
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Constraint Reasoning and Planning
in Concurrent Design

by

V. Krishnan, D. Navinchandra, P. Rane, J. R. Rinderle

EDRC 24-36-90 C. 2-

Constraint Reasoning and Planning
in Concurrent Design

V. Krishnan *
D. Navinchandra +

P.Rane*
J. R. Rinderle *

CMU-RI-TR-90-03

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

28 February 1990

+ Robotics Institute, CMU
1 Department Mechanical Engineering, CMU ^^ UBRAR]ES

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVAUIft 15213

Table of Contents
1. Introduction: Concurrent Design 1

1.1 Representing Life-Cycle Concerns 1
12 Automation in Constraint Based Design 2
13 Context and Definitions 5
1.4 Monotonidty Analysis 6
L5 Interval Methods 9
1.6 Conservativeness of Interval Calculations 10
1.7 Constraint Propagation in Design 11
L8 Interval propagation 13
1.9 Necessary and Sufficient Intervals 13
1.10 Calculation using the Sufficiency Condition 15
1.11 Interval Criticality, Dominance, Activity 15
1.12 Global Optimization 17
1.13 Interval Variables Approach 19
1.14 Weldment Design using Interval Variables approach 20
1.15 Conclusions 22

2. Planning Constraint Solution Strategies 23
2.16 A Design Example -, ' 23

2.16.1 Ordering the constraints 25
2.17 Planning Algorithm for Serially Decomposable Constraint Sets 25

2.17 J. An Algorithm for Ordering Serially Decomposed Constraint Sets 26
2.18 Special Treatment of Serially Decomposable Constraint Sets 27
2.19 Ordering a Non-Decomposable Constraint Sets 31

2.19.1 Intuitive Explanation 31
2.19.2 The Complete Planning Algorithm 35

2 JO Breaking the Strong Components 35
2.20.1 Experiments with the Most-Dependent Heuristic 37

2.21 Handling Uni-Directional Constraints 37
2.21.1 Intuitive Explanation 38
1312 Ordering Algorithm for a Mixed, Explicit and Implicit constraint Sets 40

2.22 Related Work 41
References 42
APPENDIX A: Implementation Details 44

Constraint Reasoning and Planning in Concurrent Design

Abstract

By concurrent design we mean* in pan, concurrent consideration of a broad range of life-cycle constraints
concerning, for example manufacturing and maintenance. The multitude of constraints arising from these
considerations make it difficult to identify satisfactory designs. An alternative to explicitly considering
all constraints is to determine which of the constraints are relevant, redundant or inconsistent and to
consider only those which impact design decisions.

The proposed approach is based on two simple ideas: (1) Constraints provide a unifonn representation for
a variety of life-cycle concerns, and (2) Interval methods applied to constraints can be used to identify
critical constraints, eliminate redundant constraints and to narrow the space of design alternatives.

The application of the necessary and sufficient intervals of constraints and constraint propagation
techniques are used to classify constraints in this way and to focus design activity. Regional monotinicity
properties are used to identify critical constraints.

A related aspect of concurrent design problems is the large number of complex constraints which have to
be satisfied to complete a design task. As it is impossible to guarantee the simultaneous solution of a large
set of design constraints, we have investigated algorithms for planning and simplifying such constraint
problems.

Chapter 1

Introduction: Concurrent Design

The practice of design is frequently sequential in nature. In the design of a jet engine turbine disk, for
example, the aerodynamic shape of the blade might first be determined, later modified to satisfy structural
constraints, and then further modified to satisfy manufacturability and maintenance considerations.

It is not surprising that such a situation exists, since there are few individuals capable of bringing a full
range of life-cycle concerns to bear during design. Nevertheless, the fact that manufacturing and
maintenance considerations are introduced only on an ad hoc basis during preliminary design gives rise to
fundamental design deficiencies. It is the purpose of concurrent engineering design to include % broad
range of functional and life-cycle concerns during preliminary design phases. While it is possible to
obtain an appearance of concurrence by rapidly iterating through the basic sequential design process, we
seek a greater degree of concurrency by attempting to identify critical life cycle concerns early and to use
those concerns to direct design decisions.

LI Representing Life-Cycle Concerns
Life-cycle concerns impose required relationships among features of the design to effect functionality,
manufacturability, reliability, and servicibilty. In the context of engineering design, these required
relationships can be thought of as constraints among design features. Constraints may embody a design
objective (e.g. weight), a physical law (e.g. F » ma), geometric compatibility (e.g. mating of parts),
production requirements (e.g. no blind holes), or any other design requirement We express constraints as
algebraic relations among feature parameters (e.g. hole diameter, wall thickness, stress level).
Collectively, the constraints define what will be an acceptable design. Constraint based representations
provide a uniform representation for a variety of design considerations including function, geometry.
production and disposal Because there is a single, uniform representation for all constraints there is no
differentiation between functional, geometrical, manufacturing, and other, so called, life-cycle constraints.
Methods used to refine the design by processing constraints are applied uniformly to all life-cycle
constraints: All constraints, whether they be behavioral, geometrical or those which have traditionally
been considered down-stream, have equal impact on design decision making. It is for this very reason
that our approach achieves concurrency.

Although constraints are a general mechanism to represent design considerations, it is not possible to
identify all design constraints at the time the design problem is first proposed. This is because the set of
relevant constraints depends on the design context If the geometry of the designed artifaa is such that
casting is an appropriate manufacturing method, then casting constraints are required. Alternatively, a set
of machining constraints is necessary if the part is to be machined. Similarly, there are constraints that

A large body of research exists on solving constraint problems. The SKETCHPAD [Sutherland
83]system was an early effort on solving constraints by propagation and relaxation, Mackworth
[Mackworth 77] introduced algorithms for maintaining consistency in a network of constraint relations.

