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Constraint Reasoning and Planning in Concurrent Design

Abdgract

By concurrent design we mean* in pan, concurrent consderation of a broad range of life-cycle congraints
concer ning, for example manufacturing and maintenance. The multitude of congraints arisng from these
considerations make it difficult to identify satisfactory designs. An alternative to explicitly considering
all congraints is to determine which of the congtraints are rdevant, redundant or inconsistent and to
consider only those which impact design decisions.

The proposed approach is based on two ampleideas. (1) Condraints provide a unifonn representation for
a variety of life-cycle concerns, and (2) Interva methods applied to congraints can be used to identify
critical congraints, diminate redundant congraints and to narrow the space of design alternatives.

The application of the' necessary and sufficient intervals of condraints and condraint propagation
techniques are used to classify congraints in thisway and to focus design activity. Regional mo?otinicity
properties are used to identify critical congraints. '

A related agpect of concurrent design problems is the large number of complex condtraints which have to
be satidfied to complete adesign task. Asit isimpossible to guarantee the amultaneous solution of a large
set of design condraints, we have investigated algorithms for planning and smplifying such congraint
problems.
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Chapter 1

Introduction: Concurrent Design

"“The practice of design isfrequently sequential in nature. In the design of ajet engine turbine disk, for
example, the aerodynamic shape of the blade might first be determined, later modified to satisfy ructural
congtraints, and then furthe modified to satisfy manufacturability and maintenance consider ations.

It is not surprisng that such a Stuation exists, since there are few individuals capable of bringing a full
range of life-cycle concerns to bear during design. Nevertheless, the fact that manufacturing and
maintenance consder ations are introduced only on an ad hoc basis during preiminary design givesriseto
fundamental design deficiencies. It is the purpose of concurrent engineering design to include % broad
range of functional and life-cycle concerns during prdiminary design phases. While it is pgséble to
obtain an appearance of concurrence by rapidly iterating through the basic sequential design process, we
seek a greater degree of concurrency by attempting to identify critical life cycle concerns early and to use
those concernsto direct design decisions.

LI Representing Life-Cycle Concerns

Life-cycle concerns impose required reationships among features of the design to effect functionality,
manufaicturability, reliability, and servicibilty. In the context of engineering design, these required
relationships can be thought of as condraints among design features. Congraints may embody a design
objective (e.g. weight), a physical law (e.g. F » ma), geometric compatibility (e.g. mating of parts),
production requirements(e.g. no blind holes), or any other design requirement We express condraints as
algebraic relations among feature parameters (e.g. hole diameter, wall thickness, dsress leve).
Collectively, the condraints define what will be an acceptable design. Condraint based representations
provide a uniform representation for a variety of desgn consderations including function, geometry.
production and disposal Because there is a single, uniform representation for all condraints there is no
differentiation b_éween functional, geometrical, manufacturing, and other, so called, life-cycle congraints.
Methods used to refine the design by processing condraints are applied uniformly to all life-cycle
condraints.  All condraints, whether they be behavioral, geometrical or those which have traditionally
been consdered down-stream, have equal impact on design decison making. It is for this very reason
that our approach achieves concurrency.

Although congtraints are a general mechanism to represent design considerations, it is not possible to
identify all design condraints at the time the design problem is firg proposed. This is because the st of
relevant congraints depends on the design context If the geometry of the designed artifaa is such that
cagting is an appropriate manufacturing method, then casting congraints are required. Alternatively, a set
of machining congraints is necessary if the part is to be machined. Smilarly, there are congraints that
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A large body of research exists on solving congraint problems. The SKETCHPAD [Sutherland
83]system was an early effort on solving congraints by propagation and reaxation, Mackworth
[Mackworth 77] introduced algorithms for maintaining consistency in a network of congtraint relations. _
The ThingL ab research effort [Boming 79] lead to ideas on propagating congraints across part-whole
hierarchies of objects. A condraint representation formalism was introduced by Sussman and Stede
[Sussman 80]. Recently, Goding [Goding 83] presented a planning technique which* coupled with
propagation, helps solve algebraic congraints. Other relevant work on solving sets of algebraic equations
has come from Popplestone [Popplestone 80] and Serrano [Sarrano 87]. Theseresearch efforts provide a
core of solution techniques for handling and propagating variables with exact values. Unfortunately,
many if not most of the engineering design congtraints are expressed as inequalities. The very nature of
condraints is such that they often do not prexcribe specific values for design parameters but rather
precribe ranges for the values. To accomodate inequality congraints while maintaining uniformity of
representation, we choose to represent all feature parameters as interval values. Conventional parameter
assgnment, e.g. L=\5iru; can be expressed as assgnment to a narrow interval, eg. L=[1.495,1.505],
explicitely representing the scale of indifference or perhaps manufacturing tolerance. Inequality
congtraints, e.g. L £ 10/h, may b e expressed as an open interval, eg. L»[10,H *. making expli itjhe (as
yet) unbounded range for a parameter value. Interval specification is also convenient for eXpressing
condraints which, are left implicit such as the postive valuerequirement, eg. L £ 10/h -» L=[0,10].
Relationships among feature parameter values are also conveniently expressed as interval assgnments,
eg. Ly £*2->Lj-12%100],

