
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Searching for Designs: Paradigm and Progress

by

Robert F. Woodbury

48-16-90

Searching for Designs: Paradigm and Progress

Robert F. Woodbury

Department of Architecture / Engineering Design Research Center

Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA, 15213.

To appear in Building and Environment, 1990

ABSTRACTrMost CAD systems operate within a paradigm that makes it impos-

sible for computers to materially assist in design. Yet in the research community, the

well-established search paradigm is technically ready for broader application. This

paper describes design search using the devices of set theory and grammars. It con-

structs a model of design spaces as a framework for creating new types of systems,

and argues that current professional CAD systems cannot easily adapt the search

paradigm. Two approaches to systems that use design search, potentially exhaustive

enumeration and spatial grammars are discussed with reference to existing research

efforts.

This work has been supported by the Engineering Design Research Center, an NSF

Engineering Research Center, and by NSF grant MSM-8717307.

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

Searching for Designs: Paradigm and Practice

Robert F. Woodbury

Department of Architecture / Engineering Design Research Center

Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA, 15213.

ABSTRACT:Most CAD systems operate within a paradigm that makes it ?•

impossible for computers to materially assist in design. Yet in the research

community, the well-established search paradigm is technically ready for

broader application. This paper describes design search using the devices of

set theory and grammars. It constructs a model of design spaces as a

framework for creating new types of systems, and argues that current profes-

sional CAD systems cannot easily adapt the search paradigm. Two ap-

proaches to systems that use design search, potentially exhaustive

enumeration and spatial grammars are discussed with reference to existing

research efforts.

Introduction

For many years a generative approach to computer-aided design has been quietly

developing in research labs at universities around the world. Within the research com-

munity it has become a paradigm; there are many researchers who accept its premises

and methodology and take as their task its further development. Within its bounds there

are parallel threads of inquiry that are moved by their own motivations and logic, yet are

inherently complementary. The approach considers design as an act of search in the

realm of spatial compositions and sets as its task the discovery of formal and computa-

Robert Woodbury September 5,1989

tional machinery appropriate to express and conduct search. It demands rigor and preci-

sion, but returns insight and a spirit of exploration.

The search paradigm (to give it a name) stands in harmony with, and perhaps partially

motivates, the present recurrence of compositional ideas in architecture. The

mechanisms provided by the paradigm may even prove to sustain this interest. In con-

trast, current CAD practice and search share very little in common. Existing CAD sys-

tems for architecture have their roots in another approach: the drawing processor. They

support drawing, not design. They advance technically to higher speeds and more

"intuitive" displays, not theoretically to greater insight into architecture. On the other

hand recent developments in search suggest that we can expect its larger application and

dissemination in the CAD industry. The first significant implementations of search based

CAD programs are emerging from the research labs. These are not just potential tools fpr '

industry, they invigorate research by supporting greater exploration of architecture itself.

In this article, the search paradigm is described abstractly as a design space model1, using

concepts from set theory and formal language theory. Into this model specific search sys-

tems can be mapped; with it, requirements for new systems can be posed. At its core the

model views search as the action of a set of operators on a representation all being

guided by a search strategy. When compared to a current understanding of human

problem solving the model suggests that a complementary relationship can exist between

human designers and computer based search systems. A hypothetical contemporary

professional CAD system is compared against the design space model, and it is shown

that the organization of the CAD system presents little potential for integration with the

search paradigm. Put simply, new system designs are needed. Two lines of inquiry, ma-

ture as research and exemplary of the search paradigm, are described: l)the LOOS system

as an advanced development of an approach to layout that emphasizes exhaustive search

strategies, and 2) spatial grammars, that use constructive rules both to explain existing

corpora of designs and to explore new families of designs.

[1,2, 3,4] contain other general accounts of the search paradigm.

Building and Environment Article

Robert Woodbury September 5,1989

The search paradigm owes intellectual debts to many sources outside of architecture.

These include: formal language theory and computational linguistics for grammatical

concepts, set theory and graph theory for representations and proof procedures, cognitive

psychology for models of human problem solving, and artificial intelligence for represen-

tation and search. However, the paradigm is more than an amalgam of these gleanings; it

is enlivened by its own logic and is firmly anchored in the field of design.

Search and Design

There are many accounts of the act of architectural design. Among the most clear and

vigorous of these view design as puzzle-making [5], as ill-structured problem solving [6],

as an evolutionary process [7], and as decision making [8]. All of these seem to have at

their core a sense of form-making that is constructive in its essence. In computational

terms such construction is search.

Search characterizes design as a path planning problem through a space of possibilities. It

presents a broad and flexible metaphor for design, that provides insights into both the act

of designing and the structure of designs. It has significant empirical support as the prin-

cipal mechanism used by human designers. There exists in computer science a well

developed understanding of search and some powerful tools for describing, simulating,

and conducting search. Each of these characteristics alone provide, for me, ample reason

to seriously consider search as a basis for computer aided design systems. That they all

exist, within one paradigm, is convincing indeed.

If design is search, then design problems have a structure and the act of designing is a

process on that structure. Informally and as shown in Figure 1, design problems consist

of a set of information states, divided into initial, intermediate, and goal states, and a set

of operators that move between those states. Each of the states represents some design,

possible incomplete. Designing in its simplest form consists of finding a set of operator

sequences (or paths) between initial and goal states. More typically in architectural

design, any part of the structure may be partly undefined and it is left to the design

process to discover that structure. For example, it is common that the program for a

building (the initial state) undergoes significant change as building design progresses.

Building and Environment Article

Robert Woodbury September 5,1989

Since my interest is in developing computational support for the search paradigm, it is

useful to be more formal. I will begin with a description (following Requicha [9]) of the

states of design, particularly how they fulfill their role as representations of designed

objects. Then I will describe the operators of search (partly following Newell and

Simon [10]) and finally how these components are brought together into a single concep-

tual structure that generically describes design search.

In the following text I have taken care to be precise (yet still abstract) in the presentation

of various properties, both formal and informal. Essentially a formal property of an ob-

ject is one that can be stated mathematically, in terms of a mathematical description of

the object. Informal properties can be stated only imprecisely. The properties I describe

are not the only ones that can exist, nor are they of interest for every type of search. They

do, however, present an overall picture of the issues that arise when search is taken £

seriously as a metaphor for design.

Design search, whether done by human or machine, acts on data, not physical objects.

These data are finite symbol structures, that is, they are collections of related atomic ele-

ments called symbols. The collection of all symbol structures that may be considered in a

particular design task constitutes a representation space R and each member of R is

called a representation.

Elements in representation space may have interpretations as one or more designed ob-

jects. In order to be precise about these interpretations it is necessary to have a precise

characterization of designed objects. The concept of a mathematical modeling space M is

employed for this purpose. A modeling space is an abstract description of some

properties of all members of the space. For example, a building may be described in plan

as a collection of non-overlapping rectangles, and a modeling space for buildings may be

all sets of non-overlapping rectangles. A modeling space captures properties of designed

objects. If these are useful properties that allow us to understand the character and utility

of a design then the modeling space will be useful. Modeling spaces are used to describe

(and discover) properties of designs, for example, the mathematical conditions that

guarantee that elements in a set of rectangles do not overlap. It is important to understand

that modeling spaces capture only properties of a physical object relevant to a particular

Building and Environment Article

Robert Woodbury September 5,1989

design task, for example, a set of rectangles may describe the relative positions and

dimensions of rooms, but not the materials, textures, lighting, or construction of an actual

building.

By building pairwise associations between elements of modeling and representation

spaces, the semantics of representations are defined. Formally, these are described as a

representation scheme, a relation 0:A/->/? on the sets M and R. Figure 2 informally

demonstrates a representation scheme for the massing of houses that simply uses ele-

ments from a set of descriptive words as the representation space.