The ThingLab research effort [Boming 79] lead to ideas on propagating constraints across part-whole
hierarchies of objects. A constraint representation formalism was introduced by Sussman and Steele
[Sussman 80]. Recently, Gosling [Gosling 83] presented a planning technique which* coupled with

propagation, helps solve algebraic constraints. Other relevant work on solving sets of algebraic equations
has come from Popplestone [Popplestone 80] and Serrano [Serrano 87]. These research efforts provide a
core of solution techniques for handling and propagating variables with exact values. Unfortunately,
many if not most of the engineering design constraints are expressed as inequalities. The very nature of
constraints is such that they often do not prescribe specific values for design parameters but rather
prescribe ranges for the values. To accomodate inequality constraints while maintaining uniformity of
representation, we choose to represent all feature parameters as interval values. Conventional parameter
assignment, e.g. L=\5iruf can be expressed as assignment to a narrow interval, e.g. L=[1.495,1.505],
explicitely representing the scale of indifference or perhaps manufacturing tolerance. Inequality
constraints, e.g. L £ 10/h, may b e expressed as an open interval, e.g. L» [10, H 1 . making explicit jhe (as
yet) unbounded range for a parameter value. Interval specification is also convenient for expressing
constraints which are left implicit such as the positive value requirement, e.g. L £ 10/h -» L= [0,10].
Relationships among feature parameter values are also conveniently expressed as interval assignments,
e.g. Lx £ *2 ->Lj- l?*! 0 ' 0*] .

The ideas presented in this paper are based on treating design parameters as intervals. The notion of
interval arithmetic was developed by Moore [Moore 66, Moore 79]. The value of interval based methods
for design has also been recognized by Ward [Ward 89]. The interval representation of values generalizes
the notion of equality assignment, provides a mechanism to deal with tolerances and adds flexibility,
making it possible to capture incompleteness and uncertainty in a design.

A design which is not yet complete may have some parameters which have not been assigned exact
values and there may be some uncertainty about the final design characteristics. Inteivals may be used to
express upper and lower bounds on parameter values, maicing it possible to estimate some properties of
the artifact before exact values are assigned. This information can sometimes be used to guide
preliminary design, augmenting the rules of thumb or back of the envelope calculations commonly
employed by designers. Furthermore, interval based representation is a convenient framework for
implementing and bounding order of magnitude analysis and default sizing. In this way many levels of

. specificity may be used simultaneously at any point in the design process. By representing all levels of
specificity as intervals and using a uniform technique for propagating the intervals through the
constraints, we are able to evaluate the constraints on the design and provide the designer valuable

* feedback about potential constraint violations.

1This is an open interval and should correctly be written as [y, H . Because the only open intervals which we consider are
unbounded and because the apparent mismatch in open interval delimiters is often confusing we have chosen to ignore this fine
distinction.

13 Context and Definitions
Consider a stage of design when the concept and the configurations to meet the design requirements have
already been synthesized and studied, resulting in a set of constraints.2 This set of constraints is referred
to as a modeL A model in which all variables are restricted to physically realizable values is said to be
bounded?

The goal is to obtain a satisfactory design that optimally satisfies the design objective. The following
definitions are in order

Let x be a vector = (xlv x^ x$,... xk_v xt xM, ..,*„) where xl9 x^ ..^ are the design variables.
A function f(xv x^ ..jcj is monotonically increasing with respect to Xj. if an increase in Xj does not result
in a decrease in f.

A monotonic variable is one that is monotonic in every function in the modeL

An active constraint is one whose presence influences the solution of the modeL An active constraint is a
relevant constraint but need not be tight i.e satisfied as an equality at the design solution. y '

Constraint 1 dominates Constraint 2 if the feasible region of constraim 1 is a subset of the feasible region
of constraint 2. Satisfaction of constraint 1 implies satisfaction of constraint 2.

An active constraint satisfied as an equality constraint at the design solution is called a critical constraint
A critical constraint is an active constraint, but an active constraint need not be critical4

The following example clarifies these definitions.

*By constraints, we mean, a required relationship among design objectives and variables. We limit our discussion to algebruc
constraints.

3In particular, design variables should not reach the values 0 or • • .

4Not all tight constraints are cridcaL Consider Minimizing / fCr -5) 2 , subject to JC2»25; The minimum is at 5 but is noc
changed when the constraint is removed So the equality constraint is not active and therefore not critical.

objective should be bounded by at least one active constrainL5

Monotonidty Principle2: Every monotonic nonobjective variable in a well-bounded problem is either
1. Irrelevant and can be deleted from the problem together with all constraints in which it

occurs, or

2. Relevant and bounded by two critical constraints,6 one from above and one from below.

The utility of the Monotonidty Prindples is in proving criticality and irrelevancy of constraints. This can
result in the deletion of constraints and reduction in size and complexity of the model if the variables are
globally monotonic. The Monotonidty Prindples are used to solve the hydraulic cylinder problem given
below. [Papalambros and Wilde 88].

Morce

wall
*• thickness

t '

Hydraulic cylinder pressure

Figure 1-2: Hydraulic Cylinder

Notations: do » outside dia.; di » inside dia.; s » hoop stress; t =* thickness;

Goal: To design the hydraulic cylinder so as to meet the following functional specifications
• F=s Load Handling Capadty 2 22 pound wt(10 kgs)

• P= Pressure £ 3.5 psi.

Minimize do = dx 4- It , subject to the Constraint Set
1 . - F + 2 2 S 0

5If a set of constraints bind the monotonic objective variable, the dominant constraint in this set is a critical constraint.

6 [Papalambros and Wilde 88] use the term "active" to mean what we are calling "critical".

Since </o»<f,-+2r we have:

s (.dj

If we use Al aUoy A96061 with S^OCXXpsi) and p=4000 (psi) then thes£Syp yields,

P P
and therefore

^ ^ {d&2t?-+d%

which becomes 4t? + 4dit-2di
2'Z0.Q. This resultant constraint is not globally monotonic with respea to

Reasoning using Monotonicity Principles will not work because di is not a globally monotonic variable.

Although the newly introduced constraint was not globally monotonic it still is monotonic in trite regions

t < di and t £ d{. If t £ dt is unreasonable in the domain of application, then the solution can be obtained

by solving the problem in one region. Else, the problem is solved separately in the two regions, and the

solution assembled to obtain the global solution. Most design objectives are too complicated to be

globally monotonic, but do vary monotonically over regions. Similarly in real design problems, difTerent

constraints may become active and dominant in different regions; hence great leverage can be obtained by

exploring regional information. We need means for representing, abstracting and manipulating regional

information. The need is met by the application of Interval methods.

