
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Variations in Solids: A Declarative Treatment

by

Robert F. Woodbury

48-17-90 C,P)

v *

Variations in Solids: A Declarative Treatment

Robert F. Woodbury

Department of Architecture / Engineering Design Research Center

Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA, 15213.

V

To appear in Computers and Graphics, Special Issue on Features and Geometric

Reasoning, Vol. 14, No. 2, April 1990.

Abstract: Underlying the notions of variational geometry, design prototypes, fea-

tures, and representation of assemblies seems to be a common concept of variations.

This paper develops the core of a monotonically declarative system for variations on

solids. It introduces a set of language constructs that are the basis for ASCEND, an

object oriented equation solving language. It presents equations for representing cer-

tain spatial relationships between primitive geometric elements. Using plex grammar

notation it develops a set of Euler operators that are monotonic in the strict sense

required by the ASCEND language. These operators are collectively shown to

generate representations for all plane models of 2-manifold objects and to generate

only such representations. Finally it presents the core of a system for variations living

the ASCEND language to implement both equation models and the new Euler

operators.

This work has been supported by the Engineering Design Research Center, an NSi-

Engineering Research Center, and by NSF grant MSM-8717307.

Variations in Solids: A Declarative Treatment

Robert F. Woodbury

Department of Architecture / Engineering Design Research Center

Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA, 15213.

1. Introduction

Recently, much attention has been given in the research community to the creation of systems

that perform automated design. These systems, regardless of their underlying computational

methods and like all computer programs, ultimately operate on data of very simple form

(numbers, text strings, characters; bits in the limit). These primitive parts are composed, through

various strategies, into aggregations of data that denote a design artifact. These aggregations are

often called design representations. An unfortunate characteristic of many current systems is

that their "so-called" design representations are not complete in the face of significant reasoning;

it is difficult or impossible to deduce much about the object being designed from the information

in the representation. An extreme, though frequently seen, design representation is a purely

parametric one, a set of parameters, with ad-hoc relations between them. Another common form

of representation adds very generic relationships, typically variants of is_a and part_of, to com-

pose more complex structures. In only a very few systems is there a rigorous semantics as-

sociated with a representation and in these the benefits of of having a known and explicit

relationship between the data and the modeled world is striking [1].

The problem of developing suitable design representations is a deep one, admitting as yet no

solutions of a general nature, but several ideas have emerged that make progress on this issue.

The notion of features, often taken to mean a part of a design representation that has properties

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

of interest to the performance of the whole, is one of these. Design by features is accomplished

by a grammar, which has such features as its alphabet. Designs, or members of the language of

the grammar, are produced by a series of additions (and deletions) of features. Features are often

conceived as (possibly) parametric objects that represent not just one form but a possibly infinite

family of forms. Another idea is that of variational geometry which is the expression of classes

of designed objects through constraints^ that operate on some representational framework and

that permit the description and manipulation of an entire class of objects through the use of a set

of parameters. The types of these parameters include dimensions, spatial relationships between

parts, and parameters related to other aspects of a design (for example, load in a beam, floor area

of a room, ratios between height and width in a window). Relating these to deeper models of

physical or design artifacts is the promise of variational geometry. A third idea is that of design

prototypes which are partial and generic descriptions of designs that store generalized knowledge

about known designs or artifacts. Prototypes are stored design knowledge, they represent con-

figurations (most often those found useful in prior design situations) and means to adapt those

configurations to a present design situation. Encompassing the notion of variations is the search

paradigm, particularly in layout problems, that seeks to build a representation scheme in which

each member of the range of the scheme models an entire class of similar designs. The variations

within the class are typically modeled as conjunctive sets of algebraic relations.

I believe that all of these ideas are on common ground in the notion of variations; they all

depend upon being able to state what remains constant and what changes in an organized man-

ner. They also depend on a mechanism for explicating how things change, and for exploring the

implications of such changes. It seems to me that integrated, elegant techniques for expressing

both the what and the how would be useful to much of current design research. Further, it seems

to me that these techniques should be of a wide application and should be, to the greatest extent

possible, declarative (rather than procedural). The need for a widely applicable capability seems

evident and is met by the choice of geometry as a domain*; the call for declarative representation

perhaps less so. A declarative representation permits deductive reasoning and explanation

"''These constraints are typically expressed as cither a constraint network, solved by propagation, or as a set of
simultaneous equations, solved through some numerical technique.

*Of all the types of information required to describe design artifacts geometry stands out in its generality and
absolute necessity and is ideal as the object of this inquiry.

directly upon the representation. A more procedural representation must first be acted upon by

some usually quite specific (and impenetrable by current automated reasoning methods) set of

procedures before its meaning becomes explicit. Declarative representations are naturally

descriptive; they are created by describing truths that must exist, rather than by specifying

procedures to obtain these truths. There is a drawback to declarative representation though; ef-

ficiency appears to require that statements be monotonic\ that they only add information to a

description and never retract it. As will be shown, this condition can require changes to conven-

tional ways of expressing models.

This paper presents:

• A language for building complex declarative equation-based descriptions.

*•• *
• The ASCEND programming language as an implementation of this language. r

• Equations for modeling spatial relationships between simple geometric elements.

• A declarative form of boundary representation as a representation scheme for

designed objects.

• A demonstration of the core of a system for variations.

2. Background

Several authors have presented methods for the specification and solution of algebraic spatial

relationships. Two main differences distinguish the present work from all of these: the complete

self-contained inclusion of a solid representation and the exclusive use of a terse declarative lan-

guage. Other differences are discussed below. Light and Gossard [2] describe a system for two

dimensional variational geometry that operates on the characteristic points of an object. They

use a Newton-Raphson method for equation solution and present formulations for a variety of

equations on point objects. The work here is distinguished from theirs by its development in

three dimensions, its principle orientation to language rather than solution technique and its in-

clusion of a representation for solids. Lee and Andrews [3] present the mathematics for expres-

sion of the fits and against conditions on solid objects as well as a report on solution of the

equations. Here their equations are extended to planes, and by use-of a terse language the al-

gebraic development is made much simpler. Since the language used provides some explicit

mechanisms for redundancy control some of their reported solving problems do not arise. Pop-

plestone et. al. [4, 5] present an elegant means of specifying spatial relationships between bodies

with half-space features (and in the laterpaper, edges and vertices). Their solution method, sym-

bolic algebra, permits them to retain explicit degrees of freedom. They develop a large number

of spatial relationships between their feature components. In addition to the differences above

the present work is distinguished from theirs by its reliance on numeric solution techniques.

Rossignac presents a method of specifying and solving spatial constraints between solid objects

by the independent evaluation of constraints and a user-controlled sequential satisfaction

process. The primary advantage of his approach is that it avoids the solution of large sets of

simultaneous equations. The approach here fundamentally differs in its strict adherence to

declarative specification. In earlier work [6, 7, 8] I present a core set of concepts and an example

implementation for algebraic spatial relationships and feature based reasoning. I specify con-

straints with a declarative language over objects called features and abstractions and use con-

straint satisfaction as a solution technique. The work reported here is a significant reformulation

and generalization.

Other authors have focused on the language issues of describing variational models. In some of

earliest of these Dixon [9, 10, 11], and his students advocate the use of domain specific geometry

representations through what are called features. For Dixon a feature is "any geometric form or

entity, whose presence or dimensions are relevant to one or more CIM^ functions; or, whose

availability to designers as a primitive facilitates the design process." The implementations

reported in these papers show features as a combination of a pure primitive instancing scheme

and a boundary representation solid modeler. Providing hierarchical structure to the feature

models is.the categorization of features into types: macro-features, primitive features and co-

features. I maintain a stronger notion of a rigorous underlying representation scheme and give a

greater emphasis to declarative specification.