The ideas presented in this paper are based on treating design parameers as intervals. The notion of
interval arithmetic was developed by Moore [Moore 66, Moore 79]. The value of interval based methods
for design has also been recognized by Ward [Ward 89]. Theinterval representation of values gener alizes
the notion of equality assgnment, provides a mechanism to deal with tolerances and adds flexibility,
making it possible to capture incompleteness and uncertainty in adesign.

A design which is not yet complete may have some parameters which have not been assgned exact
values and there may be some uncertainty about the final design characterigtics Inteivals may be used to
express upper and lower bounds on paramee values, maidng it possible to estimate some properties of
the artifact before exact values are assgned. This information can sometimes be used to guide
prdiminary design, augmenting the rules of thumb or back of the envelope calculations commonly
employed by designers. Furthermore interval based representation is a convenient framework for
implementing and bounding order of magnitude analysis and default sizing. In this way many levels of
. pecificity may be used smultaneoudy at any point in the design process. By representing all levels of
- gpecificity as intervals and using a uniform technique for propagating the intervals through the
_ condraints, we are able to evaluate the condraints on the design and provide the designer valuable
feedback about potential congraint violations.

"This is an open interval and should correctly be written as [y, H . Because the only open intervals which we consider are
+ unbounded and because the apparent mismatch in open interval delimiters is often confusing we have chosen to ignore this fine
distinction.




1.3 Context and Definitions

Consider a stage of design when the concept and the configurations to meet the design requirements have
already been synthesized and studied, resulting in a set of constraints. This set of constraints is referred
to as a model. A model in which all variables are restricted to physically realizable values is said to be
bounded.?

The goal is to obtain a satisfactory design that optimally satisfies the design objective. The following
definitions are in order.

Let x be a vector = (xy, Xy, X3, .. Xp_1s Xpp X0 --o%p) Where Xy, X,, ...x, are the design variables.
A function f(x;, x,, ...x,) is monotonically increasing with respect to x;, if an increase in x; does not result
in a decrease in f.

A monotonic variable is one that is monotonic in every function in the model.

An active constraint is one whose presence influences the solution of the model. An active constraint is a
relevant constraint but need not be tight i.e satisfied as an equality at the design solution. v’

Constraint 1 dominates Constraint 2 if the feasible region of constraint 1 is a subset of the feasible region
of constraint 2. Satisfaction of constraint 1 implies satisfaction of constraint 2.

An active constraint satisfied as an equality constraint at the design solution is called a critical constraint.
A critical constraint is an active constraint, but an active constraint need not be critical.4

The following example clarifies these definitions.

2By constraints, we mean, a required relationship among design objectives and variables. We limit our discussion ta algebrax
constraints.

3In particular, design variables should not reach the values Q or e .

“Not all tight constraints are critical. Consider Minimizing f=(x~5)2 , subject to x2=25; The minimum is at 5 but is not
changed when the constraint is removed. So the equality constraint is not active and therefore not critical.



obj ective should be bounded by at least one active constrainL”

M onotonidty Principle2: Every monotonic nonobjective variable in a well-bounded problem is ether
1. Irrdevant and can be deleted from the problem together with all congraints in which it
occurs, or

2. Relevant and bounded by two critical congtraints,® one from above and onefrom below.

The utility of the Monotonidty Prindplesisin proving criticality and irrelevancy of congraints. This can
- result in the deletion of congtraints and reduction in size and complexity of the mode if the variables are
globally monotonic. The Monotonidty Prindples are used to solve the hydraulic cylinder problem given
below. [Papalambros and Wilde 88].
| LMorce

Hydraulic cylinder pressure

wall

*o thickness |I'l85d0 dia.