1.5 Interval Methods
Interval Methods provide a convenient framework to characterize regional properties of objectives and

constraints. An interval is a set [a, b] such that all real numbers between a and b are included in the set

Intervals can be operated on by set theoretic operators such as intersection, union and subset An interval

of a function provides upper and lower bounds for the range of the function, when its arguments span an

interval. For eg. the interval of the function (x 2 + y) for the interval x » [1 , 4] y =* [5,10] is [6,26]. This

implies that all the values taken by the function (x*+y) for the given range of arguments are above 6 and

below 26.

Interval arithmetic is used as the basis for evaluating algebraic relations containing interval variables.
yielding interval results. Interval arithmetic operators are defined on the upper and lower bounds of the
operands. The interval on (x* + y) in the above example, was determined by expanding the square
operator and applying the following interval arithmetic formulae. [Moore 66]

[a,b] + [c,d] = [a + c. b + d] (1)
[a,b] - [c9d] = [a - d, b - c] (2)
[afb] x [c,d] = [min(ac,ad,bctbd), max(ac,adfbcbd)] (3)

of [0» 64]. The conservative interval calculation destroys the one to one correspondence between intervals
on arguments and intervals on functions. This is important in the context of design because it is often
necessary to dfteni"« what range of arguments will satisfy a range on the function itself. The extent to
which the computed interval deviates from the actual interval is critical to the degree to which strong
inferences can be made regarding intervals on variables.

There are some specific techniques intended to mediate against the expansion of intervals. One such
approach is the centered form of functions based on a fourier expansion of the intervals and is described
in [Moore 79]. Other heuristics, for example, to deal with even exponents are also useful. There are
several ad-hoc methods to obtain less conservative intervals, often exact intervals. Since the computation
of intervals is not the focus of our research, it will not be discussed at greater length here.

1.7 Constraint Propagation in Design
Intervals can be effective for representing and reasoning about design parameter values. It is also possible
to propagate interval values through a set of constraints and detect potential constraint violations. By
propagating design decisions through constraints it is possible to determine how the various design
parameters affect one another. In the process, redundant constraints are identified and eliminated. The
intervals of the various parameters are also refined in this process.

Consider, for example, a DC motor. The torque (T in-oz) is related to speed (co rad/sec) as shown in
Figure 3 and as given by the constraint:

T * 100 - jco

Assume that the torque must be at least 30 in-oz (.21 N-m) and must not exceed 75 in-oz (.53 N-m) and
that the speed may assume any value between 150 and 400 rad/sec. The given interval, [30,75 in-oz],8 in
conjunction with the motor characteristics imposes upper and lower bounds on speed of 125 and 350
rad/sec as shown in Figure 3. Intersecting this interval with the original interval we obtain a refined
interval on speed, [150, 350 rad/sec]. This new interval is propagated through the constraint, once again.
to find upper and lower bounds on torque, [30,70 rad/sec]. This interval on torque and the corresponding
interval on speed indicate that the original specifications requiring torque to be less than 75 in-oz and
speed to be less than 400 rad/sec were not necessary. By propagating intervals it was possible to identify
redundancies and therefore simplify the design task without making specific commitments about any of
the design parameters.

The process of propagating intervals through constraints can be continued through long chains of
constraints. The process provides a means for determining bounds on design variables thereby delimiting
a feasible space for the final design. Propagation can be done through chains of constraints resulting in a
successive narrowing of parameter intervals. Continuing our example, assume the power of the motor
(given by Power = coT) is required to be less than or equal to 8500 in-oz/second (60 W), that is, in the

sThe SX units are not generally repeated in the interval notation to avoid confusion.

13

1.8 Interval propagation
In this section we delve in more detail on the propagation of intervals through a set of constraints and the
evaluation of intervals through necessary and sufficient conditions. Consider the evaluation of intervals
using the basic interval arithmetic operations. For example* let V3 be an interval calculated from the
equation Vx op V2 * V3. Where, op is one of the four basic interval arithmetic operators. This operation
guarantees that for any value in the intervals Vx and V2 the result of applying op will be in Vv In other
words, the result is necessarily in the interval Vv

After a constraint expression is evaluated the new interval is propagated. For example, when a new

interval is determined for a variable, that variable's current interval is updated by intersecting it with the

calculated necessary interval. If the intersection is null, then the original interval or the constraint is said

to be inconsistent This kind of propagation can be carried through complex equations using the interval

arithmetic operators. The process guarantees the result will necessarily be in the calculated interval.

In the DC-motor example, we have the equation Power * ooT. Assume we know the interval on Power

[8000, 25000] (inch-oz/sec) and Torque [30, 75] (inch-oz). We seek an interval on co such that, for any

values of power and torque (within their intervals) the speed, co, falls within the interval. In oth$r 6ords,

we seek an interval in which co has to necessarily be in. As shown in Figure 4 , the speed must fall

between a and b. The interval may be computed using the basic interval arithmetic to evaluate the

constraint, expressed terms of the variable in question: co = £ £ £ = I80^!?4S001 = [106,833].

1.9 Necessary and Sufficient Intervals
The fact that a variable falls within a necessary interval does not guarantee that all constraints can be

satisfied, Le, necessary does not imply sufficient. Consider for example the situation depicted in Figure 4.

Although co{lO6, 833 rad/sec] is necessary, an arbitrary value in this interval is not sufficient to satisfy the

power requirement for arbitrary values of allowable torque since the rectangle of valid torques and speeds

extends beyond the bounding power curves. Even when we know that both torque and speed fall within

the necessary intervals it is still necessary to check that the power constraint is satisfied. There may,

however, be an inteival on speed which guarantees that the power requirement will be satisfied whenever

torque requirements are met We say that such an inteival is sufficient to satisfy the constraint For

example, the interval on speed sufficient to satisfy the power requirement is shown in Figure 4. For any

value of torque and speed in their respective intervals, the power will always be between 8000 and 25000

in-os/sec.