The following two authors report pioneering work on the specification of geometry with what

have become known as object oriented techniques. Both use a generalized cylinder represen-

tation, whereas I use boundary representation, a more complex, more evaluated representation

"^Computer Integrated Manufacturing.

based on simpler primitives. Agin [12] presents a formalism for a hierarchical modeler based on

spatial relationships between generalized cylinders. Assemblies are defined hierarchically using

any of a fixed set of ways of specifying attachment between primitive objects, represented as

generalized cylinders. Brooks [13] presents a geometric modeler as part of the ACRONYM vi-

sion system. In this modeler complex objects are represented by compositions of generalized

cones. Classes of composite objects are represented through the use of algebraic inequality con-

straints on the profile and the sweeping rule of parts of composite objects, on the kinematic rela-

tions between parts, and on the number of attached parts. Constraint solution is symbolic.

3. Language elements for equation models

In this Section I introduce language constructs that enable the declarative expression o#

geometric relations between primitive elements and organization of those elements into bound-

ary representations (B-reps) of 2-manifolds. These constructs (along with a small number of

others) underlie the ASCEND modeling language [14]. They are reported here in the abstract

and apart from ASCEND and their presentation is informal; for a more formal treatment see

[14]. ASCEND shares much in common with many of the object oriented languages and frame

based systems that have emerged in recent years yet is distinguished from these by two features.

First, it is strongly typed. The use of strong types and their separation from instances makes

merge (are_the_same) operations extremely clear and makes crisp definition of rich type hierar-

chies possible. Second, the core of the language is tiny. There are two types of objects and six

relations in ASCEND (I have omitted two relations unnecessary to the exposition in this paper).

All else is built from these.

The two types of objects are atoms and models. The four model building relations are: isji%

refines, isjefxnedjo, and arejhejame. Both the objects and the relations are monotonically

declarative (thus our language provides no sense of procedure). Underlying the language are the

concepts of type and instance and the primitive types, string, integer, real and boolean of which

only the concept type needs an explanation here. A type is template for data that describes a

number of slots, each of which has a name and can, in an instance of the type, carry an object.

Slots are themselves typed, that is, they may be restricted to carry only objects of a particular

type.

3.1. Objects in the language

Atom An atom is a type. An atom has a special slot, called its value, that must be

of a primitive type. In addition to its value, an atom's template describes a

fixed number of slots for (possibly) different primitive types. Atom names

are unique.

Model A model is a type. A model consists of a possibly variable number of slots

for (possibly) different existing atoms and models. Some of the slots of a

model may be indexed as arrays; the number of these slots in a model is

established by assigning a value to the array index. Array indexes must be of

the primitive types integer or string. All elements of an array must have the

same base type*!". Slots (and thus array elements) are typed. A model

specifies a naming scheme for all internal atoms of its instances. Tlie set of

names, relative to a model, in this scheme is formed by recursively con-

catenating (with periods in between names) slot names of the model with the

slot names of the types of the respective slots, until an atom type is reached.

As part of a model definition, mathematical relations on this set of names

may also be included. The type structure of a model is the hierarchy of types

recursively described by its slots along with the mathematical relations on

the internal atoms of the model. Model names are unique.

Programs in the language are descriptions of atoms and models. A program specifies a set of

variables and mathematical relations between those variables. Computation on programs is ach-

ieved by instantiating programs and submitting their instances to a mathematical programming

facility that finds values of the variables that are consistent with the specified mathematical rela-

tions. An instantiation of a program creates two classes of computational objects:

Instance of atom An instance of an atom is an object containing an actual value, an instance

of the primitive type declared for the atom, as well as instances of conformal

primitive types for each of the slots in the atom template. The value of an

instance of an atom is obtained by naming the atom. All other slots are ob-

tained by concatenating the atom name, a period and the slot name.

1"Base types are explained in ihc discussion of the relation refines(Sccuon 3.2).

Instance of a model An instance of a model is an object containing instances of appropriate type

for each of its atoms, arrays and models. Instances of models automatically

contain instances of the mathematical relations described by the model of

which they are an instance.

3.2. Relations in the Language

The relations in the language describe structure and content relations both within and between

the objects of the language. They are declarative in all but one sense; all relation arguments with

the exception of the first argument sets of ISJJ and refines must have been established prior to

being used. An argument is established if it appears as the first argument set in an is_a or refines

relation. Put simply, an object must be created before it is used. y '

Is a

Refines

Is refined to

Are the same

Is_a is a relation of type instantiation. It is used in a type definition to restrict

the type of its first argument, a set of slots, to be at least as restricted as the

type described by its second argument.

Refines describes an inheritance relation between a set of inheriting types

and an ancestor type. Each member of a type set (the first argument of

refines) that is a refinement of another type (the second argument) contains

all of its typed slots and mathematical relations. It may in addition contain

other slots and other mathematical relations among its internal atoms. The

refines relation establishes an inheritance hierarchy of model types. The

immediate ancestor of a model is the model from which it was refined. The

ancestry of a model is the ordered set, including the model itself, of all

models that are an immediate ancestor of any model in the set. Two an-

cestries are conformal if one is a subset of the other. Two models have the

same base type if their ancestries are conformal.

Is_refined_to specifies that the type of a slot (the first argument) be a more

restrictive type (the second argument). The two arguments must have confor-

mal ancestries and the ancestry of the first argument must be shorter than

that of the second.

Are_the_same specifies that all of its arguments will, on instantiation, refer

to precisely the same object. This object will be of a type, perhaps un-

established, whose slots are typed selecting the most refined type for that slot

among all of the arguments. This slot typing is recursive, that is, it applies to

the entire type structure of the models that are are_the_same. All of the ar-

guments and recursively all of the slots of the arguments to are_the_same

must have conformal ancestries. Are_jhe_same is often referred to as

equivalencing.

3.3. Monotonicity

It is useful to introduce a concept of direct-monotonicity to describe the types of changes that our

language makes to a structure. Informally, a relation is direct-monotonic with respect to a data

structure if its assertion can only add (and never retract) information stored directly in the data

structure. For example, adding elements to the end of a linked list is direct-monotonic on the

linked list (treating nils as voids); adding elements in the middle of a linked list is not, afc pointers

in the linked list must be reassigned. Our language supports only direct-monotonic relations on

any type in the language, and this can be shown by examination of each of the relations. Is_a

simply creates a new type that is a copy of an old type; the old type remains unchanged. Refines

graduates a type down the inheritance hierarchy; the more refined type contains at least the same

structure and data as the initial type. Is_refined_to is merely a delayed binding for refines.

Finally, are_the_same only works if the ancestries of the two types are conformal. Therefore

are_the_same preserves structure and data in the same manner as refines.

Again informally, a model is direct-monotonic if its internal statements do not subtract infor-

mation already existing in the model. Models can contain only: 1 Statements about the types of

the contents of slots and 2) mathematical relations between their internal atoms. The former are

accomplished with the relations already argued to be direct-monotonic; the latter are simply

statements about atoms and cannot access the model except as a means of reference. Therefore

models are direct-monotonic.

4. The ASCEND modeling language

The ASCEND modeling language, designed and developed at Carnegie Mellon University,

implements these (and other) constructs as a programming language for building (primarily)

equation models of engineering systems. ASCEND directly supports the object types and rela-

tions discussed in the previous Section. In this section I introduce a subset of the ASCEND

syntax required to express models for spatial variations. I use examples of ASCEND code to

explain the syntax of the language as I feel that a more formal treatment, for example BNF

specification, would obscure the exposition.

ASCEND programs are written as sets of statements describing atoms and models. On instan-

tiation, the mathematical relations on the internal atoms of these sets form an equation model

that is submitted for solution to a general, non-linear equation solver. Only two restrictions on

the order of the statements are imposed:

1. All types that are used as arguments to relations must have been established in a

previous statement. A type is established by being used in the first argument set of

either is_a or refines. If the type is a model or an atom, its establishing statement ii

preceded by ATOM or MODEL respectively.