0 - Theta
€ - membership

This description of a representation scheme would be sufficient if both of the sets M and

R were available to us in their entirety. We could then simply construct the Cartesian *•

product MxR, and select directly from it the appropriate pairings of models and represen-

tations. Sadly, M and R can seldom be so expressed, and for quite different reasons.

The set R contains those computational objects that will be generated and manipulated by

a design process. In interesting design problems, the number of alternatives that could be

considered is large enough to defeat any exhaustive enumeration (it could easily be

infinite). Even if it were practically possible to directly enumerate all of the alternatives,

it would be quite inefficient, therefore undesirable. The set R is typically (but not always,

as will be shown in the discussion of LOOS later in this paper) specified indirectly, as a

•grammar (informally a set of primitive symbols with syntax rules for their combination)

or as an*algebra (informally a set of objects and a collection of operators). All members

of R are generated by grammar rules (alternatively, by algebra expressions) and are there-

fore syntactically correct.

The set M is not specified in advance; indeed, the generation of some of its members is

the task of design. Further, the set M is usually existentially characterized, that is, it is a

mathematical abstraction of some of the properties of the actual object. For example, in a

modeling space of non-overlapping sets of orthogonally oriented rectangles it is not im-

portant to physically generate all such sets of rectangles, it suffices to know that for each

pair of rectangles an overlap cannot occur simultaneously in both of the principal direc-

tions.

Building and Environment Article 4

Robert Woodbury September 5,1989

Figure 3 shows a different way of defining 0; it takes the form of its inverse relation 0"1 ,

for mapping members of/? to members of A/, (such members of/? are said to model or

represent members of A/). It is useful to describe 0""1 as a characteristic predicate,

P(r) = / * if® ~ (0 e ^, that determines if a symbol structure in /? represents an ele-
10 otherwise J *

ment of M. This predicate can be thought of as a test that can be implemented as com-

puter program2. As it would be impossible to implement a computer program to test any

me M, 0 is defined as 0 - 1 ~ . The domain of 0, denoted by D, is the set of all elements

of M that have corresponding elements in /?. The codomain of 0 is /?. The range of 0,

denoted by V, is the set of all members of/? (by definition syntactically correct), that

correspond to elements in D.

With these preliminaries in place it is possible to more formally describe certain

properties of a representation scheme, namely: extent of domain (expressiveness), syntck-'

tic validity, well-formedness, completeness (unambiguousness), uniqueness, and

abstractness.

When compared to the entire modeling space M the size of the domain, D, of a represen-

tation scheme is a measure of the descriptive power of the scheme. D is that part of the

modeling space that is accessible by construction of representations in /?. If D=A/ the

representation scheme is semantically exhaustive.

Every element of V (the range of the representation scheme) is considered to be valid, as

it is both syntactically and semantically correct (i.e. - it can be constructed by the rules

that define /? and has corresponding elements in D). If V=R then the representation

scheme is syntactically valid, as every syntactically correct representation corresponds to

an element of D.

If, in addition to syntactic validity, a representation scheme is semantically exhaustive,

then the scheme is well-formed. A consequence of well-formedness is that the charac-

teristic predicate of 0" 1 is always TRUE. With a well-formed scheme, it is theoretically

2Remembcr, the only things that we can compute upon arc members of/?, therefore all computable tests
must be written in iheir terms.

Building and Environment Article

Robert Woodbury September 5,1989

possible to generate a representation that corresponds to an arbitrary member of the

modeling space, using only the syntax rules that define the representation space. As we

shall see in Section well-formedness is an essential quality for exhaustive search

strategies.

A representation re V is unambiguous, or complete, if it corresponds to a single element

in D. It is unique if its corresponding objects in D have no other representations in V.

Intuitively a valid representation is ambiguous if it models several objects in D, and an

object in D has non-unique representations if corresponds to more than on element of V.

A representation scheme is unambiguous, or complete, if all members of its range are

unambiguous. Similarly, a representation scheme is unique if all members of its range

are unique.

V '

Related to unambiguousness is the property of abstractness. In constructing represen-

tation schemes for design it is very useful to keep the size of either or both of the

representation space R or the range V of the representation scheme as small as possible.

This implies a smaller space to search. Given a particular modeling space M, a common

way of achieving this is to introduce a kind of controlled ambiguity into the represen-

tation scheme. Figure 4 provides an example, the LOOS system [11] (discussed in more

detail later), in which the modeling space is the set of all arrangements of loosely packed,

non-overlapping, orthogonally oriented rectangles in two dimensional euclidean space

R2. The representation space consists of a set of graphs, where the nodes of the graph

denote rectangles and the arcs denote the spatial relations it-the-right-of, to-the~left-of,

above, and below. Each graph in the representation space represents an entire class of

rectangles in the modeling space that differ in the dimensions and locations of the con-

stituent rectangles but are the same with respect to the spatial relations specified in the

graph. Thus the representation scheme for LOOS is decidely ambiguous, as every

representation corresponds to an infinite set of rectangles, yet the ambiguity is precisely

controlled, since specific spatial relationships are faithfully modeled. This feature is used

in LOOS to divide layout problems into two parts, corresponding to discrete and con-

tinuous spatial variables, only the first of which uses search as it is described in this

paper.

Building and Environment Article

Robert Woodbury September 5,1989

R-rset

In some cases abstractness may be separated from unambiguousness by considering it a

property not of the representation scheme, but of the modeling space. Figure 5 shows

that, in LOOS, if the modeling space M is considered to be the set of all arrangements of

generic rectangles , that is, rectangles whose vertex coordinates are expressed as vari-

ables rather than numbers, and whose spatial relations are specified as equations, then the

representation scheme could be unambiguous with respect to A/. In this case all of the

abstractness in the system has been transferred to the modeling space itself.

Another, less formal, way of looking at the concepts of abstractness and unambiguous-

ness is to employ the ideas of instance and class. An instance is a single object and un-

ambiguous representation scheme can be said to model instances in modeling space. A

class is a group of objects and an abstract scheme models classes, where all instances itf a

class have some (hopefully relevant) common properties. With the ideas of instance and

class another relation, the same-class relation ^M-^M, can be constructed between ele-

ments of the modeling space. Two objects are in *F if both correspond to the same

representation in V. If ^ is an equivalence relation3 then all representations in V un-

ambiguously denote blocks (alternatively pieces) of a partition of M.

*¥ - Psi

The formal properties of a representation scheme can be used to describe properties of

the search operators that act in representation space. Remember that search is a process

of applying operators that move between design states (points in representation space).

For any design search problem a set of operators, denoted (9, is needed and these are best

described in the context of another formal construct, the search space.

A search space 5 is a comprised of a modeling space M, a representation space /?, a

representation scheme 0 , a set of operators <9, and a set of initial representations Ie R.

An operator application within 5 consists of an operator from O applied to a represen-

tation from /?. More formally, when an operator from O is applied to a representation

3An equivalence relation is reflexive, symmetric, and transitive.

Building and Environment Article

Robed Woodbury September 5,1989

re R to yield another representation re /?, then r is said to directly derive r' in 0, or

symbolically r=$r. If there exists a sequence of direct derivations using operators from

0, such that ro=*rx => . . . =>rn then r0 derives rn in 0, ro=> rn.

Operators in a search space may individually or as a set have the properties of closure

and monotonicity. Other properties of search space operators, completeness and

non-redundancy are defined only on the search space itself. Another formal property of

search spaces, fixed order, exists, though it appears specific to a particular search

strategy, (that used in LOOS).

An operator is closed in V if its application to any member of V can never result in a

representation not in V. A search space is closed in V if all of its operators are closed in V.

If operators are closed, and begin from elements in V, then the characteristic predicate of

the representation scheme, P(r), need never be applied to test for representational

validity.

An operator can be monotonic with respect both to both properties in M {modeling space

monotonicity) and to the symbol structures in R {representational monotonicity). If a set

of properties PM of any me M cannot be altered by the application of an operator, then

the operator is monotonic with respect to PM. If an operator can only add to, but other-

wise never alter, the symbol structures of/?, then it is monotonic with respect to R. A

search space is monotonic in either sense if all of its operators are monotonic in that

sense. These two types of monotonicity are quite different and do not imply each other.