Figure 1-2: Hydraulic Cylinder
Notations: d, » outddedia,; d » ingdedia; s » hoop gress, t =* thickness,

Goal: Todesign the hydraulic cylinder so asto meet the followingfunctional specifications
* F=s Load Handling Capadty 2 22 pound wt(10 kgs)

* P= Pressure £ 35 psi.

.- Minimize d,=de4- It , subject to the Constraint Set
1.-F+22S0

®| f a set of constraints bind the monotonic objective variable, the dominant constraint in this set is a critical constraint.

® [Papalambros and Wilde 88] use the term " active’ to mean what we are calling " critical" .




Since </»<f,-+2r we have:
o (dj+2d2+d?
Al yy Y]
P (di+2t) -d;

If we use Al aUoy A96061 with S*OCXXpsi) and p=4000 (psi) then thestS,, yields,

P P
and therefore

AN {dg 2t2-+d%
- [d#202-d?

which becomes 4t? + 4dt-2d*Z0.Q. Thisresultant constraint is not globally monotonic with respea to

Reasoning using Monotonicity Principles will not work because d; is not a globally monotonic variable.

Although the newly introduced constraint was not globally monotonic it still is monotonic in trite 'r'egions

t<dandt£d. Ift£ disunreasonable in the domain of application, then the solution can be obtained
by solving the problem in one region. Else, the problem is solved separately in the two regions, and the
solution assembled to obtain the global solution. Most design objectives are too complicated to be
globally monotonic, but do vary monotonically over regions. Similarly in real design problems, difTerent

~constraints may become active and dominant in different regions; hence great lever age can be obtained by
exploring regional information. We need means for representing, abstracting and manipulating regional
information. The need is met by the application of Interval methods.

15 Interval Methods

Interval Methods provide a convenient framework to characterize regional properties of objectives and
constraints. An interval isa set [ a, b] such that all real numbers between a and b are included in the set
- Intervals can be operated on by set theoretic operators such as intersection, union and subset An interval
of a function provides upper and lower bounds for the range of the function, when its arguments span an
interval. For eg. the interval of the function (x*+y) for the interval x»[1,4] y =* [5,10] is [6,26]. This
implies that all the values taken by the function (x*+y) for the given range of arguments are above 6 and
below 26.

Interval arithmetic is used as the basis for evaluating algebraic relations containing interval variables.
yielding interval results. Interval arithmetic operators are defined on the upper and lower bounds of the
operands. The interval on (x* +y) in the above example, was determined by expanding the square
operator and applying the following interval arithmetic formulae. [Moor e 66]
[ab] + [cd = [a + c. b + d | )
[ab] - [cd] = [a - d b - (] | @
[ab] x [cd = [min(ac,ad,bcbd), max(ac,adsbchbd)] )




of [0» 64]. The conservative interval calculation destroys the oneto one correspondence between intervals
on arguments and intervals on functions. Thisis important in the context of design because it is often
néc&ssary to dftenit« what range of arguments will satisfy a range on the function itsdf. The extent to
which the computed interval deviates from the actual interval is critical to the degree to which srong
inferences can be mader egar dingintervals on variables.

There are some specific techniques intended to mediate againg the expansion of intervals. One such
approach is the centered form of functions based on a fourier expansion of the intervals and is described
in [Moore 79]. Other heurigtics, for example, to deal with even exponents are also useful. There are
several ad-hoc methods to obtain less conservative intervals, often exact intervals. Since the computation
of intervalsisnot the focus of our research, it will not be discussed at greater length here.

. 1.7 Constraint Propagation in Design
| ntervals can be effective for representing and reasoning about design parameter values. It is also possible
to propagate interval values through a set of congraints and detect potential condraint violations. By
propagating design decisions through condraints it is possble to determine how the various' design
parameters affect one another. In the process, redundant congraints are identified and diminated. The
intervals of the various parameters are also refined in this process.

Condder, for example, a DC motor. The torque (T in-0z) is rdlated to speed (0o rad/sec) as shown in
Figure 3 and as given by the congraint:

T* 10 - jco

Assume that the torqué musgt be at least 30 in-0z (.21 N-m) and must not exceed 75 in-o0z (.53 N-m) and
that the speed may assume any value between 150 and 400 rad/sec. The given interval, [30,75 in-0z].% in
conjunction with the motor characterigtics imposes upper and lower bounds on speed of 125 and 350
rad/sec as shown in Figure 3. Intersecting this interval with the original interval we obtain a refined
interval on speed, [150, 350 rad/sec]. This new interval is propagated through the condraint, once again.
tofind upper and lower bounds on torque, [30,70 rad/sec]. Thisinterval on torque and the corregponding
interval on speed indicate that the original specifications requiring torque to be less than 75 in-oz and
speed to beless than 400 rad/sec were not necessary. By propagating intervals it was possible to identify
redundancies and therefore smplify the design task without making specific commitments about any of
thedesign parameters.