2. All mathematical relations must be written on the internal atoms of established

types.

An ATOM in ASCEND may be a refinement of or identical to an established atom or primitive

type. An typical ATOM declaration is:

ATOM direction REFINES generic__real
END direction;

Generic_real is an atom type, built into the ASCEND implementation, that has no dimensions

(units) associated with it. Atoms may have .units, for example, mass, length, time, temperature,

charge, and moles and compositions of these under the operators *, /, and A. Units are not used in

the descriptions in this paper, but are of potential interest in building variational models.

A MODEL may be a refinement of or identical to an established model. In the following

MODEL declarations the relations is_a, refines, and are__the_same are demonstrated as well as

the specification of mathematical relations:

MODEL vector3;
x, y, z, magnitude is_a generic_real;
mageqn : xA2 + yA2 + zA2 = magnitudeA2;

(^default values*)
x := 0.5;
y := 0.5;

z := 0.5;
END vector3;

MODEL generic_j>lane REFINES vector3;
a, b, c, d IS_A generic_real;
a, x ARE_THE_SAME;
b, y ARE_THE_SAME;
c, z ARE_THE_SAME;

magnitude = 1 ;
magnitude.fixed := true;

END generic_plane;

A vector3 is a type consisting of four quantities related by a single equation. The first three

quantities are the usual vector coefficients, the founh its magnitude. In an unrestricted vector this

magnitude may take on any value. The values of a vector are given a default value by tfie assign-

ment (:=) syntax. This default value is used as an initial condition for the solving process. Note

that this has a different effect than the equality (=) syntax that makes a statement about an con-

dition that must be satisfied in an instance of the model. A plane can be considered as a vector3

with an additional quantity, the negative of its distance from the origin. Since a plane refines a

vector3, it inherits all of the slots of vector3 as well as its single equation. The components of a

plane are conventionally referred to as a, b, c, and d so the are_jhe_same relation is used to

create an equivalence between the components of the vector3 and the plane values. The vector3

equation, although written in terms of of x, y, and z, now applies identically to a, b, and c. Setting

the magnitude of the plane to 1 (one) ensures the condition, necessary to our representation of a

plane, that its direction vector be normalized.

Arrays are ordered sets of slots of the same base type; since slots can occur only in models, so

can arrays. Two example definitions using arrays are:

v e c t o r [i n t e g e r] IS__A g e n e r i c _ j r e a l ;

matrix[integer] IS_A vector;

The FOR construct provides a means to succinctly specify mathematical relations among mem-

bers of an array. FOR may appear procedural but it is not. It rather is a terse means to specify an

indeterminate number of equations. Only when vector Jength is specified in some later statment

does the actual number of created equations become known.

10

a,b,c is_a vector;

vector^length is_a integer;

FOR i : 1..vector_length CREATE
a[i] = b[i] + c[i];

END;

The relation is_refined_to can be used to define arrays that contain slot of different types

(although the types must be of the same base type). To create an array of objects, some of which

are vector3 types and some of which are generic__plane types the following statements are used:

geo_objects[integer] IS_A vector3;
num_objects IS_A integer;

FOR i : 4..8 CREATE T
geo_objects[i] is_refined_to generic_jplane;

END;

5. The Equations of Spatial Relationships

Spatial relationships can be expressed as algebraic conditions on simple geometric elements. A

few of the many possible relationships are developed here with the intent of demonstrating the

direct relation between mathematics and computer code made possible by ASCEND. The fol-

lowing notational conventions are used:

Scalar quantities Italic, lower case, e.g., x, y, z.

Column vectors Bold, lower case, e.g., n, o, a, p.

Row vectors Greek, lower case, e.g., X, y, x>.

Matrices Bold, upper case, e.g., T, R.

Indices According to the type of the object referenced.
e.g., a row vector of scalars would have indices written as j 2j-

The fundamental structure used in developing the equations that describe spatial relationships is

the vector, or row vector, used in the usual sense of a list of numbers. A vector of length n is

called an n-vector and is written as x> = [vpv2, • • • v j . A column vector is a transposed row vec-

tor. From vectors are developed three generic types of geometric objects: generic points, generic

11

planes and generic transformations. These types and the types to be developed from them dis-

play dependencies among their component elements; these are referred to as constraints and are

represented as equations.

A generic point is a column 3-vector with no internal constraints on the values of its elements. A

generic point is written as:

'P = [x,y,z]T (1)

A generic plane is a row 4-vector. The first three elements of a generic plane represent a vector,

\), originating at the origin and normal to the plane. By convention this vector is constrained to

be normal (of unit length). Under this convention, the fourth element has an interpretation as the

negative of the distance along the direction vector and between the origin and the plane. Two

distinct representations exist for any one plane, with the unit vector pointing from the origin

towards and away from the plane respectively. An interpretation of planes as having sides

removes this ambiguity. A generic plane is written as:

\ = [a,b9c9d] (2)

The normality constraint on the direction is written:

IMI = 1 (3)

that expands to a single equation on atomic components:

a2+b2+c2 = 1 (4)

A generic transformation^ is a collection of four column 3-vectors, n,o,a, p. The first three vec-

tors form a rotation matrix T^ and are unit vectors representing the axes of a right handed coor-

dinate system as they are oriented relative to a reference coordinate system. The fourth vector T^

represents a position for TR relative to the same reference coordinate system. A generic transfor-

mation is written as*:

"tThe mathematics presented here is equivalent to that implemented in the more usual form of homogeneous
coordinates. The form used here permits a reduction in the number of variables as the w coordinates arc not needed
for rigid body motions.

*The following development of transformation constraints follows [3] in its algebra, but differs in its use of object
decompositions.

T = [TR I Tp] = [n.o.a.p] = \ nxox axpx~\
nyoyayp

lnzozatpt\ (5)

The first three vectors are orthonormal (mutually orthogonal and unit length). The fourth vector

is unrestricted. The orthogonality constraints are written as:

n«o = 0 (6)

(7)

that expands to:
nxox+nyoy+nz

and

n® o = a

that expands to:
ny°z~nz°y =

°xnz~nxOz =
nx<>y-nyox =

*x

ay

az

(9)

(10)

(11)

where • denotes vector dot product and ® denotes vector cross product.

Only two normality constraints are required. The third is implied by the cross product from

Equation 8 being written between orthonormal vectors.

Hn|| = 1
expanding to:

nl+nZy+n2z = l (12)
lloll = 1
expanding to:

o2
x+o2

y+o2
g = l (1 3)

From these three generic geometric types are developed the two composite types used to express

all of the spatial relations in this paper: points and planes.

A point consists of a generic transform, T, and two generic points, I and g. T represents a local

coordinate system for the point. I represents the position of the point w.r.t. the coordinate sys-

tem specified by T. g represents the position of the point w.r.t. a single global coordinate sys-

tem. T, I, and g are related by the constraint:

\.\

g = T R x l + Tp (14)

where x denotes matrix multiplication and + denotes vector addition.

A plane consists of a generic transform, T, and two generic planes, X and y. T represents a local

coordinate system for the plane. X represents the position of the plane w.r.t. the coordinate sys-

tems specified by T. y represents the position of the plane w.r.t. a single global coordinate sys-

tem. T, A., and y are related by the constraints:

(15)

(16)

where T denotes the transpose of a matrix'.

Points and planes are used to develop spatial relations of which three are demonstrated here:

plane parallelism, plane perpendicularity, and point-plane coincidence. For all of these relations,

the choice of using the local or global description vectors of points and planes depends on the

intention of the equation. For expressing relationships between parts of the same rigid body, the

local coordinates alone are used. For expressing relationships between different rigid bodies, the

global coordinates are used.