A search space S is complete in the domain of its representation scheme 0 if, by applica-

tion of any combination of operators from 0 starting from any elements of/, represen-

tations in V sufficient to model all of D can be reached. If 0 is semantically exhaustive

and the operator set is complete in D, then the operator set is complete in M. Informally,

completeness in M means that every conceivable solution can be reached by some se-

quence of operator applications from 0. A search space 5 is non-redundant if there is at

most one sequence of operator applications beginning from ie I that can generate any

reR.

Building and Environment Article

Robert Wo dbury September 5,1989

A search space exists in the absence of any specific design context; it is simply a descrip-

tion of possibilities. By applying operators beginning at initial states it is theoretically

conceivable that one might eventually visit any design within the space. But such un-

guided wandering is unlikely to be interesting. To pursue design requires more: a way to

choose operator applications, a sense of where in the space one wishes to go, and a means

of knowing when one has arrived at a goal. These are accomplished by a search strategy.

A search strategy is a policy; a way of making decisions. Under its guidance it is possible

to move through a search space purposefully, visiting new states and remembering or

forgetting them, that is, making them active or inactive until an appropriate design is

found (or is not found). Each visitation of a state is called a step and typically occasions

four types of decisions.

1. Is the design problem solved? r ,

2. Which from among the active designs will be selected next?

3. Which search space operator will be applied to the selected design?
4. Which of the active designs will remain active? (Which will be made

inactive?)

To make these decisions requires two additional components in a search strategy: design

goals and evaluation devices. Design goals are statements of intent; they describe in

some way the characteristics possessed by a successful solution. They may be precise, for

example, the program for a speculative apartment building may require a total of 200

units evenly divided between 1 and 2 bedroom apartments. Alternatively they may be

quite vague, for example a design review board may require the same apartment building

to conform to a very loosely stated set of visual criteria. As suggested by the above ex-

ample, design problems have multiple and often conflicting goals. Designs are compared

against goals as they are reached by the operators and these comparisons are used in

making the decisions at each step in design.

Comparing a design against goals brings to the surface what is both a central feature of

the search paradigm and a reason for our interest in it: Designs are composed with one

set of variables and evaluated with another. In architecture (and in other disciplines in

which geometry is a prime design issue) this appears inevitable. At least with present

Building and Environment Article

Robert Woodbury September 5,1989

understandings, designs are created by specifying their physical properties, that is, by

developing the form that an object will take and the materials (and perhaps processes)

that will be used to build it. Design variables thus specify physical objects. On the other

hand designs are of real interest to us only when we posit their interaction with an en-

vironment (which in the case of buildings includes their users). By simulating a design in

its context we understand its performance variables each providing a measure according

to some criterion or point of view. To make matters worse, the relation between design

and performance variables is many-to-many. One design variable may affect a number of

performance variables; a change in a window location might affect view, ventilation, and

facade balance. On the other hand a single performance variable may require many

design variables for its computation; heating demand is a function of building size, win-

dow area and orientation, construction and use, etc. Thus we must generate before we can

test; we must have a design before we can critique. The search paradigm, by separating

generation (operator application) and evaluation (design step decision making) fits well

with this seemingly inevitability.

To understand performance, a design is tested (according to various criteria) against its

predicted context. A set of such tests, one for each criterion, together with a means for

understanding their collected results constitutes the evaluation devices of a search

strategy. The tests alone are not enough, for designs perform according to many different

criteria, and these cannot be treated separately. It is commonly the case that one perfor-

mance measure conflicts with another, for example, that it is impossible to improve a

view without increasing heat loss. Making decisions in the face of these conflicts requires

an understanding of possible tradeoffs and ultimately judgements of relative value

[8, 12].

Many different search strategies have been developed over the years in cognitive science

and artificial intelligence. These are lucidly explained in numerous

publications [13, 14, 15, 16]. I do not treat these in detail here, rather later in this paper I

introduce and compare two exemplary approaches that must use very different search

strategies.

Building and Environment Article 10

Robert Woodbury September 5,1989

With search strategies our portrait of the search paradigm is complete. To search requires

a space and a strategy. A search space is composed of a representation scheme, a set of

search operators and a starting point. It provides an implicit specification of a world of

possibilities. A search strategy is a decision making policy and its associated machinery.

It provides a means to move purposefully through a search space. To coin one last term, a

design space consists of a search space and a strategy.

It is only with the concept of a design space in place that a crucial idea can be introduced.

A set of operators in a design space is semantically relevant if its members correspond to

"meaningful moves" in design. For example, in Beaux-Arts composition a set of

operators that supports the creation of axes, cross-axes, symmetrical placement of facade

elements, proportioning between elements, operations on poche, etc. is much more

semantically relevant that a set that describes how to construct a building from its physi^ '

cal components (steel members, blocks, bricks, etc.). As suggested by the example,

semantic relevance depends on not just the search space, but also the goals and evaluation

devices of the search strategy.

Design Spaces, Humans, and Computation

Traditionally architects have worked "on the boards". Now more and more work on

machines. I will argue here that this presents a difference of kind, yet currently only a

difference of degree has been accomplished in the professional mainstream. To do so

requires a brief look at human cognition and computer organization.

Figure 6 presents a well-known and empirically validated model of human information

processing system (IPS) [10, 17]. Human thought is modeled as a number of processors

and memories linked together in a constant structure. Each processor has a characteristic

cycle time, or interval in which it can complete a simple information process. Each

memory4 is described by five parameters: storage capacity (the number of items that can

be simultaneously stored), decay time (the time it takes a remembered item to be

Cognitive theories differ in the location of working memory. For present purposes these differences are
irrelevant.

Building and Environment Article

Robert Woodbury September 5,1989

forgotten), read time (the time it takes for the human processor to access a memory

element), write time (the time it takes to store a memory element), and code type (which

can be physical, visual, acoustic, or semantic). Included in the model is an external

memory that is actually outside of the human body yet is essential to any explanation of

human behaviour in a complex task. Books, drawings, charts, and computers can all act

as external memory. Several properties of the cognitive model are of interest here:

• Seriality. It is empirically uncontestable that human thought is serial.
Humans do one thing at a time; the time it takes to do any cognitive task
increases proportionately to the complexity of the task.

• Speed. The human processor is, by computer standards, depressingly slow.
A typical mean speed for a single information processing task is 70 mil-
liseconds, several orders of magnitude slower than modern computer sys-
tems.

• Rule-like Processor Behaviour. Production systems are sets of rules with
an automatic recognition and activation mechanism. A production system £ '
model of the human processor appears to fit well with observations of human
performance.

• Goal Oriented Processor Behaviour. Humans act towards achieving goals,
and such behaviour surfaces in many ways. In particular goals organize
problem solving and their level of satisfaction is a large determinant of be-
haviour.

• Short Term Memory (STM) Parameters. Two main classes of internal
memory, short and long term, exist. Short term memory is very limited in
capacity and has very short read and write times compared to long term
memory. It and that part of external memory in direct foveal view are effec-
tively the only memories that the human processor can immediately read.
The short term memory itself is the only memory to which the processor can
quickly (relative to cycle time) write.

• Long Term Memory (LTM) Structure. Long term memory is an effec-
tively infinite, associative memory. By associative is meant that memory
items are stored as an interlinked network, the nodes being items and the arcs
being relations. Memory is accessed by following the arcs from one item to
another. Items in LTM are not forgotten, though the arcs connecting them to
other parts of the network may disappear. A crucial characteristic of LTM is
its write time which is about 5-10 seconds of processor effort.

• External Memory (EM) Structure. External memory is also effectively in-
finite, with highly variable organization, decay period, and read and write
times. It is the only part of the IPS that is subject to structural change and its
characteristics can greatly alter human performance on a task.