The concept of necessary and sufficient intervals can be very useful to the designer. If two constraints
each have associated with them a necessary interval on the same argument and those necessary intervals
do not overlap it is not possible to simultaneously satisfy both constraints. The ability to identify a
constraint contradiction of this sort early in the design cycle makes it possible for the designer to
determine appropriate relaxations of these constraints.

The interval of some variable, sufficient to satisfy a constraint insures that a constraint will be satisfied
whenever all of the other variables fall within their necessary intervals. Therefore, if the necessary

L10 Calculation using the Sufficiency Condition
In this section we present a method to evaluate the intervals on a variable based on a sufficient condition.

Our goal is as follows: Given the constraint Vx op V2 « Vv to determine V2 such that for any value in
given Vltthe application of op yields a result in specified Vv In other words, what should V2 be so that for
any value in V\ ,VlopV2 lies in the specified interval V3?

To obtain the unknown interval Vv we express the relation Vx op V2 * V3 in terms of the interval we
want to be within: in this case Vy Assume V2 » [v^ v^] , where v^ and v^ are the values we seek.
Now consider the relation Vx op V2 » V3 . The left hand side can be evaluated in terms of the unknowns
vj/ and v2u by applying the interval operators. These two unknowns can be found by solving the interval
equation, as demonstrated by the following example : Consider the D.C motor case in which Power is
required to be in the interval [8000,25000] and the interval on Torque is given to be [30,75]. Our goal is
to find an interval on co such that Power a co T is satisfied for all co and 7 in their respective intervals.
Following the above procedure: Let co^ [co/f ooj. Applying the equation Power s<o7i substitute the
intervals for Power, Torque and co we get [8000, 25000] » [co,, ooj [30, 75] from which it follows that
[8000, 25000] * [30 (D/975 <oj, since torque and speed are known to be positive definite. Equating the
upper and lower limits of the interval equation, 8000= co; 30 gives <s>f* 266 and 25000 » coa 75 $ives coy=*
333. These limits on speed give the sufficient interval

Now consider the dual case, that of finding an interval on speed sufficient to satisfy the torque
requirement of [30,75] given that power falls within the stated interval of [8000, 25000]. Now, V3 is
Torque and Vx is Power. Expressing the equation in terms of Torque, Torque » Powcr/co; we get [30f 75]
a [8000, 25000]/ [CD,, coj, from where it follows that 30 * 8000/(DM and 75 = 25000/©,. The limits on
speed are hence: <ou » 266 and co; » 333 , which is a nonsense interval. There is no interval on speed
sufficient to guarantee that there is some valid torque for any power in the stated interval.

This example not only demonstrates the simple methodology to evaluate sufficient intervals but also
illustates the asymmetric nature of sufficiency intervals and their conditional existence. The existence of a
sufficient intervals has an impact on the design decision making. For example, if we are designing a Ac
motor, the existence of a sufficient interval means the ability to accomodate any motor in the given torque
range or the need to use a particular motor in the given torque range. Conditions for existence of
sufficient intervals, resolutions and retractions needed for their existence are topics of current research.

1.11 Interval Criticality, Dominance, Activity
Constraints in design may not be globally monotonic, globally active, dominant or critical, but certainly
are regionally. The concepts of constraint criticality, dominance and activity, defined over regions, are
therefore, more effective in identifying the critical constraints and pnining the insignificant ones. Interval
Methods, with which we represented and manipulated regional information in the previous sections, can
again be used to characterize dominant, critical and active constraints regionally.

Interval Dominance Constraint cx <0 dominates constraint c2<0 in the interval I, if the interval (c2-Ci)

monotonically decreasing; the new constraint cannot bind dt from below. The monotonic objective
variable is again bound from below by the relationship between force and &i% and so
^72(mm)fF»44t000(/hf) p-4000 (psi).
The ConstraintC} becomes 4i* + 288*-1036820.0;

C2-cx = 10365 -

interval! c2 - cx] for H3t tj

-[10365- 287fM-4rM
2

f 10365-287 r,-

which is necessarily > 0 for rM £ 27mm.
So in the interval [3, 27] constraint 1 dominates constraint 2.
At r s 27(mm), constraint c1 becomes tight and dominates c2-
The solution is r=27 (mm), ^ = 72 (mm) and do = 126 (wn), for this is the smallest value of t for which
both constraints are satisfied.

Thus, despite the absence of global monotonicities, the design solution was achieved by combining
regional information. This suggests that one could use interval methods not only for constraint reasoning
but also for optimizing the objectives. In fact interval methods guarantee that the resultant interval
obtained is an inclusion, i.e. the result includes and binds all values of the function in this region. Interval
Methods based algorithms use this assuredness property of intervals to obtain the global optimum. In the
next few sections we will investigate the application of interval based methods to

• Obtaining the globally optimum solution and

• Combining constraint reasoning with global optimization.

1.12 Global Optimization
Global Optimization of a nonlinear, nonconvex objective subject to nonlinear constraints is yet an
unsolved problem. There is no single best method to accomplish this goal of attaining the global
optimum. The problem with most traditional nonlinear programming techniques is that they are local
methods. They can get stuck in local valleys, and there is no guarantee that the solution is globally
optimum. Under strong assumptions about the function involved, like convexity etc. the solution can be
assured to be globally optimum.

Interval methods have been used to solve the global optimization problem [Ratschek and Rokne 88]. The
rationale behind these approaches for unconstrained optimization is as follows:

• Use interval methods to represent regional information.

• Exploit the bounds provided by the interval method as a part of a branch and bound search
strategy.

• Combine with a subdivisioning procedure, that helps accelerate the search, by yielding tighter
bounds.

To solve the constrained optimization problem, these methods subdivide the constrained design space into
halves, until they get a part of the space which satisfies all the constraints. Due to the the extreme

L13 Interval Variables Approach
Unlike conventional interval algorithms which keep sub-dividing the design space until all constraints are
satisfied, the Interval variables approach simplifies the model regionally by reasoning from a variable
point of view. The interval dominancy, criticality and activity conditions, as defined in an earlier section,
are used to reason from the variable point of view. The Interval Variable approach, by itself, may not be
able to solve all the problems completely. In such cases it may be used as a pre-piocessor that simplifies
themodeL

Interval Variables approach
1. Form the adjacency matrix for the model.12

2. Consider nonobjective variables first, giving preference to those variables that figure in the
least number of constraints.