Plane parallelism takes different forms depending on the orientation of the sides of the planes.

The simplest occurs when two planes are parallel and facing the same direction and is expressed

by equating the components of the planes' normals:

yla = y2fl (17)

YU = Y2. US)

When the planes face in opposite directions one side of the above equations must be negated:

Yl = -Y2 (20)
* a * a . v .

^These expressions are equivalent to the solution for matrix inversion that exists when isomctry transformations
are expressed in homogeneous form.

Yl*=-Y2> (2D

ylc = -72C (22)

When the planes lie a given signed distance, dist, apart the fourth components, yl^ and y2^ are

related by:

Planes facing in the same direction:

(23)

Planes facing in opposite directions:

dist =y\d+y2d T ,
(24)

The distance, dist, is positive when yl^, taken as a vector fixed on yl, points toward y2, negative

when ylv, taken as a vector fixed on yl, points away from y2, and zero when yl and y2 are

coincident.

The condition that a point be on a plane is expressed as:

^ • Y v + Y<* = 0 (25)

Two perpendicular planes yield:

WY^O (26)

6. B-reps as a Representation Scheme

Models of solid objects are, in a sense, a lingua franca, of engineering design. They capture

completely an important set of properties of engineered objects, namely nominal geometry or

form. They are theoretically well advanced and are widely understood. For these reasons I use

solid models, particularly boundary representation models, as a framework with which to express

notions of variations, features and prototypes. Other frameworks are possible [1] but tend to be

specific to particular, limited domains. I informally sketch here the basis for the boundary model

representation; readers are referred to [15, 16, 17, 18] for a more complete discussion.

Solid objects have boundaries that are orientable 2-manifolds. A 2-manifold is a surface for

which every point on the surface is topologically equivalent to an open disk. A manifold is

orientable iff it is "two sided". In illustration, consider a fly that lives on one side of the surface;

such a creature can never arrive at any point on the other side by moving in contact with its home

surface.

Boundary representation schemes (B-rep schemes) model solid objects via a subdivision of their

fundamental topologies into topological polygons, most commonly expressed as plane models.

The fundamental topology of an object is merely its genus, the number of "holes" in the object,

or alternatively, the maximum number of slices that may be cut through the object without

separating it into distinct parts. A topological polygon of n sides informally corresponds to the

notion of a regular n-sided polygon defined on an infinitely deformable sheet of infinitely <hin

material. A plane model is a collection of these polygons with the operations of edge

identification and vertex identification possibly applied respectively to subsets of edges and ver-

tices from the collection. When the following three conditions are met in the edge and vertex

identification a plane model represents an orientable 2-manifold [18]:

1. Every edge is identified with one and only one other edge.

2. For each collection of identified vertices, the polygons identified at that collection

can be arranged in a cycle such that each consecutive pair of polygons in the cycle

is identified at an edge adjacent to a vertex from that collection.

3. Directions for each of its polygons (and thus for the edges of each polygon) can be

chosen so that for each pair of identified edges, the edge directions are opposite.

Plane models are represented inside a computer by a set of instances of various types (usually

shell, face, loop, edge, and vertex^, and a set of relations that capture the adjacency relations

between the components of a plane model. A well-formed set of such instances is an instance of

a boundary representation (B-rep). It is usual for the surface of the solid to be decomposed by the

plane model so that the parts of the surface represented by the topological polygons of the plane

model have relatively simple mathematical descriptions, for example planes, quadric or

parametric surfaces.

^Shells and loops may.be formally represented as artifact faces and artifact edges respectively. A complete theory
of plane models can be developed in their absence. For the sake of simplicity, that is what I have done here.

At the bottom of every set of operators that act on B-reps is usually found a set of operators

called the Euler operators. These incrementally act on the components of a B-rep such that the

2-manifold and orientability conditions on the corresponding plane model are maintained. Euler

operators conventionally assume that these properties are valid before operator application and

under this condition guarantee that the same properties are valid after application. Euler

operators are based on the plane model operations of cutting and pasting polygons applied to

both the plane model and its dual. Polygon cutting applied to the primary plane model and to its

dual (also known as vertex splitting) is considered a constructive Euler operator as it does not

involve the deletion of any existing plane model elements; it only adds new elements and

changes relations. It is easy to convince oneself that any such operators necessarily alter some of

the adjacency relations between plane model components. Since our abstract language supports

no capability for altering relationships once they are stated, it would seem that the usual Euiler

operators cannot be programmed with it.

Not every plane model adjacency relation is usually captured directly in B-reps. Many are left

implicit in the data structure to be extracted, when needed, by some algorithm. In our language

all of the operators must be direct-monotonic with respect to the explicitly represented adjacency

relations. The implicitly represented relations are free to change under operator application. If a

complete representation scheme could be found that used only relations with respect to which the

constructive Euler operators were direct-monotonic it would be possible for the usual Euler

operators to be programmed. This quandry is not addressed here and remains an open question.

Due to speed limitations of the current ASCEND compiler (not limitations in the language

definition) an almost strictly hierarchical data B-rep structure (call it the FE data structure),

shown in Figure 6-1, is used here to represent plane models. At the heart of this data structure is

the F<E> adjacency relation, a cyclic ordered list of edges around a facet. F<E> is individually

sufficient as a representation of plane model topology in curved surface domains [19]; though

alone it is not very efficient for typical applications. To gain access to vertex elements the E{ V}

relation is also captured. The FE data structure inter-element relations are changed by the usual

Euler operations, so a different set of operators is required.

t\Vhen taken to actual implementation, F<E> is actually represented as an array; ihc cycle is implicit but can bo
made explicit by joining ihc head and tail of the array.

17

type location: array [1.3] of real;

type plane: array [1..4] of real;

type vpointer: pointer to vertex;

type ehpointer: pointer to edgejialfr

type fpointer: pointer to face;

type vertex : location;

type edge_half = record
eh_vl, eh_v2: vpointer;
eh_oth: ehpointer;

end; 7

type face = record
f_eh: array [l..n] of[ehpointer
gamma: plane;

end;

Figure 6-1: The FE data structure

Two classes of plane model operations are used: operations that create the topological polygons

of a plane model, and operations that perform edge and vertex identification.

The first class contains two operations, corresponding to the creation of:

1. An isolated vertex.

2. A polygon from an isolated vertex.

The second class contains four operations corresponding to the identification of:

1. Two edge-halves.

2. Unidentified vertices to form a polygon sequence.

3. Vertices to extend a polygon sequence.

4. Vertices to close a polygon sequence to a cycle (or to extend it).

is

An unrestricted plex grammar Gplex defines these operations. GpUx= (N, T, /0, /, 5, P) where:

N the non-terminal vocabulary, = { • , * » * » • t^»S }.

T the terminal vocabulary, = { • , > , f}. N n 7= 0. I, the vocabulary, = /Vu7. Each

ae Z is a NAPE type. The attaching points of each a are referenced by an index set of

identifiers I (a) given below:

/(S)=0

/(•)= 0 /(*) = [v_eh\, v_eh2)

/(*)= {v_e/ri, v^/22, v_Ml} /(•)= {v_e/il, v_e/z2, vjdl)

/(#)= {v^/zl, v_e^2, vjdl, vjdl}

= [eh_vl9eh_v2, ehj] / (» = {e/z_vl, e/z_v2, e/zj*, e/z_or/z) ^

={/Le/El'|'=l ...n9neN)

i0 the null identifier, = -

/ the set of attaching point identifiers, = ijul(j)je Z

5 the initial NAPE, = S

P the (finite) set of plex productions (also called rules) of the form A —»B where A and B are

plexes, given below:

Rule 1 creates a single "vertex" that will be used as the "seed" to generate a polygon.

Rule 2 removes the initial symbol S so that no more "seed" vertices can be created.

