ;*i =>
o o

=> r n _i => rn
o o

17

r0 ^ rn. The design collection of a search space is all representations r e R such
o

that i i r, i £ /.
o

Operators in a search space may individually or as a set have the properties
of closure and monotonicity. Other properties of search space operators, com-
pleteness and non-redundancy are defined only on the search space itself. An
operator is closed in V if its application to any member of V can never result in
a representation not in V. A search space is closed in V if all of its operators
are closed in V. If operators are closed, and begin from elements in V, then the
characteristic predicate of the representation scheme, P(r) , need never be applied
to test for representational validity.

An operator can be monotonic with respect both to both properties in M
(modeling space monotonicity) and to the symbol structures in R (representa-
tional monotonicity). If a set of properties Pt\f of any m 6 M cannot be altered
by the application of an operator, then the operator is monotonic with respect to
P\f. If an operator can only add to, but otherwise never alter, the symbol struc-
tures of R. then it is monotonic with respect to R. A search space is monotonic
in either sense if all of its operators are monotonic in that sense. These two types
of monotonicity are quite different and do not imply each other.

A search space S is complete in the domain of its representation scheme O
if. by application of any combination of operators from O starting from any
elements of /, representations in V sufficient to model all of D can be reached.
If O is semantically exhaustive and the operator set is complete in D, then the
operator set is complete in M. Informally, completeness in M means that every
conceivable solution can be reached by some sequence of operator applications
from O. A search space 5 is non-redundant in R (or V) if there is at most one
sequence of operator applications beginning from i 6 / that can generate any
r G R (or V).

A search space exists in the absence of any specific design context; it is simply
a description of possibilities. By applying operators beginning at initial states
it is theoretically conceivable that one might eventually visit any design within
the space. But such unguided wandering is unlikely to be interesting. To pursue
design requires more: a way to choose operator applications, a sense of where in
the space one wishes to go, and a means of knowing when one has arrived at a
goal. These are accomplished by a secuvh strategy.

A search strategy is a policy; a way of making decisions. Under its guidance
it is possible to move through a search space purposefully, visiting new states and
remembering or forgetting them, that is, making them active or inactive until an
appropriate design is found (or is not found). Each visitation of a state is caHcd
a step and typically occasions four types of decisions.

1. Is the design problem solved?

2. Which from among the active designs will be selected next?

3. Which search space operator will be applied to the selected design?

18

4. Which of the active designs will remain active? (Which will be made inac-
tive?)

To make these decisions requires two additional components in a search strat-
egy: design goals and evaluation devices. Design goals are statements of intent:
they describe in some way the characteristics possessed by a successful solution.
Design problems typically have multiple and conflicting goals. Designs are com-
pared against goals as they are reached by search space operators and these
comparisons are used in making the decisions at each step in design15.

To understand performance, a design is tested (according to various criteria)
against its predicted context. A set of such tests, one for each criterion, together
with a means for understanding their collected results constitutes the evaluafjtidVi
devices of a search strategy. The tests alone are not enough, for designs perform
according to many different criteria, and these cannot be treated separately. It
is commonly the case that one performance measure conflicts with another, for
example, that it is impossible to improve a view without increasing heat loss.
Making decisions in the face of these conflicts requires an understanding of pos-
sible tradeoffs and ultimately judgements of relative value [Mar76,RGS8].

With search strategies our portrait of the search paradigm is complete. To
search requires a space and a strategy. A search space is composed of a repre-
sentation scheme, a set of search operators and a starting point. It provides an
implicit specification of a world of possibilities. A search strategy is a decision
making policy and its associated machinery. It provides a means to move pur-
posefully through a search space. A design space consists of a search space and
a strategy.

It is only with the concept of a design space in place that a crucial idea can
be introduced. A set of operators in a design space is semantically relevant if
its members correspond to meaningful moves in design. For example, if one is
doing preliminary design for an airport, it is useful to have operators for placing
runways, organizing pedestrian and vehicular traffic flow, developing spatial sig-
nage conventions, etc. A set of operators that describes the actual construction
of runways and hangars would be much less semantically relevant.