The process of propagating intervals through congraints can be continued through long chains of
congraints. The process provides a means for'determining bounds on design variables thereby ddimiting
a feasble space for the final design. Propagation can be done through chains of congraints resulting in a
" successive narrowing of parameter intervals. Continuing our example, assume the power of the motor
(given by Power = coT) is required to be less than or equal to 8500 in-oz/second (60 W), that is, in the

*The SX units are not generally repeated in the interval notation to avoid confusion.




1.8 Interval propagation .

In this section we delve in more detail on the propagation of intervals through a set of constraints and the
evaluation of intervals through necessary and sufficient conditions. Consider the evaluation of intervals
using the basic interval arithmetic operations. For example* let V3 be an interval calculated from the
equation V., op V> * V3. Where, op isone of the four basic interval arithmetic operators. This operation
guar antees that for any value in the intervals Vy and V, the result of applying op will be in V, In other
words, the result is necessarily in the interval V,

After a constraint expression is evaluated the new interval is propagated. For example, when a new
interval is determined for a variable, that variable's current interval is updated by intersecting it with the
calculated necessary interval. If the intersection is null, then the original interval or the constraint is said
to be inconsistent This kind of propagation can be carried through complex equations using the interval
arithmetic operators. The process guarantees the result will necessarily be in the calculated interval.

In the DC-motor example, we have the equation Power * ooT. Assume we know the interval on Power
[8000, 25000] (inch-oz/sec) and Torque [30, 75] (inch-0z). We seek an interval on co such that, for any
values of power and torque (within their intervals) the speed, co, falls within the interval. In oth$r 6ords,
we seek an interval in which co has to necessarily be in. As shown in Figure 4 , the speed mugt fall
between a and b.. The interval may be computed using the basic interval arithmetic to evaluate the
congtraint, expressed terms of the variable in question: co=£££="8017,SX2=[106,833].

1.9 Necessary and Sufficient Intervals

The fact that a variable falls within a necessary interval does not guarantee that all constraints can be
satisfied, Le, necessary does not imply sufficient. Consider for example the situation depicted in Figure 4.
Although coflO6, 833 rad/sec] is necessary, an arbitrary valuein this interval is not sufficient to satisfy the
'power requirement for arbitrary values of allowable torque since the rectangle of valid torques.and speeds
extends beyond the bounding power curves. Even when we know that both torque and speed fall within
the necessary intervals it is still necessary to check that the power constraint is satisfled. There may,
however, be an inteival on speed which guarantees that the power requirement will be satisfied whenever
torque requirements are met We say that such an inteival is sufficient to satisfy the constraint For
example, the interval on speed sufficient to satisfyy the power requirement is shown in Figure 4. For any
value of torque and speed in their respective intervals, the power will always be between 8000 and 25000
in-os/sec.

The concept of necessary and sufficient intervals can be very useful to the designer. |If two constraints
each have associated with them a necessary interval on the same argument and those necessary intervals
do not overlap it is not possible to simultaneously satisfy both congtraints.  The ability to identify a
constraint contradiction of this sort early in the design cycle makes it possble for the designer to

. determine appropriate relaxations of these constraints.

The interval of some variable, sufficient to satisfy a constraint insures that a constraint will be satisfied
whenever all of the other variables fall within their necessary intervals. Therefore, if the necessary




1.10 Calculation using the Sufficiency Condition
In this section we present a method to evaluate the intervals on a variable based on a sufficient condition.

Our goal is as follows: Given the constraint V, op V, = Vj, to determine V), such that for any value in
given V/ the application of op yields a result in specified V. In other words, what should V;, be so that for
any value in V, , V, op V, lies in the specified interval V,?