S • -» •

Rule 3 generates a complete polygon from a "seed" vertex. The seed vertex is removed.

• - > (* ^) i . . .n f

[(vjehl; eh_v\i -) / = 1 .. . n
(v_eh2j+xeh_v2j -) j = 1 . . . n - 1
(/ 2 h l)
(- ehjt

o

\f

Rule 4 identifies edges from two polygons.

(eh_oth eh_oth)

[(eh_vl
(eh_v2

(ehj

eh_vl
eh_v2

ehj

(eh_vl
(eh_v2

(ehj

eh_vl
eh_v2

ehj

\4

Rules 5abc identify polygon vertices that lie at corresponding ends of identified edges.

• direct vertex identification continued sequence of
vertex identification

Rule 5.

* *

* > >

(v__ehl eh_vl
- eh_v\ v_eh\
eh_oth eh_oth -

{ (v_ehl
ehj
eh vl

ehj
eh vl

v ehl

-> • > > m
[(v_ehl ehj/l -

(- - ehjsl v_eh\
] (- eh_oth eh_oth -

(v_idl - - vjidl

{ (vjehl
ehj
eh vl

ehj
eh v2

v e/?2

:o

Rule 5,

A
• #

> >

(v_eh2 ehjvl
- eh_vl v_eh\
eh_oth eh_oth -

• > > #

(v_e/i2 e/i_v2 -
(- - e/i_vl v_e/il
(- eh_oth eh_oth -
(vjdl - - vjdl

{ {v_ehl
(vjdl

ehj
eh vl

{ (vjehl
(vjdl

ehj
eh v2

v eh2

Rule 5,

\ m*

m >
(v_eh2 eh_v2

- eh_vl v_ehl)
eh_oth eh_oth -)

{ (v_e/il
(v idl

ehj
eh vl

ehj
eh vl

)

v_eh2
v id2

ehj

ehj
eh v2

v ehl

V
• > > •

(v_eh2 eh_v2 -)
(- - eh_vl v_ehl)
(- eh_oth eh_oth -)
(vjdl - - vjdl)

v ehl
vjdl
-
-
-
-
-
-

-
-
ehj
eh_y\
-
-
-

-
-
-
-
ehj
eh_v2
-
_

-
-
-
-
-
-
v ehl
v idl

21

By the above index set definitions, the elements of I form the sub-type hierarchy shown in

Figure 6-2. By examination, the rules of Gplex are all M4P£-monotonic1" and can therefore be

implemented by the direct-monotonic operators of ASCEND.

m

Figure 6-2: The sub-type hierarchy of the plex grammar Gplex

A correspondence exists between the plexes produced by the grammar and plane models. NAPEs

of types •, *, #, •, and • correspond to vertices. NAPEs of types >: and > correspond to

edges and NAPEs of type f correspond to faces. The index sets of vertex NAPE types describe

vertex-edge (within a polygon) and immediate vertex identification relations. The index sets of

edge NAPE types describe edge-vertex (within a polygon) and edge identification relations. The

index set of the face NAPE type describe the F<E> relation within a polygon. Thus there is a

direct relation between plexes produced by the grammar and plane models, and therefore be-

tween plexes and the FE data structure.

The language L generated by Gplex is:

L(G) = {A 15=> A A V Xf r(Xf) e 7\/= 1 . . . /(XA)}

Appendix A.

that is, the set of plexes, containing only terminal NAPES, that can be derived from the initial

structure in zero or more steps.

Expressing the operations as a grammar permits proof of these theorems:

Lemma 1: Condition 1 is guaranteed by GpUr

Proof: Rule 4 transforms a pair of unidentified (>>edges into a pair of jointly iden-

tified (>)-edges. Since no rule can identify an already identified edge and since no

plex is a member of L(G) unless all of its (>^-edges are identified, condition 1 is met

by every member of L(G).

Lemma 2: Condition 2 is guaranteed by Gplex.

Proof: For the purposes of this lemma, consider that a cycle is a sequence joined head

to tail. Each vertex \) has an associated polygon, p(x>). Each unidentified vertex \) has

an associated polygon sequence Sv consisting only of pCu). The tail of Sv is p(i)). ^ ,

By Rule 5a two unidentified vertices a and p can be directly identified if they exist

respectively at the eh_v2 and eh_yl ends of an identified pair of edges (call the edge

identification conditions the ID-conditions). Thus Rule 5a creates a length 2 sequence

Sa$ of associated polygons and can be considered to modify Sa and Sp to both be equal

to 5a p. p(p) is at the tail of Safi.

Under the same ED-conditions as Rule 5a, Rule 5b extends by one polygon an as-

sociated polygon sequence Sa by directly identifying a vertex a whose polygon is the

tail of Sa with an unidentified vertex p to form a sequence 5 a p. As in Rule 5a,

5 a p replaces S(oc) and S(p). p(p) becomes the tail of S a p.

Under the same ID-conditions as Rule 5a, Rule 5C joins two (non-necessarily distinct)

associated polygon sequences to form a single sequence S a p . A vertex a whose

polygon is the tail of Sa is directly identified with an identified vertex p of type r(#).

$ afi replaces S(oc) and S({3). The tail of 5(p) becomes the tail of S a p .

The associated polygon sequence of any identified vertex defines a collection of iden-

tified vertices. Since Rules 5abc are the only grammar rules that perform vertex iden-

tification, all such collections in any member of L(G) must be sequences. The ID-

conditions guarantee that adjacent polygons in the sequence are adjacent through edge

identification.

From examining the NAPE types of the grammar, each vertex can be directly iden-

tified with at most two other vertices. Any member of L(G) contains only vertices that

are directly identified with exactly two other vertices. Since each of Rules 5a bc per-

foim exactly one direct identification of a pair of vertices, if there are n vertices iden-

tified in a vertex collection within a member of L(G) then they must have been joined

with n rule applications.

If n objects are arranged with n pairwise connections, the connections must form a set

of cycles. Thus the direct vertex identifications and thus the associated polygon se-

quences in any vertex collection in a member of L(G) form a set of cycles. But each

associated polygon sequence is, by construction, a single sequence, and therefore must

be a single cycle.

Lemma 3: Condition 3 is guaranteed by Gplex. y '

Proof: The ED-conditions of Rules 5abc guarantee that in every pair of identified

edges, the edges occur in opposing directions.

Theorem 4: Only data structures that model non-empty sets of plane models of orient-

able 2-manifolds are produced by the grammar.

Proof: Lemma 1, Lemma 2, and Lemma 3 collectively prove Theorem 4.

Theorem 5: A structure that represents an arbitrarily chosen plane model (with a non-

zero number of edges) of an orientable 2-manifold is generated by the grammar."'"

Proof: Consider the set of rules that is obtained from the rules of the grammar by

reversing the directions of the production arrows. Denote the rule so obtained from

Rule n by Rule n~l. By inspection of the rules it is easily seen that Rules n and rcx are

inverses, that is, Rule n derives plex a from plex P iff Rule n~x derives plex (3 from a.

Let a plane model of an arbitrary orientable 2-manifold be given. The following algo-

rithm reduces the plane model to the initial object S.

while there exists an identified pair of vertices of type t(%)

apply Rule 5~*
while there exists an identified pair of vertices of types r(#) and t(*)

apply Rule 5^
while there exists an identified pair of vertices of types r(j*) and /(<*)

apply Rule 5"1

assert no identified vertices remain .

"hfhe grammar docs not produce the primitive plane model with: a single vertex, no edges and a single face. This
is a trivial limitation that could be overcome by a separate grammar rule for this model.

for every identified edge pair
apply Rule 4~!

assert no identified edges remain

for every polygon
apply Rule 3"1 to produce a vertex of type t(+)

assert no polygons remain

apply Rule 2~x once to any vertex of type t(±)
assert an initial symbol of type r(S) exists

for every vertex of type t(+)
apply Rule I"1

assert only S remains

Since rules n and nrx are inverses, if the sequence of rules /?"/ /?# . •. RJ* reduces a

plane model of an arbitrary orientable 2-manifold to the initial object S, then the se-

quence Rin R^).. - Rix constructs the plane model from S. Therefore a plane model of

every 2-manifold object is generated by the grammar.