Comparison of human cognitive model with the search paradigm yields several provoca-

tive observations:

Building and Environment Article 12

Robert Woodbury September 5,1989

• Short Term Memory bounds effectively constrain the types of search in
which unaided humans problem solvers can indulge. In particular: the sys-
tematic exploration of design problems would appear to be extraordinarily
difficult, and search strategies that involve saving large numbers of states are
effectively impossible.

• Human goal orientation as well as processor and memory limits make the
simultaneous consideration of a wide range of design concerns difficult.

• Designed objects are complex and their descriptions correspondingly so.
Human designers have an absolute reliance on External Memory to record
and manipulate these descriptions.

Figure 7 demonstrates a second model; a highly simplified view of computer

organization5 that I expect will be quite familiar to all readers. In this model, a computer

has a single processor, two different kinds of memory, and separate input and output

devices. Like the model of human cognition, each of these is characterized by a set of

parameters: speed for the processor and capacity, read and write time for memory. This*

model describes at some level almost all of the machines used in the building field today,

new developments in parallel processing and massively parallel computers notwithstand-

ing. Several properties of this model are of interest:

• Seriality. Like human cognition, computers of this type are inherently serial
devices. Multiple processes can exist at one time within a machine, but these
are executed piecewise consecutively by the central processing unit (CPU).

• Speed. Current CPU's are blindingly fast when compared to a human
processor even when the great difference in elemental operation complexity
is acknowledged. As of September 1989, speeds of 15 millions of instruc-
tions per second (MIPS), are available on moderately priced workstations.

• Processor Behaviour. An array of different programming language
paradigms is available for computers, allowing these machines to behave in
many different patterns, most not matched by normal human cognition.
Great precision of behaviour is the norm but must be accomplished by
rigorous programming. Current understandings of machine learning, adap-
tive and goal-oriented behaviour are in their infancy, and such behaviours
will not be seen soon outside of research labs.

• Memory Structure. That two memories exist in the model is a technological
and economic artifact. Primary memory must have sufficiently fast read and
write times to keep up with processor speeds, but is only needed for data and
programs that must be immediately available to the processor. Currently,

5Also known as computer architecture; from the point of view of the readership of this journal an
unfortunate choice of wording.

Building and Environment Article 13

Robert Woodbury September 5,1989

relatively expensive silicon chips are the most common technology.
Secondary memory is provided by less expensive devices (typically disks).
With modern virtual memory techniques, the existence of secondary memory
is hardly noticed by most users. Available memory capacities are large, with
tens of megabytes of primary storage and gigabytes of secondary storage
available for moderately priced workstations.

When compared to the search paradigm this model of computation yields observations

complementary to those for the human cognitive model:

• Search spaces for real design problems are vast and increase in size exponen-
tially as the complexity of design problems increases. No amount of proces-
sor speed and memory capacity can defeat this fact.

• Memory is quickly available in large quantities to a computer processor, per-
mitting search strategies that require large (but in practice not exponential)
memory resources.

• Accomplishing design search with a computer processor requires an im- ,
plementation of a design space as a computer program. Theoretical rigor is a *•
necessity. Past experience indicates that such programs are likely to be large
and complex6.

When the two models are put together, such that the outputs from one are attached to the

inputs of the other, a model of a single entity appears. As shown in Figure 8, the human

is connected to the machine and the machine to the human. Each can perform part of the

task and communicate its results to the other. It seems that something akin to a

"symbiosis" is possible, with each part assuming those pans of the task for which it is

most suitable. Such a vision is far from new and has been central in the growth of com-

putation in society, but so far it has hardly been realized in architecture. Current systems

are founded on theory that inevitably leaves all of the search strategy on the human side

of the model.

If computers are to perform any of the search, then a realization of at least part of the

machinery presented above must exist on the computer side. The entire machinery is not

necessary and is not even be desirable for some approaches. At a minimum, the

operators and means for their automatic invocation seems to be required. Current theory

6Such programs have been usually been wriiten in imperative languages that arc not "natural" to the
search paradigm. Perhaps the "right" language would go a long way to making search implementations
simple.

Building and Environment Article 14

Robert Woodbury September 5,1989

and implementation in research labs has achieved some of this capability, yet almost

none is in evidence in professionally available systems. Until it is, at least one of the

potentials of computation in architecture will remain unrealized.

Current CAD systems and search

It is interesting to analyze existing CAD systems within the models just presented. Con-

sider a typical CAD system of the type that is currently used for working drawing

production. An actual system could be chosen for this comparison, but that both is un-

necessary and would be unfair to the system, as all such systems have much common

underlying structure. Call this hypothetical system Archidraw.

Archidraw works by allowing users to enter, delete, and modify data that denote j *

geometric entities such as points, lines, polygons, curves, etc., in 2 or 3 dimensions, and

associated properties of those entities. It maintains an internal representation of these

entities that typically corresponds exactly to operations used to create the data. Thus a

line segment that is entered as three separate sections joined end to end is stored as three

entities, not as a single geometric entity. Geometric entities may be grouped together with

two mechanisms, layers and groups. Every geometric entity belongs to precisely one

layer. Layers are typically used to separate information pertinent to different sub-

disciplines in design. For example, it is usual to store structural design information on a

different layer from electrical wiring, groups are different creatures altogether; they are

used to create sets of geometric entities that are that are used repeatedly in a design. For

example, a group containing line segments that "represents" a door may used wherever in

a design a door is required, groups may in turn contain groups; a group "representing" a

bathroom may contain sub-groups for the tub, sink, and toilet. Layer information is

preserved within groups, that is, every geometric entity used in a group belongs to a pos-

sibly different layer. Archidraw has representation support for the so-called

non-geometric data that is used to attribute geometric entities with properties such as line

type, color, manufacturer, cost, etc. Finally, dimensions may be represented as distances

(either horizontal, vertical or direct line) between any two points or as angles between

any three points. Dimensions in Archidraw are associative; when the points upon which

Building and Environment Article 15

Robert Woodbury September 5,1989

the dimension depends are moved, the values stored in the dimensions are automatically

updated. These devices, geometric entities, layer, groups, non-geometric data, and

dimensions are the only means that Archidraw has to store and organize its information

and may be called its representation.

Acting on Archidraw's representation are a set of operators that allow the user to ex-

plicitly construct geometric entities, to compute relevant geometric properties (such as

line center-points and intersections), to assign geometric entities to groups and layers, to

enter non-geometric information, and to select dimensions. Archidraw has a wide variety

of different commands that are constantly being changed and upgraded by the system's

designers. All of these commands are available to the user through an interactive inter-

face that makes their application quick and "intuitive".

By themselves the commands are limiting because they are at a very "low level"; a large

number of them may be required to perform an operation that "makes sense" to a desig-

ner. Archidraw thus has a macro language that is used to collect commands together into

a logical structure. This language supports some of the features of imperative program-

ming languages such as C and PASCAL, most notably subroutines and iteration.

It is easy to see that Archidraw leaves the human with all of the burden of design. It

provides neither representation scheme, operators, nor search strategy, and cannot easily

be coerced into doing so.

The representation of Archidraw is that of drawings; essentially of lines that can be com-

bined with a set of drawing operations, thus it is a representation space. It lacks a clear

semantics as no precise (and therefore implementable) representation scheme, or map-

ping from objects to the things that represent them, can reasonably be claimed. Although

humans are adept at interpreting drawings as design concepts or physical objects7, at-

tempts to give computers similar capabilities remain less than convincing. This by itself

is not fatal, indeed the most extensively published design search theory, shape grammars,

has this feature, but in its absence the evaluation devices of a search strategy must be

explicitly constructed [18].

7And at making creative use of ambiguities that arise in the interpretive process.