• If the variable occurs in only one constraint, and is regionally monotonic in that
constraint, eliminate the constraint and the variable.

• If the variable occurs in several constraints, and is regionally monotonic with respect
to each of the constraints, then call these constraints, nonobjective conditionally
criticaUexactly one constraint in this group is critical). Apply Interval Dominance
conditions to all pairs of constraints in this conditionally critical set to identify the
critical constraint While considering the various pairs, dominance relations are
propagatedj.e. If A dominates B, and B dominates C, then A dominates C; The pair
A,C need not be tested for dominance.

• If the nonobjective variable is not monotonic, subdivide the design space further, to
obtain desired monotonicities.

Consider monotonic objective variables, starting first with variables that occur in the least number of
constraints. For each variable,

• Partition design space to obtain desired monotonicities.

• List all the constraints with the desired monotonicities under an objective conditionally
critical set

• Test for interval dominancy of constraints.

• Delete the dominated constraints. Apply Monotonicity Principle 1 to obtain the constraint
which is regionally critical.

In a larger sense, the interval variable approach is similar to active set strategies, as it tries to solve the
problem by finding out the critical constraints. However instead of expecting a few constraints to be
critical throughout the design space, the interval variables approach looks for regional criticality. In
highly nonlinear situations, such as design constraints and objectives, we believe this results in significant
benefits.

12Adjacency matrix lists the numbers of the constraints and the variables that occur in each of the constraints. It is described m
the next chapter.

21

Stait with the following intervals:
h m [0.1,1]

' ' - [1 . 3]

/»[3.3O]

Step 1 Select die only nonobjective variable, t , for consideration. The constraints in which it appears
are as follows:-

gl m -at + 16.8 £ 0.0
g3 = -a + ht £ 0.0
g4 m -ti<2 + 9.08 £0.0
$5 • -1+0.02776* + (0.094 r2/*3) £ 0.0 and the set constraints

*21.0, t £ 3.0

On gxouping the constraints into those that bind the variable t from above and those that bind from below,
we obtain
Set A(binds t from above)

g3 = -a + /ir S 0.0
S = -1+0.02776 + (0.094 file?) £ 0.0 and

r-3.0 £ 0.0

Set B(constraints providing lower bounds)
gl a -a* + 16.8 £ 0.0
g4 = - a r ^ 9.08 ^0.0

-r+lSO.O

Because t is a monotonic nonobjective variable, it has to be bounded by two critical constraints, one from
above and one from below. So exactly one constraint from each set must be criticaL
By Interval Dominance we can show that the set constraint r-3.0 £ 0.0 dominates the other two
constraints in set A. So it is critical and r = 3.0;
This makes sure that -r+1 2 0.0 is not criticaL Using r=3.0 and the interval dominance condition we can
show that
gl = -ar+16.8 £ 0.0 dominates
g4 = -<z*2 + 9.08 £0.0 over the specified interval of a.
g4 can be deleted and g2 is critical resulting in a=(16.8/3>=5.6;

h is bounded from below by two constraints. The set constraint h £0.1 and
the constraint g6 = -h + 0.125 £ 0 . 0 ;
Obviously g6 dominates the set constraint and so h= 0.125;
Thus the solution in this region of the design space is h = 0.125, a = 5.6, t = 3.0, b = 1.9.

23

Chapter 2

Planning Constraint Solution Strategies

In concurrent design problems we often have large numbers of complex constraints which have to be
satisfied to complete a design task. As it is impossible to guarantee the simultaneous solution of a large
set of design constraints, we have investigated algorithms for planning and simplifying such constraint
problems.

Satisfying a large number of constraints does not imply that all the constraints be solved simultaneously.
Often, some parts of the design tend to be more coupled than others. This chapter presents algorithms for
finding the coupled constraints and for developing a solution strategy which minimizes simultenaety.

The simplest type of constraint sets are those which do not need any simultaneous solution of constraints.
Such constraint sets are said to be Serially Decomposable. The constraints can be solved serially, yielding
the value of one new variable for each constraint evaluation. We present algorithms to detect serial
decomposability and for ordering the solution sequence of such constraint sets. When a constraint set is
not serially decomposable, the constraints have to be solved for simultaneously. Instead of trying to solve
the entire constraint set simultaneously, we would like to isolate and identify subsets of the entire
constraint set which necessarily have to be solved simultaneously. This chapter presents algorithms for
achieving this.

One of the assumptions we make in ordering algebraic constraints is that they are invertible. That is, for
any function F(X), one can find the value of any variable x{ in X if the values of all the other variables are
known. Not all constraints are explicit and not all constraints are invertible. For example, a Finite Element
package, unlike an algebraic relation, takes inputs and produces outputs. One cannot determine the inputs
from the outputs. Such constraints have to be handled in a special way. We present an algorithm for
ordering constraint sets which contain both reversible and irreversible constraints.

2.16 A Design Example
Before embarking on discussions about graph theory and algorithms, let us examine the major ideas of
this chapter with the aid of a simple, but illustrative example. We will be using this example throughout
this chapter.

Consider the design of a friction-type disc clutch shown in Figure 2-7. This example is taken from
[Hindhede, Etal. 83]. The problem is to find the size of the clutch plate (£„«)• and the inner diameter of

the lining {Din), to safely transmit 32 HP at 3000 rpm.

There are several design equations relating the known and unknown clutch parameters. We treat these

25

(11)

The design task is to find values for the unknown variables such that the above constraints are all satisfied
simultaneously.

2.16.1 Ordering the constraints
Instead of trying to solve all the above equations simultaneously, one can try to identify a reasonable
strategy to solve the equations. The algorithm presented in this paper produces the following strategy:

Step 1: Calculate for Tmombial from Equation (9) by expressing the equation in terms of TnomiBai

and substituting for power and angular speed.