With these proofs in place these operations can be used as the basis for building descriptions of

sets of solid objects.

Many existing CAD systems have the capability to "paste together" instances of polygons to

completely enclose a volume. Our grammar rules perform the same task, except that they operate

at the level of the plane model representation of topology alone; they require no embedding into

three dimensional space R3. We can thus use members of the language of the grammar together

with a variable representation of their embedding into R3 (variable geometry) as a representation

of a variational class of solid objects. We express this variable geometry using models built

from the equations developed in Section 5. It is important to realize that embedding of a plane

model into R3 creates constraints relating to the non-intersection of components of the plane

model. The representation of these conditions within our chosen computation scheme (equation

solving and mathematical programming) is an unsolved and current research problem that we do

not address here. Our emphasis is on a self-contained language with which variational models

may be precisely described.

25

7. A Variational Geometry System

In this section the equations of spatial relationships (Section 5) and the plane model grammar

(Section 6) are coupled through the language constructs (Section 3) using the ASCEND language

as an implementation vehicle. Although a complete listing of the ASCEND code required to

implement a simple geometric modeler is only some eight pages in length, only examples that

demonstrate key points are presented here (including all of the Euler operators). To date, several

models of variational solid objects and assemblies have been created and tested. Figure 7-1

shows objects of typical complexity.

r '

Figure 7-1: A "tinkertoy" set of solid models

7.1. Simple Geometric Types

The type vector3 contains the three vector parameters plus an equation for its magnitude. Putting

the equation here simplifies later expression of normality constraints and provides a facile means

to control the proliferation of redundant equations.

MODEL vector3;
x, y, z, magnitude IS_A generic_real;
mageqn : xA2 + yA2 + zA2 = magnitudeA2;

INITIALIZE
x := 1;
y := 1;

END vector3;

Dot and cross products operate on simple vectors. £

MODEL d o t 3 ;
vl, v2 IS_A vector3;
prod IS_A generic^real;

doteqn: vl.x*v2.x + vl.y*v2.y + vl.z*v2.z = prod;
END dot3;

MODEL cross REFINES vector3;
vl, v2 IS_A vector3;

xcomp : x = vl.y*v2.z - v2.y*vl.z;
ycomp : y = vl.z*v2.x - v2.z*vl.x;
zcomp : z = vl.x*v2.y - v2.x*vl.y;

END cross;

A generic_point removes the magnitude equation from the vector3 model. This simplifies even-

tual equation models, while allowing points to inherit other useful properties of vector3, for ex-

ample, defaults.

MODEL generic_point REFINES vector3;
mageqn.included := FALSE;

END generic_jpoint;

27

A generic_plane provides the additional names (a>b,c) to those extant in vector3 and adds a

fourth component d. Since the vector D is unit length, the magnitude quantity of the vector is

constrained to be equal to 1.

MODEL generic_j>lane;
a, b, c, d IS_A generic_real;
uv IS_A vector3;

a, u v . x ARE_THE_SAME;
b, u v . y ARE_THE_SAME;
c, u v . z ARE_THE_SAME;

uv.magnitude := 1;
uv.magnitude.fixed := TRUE;

END generic_jplane;

A transform uses the dot and cross products and the magnitude of its vector3 compo^eifts to

describe its constraints. The magnitude equation of the cross product is released, removing a

redundancy. Note the very simple form of the equations required.

MODEL transform;
n, o, a, p IS_A vector3;
d IS_A dot3;
c IS_A cross;

d.vl, n ARE_THE_SAME;
d.v2, o ARE_THE_SAME;
d.prod := 0;
d.prod.fixed := TRUE;

c.vl, n ARE_THE_SAME;
C.v2, o ARE_THE_SAME;
C, a ARE THE SAME;

n.magnitude := 1;
o.magnitude := 1;
n .magnitude.fixed
o.magnitude.fixed

a.mageqn.included

END transform;

:= TRUE;
:=TRUE;

:= FALSE;

:s

A plane refines a generic_plane and uses it as its global representation. A separate local

representation is declared internally. The equations are the expansions of the vector and matrix

operations of Equations 15 and 16. The redundant magnitude equation of normal vector of the

local plane is eliminated. The point model is similar.

MODEL plane REFINES generic_jplane;
local IS_A genericjplane;
t IS_A transform;

a = t.n.x * local.a + t.o.x * local.b
+ t.a.x * local.c;

b = t.n.y * local.a + t.o.y * local.b
+ t.a.y * local.c;

c = t.n.z * local.a + t.o.z * local.b 9

+ t.a.z * local.c; '

d = local.a * (t.n.x * -t.p.x + t.n.y * -t.p.y
+ t.n.z * -t.p.z)

+ local.b * (t.o.x * -t.p.x + t.o.y * -t.p.y
+ t.o.z * -t.p.z)

+ local.c * (t.a.x * -t.p.x + t.a.y * -t.p.y
+ t.a.z * -t.p.z)

+ local.d;

local.uv.mageqn.included := FALSE;
END plane;

7.2. Spatial Relationship Types

The following are some types that model the spatial relationships between simple geometric

types.

Parallel (between two identically oriented planes) avoids creating three equations by simply

equivalencing the components of the vector normals.

MODEL parallel;
gammal, gamma2 IS_A generic_jplane;

gamma1.uv, gamma2.uv ARE_THE_SAME;
END parallel;

The condition of two oppositely oriented planes being parallel implies that three simple equa-

tions be created. The magnitude equation of one of the vector normals is released.

MODEL invjparallel;
gammal, gamma2 IS_A generic_plane;

a__eqn: gammal.a = -gamxna2.a;
b_eqn: gammal.b = -gamma2.b;
c_eqn: gammal.c = -gamma2.c;

gamma2.uv.mageqn.included := FALSE;
END invjparallel;

Constraining two oppositely oriented planes to be a certain distance apart adds a single con-

straint.

MODEL invjpar_dist REFINES invjparallel; ,
distance IS_A generic_real; *

gammal.d + gamma2.d = distance;
END invjpar_dist;

7.3. Boundary Representation Types

Notice that these types have no internal definitions of simple "geometry"; all such information is

inherited.

A vertex points to no other type, so the type vertex is merely a place holder.

MODEL vertex REFINES point;
END vertex;

A generic_edge_half is used to permit the inclusion of a slot of type edge in the model of an

edge.

MODEL generic_edge_half;
END generic_edge_half;

An edgejialf includes a slot for the edge_half that it is identified with in a complete 2-manifold

model and slots for vertices at each of its ends. The transforms of the two vertices are equiv-

alenced.

MODEL edge_half REFINES generic_edge_half;
ehjvl, eh_v2 IS_A vertex;
eh_other IS_A generic_edge_half;

eh_vl.t, eh_v2,t ARE_THE_S AME;
END edge_half;

A face contains slots for its plane, for each of its edge_halves, and for an uninstantiated

parameter for its number of edgejialves.

MODEL face;
gamma IS_A plane;
num_sides IS_A integer; ,
f_eh[integer] IS_A edge_half; *

END face;

A shell is a holder for a transform.

MODEL s h e l l ;
t IS_A transform;

END shell;

7.4, Grammar Rule Types

The rules of the grammar are represented as models. "Programs" are built by using these models

to restrict the types of slots in larger models. The initial symbol in the grammar has no counter-

part in the implementation; it is used in the grammar as a device to assist the proofs of well-

formedness and completeness. Rule 2 of the grammar, whose purpose is only to remove the in-

itial symbol thus does not exist here, nor are any of Rules 5a bc explicit, as these deal with rela-

tions not captured in the FE data structure (but see the vertex equivalencing in the implemen-

tation of Rule 4).