Building and Environment Article 16

Robert Woodbury September 5,1989

Humans using the operators of Archidraw can become quite adept at creating drawings,

but in the absence of a representation scheme, operators can have few meaningful formal

properties. With respect to the crucial yet informal property of semantic relevance, I

would argue that these essentially mark-making operators are of little significance in

design; they are merely a recording device for the relevant operators that remain implicit

in the human brain. Of equal significance is the inability of Archidraw to recognize when

and where its operators can be applied. This is death, and it is eloquently argued by

Stiny [19] that current CAD data structures cannot accomodate matching that meets our

spatial intuitions.

Archidraw has no search mechanism; it provides a largely passive repository for input

information. To be sure, clever input strategies and display operations exist, but these are

only devices to place and review already known data. This last shortfall is the most $. '

damning of all, for without a search strategy, however partial, design all remains up to

the human.

If current CAD systems, of which Archidraw is exemplary, hold out little promise that

they can be adapted to the search paradigm, then what can be done? The answer is

"Much". In the next sections I will describe two quite different approaches within the

search paradigm, tracing a bit of their history, sketching their organization and theory,

and describing their current status. No attempt at coverage or classification of all of the

extant research work is made. Others [20, 2] have done so at various times, and I shall

not repeat their work.

The LOOS System

LOOS, by U. Flemming, [11, 21] is a system for generating designs that can be meaning-

fully approximated by a set of non-overlapping rectangles. It is exemplary in the present

discussion in two regards: 1) it implements a search strategy that appears to be a high

water mark of an exhaustive approach to search, and 2) its search space, upon whose

properties the validity of the search strategy depends, is both highly formalized and intui-

tively appropriate.

Building and Environment Article 17

Robert Woodbury September 5,1989

LOOS stands within a paradigm for research on formalizations for geometric layout that

began with [22, 23], and has continued its development through [24, 25, 26, 27] to

[11,21]; these last two are the primary literature for LOOS. The essential character of

the paradigm lies in a separation between so-called qualitative and quantitative variables.

Qualitative variables make discrete (and hopefully semantically meaningful) distinctions

between designs; the spatial (or topological) relations between parts are important ex-

amples. By making these distinctions an uncountably infinite world of designs may be

divided into a large, but countable, set of classes of designs. All of the designs in each

class are partially described by the same set of qualitative variables. But note that this

must be a partial characterization, for designs within a class are not the same, and it falls

to the quantitative variables in each class to express these differences. Quantitative vari-

ables describe the continuously varying features of designs; dimensions and location are

typical examples. Within a class of designs, the qualitative variables impose certain

mathematical relations on the quantitative ones, and these relations precisely describe the

bounds of variation allowed by the class. Both the imposed relations and the quantitative

variables (not just their bound values), differ between classes. The paradigm calls for a

formalized representation for qualitative variables, and in such formalizations we find

instances of search spaces.

The organization of LOOS as a system, diagrammed in Figure 9, provides a clear concep-

tual separation between design space components. Each of the five parts of LOOS con-

tributes meaningfully to system behaviour. Two of them: the generator and controller,

are central to this discussion and will be given greatest emphasis.

The generator realizes the search space of LOOS. Its modeling space is the collection

of all sets of non-overlapping rectangles in R2. Such rectangle sets are called

loosely-packed arrangements of rectangles (LPARs). Its representation space is the set of

directed, arc-colored (from the set {R,A}) graphs (orthogonal structures) that satisfy a

precisely stated set of conditions on the interconnections of their nodes8. Informally,

8Note that the representation space of LOOS is initially specified existentially, not as a grammar. This
presents no real problem for our account of representation schemes as a constructive grammar is developed
by LOOS's theory.

Building and Environment Article 18

Robert Woodbury September 5,1989

these conditions state that: 1) any two arbitrary nodes in the graph (excepting one spe-

cially identified external node) must be joined by only one type of uniformly colored

path, 2) the external node is joined to every node by paths of both colors, and in both

directions, and 3) each of any two parallel paths contains at least three vertices. An or-

thogonal structure represents an LPAR (and the [LPAR, orthogonal structure] pair is thus

in the representation scheme) iff there exists a one-to-one correspondence between nodes

in the orthogonal structure and rectangles in the LPAR such that an /?or(A)-colored arc

between two nodes corresponds to a tO'the-right-ofior below) spatial relationship be-

tween two rectangles (see Figure 10). Proofs exist [11,21] that the representation scheme

is well-formed. It is certainly not unambiguous with respect to LPARs, but it is abstract

and this is required by the layout paradigm. It is not a unique scheme as there exist mul-

tiple representations of certain orthogonal structures9.

i '
The generator implements a set of operators on orthogonal structures that have been

proven [11, 21] to make the search space closed, complete, modeling space monotonic

with respect to spatial relations from {to-the-right-of, to-the-left-of, above, below), non-

redundant, and to have fixed-order10. These operators produce from parent orthogonal

structures their children, orthogonal structures with one node more than the parent.

Given any orthogonal structure as input, the generator produces as output all possible

children of the structure.

Figure 11 shows that the LOOS operators fulfill the roles of both the representation space

construction operators and the search space operators in the design space model. They

can do this as the search space is intentionally blind to any domain; it captures only the

properties of layouts of rectangles. This would seem to imply that the operators cannot be

particularly semantically relevant in a design space that uses LOOS. Both strong ad-

vantages and disadvantages accrue to this fact as will be discussed below.

9Non-uniqucness has necessitated small accomodations in the implementation.

10The fixed-order property states that there is a sequence of rule applications that will generate any graph
under an arbitrary order of insertion of its vertices.

Building and Environment Article 19

Robert Woodbury Sepic Tiber 5,1989

The controller implements the search strategy of LOOS. The LOOS operators are ex-

haustive in the domain of sets of rectangles. Left blindly to their own devices they would

generate vast numbers of layouts (for any but the smallest of problems), all but a vanish-

ingly few layouts utter nonsense as solutions. The generator's basic function then is to

efficiently guide the search for alternatives. It cannot predict directly from which alter-

native among a developing set a promising design might emerge, for that would appear to

demand capabilities that are currently not understood. It can, and does, prune those alter-

natives that are guaranteed to lead to failure. In doing so, current versions of LOOS use a

branch-and-bound search strategy. In branch and bound, only and exactly those states are

expanded that have a score at least as good as any other state generated before. Scores are

determined by the tester which is described below. States that have worse scores are

never touched again (and are thus pruned from the search). To allow consideration of a- #

wide range of criteria the evaluation function of LOOS is structured as a triple:

where c(s) is the number of constraints, d(s) the number of 'strong' criteria and e{s) the

number of 'weak' criteria violated by a state, s. t(s) is called the score of 5. Constraints,

weak criteria, and strong criteria support a subjectively designated categorization of goals

in a design problem. The controller ranks states lexicographically, preferring scores for

which c(s) is minimal; when a tie onc(5) exists, a minimal d(s) is preferred, and so

on,...

The controller works precisely because the search space of LOOS is modeling space

monotonic. All of the tests to which a state is subject depend on information present and

deducible from the representation of the objects and spatial relations in a state. Since

knowledge of these, once inserted, can never be retracted by any of the operators, the

evaluation function can never return a score for a state that is lower than its parent's

score. Thus correct pruning can occur by looking at the parent alone.

The tester contains the evaluation devices of LOOS. LOOS's generator and controller

are both domain-independent in that they contain no architectural knowledge beyond the

minimal geometric conditions of non-overlap. The other three components contain

domain knowledge and must be rewritten for each new domain. Currently the domains of

Building and Environment Article 20

Robert Woodbury September 5,1989

bathroom, kitchen, and high-rise service cores have been implemented. A tester for a

domain is a set of test rules that can be applied to a partial design (provided the ap-

propriate objects have been instantiated into the state that represents the design). The

controller applies all test rules that it can to determine a score for a state.

The strict syntactic nature of the generator permits all of the domain dependent

knowledge about designs to be isolated from it and largely placed in the tester. As test

rules are independent they can be incrementally modified and new ones can be easily

added. This allows expert system techniques of knowledge acquisition to be readily ap-

plied.