To obtain the unknown interval V,, we express the relation V, op V, = V, in terms of the interval we
want to be within : in this case V;. Assume V, = [ v, vy, ], where v, and v,, are the values we seek.
" Now consider the relation V, op V, = V,. The left hand side can be evaluated in terms of the unknowns
vy and v,,, by applying the interval operators. These two unknowns can be found by solving the interval
equation, as demonstrated by the following example : Consider the D.C motor case in which Power is
required to be in the interval (8000, 25000] and the interval on Torque is given to be [30, 75]. Our goal is
to find an interval on ® such that Power = ® T is satisfied for all ® and T in their respective intervals.
Following the above procedure: Let @ = [0, @,]. Applying the equation Power = @T; substitute the
intervals for Power, Torque and @ we get [8000, 25000] = [®;, ®,] [30, 75] from which it follows that
(8000, 25000] = (30 ®,75 ®,], sincs torque and speed are known to be positive definite. Equating the
upper and lower limits of the interval equation, 8000= @, 30 gives o= 266 and 25000 = @, 75 Eives o =
~ 333. These limits on speed give the sufficient interval, '

Now consider the dual case, that of finding an interval on speed sufficient to satisfy the torque
requirement of [30,75] given that power falls within the stated interval of (8000, 25000]. Now, V, is
Torque and V, is Power. Expressing the equation in terms of Torque, Torque = Power/m; we get (30, 75]
= [8000, 25000)/ [®@;, ®,], from where it follows that 30 = 8000/, and 75 = 25000/, The limits on
speed are hence: ®, = 266 and o, = 333 , which is a nonsense interval. There is no interval on speed
sufficient to guarantee that there is some valid torque for any power in the stated interval.

This example not only demonstrates the simple methodology to evaluate sufficient intervals but also
illustates the asymmetric nature of sufficiency intervals and their conditional existence. The existence of a
sufficient intervals has an impact on the design decision making. For example, if we are designing a d.c
motor, the existence of a sufficient interval means the ability to accomodate any motor in the given torque
range or the need to use a particular motor in the given torque range. Conditions for existence of
sufficient intervals, resolutions and retractions needed for their existence are topics of current research.

1.11 Interval Criticality, Dominance, Activity

. Constraints in design may not be globally monotonic, globally active, dominant or critical, but certainly

" are regionally. The concepts of constraint criticality, dominance and activity, defined over regions, are
_ therefore, more effective in identifying the critical constraints and pruning the insignificant ones. Interval

- Methods, with which we represented and manipulated regional information in the previous sections, can

- again be used to characterize dominant, critical and active constraints regionally.

Interval Dominance Constraint ¢, <0 dominates constraint c,<0 in the interval I, if the interval (c,—~,)




monotonically decreasing; the new congraint cannot bind d. from below. The monotonic objective
variable is again bound from beow by the rdationship between force and &y and 0
A72(mm)¢F»44,000(/hf) p-4000 (psi).
The CondraintC} becomes  4i* +288*-1036820.0;

C2-c, = 10365 -287¢= 4%

interval! ¢, - ¢, ]| for H3t tj

-[10365- 287fy-4ry* 10365-287r ,-4td]

which isnecessarily > Ofor ry £ 27mm.
Sointheinterval [3, 27] condraint 1 dominates condraint 2.
At r s 27(mm), condraint ¢; becomes tight and dominates c,-

The solution is r=27 (mm), * = 72 (mm) andd, = 126 (wn), for thisisthe smallest value of t for which
both condraints are satisfied.

Thus, despite the absence of global monotonicities, the design solution was achieved by combining
regional information. This suggests that one could use interval methods not only for condraint reasoning
but also for optimizing the objectives. In fact interval methods guarantee that theresultant interval
obtained is an inclusion, i.e. theresult includes and binds all values of the function in this region. Interval
Methods basad algorithms use this assuredness property of intervalsto obtain the global optimum. In the
next few sections we will investigate the application of interval based methods to

* Obtaining the globally optimum solution and

» Combining condraint reasoning with global optimization.

1.12 Global Optimization

Global Optimization of a nonlinear, nonconvex objective subject to nonlinear condraints is yet an
unsolved problem. There is no single best method to accomplish this goal of attaining the global
optimum. The problem with most traditional nonlinear programming techniques is that they are local
methods. They can get suck in local valleys, and there is no guarantee that the solution is globally
optimum. Under strong assumptions about the function involved, like convexity etc. the solution can be
assured to be globally optimum.

. Interval methods have been used to solve the global optimization problem [Ratschek and Rokne 88]. The
- rationale behind these approaches for uncongrained optimization is as follows:
* Useinterval methods to represent regional information.

* Exploit the bounds provided by the interval method as a part of a branch and bound search
srategy.

» Combine with asubdiVisioning procedure, that helps acceler ate the sear ch, by yielding tighter
bounds. !