Rule 1. Make_vertex describes a shell, a vertex, and equivalences the transform of the two.

They are thus joined in space a "rigid" unit, bound to move together.

MODEL make_yertex;

(•topology part*)

s IS_A shell;
v IS_A vertex;

(*geometry part*)

S.t, v.t ARE_THE_SAME;

END make_vertex;

Rule 3. Make_face starts with a make_vertex. It establishes a face and then equivalen^e^the

initial vertex with the first vertex of the face. It then links adjacent edge_halves and vertices on

the face. The "geometry" is established by linking the transform of the face to that of the start

vertex; the vertex-transform equivalencing in the edge_half model implicitly guarantees that all

vertices will share a common transform. Each point is constrained to lie on the plane of the

face.

MODEL make_face;

(•topology part*)

mf_lhs IS_A make_vertex;
mf_rhs IS_A face;
mf_lhs . v, mf_rhs . f_eh [1] . eh_vl ARE_THE_SAME ;

for i : 2. .mf_rhs .num__sides create
mf_rhs . f_eh[i -1] .eh_v2,

mf_rhs . f_eh [i] . eh_vl ARE_THE_SAME ;
end;

mf_rhs.f_eh[mf^rhs.num_sides].eh_v2,
mf_rhs.f_eh[l] .eh_vl ARE_THE_SAME;

(*geometry part*)

mf_rhs .gaLmma . t , mf^ lhs .v . t ARE_THE__SAME ;
pop [integer] IS_A point_on_j>lane;

for i : 1. .mf__rhs .num^sides create
mf^rhs . f__eh[i] . eh_vl . l o c a l , pop.pt ARE_THE__SAME;
mf^rhs .gamma . l o c a l , pop[i].gamma ARE_JTHE__SAME ;

end;
END make face;

Rule 4. Identify_edge_halves equivalences the eh_other slots of the edgejialves to be iden-

tified. It also achieves the 2-manifold orientability condition by equivalencing respective ver-

tices.

MODEL identify__edge__halves;

(*topology part*)

el, e2 IS_A edge_half;
el.eh_other, e2 ARE_THE_SAME ;
e2.eh_other, el ARE_THE_SAME;
el.eh_vl, e2.eh_v2 ARE_THE_SAME;
el.eh_v2, e2.eh_vl ARETHESAME;

(*there i s no geometry part*)

END identify_edge_halves; ^ #

7.5. Using the Types

The types above are the core of a system for creating variational models of solid objects. Using

these types demands primitives similar to those created as primitives in most boundary represen-

tation modelers.

Pgon4 simply sets the integer atom in num_sides slot of a makejface to the value 4. On instan-

tiation of this model a quadrilateral will be created.

MODEL pgon4 REFINES make_face;
f.num_sides := 4;

END pgon4;

33

Generic_extrusion_sides builds a ring of pgon4 models using identify_edge_halves models. It

establishes an integer parameter that will, on instantiation, determine the number of sides.

MODEL generic_extrusion_sides;
ext_num_sides IS_A integer-
e x ^ joins [integer] IS_A identify_edge_halves;
ext_sides[integer] IS_A pgon4;
for i:2..ext_num_sides create
ext_sides[i-l].f.f_eh[3], ext_joins[i].el ARE_THE_SAME ;
ext_sides[i].f.f_eh[l], ext_joins[i].e2 ARE_THE_S AME;

end;
ext_sides[ext_num_sides].f.f_eh[3],

ext_joins[l] .el ARE_THE_SAME;
ext_sides[l].f.f_eh[l],
ext^joins [ext_n\im_sides] .e2 ARE_THE_SAME;

END generic_extrusion_sides;

Generic_extruded_solid places a top and bottom face onto a generic_extrusion_sidesf.

MODEL generic_extruded_solid REFINES generic_extrusion_sides;
top, bottom IS_A make_face;
top_join[integer],
bottoin^join [integer] IS_A identify^edge^halves;
top.f.num_sides, bottom.f.num_sides,

ext^num^sides ARE_THE_SAME;

for i:1..ext_num_sides create
bottom.f.f_eh[i], bottom_join[i].el ARE_THE_SAME;
ext_sides[i].f.f_eh[4], bottom_join[i].e2 ARE_THE_SAME;
top.f .f_eh[i] , top_join[i] .el ARE_THE_SAME;
ext_sides[i].f.f_eh[2], top_join[i].e2 ARE_THE_SAME;

end;
END generic_extruded_solid;

Building extruded solids with different numbers of sides reduces to setting the value of the

ext_num_sides slot of a generic_extruded_solid.

MODEL prism3 REFINES generic_extruded_sol id;
ext_jnum__sides := 3;

END prism3;

MODEL prism4 REFINES generic__extruded_solid;
ext_num_sides := 4;

END prism4;

8. Summary and Future Work

I have developed and demonstrated the core of a declarative system for variations. Included in

this core is a complete boundary representation solid modeling data structure, created through

the use of an unconventional set of Euler operators. A system built on these foundations can be

quite terse; this is evidenced by our inclusion of the entire ASCEND code required to build the

topology of solid models of planar faced objects. In addition, the necessary constructs are in

concept simple and seem to be amenable to crisp formalization. A fully developed variational

system would go far towards solving the class of so-called routine design problems. It would

also provide a sound target representation for search based design systems, whose products are,

in essence, variational models.

Several challenges and questions remain in front of this approach. It must be further refold,

formalized and extended. For me, obvious relations exist to notions of features, variational

geometry, assemblies, and prototypes, and these should be explored. It currently lacks a clear

paradigm for graphic interaction, so is unlikely to be widely used in design practice. A particular

issue is the development of more graceful means of controlling initialization and redundancy of

large equation models. A large portion of the time spent programming variational solids was

spent tracking down over- (and worse, under-) specified models. I conjecture that some simple

language constructs could greatly assist here.

Variations have long been an important (though implicit) component of automated design sys-

tems. That they have not fulfilled their promise can be attributed to many issues, including lan-

guage for problem formulation, interaction, solving robustness, and speed. The lesson of this

work and its future promise is, for me, the simplicity that arises from the discovery of the "right"

set of primitive constructs. A few pieces of machinery can go a long way.

9. Acknowledgements

This work has been partially funded by the National Science Foundation through Grant

#MSM-8717307, and by an internal grant from the Department of Architecture, Carnegie Mellon

University. ASCEND has been partially funded by the National Science Foundation through its

Engineering Research Centers program. The author would like thank Peter Piela, the principal

author of ASCEND, for his generosity and patience in providing assistance with ASCEND, Art

Westerberg, for his help with ASCEND programming style, Chris Carlson for his outline of one

of the proofs, and Linda Gates who assisted with programming the modeler and examples

reported here.

Appendix A. Plexes and Plex Productions

The plex grammar in this paper follows [20] and its derivative [21]. The notation includes some

minor changes to the syntax, some addition and reordering of concepts, and particularly a dif-

ferent means of visual presentation of plexes. These changes must be presented if the grammar in

Section 6 is to be easily understood.

T
A NAPE is a symbol with a set of attaching points for joining to other symbols. NAPEs are typed

and the set of attaching points is fixed by the type. A NAPE type may denoted by any literal, for

example a or •; and an instance of a NAPE type is denoted by the same literal. The set of

attaching points of a NAPE type a is given by the function /(a). The type of a NAPE instance a

may also be expressed as r(a).

NAPE types are organized into a sub-type hierarchy by the sub-type relation Q:A -» A where A is

a set of NAPE types.

Definition 6: A NAPE-iype a is a sub-type of another NAPE-type b if/(a)3/(b)+.