The pre-processor provides initial states to LOOS. For each specific design problem

an initial context is needed, for example, the walls that bound a space. The pre-processor

provides an interface between initial contexts stated in terms of a specific domain and the

LOOS representation. Once a state is in place LOOS can begin. Note that the pre-

processor presents a minor variation of the design space specification, in that it imposes a

starting point other than the initial states / of the search space. It can be viewed as provid-

ing a very hard constraint, that no states in the space that do not at minimum have its

structure can possibly succeed.

The post-processor is a human-computer interface for LOOS. Orthogonal structures

are not graphic objects, and must be interpreted to a visual display. In addition, the con-

troller does not necessarily allocate every object for a problem. Some trivial ones are left

to be inserted directly. These are the two functions of the post-processor.

As an implementation of a design space LOOS presents several advantages [1 l,pp

77-81]:

• Its representation captures significant distinctions between designs. Con-
versely ireelevant details are suppressed.

• The strict separation of syntactic generation and semantic testing allows the
development of a search space that has (in addition to others) the crucial
properties of completeness, closure, monotonicity, and representation
scheme well-formedness. These permit efficient techniques for exhaustive
enumeration to be employed.

• The tester contains knowledge in atomic and easily modifiable form.

Building and Environment Article 21

Robert Woodbury September 5,1989

Se Vn is a start symbol.

The rules of the grammar (also known as productions) describe how to derive one com-

position from another. Rules are written a - » p. When a composition co can be obtained

from a composition y by the application of exactly one rule from G then y directly derives

co, or y=> co. When co can be obtained from y by the application of zero or more rules
G

from G then y derives co, or y=> co. Grammars implicitly specify a language that is the
G

set of all compositions containing no non-terminals (elements of Vn) that can be derived

from the start symbol S). Note that the form of a composition is left undefined here. Di&

ferent grammar systems operate on alphabets of different kinds and have different means

of composing members of these alphabets. For any specific grammar a precise specifica-

tion of these compositions must be made.

The most developed and used spatial grammar formalism is that of shape grammars,

largely of G. Stiny, that are introduced in [28, 29, 30, 31, 32] n , discussed in

[1, 4, 19, 34, 35, 36, 37, 38], reviewed in [2], implemented in [39, 40, 41, 42], applied in

[43,44,45,46,47, 48, 49, 50, 51, 52, 53], and extended in [18, 54, 55, 56, 57]. Applica-

tions using close variants are [33, 58, 59, 60, 61, 62]. Shape grammars produce objects

that can be formed from lines by the operations of transformation (usually limited to the

similarities) and shape union; the set of all such objects is called the universe of shapes

U*. Each shape grammar determines a subset of U*. An example shape grammar from

[32] that generates drawings of embedded squares is shown in Figure 11. Note that the

grammar rules use distinguished points (called labeled points in the literature) to control

the language. These are the counterpart of the non-terminals in shape grammars. They all

must be removed before a developing shape is admitted into the language of the gram-

mar.

£ - Sigma
u - Union
a - alpha

p - beta
y - gamma
co - omega

nI recommend [19, 32] and [33] be read together as an introduction to the formalism.

Building and Environment Article 23

Robert Woodbury September 5,1989

• The evaluation function of the controller admits the generation of designs
that display significant tradeoffs.

• By exhaustive enumeration it admits the possibility for surprise. If something
interesting is out there, LOOS will find it.

These advantages are contrasted with limitations, chief of which appears to be the com-

binatorial explosion of complete enumeration. Although programs have been im-

plemented for bathrooms, kitchens, and high-rise service cores, these problems require

the allocation of modest numbers of nodes. As the number of allocated objects increases,

the number of state space possibilities rises explosively. It appears that any exhaustive

enumeration strategy will meet the same obstacle. Current research addresses this

problem and proposes making the LOOS representation and control hierarchical rather

than flat.

Spatial grammars

Parallel and complementary to the research tradition of the layout paradigm is an equally

distinguished tradition that has grown from Post's seminal work in computation. Spatial

grammars seek to express knowledge of design directly as compositional rules. When

mapped to the design space model, these rules become search space operators with inter-

esting implications for a search strategy.

The roots of the grammar paradigm go very deep and these have been delved into at

various times [20, 2]. The current generation of interest orbits the notion of a grammar as

a device for formally describing rules of design and their implied languages. Informally

a grammar is a quadruple G = (Vn Vn, /?, 5) , where

Vt is a finite set of terminals.

Vn is a finite set of non-terminals disjoint from Vr The alphabet of the grammar

R is a finite set of rules of the form a —»(J where

a is a composition of elements from E such that at least one element
of Vm is included.

p is a composition of elements from Z.

Building and Environment Article 22

Robert Woodbury September 5,1989

To date, shape grammars have largely been used to characterize existing corpora of

designs. In this role they have shown themselves to be a concise means of accurately

describing the notion of style in architectural form. With implementations of shape

grammar interpreters, and these are currently being developed in universities [40,41, 42],

it can be expected that shape grammars will find increased use in the generation of new

designs, and in the exploration of the possibilities implied by a set of conventions.

Other spatial grammar formalisms exist, though none have been explored or utilized to

the same extent as shape grammars. Stiny [35] presents a grammar in which the rules are

comprised of sets of shapes instead of shapes. Structure grammars\ by Carlson [63, 64],

act on abstract spatial entities called structures; intuitively these are sets of pairs of sym-

bols and transformations. There has been recent interest in grammar systems defined on

solid objects, as these promise to produce more complete representations of designs as X '

their output. Fitzhorn [65] presents a graph-grammatical formalization of the Euler

operators on boundary representation (B-rep) solids. Woodbury et.al. [63] reports early

results of work on a grammar on B-reps, the rules of which are at a higher level than the

Euler operators. Outside of architecture, spatial grammars have received considerable

attention in biology as models of the morphogenesis of plants; an accessible reference is

[66].

The significance of spatial grammars in the present discussion is their mapping to the

design space model. Obviously the rules of the grammar correspond to the search space

operators of the model and the start symbol is the sole member of the set of initial

representations. Grammar rules work by performing compositions on symbols, and the

set of all possible compositions is the representation space of the model. The modeling

space differs according to the grammar formalism used. In shape grammars, it is the

space of all abstract drawings. In solid grammars, it is some set of subsets (or of classes

of those subsets) of R3. The representation scheme, as usual, relates the modeling and

representation spaces and it may have (depending on the formalism) some of the formal

and informal properties discussed earlier.

The most interesting aspects of spatial grammars relate to the rules, and how they can be

used. In spatial grammars, the rules themselves typically prune the representation space.

Building and Environment Article 24

Robert Woodbury September 5,1989

(Thus the operator structure is remarkably different from that of LOOS. See Figure 11.)

Their fascination arises when they are used to describe the hitherto indescribable; when

they are used to directly express generative design knowledge. Used in this mode they

admit precise insight into the murkiness of architectural design and criticism and allow

the explicit capture of design process. By representing "little fragments'1 of design

knowledge, they allow the incremental creation of new theory, and often these "little

fragments" themselves provide direct insight into design. Such freedom comes at a cost.

It is impossible to know that a set of rules captures all designs of interest. It is difficult to

write a set of rules that defines many interesting designs and does not simultaneously

define a lot of trash.

Spatial grammars specify languages of designs. If the language is small, it can be

generated and examined in its entirety, and some authors, notably Stiny and

Mitchell [45, 67] and Hemming [61, 68], have taken pains to create such grammars while

managing to retain deep insight12. If the language is large, and this will be usual if gram-

mars are used in their most speculative roles, it becomes impractical (and impossible if

the language is infinite) to display it in its entirety. Additional pruning is needed and this

is the role of the search strategy. Current spatial grammar formalisms are silent on this

topic, but it seems to me that it poses difficult issues due to the complexities of: 1) prov-

ing the formal properties of operators that are required by efficient search strategies and

2) providing appropriate evaluation mechanisms. An approach to the former problem has

been proposed in [69, 70] and to the latter in [18].