To solve the congrained optimization problem, these methods subdivide the congrained design space into
halves, until they get a part of the space which satisfies all the congraints. Due to the the extreme
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L 13 Interval Variables Approach

Unlike conventional interval algorithms which keep sub-dividing the design space until all congtraints are
satisfied, the Interval variables approach smplifies the modd regionally by reasoning from a variable
point of view. The interval dominancy, criticality and activity conditions, as defined in an earlier section,
are used to reason from the variable point of view. The Interval Variable approach, by itsdf, may not be
able to solve all the problems completely. In such cases it may be used as a pre-piocessor that smplifies
themodeL

Interval Variables approach
1. Form the adjacency matrix for themodel.*?

2. Consder nonobjective variables fird, giving preference to those variables that figure in the
least number of congraints.
* If the variable occurs in only one condraint, and is regionally monotonic in that
congraint, diminate the condraint and the variable.

« |f the variable occurs in several congraints and is regionally monotonic with respect
to each of the condraints, then call these condraints, nonobjective conditionally
criticalexactly one condraint in this group is critical). Apply Interval Dominance
conditions to all pairs of congraints in this conditionally critical set to identify the
critical congtraint While considering the various pairs, dominance rdations are
propagatedj.e. If A dominates B, and B dominates C, then A dominates C; The pair
A,C need not betested for dominance.

* If the nonabjective variable is not monotonic, subdivide the design space further, to
obtain desired monotonicities.

Congder monotonic objective variables, garting firs with variables that occur in the least number of
congraints. For each variable,
* Partition design spaceto obtain desired monotonicities.

e Lig all the congraints with the desred monctonicities under an objective conditionally
critical set

* Test for interval dominancy of congraints.

* Delete the dominated congtraints. Apply Monotonicity Principle 1 to obtain the congraint
which isregionally critical.
In alarger sense, the interval variable approach is Smilar to active set strategies, as it tries to solve the
problem by finding out the critical congtraints. However indead of expecting a few condraints to be
- critical throughout the design space, the interval variables approach looks for regional criticality. In
. highly nonlinear stuations, such asdesign condraints and objectives, we believe this results in Sgniftcant
. bendfits. : :

2pdjacency matrix lists the numbers of the constraints and the variables that occur in each of the constraints. It is described m
the next chapter. :
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Stait with thefollowing intervals.«

hm[0.1,1]

"'-[1.3]

b=([3,10}

/»[3.30]

a=be=[3,30]

Step 1 Sdlect die only nonobjective variable, t , for consderation. The condraints in which it appears
areasfollows:-

g m -at+ 168 £ 0.0

g3 = -a+ht £ 00

g4 m -ti<® + 9.08 £0.0 :

$5 - -1+0.02776* + (0.094r%*% £ 0.0 and the set congraints

*21.0,t £ 30

On gxouping the congraints into those that bind the variable t from above and those that bind frorp below,
we obtain
Set A(bindst from above)

g3 = -a+/ir S 00
*S = -1+0.02776* + (0.094 file?) £ 0.0 and
r-3.0 £ 0.0

Set B(condraints providing lower bounds)

g a -a* + 168 £ 0.0
g4 = -ar” 908 ~0.0
: -r+1S0O.0

Because t is a monotonic nonobjective variable, it has to be bounded by two critical congtraints, one from
above and one from below. So exactly one congtraint from each set must be critical
By Interval Dominance we can show that the set condraint r-3.0 £ 0.0 dominates the other two
congraintsin set A. Soitiscritical and r = 3.0;
Thismakes surethat -r +1 2 0.0 isnot critical Using r=3.0 and the interval dominance condition we can
show that _
g = -ar+16.8 £ 0.0 dominates

g4 = <72 + 9.08 £0.0 over the specified interval of a.
04 can beddeted and g2 iscritical resultingin a=(16.8/3>=5.6; '

h isbounded from below by two condraints. The set congraint h£0.1 and

the condraint g6 = -h + 0.125 £0.0;

Obvioudy g6 dominates the set condraint and so h= 0.125; _

Thus the solution in thisregion of the design spaceish = 0.125,a = 5.6, t = 3.0, b = 19.
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Chapter 2
Planning Constraint Solution Strategies

In concurrent design problems we often have large numbers of complex constraints which have to be
satisfied to complete a design task. As it is impossible to guarantee the simultaneous solution of a large
set of design constraints, we have investigated algorithms for planning and simplifying such constraint
problems.

Satisfying a large number of constraints does not imply that all the constraints be solved simultaneously.
Often, some parts of the design tend to be more coupled than others. This chapter presents algorithms for
finding the coupled constraints and for developing a solution strategy which minimizes simultenaety.