Step 2: Calculate for T^^ from Equation (8) by substituting the just determined value of
^nominal'

Step 3: Calculate for Doyi, DM, Dg and Fa simultaneously from equations (5), (6), (7) and (lGpi r

Step 4: Calculate for Shoop from Equation (11)

The above strategy shows three aspects of solution planning: (1) Constraints may be treated as
procedures, where any variable in the constraint can be determined if the values of all the other variables
are known. (2) Some variables can be determined only after other variables are determined. This produces
a chain (or ordering) of constraint evaluations, and (3) Variables which depend on one another have to be
solved for simultaneously. The actual numerical method used to solve the constraints is outside the scope
of this report. It is our aim, to find a viable solution strategy which identifies and isolates only those
constraints which have to be solved simultaneously. This is done to avoid treating the entire constraint set
simultaneously.

2.17 Planning Algorithm for Serially Decomposable Constraint Sets
Some constraint sets do not need any simultaneous solution of constraints. We call such constraint sets
Serially Decomposable. This is because the constraints can be solved serially, that is, there is no
simultenaety among the constraints. For example, consider a re formulation of the clutch problem:

(12)

Power = ^TncmiikMl (13)
9 p D} co2

= * , (14)
25

1.2D, (15)
0.8 D€ (16)

= ^nominal *, ™

27

Step 3. For all the tows with only one T in it:
a. read off the corresponding column (variable name)

and push it on the stack ORDER
b. remove the row from the matrix
a remove the column with the T in it

Step 4. Go to Step 1.

A problem with using the above algorithm, is that it fails ungracefully when the constraint set is not
serially decomposed The algorithm has no way of telling whether a given constraint set is serially
decomposable or not, it starts generating an ordering and fails only when it reaches an impasse. It would
be better if we could determine, up front, whether a constraint set is orderable or not The next section
presents an algorithm aimed at quickly determining whether a constriant set is serially orderable or not.
The algorithm works without actually trying to order the constraints, and thus runs very fast

I '
2.18 Special Treatment of Serially Decomposable Constraint Sets
The constraint sets encountered in design practice are usually extremely complex. The number of
constraints and the number of variables is large. An interesting property of the constraint sets is that they
are usually sparse. Each of the individual equations have a small number of variables. A direct
simultaneous solution or optimization of the set of constraints is computationally very complex. It is
undesirable as it does not take advantage of the sparseness of the constraint set The sparse set of
constraints is broken down in to different groups which can be solved separately and progressively one
after another.

A serially decomposable set can be ordered and solved directly without taking recourse to simultaneous
solution methods. A constraint set, which is not serially decomposable on the whole, may have parts
which are serially decomposable. This property can be used effectively to partition the constraint set into
smaller and more managable subsets.

Detection of serially decomposable sets is valuable. At present, the constraint sets are reordered using
various algorithms, to partition the system of equations. It would be good to detect before resorting to
reordering, whether the constraint set is serially decomposable or not

.An analytical method has been developed to test the serial decomposability of a constraint set This
method is based on an adjacency matrix representation of the constraint set and a set of boolean properties
of the set

Adjacency matrix representation
A constraint set can be represented as a bi-partite graph. The nodes of the graph are the equations and the
variables. The edges are between the equations and the variables present in the equations.

The adjacency matrix of the constraint set is matrix fonned by presenting the equations along the rows
and variables along the columns. An element of a row is 1 if the variable corresponding to the column is

a12 ••• aln1

where elements ay are boolean.

If A is 2 x 2 then,

det(A)» (a n AND a^) XOR (a12 AND

If Aisnxnthen

det(A) = (zl 2 AND minor (z^ {)) XOR (a12 AND
minor (a12)) XOR... XOR (a ln AND

a nary-XOR ((a n AND minor (an)),(a12 AND
minor (a12)),... (a ln ^

T. '
The XOR expansion is defined as n-ary XOR; i.e. before evaluating any of the boolean expressions, the
whole expression should be expanded. After the complete expansion, the AND operations should be
evaluated. Then the n-ary XOR should be applied to the whole expression. If there is exactly one ' 1' in
the expression, the result will be 1, else the expression will evaluate to 0.

The determinant can be expanded by any row or column. Consequently, the value of the detenninant does
not change on rearrangement of rows and columns.

Criterion for Serial Decomposability
The detenninant of the adjacency matrix indicates the presence of loops.

If A is an adjacency matrix, then
if det(A) s l, the constraints can be serially decomposed,

= 0, the constraints can not be serially decomposed.

Consider the first example. The adjacency matrix on rearrangement:

A s l"l 0 0 0 0 0 Ol (5)
11 1 0 0 0 0 01 (4)
| 0 1 1 1 0 0 0 | (1)
10 0 0 1 1 1 01 . (2)
10 0 1 0 1 1 01 (3)
0 0 0 0 1 1 0 (6)

LO 0 0 0 1 0 l j (7)

where the columns are :(rnominal.rde$ign^aX>ei>ouf£>in'5hoop)

Expanding the determinant of A by first row.

31

A serially decomposable matrix has a path through the all the 1 elements, which is a tree. la a matrix,
which is not serially decomposable, such a path does not exist It contains a path which is a graph with
loops rather than a tree. The number of these loops and their inter-relations are an important consideration
in a solution of the constraint management problem.

The present work does not include non-square constraint sets and directed constraints. It can be extended
to cover these cases. The theoretical approach seems to have a potential to give rise to an analytical
formulation for optimal partitioning of a constraint set

2.19 Ordering a Non-Decomposable Constraint Sets
When a constraint set is not serially decomposable, the constraints have to be solved simultaneously.
Instead of trying to solve the entire constraint set simultaneously, we would like to isolate and identify
subsets of the entire constraint set which necessarily have to be solved simultaneously. This section
presents an ordering algorithm which helps identify such subsets.