12In claiming a small language size for both of these grammars I ignore dimensional variations (as do the
authors) and refer only to the floor plan stage of Flcmming's grammar.

Building and Environment Article 25

Robert Woodbury September 5,1989

Conclusions

Search (in architectural design at least) is more than a promising approach; it a well-

established paradigm that has achieved serious objective results. On top of its theoretical

results, a small number of systems have been implemented in university laboratories, and

these are beginning to demonstrate that searching for designs is not only theoretically

interesting, but practically feasible. The research field is still very open and much

theoretical work, particularly in algorithms and human-computer interface remains.

Searching for designs is at odds with CAD as it is currently seen in the profession, and its

successful application will require further development of the new technology. The

natural relation of search to current theory of human problem solving behaviour suggests

that it could greatly leverage human abilities in design, but only under a different attitude

towards design. To take advantage of search, we must begin to think in its terms; the

unstated "how" and "why" must take their full places beside the "what" and "where".

Building and Environment Article 26

Roben Woodbury September 5,1989

O Initial State

^ Goal State

O Intermediate State

Correspond to
representations

• State transitions Correspond to operators

Figure 1: A generic diagram for search

Building and Environmcnl Article 27

Robert Woodbury September 5, 1989

(3
19

hP

Box

•

•

•

•

Gable

•

•

Shed

•

L-pIan

•

Hip

•

•

Dormer

•

Figure 2: An abstract representation scheme

Building and Environmcni Article

Robert Woodbury September 5,1989

representation scheme

Modeling space

Representation space

Grammar
derivation tree

Domain

Range

Figure 3: A more operational depiction of a representation scheme

Building and Environment Article

Robert Woodbury September 5,19S9

Do-
Figure 4: Ambiguity in the representation scheme of LOOS

Building and Environment Article 30

Robert Woodbury September 5,1989

(ux4,uy4)

(Ix4fly4)

Figure 5: Abstractness as a property of a modeling space

Building and Environment Article 31

Robe l Woodbury September 5,1989

a
u
o
a-

8
U

LONG TERM
MEMORY

A
V

WORKING
MEMORY

VISUAL
STORE

AUDITORY
STORE

EXTERNAL
MEMORY

Figure 6: A model of human cognition

Building and Environment Article

Roberi Vroodbury September 5,1989

INPUT
DEVICE

OUTPUT
DEVICE

MEMORY

CENTRAL
PROCESSING
UNIT

V
[MASS

STORAGE

Figure 7: A schematic computer organization

Building and Environment Article

Robert Woodbury September 5,1989

muo

>

Z

o
8

LONG TERM
MEMORY

Vn WORKING
MEMORY

VISUAL
STORE

AUDITORY
STORE

INPUT
DEVICE

TJV
JV

JOUTPUT
DEVICE

MEMORY

CENTRAL
PROCESSING
UNIT

MASS
STORAGE

Figure 8: Human and computer in a single model

Building and Environment Article

Robert Woodbury September 5,19S9

PR£
PROCESSOR

GENERATOR AA
W

CONTROLLER

55
W

TESTER

POST
PROCESSOR

Figure 9: The LOOS system architecture

Building and Environment Article 35

Robert Woodbury September 5,1989

Figure 10: A loosely-packed arrangement of rectangles and a corresponding
onhogonal structure

Building and Environment Article 36

Robert Woodbury September 5,19S9

(a) (b)

Figure 11: The operators in LOOS (a) are contained completely within (and define)
the range of the representation scheme V. In spatial grammars (b)

only members of the language of the grammar are in V.

Building and Environment Article 37

Robert Woodbury September 5,1989

—>

—»

0

(a) (b)

\ >

(c)

Figure 12: A shape grammar and some members of its language

Shown are (a) the rules of the grammar, (b) the
initial shape, and (c) some of the members

of the language of the grammar.

Building and Environment Article

Robert Woodbury September 5,1989

References

1. G. Stiny, L. March, "Design Machines", Environment and Planning B, Vol.
8, No. 3, 1981, pp. 241-244.

2. L. March; G. Stiny, *'Spatial Systems in Architecture and Design: Some History
and Logic", Environment and Planning B, Vol. 12, No. 1, 1985, pp. 31-53, Paper
presented at the Seventh International Conference on Systems Dynamics, Univer-
sity of Brussels, June 16-18, 1982

3. C.F. Earl, "Creating Design Worlds", Planning and Design, Vol. 13, No.
2, 1986, pp. 177-187.

4. W.J. Mitchell, "Formal Representations: A foundation for computer-aided ar-
chitectural design", Planning and Design, Vol. 13, No. 2, 1986, pp. 133-162.

5. John Archea, Puzzle-Making: What Architects Do When No One Is Looking,
John-Wiley & Sons, New York, N. Y., Principles of Computer-Aided Design
1987, pp. 37-52, ch. 2. T '

6. H.A. Simon,' The structure of ill-structured problems", Artificial
Intelligence, Vol. 4, 1973, pp. 181-201.

7. Philip Steadman, The Evolution of Designs, Cambridge University Press,
Cambridge, U.K., Cambrigde Urban and Architectural Studies, Vol. 5, 1979.

8. Lionel March, The logic of design and the question of value, Cambridge Univer-
sity Press, Cambridge, U.K., Cambridge Urban and Architectural Studies Vol. 4,
1976, pp. 1-40, ch. Introduction.

9. Aristides A.G. Requicha, "Representation for Rigid Solids: Theory, Methods and
Systems", Computing Surveys, Vol. 12, No. 4, December 1980, pp. 437-464.

10. A. Newell, H. Simon, Human Problem Solving, Prentice-Hall Englewood, 1972.

11. Ulrich FLemming, Robert F. Coyne, Timothy Glavin, Hung Hsi, and Michael
D. Rychener, "A Generative Expert System for the Design of Building Layouts",
Tech. report EDRC - 1989 Report Series, Engineering Design Research Center-
Carnegie Mellon University, 1989.

12. Antony D. Radford, John S. Gero, Design by Optimization in Architecture, Build-
ing, and Construction, Van Nostrand Reinhold, New York, N.Y., 1988.

13. John R. Hayes, The Complete Problem Solver, The Franklin Institute Press,
Philadelphia, Pa., 1981.

14. J. Pearl, Heuristics: Intelligent Search Strategies for COmputer Problem Solving,
Addison-Wesley, Reading, Mass., 1984.

15. Steven L. Tanimoto, The Elements of Artificial Intelligence, Computer Science
Press, Rockville, MD., Principles of Computer Science, Vol. 11, 1987.

Building and Environment Article 39

Robert Woodbury September 5,1989

16. Nils J. Nilsson, Principles of Artificial Intelligence, Morgan Kaufman, Los Altos,
CA., 1980.

17. S.K. Card, T.P. Moran, A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1983.

18. G. Stiny, "A note on the description of designs'*, Environment and Planning
By Vol. 8, No. 3, 1981, pp. 257-268.

19. George Stiny, "A New Line on Drafting Systems", Design Computing, Vol.
l,No. 1,1986, pp. 5-19.

20. William J. Mitchell, Computer-Aided Architectural Design, Petrocelli/Charter,
New-York, 1977.

21. U. Flemming, "More on the representation and generation of lossely packed ar-
rangements of rectangles", Planning and Design, Vol. 16, 1989, forthcoming

22. John Grason, "A dual linear graph representation for space-filling location
problems of the floor plan type", in Emerging Methods in Environmental Design
and Planning, Moore, Gary T., ed., M.I.T. Press, Cambridge, Mass., 1970, pp. r{ '
170-178.

23. Philip Steadman, ' The automatic generation of minimum-standard house plans",
Paper delivered at the Second Annual Conference of the Environmental Design
Research Association.

24. WJ. Mitchell, J.P. Steadman, R.S. Liggett, "Synthesis and optimization of small
rectangular floor plans", Environment and Planning B, Vol. 3, 1976, pp. 37-70.