N 4

The simplest type of constraint sets are those which do not need any simultaneous solution of constraints.
Such constraint sets are said to be Serially Decomposable. The constraints can be solved serially, yielding
the value of one new variable for each constraint evaluation. We present algorithms to detect serial
decomposability and for ordering the solution sequence of such constraint sets. When a constraint set is
not serially decomposable, the constraints have to be solved for simultaneously. Instead of trying to solve
the entire constraint set simultanecusly, we would like to isolate and identify subsets of the entire
constraint set which necessarily have to be solved simultaneously. This chapter presents algorithms for
achieving this.

One of the assumptions we make in ordering algebraic constraints is that they are invertible. That is, for
any function F(X), one can find the value of any variable x; in X if the values of all the other variables are
known. Not all constraints are explicit and not all constraints are invertible. For example, a Finite Element
package, unlike an algebraic relation, takes inputs and produces outputs. One cannot determine the inputs
from the outputs. Such constraints have to be handled in a special way. We present an algorithm for
ordering constraint sets which contain both reversible and irreversible constraints.

2.16 A Design Example

_ Before embarking on discussions about graph theory and algorithms, let us examine the major ideas of

this chapter with the aid of a simple, but illustrative example. We will be using this example throughout
this chapter. ‘

Consider the design of a friction-type disc clutch shown in Figure 2-7. This example is taken from
(Hindhede, Et.al. 83]. The problem is to find the size of the clutch plate (D,,), and the inner diameter of
the lining (Din), to safely transmit 32 HP at 3000 rpm.

" There are several design equations relating the known and unknown clutch parameters. We treat these
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(11)

The design task isto find values for the unknown variables such that the above constraints are al satisfied
simultaneoudly.

2.16.1 Ordering the constraints
Instead of trying to solve all the above equations simultaneoudly, one can try to identify a reasonable
strategy to solve the equations. The agorithm presented in this paper produces the following strategy:

. Step 1. Calculate for Tmombial from Equation (9) by expressing the equation interms of Tomigai
and substituting for power and angular speed.

Step 2: Caculate for TV from Equation (8) by substituting the just determined value of

~Anominal’
Step 3: Calculate for Doyi, D, Dy and F, simultaneously from equations (5), (6), (7) and (Gpi r
Step 4: Calculate for Syeep from Equation (11)

The above dstrategy shows three aspects of solution planning: (1) Constraints may be treated as
procedures, where any variable in the constraint can be determined if the values of all the other variables
are known. (2) Some variables can be determined only &fter other variables are determined. This produces
achain (or ordering) of constraint evaluations, and (3) Variables which depend on one another have to be
solved for simultaneously. The actua numerical method used to solve the constraints is outside the scope
of this report. It is our am, to find a viable solution strategy which identifies and isolates only those
constraints which have to be solved smultaneously. This is done to avoid treating the entire constraint set
simultaneously.

2.17 Planning Algorithm for Serially Decomposable Constraint Sets

Some congtraint sets do not need any simultaneous solution of constraints. We call such constraint sets
Serially Decomposable. This is because the constraints can be solved seridly, that is, there is no
simultenaety among the constraints. For example, consider a reformulation of the clutch problem:

6T,..
3 o design
D, T (12
Power = "Toemiiku (13)
9 p D} o&
roop ' ——r— (14)
25
Do = 1 9p, (15)
Dy = 08D (16)

Tdm'gu = “nominal o ™
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Step 3. For dl thetowswith only one T init:
a. read off the corresponding column (variable name)
and push it on the stack ORDER
b. removethe row from the matrix
a remove the column with the T in it

Step4. Goto Step 1.

* A problem with using the above algorithm, is that it fails ungracefully when the constraint set is not
serially decomposed The agorithm has no way of telling whether a given constraint set is sevidly
decomposable or not, it starts generating an ordering and fails only when it reaches an impasse. It would
be better if we could determine, up front, whether a constraint set is orderable or not The next section
presents an agorithm aimed at quickly determining whether a constriant set is serialy orderable or not.
The dgorithm works without actually trying to order the constraints, and thus runs very fast

2.18 Special Treatment of Serially Decomposable Constraint Sets !

‘The constraint sets encountered in design practice are usudly extremely complex. The number of
constraints and the number of variables is large. An interesting property of the constraint sets is that they
are usualy sparse. Each of the individua equations have a small number of variables. A direct
simultaneous solution or optimization of the set of constraints is computationally very complex. It is
undesirable as it does not take advantage of the sparseness of the constraint set The sparse set of
congtraints is broken down in to different groups which can be solved separately and progressively one
after another.