Let us return to the original clutch example. The original problem, as we noted earlier, is not serially
decomposable. This can be seen with the aid of the adjacency matrix representation. Figure 2-9 (a) shows
the matrix for the given equations. By carefully reordering the rows and columns, one can find a solution
plan which is better than trying to solve all the variables and constraints simultaneously. Figure 2-9 (b)
shows the ordered matrix: after calculating TwmifUlP it is possible to calculate Tdggigm from equation 8. The
next four variables have to solved as a block (simultaneously).

X

X

X

X

X

X

X
X

ft

(a)

5
4
1
2
3
6
7

X

X m
if
I*
m

m
x

m

m
x

mX
:X:

m

Figure 2-9: Adjacency Matrix Representation of the Ordering Task

2.19.1 Intuitive Explanation
The algorithm consists of two stages: Matching and Component Finding. The first stage matches
variables to equations. This is done because we know that each equation can be used to solve for only one
variable. Every variable will be calculated from one constraint It is for this reason that we start by
matching constraints to variables. It is important to try and find as many matchings as possible. For
example, in the two equations Fl(x,y) and F2(x)9 there are two variables x and y which have to be
matched. The matching problem is shown in Figure 2-10 (a). The variables are listed on the left and the
constraints are listed on the right The lines indicate which variable is involved in which constraint This

33

Tnominil

Tdesign

Dout

Din

De

Shoop

Toonuiul

Figure 2-11: Bipartite Matching

Shoop
T. '

•Tdesign > Tnominal

Figure 2-12: Dependency graph among variables

In the digraph, Tm)miMi does not depend on any unknown quantity and hence can be immediately
determined from the equation it was matched to. Once Tnomil%al is known, Tduiim can be calculated. The
rest of the variables, however, cannot be chained as the first two. The variables D0lg9 D^ D4 and F€ are in
a cycle of dependencies. That is they depend on one another and have to be solved simultaneously. The
variable Shoop is not in the cycle. Cycles are identified using a standard graph theoretic algorithm called
the Strong Component Algorithm.

A strong component of a digraph is a maximal set of nodes in which there is a path from any node
(variable) in the set to any other node in the set A depth-first search based technique is used to determine
strong components efficiently (Aho, Hopcroft & Ullman V84]. The strong component algorithm consists
of the following steps:

1. Perform a depth-first search of the digraph (G) starting at any node N. Make a note of all the
nodes visited in the list LI. The depth first search procedure is as shown below:

DFS(G, Current-Node)
1. Add Current-Node to globally defined list: VISITED
2. Get the dependents (D) of the Current-Node which are not in VISITED
3. IF there are no such dependents return NULL

ELSE each dependent (d) do DFS(G, d)

J J

2.19*2 The Complete Planning Algorithm
In summary, the steps arc as follows.

Step L As the evaluation of a constraint yields the value of only one variable at a time, we have
to first decide which variables will be ralnilatrri from which constraint As we would like to
evaluate as many variables as possible, the matching of variables to constraints is done using a
bi-partite graph matching technique.

Step 2. A directed graph of dependencies among variables is generated. For example, if one is
going to calculate for variable a from the constraint^ h c)9 then a is said to depend on b and
c.

Step 3. Cycles in the above di-graph indicate simultaneity among variables. Using an algorithm
to find strongly components in the di-graph, the smallest cycles are found and isolated.

Step 4. After all cycles are isolated, the rest of the di-graph becomes a tree. A reverse
topological sort yields the steps which can be taken to find the values of the variables. The
algorithm (RTS) is as follows:

RTS(Tree)
Step A. Initialize a stack called ORDER y '

Step B. If there are no nodes in the Tree, return ORDER

Step C Find all nodes that have no children (depend on no other variable)
If there are no such nodes, then the input graph is not a tree.

Step D. For each node found in Step C, do the following:
i. push the node onto the stack ORDER
ii. remove the node from the digraph

Step E. Go to Step B.

The algorithm is based on three standard graph theoretic algorithms: Bipartite-matching, Strong
Components and Reverse Topological Sort. These algorithms are all described in introductory graph
theory texts. Please see [Aho, Hopcroft & UUman '83].

2.20 Breaking the Strong Components
Strong components can sometimes be broken or simplified by picking the value of one of the variables in
the strong component The process is analogous to untying knots in a string. Untying a large knot might
either reveal smaller knots or might eliminate the knot altogether. The idea behind breaking a strong
component is to perform a single-degree-of-freedom search on one variable instead of solving all the
variables simultaneously. Consider, for example, a coupled constraint set with n variables and n
constraints. Assume that all simultenaety is eliminated if one variable x is guessed. After guessing x the
values of all the remaining n -1 unknowns can be easily determined from n -1 constraints. The
remaining constraint can be used to calculate a new value for x The new value is compared to the guessed
value. If there is some error, a new value for x is guessed and the process is repeated. Iterations are
carried out untill the error is within acceptable limits.

37

is added in the die second stage. The heuristic will wrongly consider Fa andD, as possible candidates.

Most-Dependents Heuristic
We have found that the best variables to pick are often the ones which are most "coupled." Simply put,
we son the nodes (variables) in the strong component by the total number of dependent variables in the
strong component. In die clutch digraph, applying this heuristic places DM and Doyi as the best choices
(Figure 2-15). The numbers in the figure indicate the number of dependents at each node.

Shoop
2

•Tdesign ^Tnominal

V '
Figure 2-15: Counting the number of dependents at each node.

The number of dependents of a variables is a heuristic measure of how critical it is to know the value of a
variable, before other parts of the design can be determined. It is this property that, we believe, makes the
heuristic work. We have conducted experiments to verify this hypothesis.

2.20.1 Experiments with the Most-Dependent Heuristic
We are currently conductive extensive experiments to assess the efficacy of heuristic approaches to
selecting variables which can break a given strong component The experiments are being run on
hundereds of randomly generated constraint sets.