25. U. Flemming, "Wall representations of rectangular dissections and their use in
automated space allocation", Environment and Planning B, Vol. 5, 1978, pp.
215-232.

26. U. Flemming, "Wall representations of rectangular dissections: additional
results", Environment and Planning By Vol. 7, 1980, pp. 247-251.

27. C.F. Earl, "Rectangular shapes", Environment and Planning 5, Vol. 7, 1980, pp.
311-342.

28. George Stiny, James Gips, Shape Grammars and the Generative Specification of
Painting and Sculpture, North-Holland, 1972, pp. 1460-1465.

29. George Stiny, Pictorial and Formal Aspects of Shape and Shape Grammars on
Computer generation of Aesthetic Objects, Birkhauser Verlag, Basel, Switzerland,
1975.

30. James Gips, Shape Grammar and Their Uses, Birkhauser Verlag, Basel, Switzer-
land, 1975.

31. G. Stiny, "Two Exercises in Formal Composition", Environmental and Planning
fl,Vol. 3, 1976, pp. 187-210.

32. G. Stiny, "Introduction to shape and shape grammars", Environment and Plan-
ning fl, Vol. 7, No. 3, 1980, pp. 343-352.

Building and Environment Article 40

Robert Woodbury September 5,1989

33. Ulrich Flemming, The Role of Shape Grammars in the Analysis and Creation of
Designs, Wiley Interscience, New York, N. Y., Principles of Computer-Aided
Design 1987, pp. 245-272, ch. 12.

34. J. Gips, G. Stiny, "Production Systems and Grammars: a uniform
characterization", Environmental and Planning B, Vol. 7, 1980, pp. 399-408.

35. G. Stiny, "Spatial relations and grammars", Environment and Planning B> Vol.
9, 1982, pp. 113-114.

36. G. Stiny, "Shapes are individuals", Environment and Planning fi, Vol. 9, 1982,
pp. 359-367.

37. G. Stiny, "Composition counts: A + E = AE", Environment and Planning 5, Vol.
14, 1987, pp. 167-182.

38. G. Stiny, "What Designers Do that Computers Should", Computer-Aided Design
Education, CAAD Futures 89, Harvard University, July 1989.

39. R. Krishnamurti, * The arithmetic of shapes", Environment and Planning B, Vol.
7, 1980, pp. 463-484. I '

40. R. Krishnamurti, * The construction of shapes", Environment and Planning
5, Vol. 8, 1981, pp. 5-40.

41. R. Krishnamurti, C.Giraud, "Towards a shape editor: the implementation of a
shape generation system", Planning and Design, Vol. 13, No. 4, 1986, pp.
391-403.

42. S.C. Chase, "Shapes and shape grammars: from mathematical model to computer
implementation", Planning and Design, Vol. 16, No. 2, 1989, pp. 215-241.

43. G. Stiny, "Ice-ray : a Note on the Generation of Chinese Lattice Designs",
Environmental and Planning 5, Vol. 4, 1977, pp. 89-98.

44. G. Stiny, W.J. Mitchell, "The Palladian grammar", Environment and Planning
S, Vol. 5, 1978, pp. 5-18.

45. G. Stiny, W.J. Mitchell, "Counting Palladian Plans", Environment and Planning
5, Vol. 5, 1978, pp. 189-198.

46. G. Stiny, W.J. Mitchell, * 'The grammar of paradise: on the generation of Mughul
gardens", Environment and Planning 5, Vol. 7, 1980, pp. 209-226.

47. G. Stiny, "Kingergarten grammars: designing with Froebers building gifts",
Environment and Planning B, Vol. 7, 1980, pp. 409-462.

48. T.W. Knight, * The generation of Hepplewhite-style chair-back designs",
Environment and Planning 5, Vol. 7, 1980, pp. 227-238.

49. U. Flemming, "The secret of the Casa Giuliani Frigerio", Environment and Plan-
ning By Vol. 8, No. 1, 1981, pp. 87-96.

50. F. Downing, U. Flemming, "The bungalows of Buffalo", Environment and Plan-
ning fi, Vol. 8, 1981, pp. 269-293.

Building and Environment Article 41

Robert Woodbury September 5,1989

51. T.W. Knight, "The forty-one steps'*, Environment and Planning 5, Vol.
8,1981a, pp. 97-114.

52. T.W.Knight, "Languages of designs: from known to new'*, Environment and
Planning 5, Vol. 8,1981, pp. 213-238.

53. H. Konig, J. Eizenberg, "The language of the prairie: Frank Lloyd Wright's
prairie houses", Environment and Planning B, Vol. 8, 1981, pp. 295-323.

54. T.W. Knight, * Transformations of languages of designs: part 1", Environment
and Planning fl, Vol. 10, 1983, pp. 125-128.

55. T.W. Knight,' Transformations of languages of designs: part 2", Environment
and Planning B, Vol. 10, 1983, pp. 129-154.

56. T.W. Knight,' Transformations of languages of designs: part 3", Environment
and Planning B, Vol. 10, 1983, pp. 155-177.

57. T.W. Knight, "Comparing designs", Planning and Design, Vol. 15, No. 1, 1988,
pp. 73-110. j. ,

58. A. Mackenzie, C. Sutter, F. Horan, S. HUnter, C. Kokkinos, G. Lidell, "A
"Language Lab" for Architectural Design", 7956 University AEP Conference,
IBM, IBM Academic Information Systems, Milford, CT., April 5-8 1986, pp.
11-11-H-31.

59. J.L. Kirsch, R.A. Kirsch, "The structure of paintings: formal grammar and
design", Planning and Design, Vol. 13, No. 2, 1986, pp. 163-176.

60. J.R. Mitchell, A.D. Radford, * 'EAVE, a generative expert system for detailing' \
Planning and Design, Vol. 14, No. 3, 1987, pp. 281-292.

61. Flemming, U.,' 'More than the sum of parts: the grammar of Queen Anne
houses", Planning and Design, Vol. 14, 1987, pp. 323-350.

62. M. J. Wolchko, Design by Zoning Code: The New Jersey Office Building, Wiley
Interscience, New York, N.Y., Principles of Computer-Aided Design 1987, pp.
273-292, ch. 13.

63. R.F. Woodbury, C.Carlson, J. Heisserman, Geometric Search Spaces in Design,
North Holland, IFIP WG 5.2 Workshop Series 1989, in press. An earlier version
of this paper appeared at the EFIP WG5.2 Workshop on Intelligent CAD,
Cambridge, September 1988.

64. Christopher Carlson,' 'Structure Grammars and Their Application to Design",
Master's thesis, Department of Design, Carnegie-Mellon University, December
1988.

65. P. Fitzhorn, A Linguistic Formalism for Solid Modeling, Springer-Verlag, Berlin,
Lecture Notes in Computer Science 1987, pp. 202-215.

66. P. Prusinkiewicz, A. Lindenmayer, J. Hanan, "Developmental Models of Her-
baceous Plants for Computer Imagery Purposes", Computer Graphics, Vol.
22, No. 4, August 1988, pp. 141-150.

Building and Environment Article 42

Robert Woodbury September 5,1989

67. G. Stiny, W.J. Mitchell, * 'The Palladian Grammar' \ Environmental and Planning
By Vol. 5, 1978, pp. 5-18.

68. U. Flemming, R. Gindroz, R. Coyne, S. Pithavadian, "A Pattern Book for
Shady side'*, Technical Report, Department of Architecture, Carnegie-Mellon
University, Pittsburgh, PA, 1985.

69. R. Coyne, J.S. Gero, "Semantics and the Organization of Knowledge in Design",
Design Computing, Vol. 1, No. 1, 1986, pp. 68-89.

70. J.S. Gero, R.D. Coyne, "Logic programming as a means of representing seman-
tics in design languages", Planning and Design, Vol. 12, No. 3, 1985, pp.
351-369.

Building and Environment Article 43