A NAPE-string is an ordered collection of NAPEs formed by concatenating NAPEs together.

A plex A is a collection of connected NAPEs.

A = XAFAAA,where:

XA is the component list, an ordered list, delimited by "<" ">", of NAPEs and/or

NAPE-strings. NAPE-strings in XA expand to their component NAPEs. The length

ofXAis/(XA).

FA is the joint list, a list, delimited by "[" "J", of /(XA) length lists of attaching point

identifiers. Each element F* in the joint list describes one joint in the plex. Each

follows that Q:A -> A is reflexive and transitive, but not symmetric.

element yj9j = 1 . . . /(XA) of FA is an attaching point identifier from /(XA) u i0, and

specifies the attaching point through which X;
A is connected to the joint. Each F*

must contain at least two non-null identifiers. The length of FA is /(FA).

AA is the tie-point list, a list, delimited by " {"M}ff, of lists of attaching point identifiers.

Each element AA in the tie-point list describes a joint (called a tie-point) that may

be connected to other plex structures. Each element S^y = 1 . . . /(XA) of AA is an

attaching point identifier from /(X;
A) u i'o, and specifies the attaching point through

which XA is connected to the joint. Each AA must contain at least one non-null

identifier. The length of AA is/(AA).

The following restrictions apply to plexes:

1. A NAPE cannot connect to itself. In other words, duplicate NAPE types appearing

in a plex component list refer to distinct NAPE instances. T '

2. A joint list specifies all of the interconnections that occur between members of its

associated component list.

3. Every attaching point of every NAPE in a plex specification must connect with

either a joint in the joint-list or a tie-point in the tie-point list. It follows that every

attaching point of every NAPE in the plex will be referenced in a plex specifica-

tion.

Since each component of a plex A is composed from /(XA) length lists, a plex may be written as

an array, the first row being XA, the next /(FA) rows being FA, and the last /(AA) rows being AA.

The columns of the array provide a quick visual check for condition 3 above. Each column

below a NAPE a € XA must contain all members of/(a).

If, in a plex A, each member FA € VA has exactly two non-null identifiers and each member

Af e AA has exactly one non-null identifier then the graph described by the plex has no hyper-

arcs (the joints are taken to be arcs and the tie-points are not considered in the graph).

A plex production (or plex rule) P consists of two plexes A (the LHS) and B (the RHS) with

tie-point lists of identical length (/(AA)=/(AB)). The component and joint lists of A describe the

NAPEs and their internal interconnection pattern that will be removed from a plex by the plex

production. The component and joint lists of B similarly describe what will be added to a plex by

37

the plex production. The tie-point lists AA and AB describe connections to tie-points; for A these

are connections that will be recognized in application of the plex production, for B these describe

how to connect the newly added NAPEs to the rest of the structure. A correspondence exists

between members of AA and AB; the 1th members each of specify connections to the same tie-

point.

The following restriction applies to plex productions:

1. Separate tie-points of either the LHS or the RHS cannot refer to the same joint.

When a plex production from a set of productions P applies to a plex A to yield a plex B, then A

is said to directly derive B in P, or symbolically A =>B. If there exists a sequence of zero or

more direct derivations using operators from P9 such that A => . . . =>B then A derives B in P,
p p r~ #

A=>B.
p

A useful form of monotonicity can be defined for plex productions:

Definition 7: A plex production A —> B is NAPE-monotonic^ if:

1. For each NAPE a e XA the corresponding NAPE be XB is a sub-type of a,

2. The first l(XA) elements of FB form a list identical to fA, and

3.AA = AB

A NAPE-monotonic rule can be implemented as a model in ASCEND. To see this simply com-

pare the definition of/VAPE-monotonicity with the discussion of direct-monotonicity in AS-

CEND. It can be seen that M4P£-monotonicity is at least as restrictive as direct-monotonicity.

^This definition is considerably more restrictive than is really required. Its restrictions make the visual checking
of plex rules easy.

References

1. U. Hemming, "More on the representation and generation of loosely packed arrange-

ments of rectangles", Planning and Design, Vol. 16, (1989), pp. 327-359.

2. R. Light, D. Gossard, "Modification of geometric models through variational

geometry", CAD • Computer Aided Design, Vol. 14, No. 4, July (1982), pp. 209-214.

3. K. Lee, G. Andrews, "Inference of the positions of components in an assembly: pan 2",

Computer-Aided Design, Vol. 17, No. 1, January (1985), pp. 20-24.

4. A.P. Ambler and R.J. Popplestone, "Inferring the Positions of Bodies from Specified

Spatial Relations", Artificial Intelligence, Vol. 6, (1975), pp. 175-208. r ,
f

5. R.J. Popplestone, A.P. Ambler, and I. Bellos, "An Interpreter for a Language for

Describing Assemblies", Artificial Intelligence, Vol. 14, No. 1, (.1980), pp. 79-107.

6. R.F. Woodbury, IJ. Oppenheim, An Approach to Geometric Reasoning, North Holland,

IFIP WG 5.2 Workshop Series (1988), ch. 4-7.

7..... R.F. Woodbury, IJ. Oppenheim, "An Approach to Geometric Reasoning in Robotics",

IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, No. 5, (1988), pp.

630-646.

8. R.F. Woodbury, The Knowledge Based Representation and Manipulation of Geometry,

PhD dissertation, Department of Architecture, Carnegie-Mellon University, December

(1987), Also published as EDRC-02-08-88.

9. E.C. Libardi, J.R, Dixon, M.K. Simmons, "Designing with Features: Design and

Analysis of Extrusions as an Example", Spring National Design Engineering

Conference, American Society of Mechanical Engineers, Chicago, II., March 24-27

(1986).

10. E.H. Neilson, J.R. Dixon, M.K. Simmons, "How Shall We Represent the Geometry of

Designed Objects?", Tech. report, Department of Mechanical Engineering, University of

Massachusetts, (1986).

11. S.C. Luby, J.R. Dixon, M.K. Simmons, "Creating And Using A Features Data Base",

Computers in Mechanical Engineering, November (1986), pp. 25-33.

12. GJ. Agin, "Hierarchical Representation of Three-Dimensional Objects Using Verbal

Models' \ IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.

PAMI-3, No. 2, March (1981), pp. 197-204.

13. R.A. Brooks, "Symbolic Reasoning Among 3-D Models and 2-D Images", Artificial

Intelligence, Vol. 17, (1981), pp. 285-348.

14. P. Piela, ASCEND, An Object-Oriented Computer Environment for Modeling and

Analysis, PhD dissertation, Department of Chemical Engineering, Carnegie-Mellon

University, April (1989). V '

15. A.A.G. Requicha, "Representation of Rigid Solid Objects", Tech. report TM-29,

Production Automation Project, College of Engineering and Applied Science, University

of Rochester, June (1980).

16. A.A.G. Requicha, "Representation for Rigid Solids: Theory, Methods and Systems",

Computing Surveys, Vol. 12, No. 4, December (1980), pp. 437-464.

17. M. Mantyla, "A Note on the Modeling Space of Euler Operators", Computer Vision,

Graphics and Image Processing, Vol. 26, (1984), pp. 45-60.

18. M. Mantyla, An Introduction to Solid Modeling, Computer Science Press, Rockville,

Md., (1988).

19. KJ. Weiler, Topological Structures for Geometric Modeling, PhD dissertation, Computer

and Systems Engineering, Rensselaer Polytechnic Institute, August (1986).

20. J. Feder, "Plex Languages", Information Sciences, Vol. 3, (1971), pp. 225-241.

21. R.C. Gonzalez, M.G. Thomason, Plex Grammars, Addison-Wesley Publishing Co.,

Reading, MA., Applied Mathematics and Computation No. 14, (1978), pp. 82-91, ch. 3.4.

U)