Preliminary results show, that if one uses the Most-Dependents heuristic it takes (on the average) two
tries to find a variable which breaks the strong component If no heuristic is used it takes about five or six
tries before the appropriate variable is found. These experiments yielded results only for small
components. Larger components were rarely eliminated by choosing a single variable. Detailed
experimental results will be reported in a later version of this document

2.21 Handling Uni-Directional Constraints
One of the assumptions made in the above ordering algorithm is that all constraints are invertible. That is.
for any function F(X\ one can find the value of any variable x- in X if the values of all the other variables
are known. Not all constraints are explicit and not all constraints are invemble. For example, a Finite
Element Method (FEM) based tool takes some inputs and produces outputs. One cannot determine the
inputs from the output: The constraint is a Black-Box. Algebraic constraints can also be implicit For
example, it may not be possible to calculate for all the variables in a very complex transcendental
function. For such constraints only a subset of the involved variables can be solved for, thereby making
the rest of the variables serve merely as inputs.

39

DURl:Caie2

MaxStrcss

Tnominal

Tdesign

Dout

Din

De

Shoop

Figure 2-16: A Directed Bipartite Graph representation

RRl:Cue2

IRRl:Caiel

1

2

3

4

5

6

7

MtxStra*

Taominil

Tdesign

Dout

Din

Ft

De

Snoop

Figure 2-17: A Directed Bipartite Graph representation

case of an irreversible constraint, the matched variable is only dependent on the inputs to the constraint
In other words, one need consider only those uni-directional arcs which point from variables to
constraints. In the clutch example, the matchings are as follows:

MaxStress
T
* nominal

IRR\: Case!(T^ 9 Dom)

Tnominal?

D.
Fl(T<LFa.Dt)

'hoop

4i

2.22 Related Work
The notion of using bipartite matching and the strong components algorithm together was originally
suggested by Wang (Wang 73). The algorithms were originally used to solve Gaussian matrices for
solving sets of equations using Newton-Raphson like methods. Serrano applied a similar algorithm for
finding strong components in sets of constraints (Serrano 87). The aim of this work was to concentrate
solution on components and to avoid having to solve the entire constraint set simultaneously. Both these
efforts are aimed at bi-directional constraints. We have extended the algorithms to uni-directional
constraints. We have also developed the notion of breaking strong components using heuristic
approaches.

Recently, Eppinger & Whitney have described a coordination problem in complex design projects
[Eppinger & Whitney '89]. A design project is viewed as being composed of several tasks, each of which
needs some input data and produces (as output) some data for other tasks. The dependencies among the
tasks can be expressed in an adjacency matrix. The paper presents a heuristic approach to ordering the
tasks. A comparison study of our approach to ordering uni-directional constraints and the proposed
heuristic approach is in order.

4,5

[Sutherland 83) Sutherland, IE. .
Sketchpad^ A Man-Machine Graphical Communication System.
Technical Report TechRepoit #296, MTT Lincoln Lab. Cambridge, Massachu

1983.

[Waid89] Ward.A.G
A Theory ofQuantitative Inference Applied to a Mechanical Design Compiler.
PhD thesis, MiT., 1989.

[Navinchandra & Rinderle '89]
Navinchandra D., J. Rinderle, Interval approaches for Concurrent Evaluation of Design Constraints, In
proceedings of the Symposium on Concurrent Product and Process Design, held at the American Society
of Mechanical Engineers Winter Annual Meeting, San Francisco, December, 1989

[Eppinger & Whitney * 89]
Eppinger, S.D. , D. Whitney, Coordinating Tasks in Complex design projects, In Proceedings of the
MTT-JSME (Japan Society of Mechanical Engineers) joint workshop on Concurrent Engineering. Boston,
Nov, 1989.

[Aho,Hopcroft& Ullman f83] y; '
Aho, A.V., J.E. Hopcroft, J.D. Ullma, Data structures and Algorithms, Addison-Wesley series in
computer science and information processing. Addison-Wesley, Reading, MA 1983

[Serrano 87]
Serrano, D., Constraint Management in Conceptual Design, PhD dissertation, Dept of Mechanical
Engineering, MTT, 1987

[Sriram etal '89]
Sriram, D., G. Stephanopoulos, R.D. Logcher, D. Gossard, N. Groleacu, D. Serrano, D. Navinchandra,
"Knowledge-Based System Applications in Engineering Design: Research at MTT\ AI Magazine, Fall
1989

[Wang 73]
Wang, R.TH., Bandwidth Minimization, Reducibility Decomposition, and Triangularization of Sparse
Matrices, PhD dissertation. Computer and Info. Science Research Ctenter, Ohio State University, 1973

45

p * 3r
z « b-la
P » 5

The run is as follows:
CLisp> (load "loop") ... ; load all the files

CL±sp> (setq equations
' ((X - Y + Z ** 2) (Y - X * Z) (B - C ** 3)

(A - (B * 10) / P)
(Z - B - 2 * A) (P - 5) (P - 3 * R)))

CLisp> (loop::order eqns2 :verbose t) /verbose switch is on

Step 1: Solve for P from constraint:
(P - 5)

Step 2: Solve for R from constraint:
(P - 3 * R)

Under Constrained by 1 degrees of freedom ; some stats F.
Collapsing ((X Y)) ; trace information

Step 1: Solve for A from constraint
NIL
Step 2: Solve for B from constraint
(A - B * 10 / P)

Step 3: Solve for Z from constraint
(Z - B - 2 * A)

Step 4: Solve the following variables simultaneously:
(X Y)
from the constraints:
((Y - X * Z) (X - Y + Z ** 2))

Step 5: Solve for C from constraint
(B - C ** 3)

(((P (P - 5)) (R (P - 3 * R))) (A B Z (X Y) C)) /returned list

The function used is order which is called from the loop package. The ordering is shown in two parts.
The first pan indicates the part that is directly decomposed. The second pan is where components are
found. In this case, the problem is under constrained. This means that there is an extra variables during
bipartite matching. The system decides that variable A be determined from constraint NIL. This means
that the value of A has to be guessed, as it is an extra degree of freedom. The rest of the setps are self
explanatory.

The function returns the results as a list The list also two parts. The first pan is a list of lists. Each sublist

contains two elements. The first is the name of the variable and the second is the equation from which it

should be calculated. The second list in the result corresponds to the second part of the output The list

shows the order in which the variables have to be solved in. Variables in parenthesis have to be solved

simultaneously. In the ouput above, we can solve for A, B and Zf solve X and Y simultaneously and finally

solve for C.