References

[Coy89] R. F. Coyne. Planning in Design Synthesis: Abstraction-Based LOOS
(ABLOOS). Technical Report, Engineering Design Research Center.
Carnegie Mellon University, 1989.

1 5The separation of generation, goals, and evaluation devices in the search paradigm is mor<*
than a formal nicety; given current undertanding of designing physical artifacts, it appears to U-
a necessity: Deriving form from its behaviour has proven to be extremely difficult, even in single-
performance design problems. The alternative is to consider the behaviour of forms that arc
generated in some other terms, and to use the knowledge of behaviour to guide the generation
process.

19

[CRRG87] R.D. Coyne, M.A. Rosenman, A.D. Radford, and J.S. Gero. Innova-
tion and Creativity in Knowledge-Based CAD, page . North Holland,
Netherlands, 1987.

[Da\v87] Richard Dawkins. The Blind Watchmaker. W.W. Norton and Com-
pany, New York, N.Y., 1987.

[FCG*89] Ulrich Flemming, Robert F. Coyne, Timothy Glavin, Hung Hsi, and
Michael D. Rychener. A Generative Expert System for the Design of
Building Layouts. Technical Report EDRC - 1989 Report Series. En-
gineering Design Research Center- Carnegie Mellon University, 1989.

[GolS9] David Goldberg. Genetic Algorithms in Search Optimization aiufiMa-
chine Learning. Addison-Wesley, Reading, MA., 1989.

[Kni81] T.W. Knight. Languages of designs: from known .to new. Environ-
ment and Planning B, 8:213-238, 1981.

[Kni83a] T.W. Knight. Transformations of languages of designs: part 1. En-
vironment and Planning B, 10:125-128, 1983.

[Kni83b] T.W. Knight. Transformations of languages of designs: part 2. En-
vironment and Planning 5, 10:129-154, 1983.

[Kni83c] T.W. Knight. Transformations of languages of designs: part 3. En-
vironment and Planning /?, 10:155-177, 1983.

[KniSS] T.W. Knight. Comparing designs. Planning and Design, 15(1):73-
110, 1988.

[LB84] Douglas B. Lenat and John Seely Brown. Why am and eurisko appear
to work. Artificial Intelligence, 23:269-294, 1984.

[MA87] Seshashayee S. Murthy and Sanjaya Addanki. Prompt: an innovative
design tool. In Sixth National Conference on Artificial Intelligence.
pages 637-642, AAAI, Morgan Kaufman Publishers, July 13-17 1987.

[Mar76] Lionel March. The logic of design and the question of value, chap-
ter Introduction, pages 1-40. Volume 4 of Cambridge Urban ami
Architectural Studies, Cambridge University Press, Cambridge, U.K.,
1976.

[MS85] Lionel March and George Stiny. Spatial systems in architecture
and design: some history and logic. Environment and Planning
0, 12(l):31-53, 1985. Paper presented at the Seventh International
Conference on Systems Dynamics. University of Brussels, Junel6-lS.
19S2.

20

[MZGS9] M.L. Maher, F. Zhao, and J.S. Gero. An approach to knowledge-
based creative design. In NSF Engineering Design Research Confer-
ence, pages 333-346, National Science Foundation, College of Engi-
neering, University of Mass, Amherst, June 1989.

[NS72] Allen Newell and Herbert A. Simon. Human Problem Solving.
Prentice-Hall Englewood, 1972.

[ReqSO] Aristides A.G. Requicha. Representation for rigid solids: theory,
methods and systems. Computing Surveys, 12(4):437-464, Decem-
ber 1980.

[RG88] Antony D. Radford and John S. Gero. Design by Optimization m
Architecture, Building, and Construction. Van Nostrand Reinhold.
New York. N.Y., 1988.

[Ste79] Philip Steadman. The Evolution of Designs. Volume 5 of Cambridge
Urban and Architectural Studies, Cambridge University Press, Cam-
bridge, U.K., 1979.

[StiSl] George Stiny. A note on the description of designs. Environment and
Planning B, 8(3):257-268, 1981.

[Woo90] R.F. Woodbury. Searching for designs: paradigm and practice. Build-
ing and Environment, 1990. in print.

21