A serially decomposable set can be ordered and solved directly without taking recourse to simultaneous
solution methods. A constraint set, which is not serially decomposable on the whole, may have parts
which are serialy decomposable. This property can be used effect|vely to partition the constraint set into
smaller and more managable subsets.

Detection of serialy decomposable sets is valuable. At present, the constraint sets are reordered using
. various agorithms, to partition the system of equations. It would be good to detect before resorting to
reordering, whether the constraint set is serially decomposable or not

_.An analytical method has been developed to test the serial decomposability of a constraint set This
~ method is based on an adjacency matrix representation of the constraint set and a sét of boolean properties
" of theset

" Adjacency matrix representation
A constraint set can be represented as a bi-partite graph. The nodes of the graph are the equations and the
variables. The edges are between the equations and the variables present in the equations.

The adjacency matrix of the constraint set is matrix fonned by presenting the equations along the rows
and variables along the columns. An element of arow is 1 if the variable corresponding to the column is
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wheredementsay are boolean.
IfAis2x 2then,
det(A)» (a, AND a") XOR (a;2 AND ayy).
If Aisnxnthen

det(A) = (z2 AND minor (2" {)) XOR (a;2 AND
minor (a;2)) XOR... XOR (a;, AND minor(a,,)).

anary-XOR ((an AND minor (a,)),(ai2 AND
minor (az2)),... (&, AND minor(a ")) ). T .
The XOR expansion is defined as n-ary XOR; i.e. before evaluating any of the boolean expressions, the
whole expresson should be expanded. After the complete expansion, the AND operations should be
evaluated. Then the n-ary XOR should be applied to the whole expression. If thereis exactlyone ' 1' in
the expression, theresult will be 1, else the expresson will evaluateto O.

The determinant can be expanded by any row or column. Consequently, the value of the detenninant does
not change onrearrangementof rows and columns.

Criterion for Serial Decomposability
The detenninant of the adjacency matrix indicates the presence of loops.

If A is an adjacency matrix, then
if det(A) s |, the condtraints can be serially decomposed,

=0, the congraints can not be serially decomposed.

Congder thefirg example. The adjacency matrix on rearrangement:

As I 00000 Ol (5)
11 1000001 (4)
0111000 (1)
10001 1101 (2)
100101 101 (3)
100001 101 (6)
LO00O0 10 Ilj (7)

. H £>: 15
where the columns are : (I nominal.I design” aX>el >0Uf “in">hoop)

Expanding the determinant of A by firs row.
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A serially decomposable matrix has a path through the all the 1 elements, which is a tree. In a matrix,
which is not serially decomposable, such a path does not exist. It contains a path which is a graph with
loops rather than a tree. The number of these loops and their inter-relations are an important consideration
_ ina solution of the constraint management problem.

The present work does not include non-square constraint sets and directed constraints. It can be extended
to cover these cases. The theoretical approach seems to have a potential to give rise t0 an analytical
formulation for optimal partitioning of a constraint set

2.19 Ordering a Non-Decomposable Constraint Sets
When a constraint set is not serially decomposable, the constraints have to be solved simultaneously.
Instead of trying to solve the entire constraint set simultaneously, we would like to isolate and identify
subsets of the entire constraint set which necessarily have to be solved simultaneously. This section
presents an ordering algorithm which helps identify such subsets.

Let us retumn to the original clutch example. The original problem, as we noted earlier, is not sgrially
decomposable. This can be seen with the aid of the adjacency matrix representation. Figure 2-9 () shows
the matrix for the given equations. By carefully reordering the rows and columns, one can find a solution
plan which is better than trying to solve all the variables and constraints simultaneously. Figure 2-9 (b)
shows the ordered matrix: after calculating T,,,.;,, it is possible to calculate T,,,., from equation 8. The
next four variables have to solved as a block (simultaneously).

|
E§ 2‘ g & e
= -—b
EEPR PTEEE
L EEIE NI 5
2 xIx] Ix 4
3 xI x| x 1
4 Ix]x 2
SIx 3 ,
6 X 6 %
7 x| 7 [ Ix[_fx
(a) ®)

Figure 2-9: Adjacency Matrix Representation of the Ordering Task

" 2.19.1 Intuitive Explanation

= The algorithm consists of two stages: Matching and Component Finding. The first stage matches

. variables to equations. This is done because we know that each equation can be used to solve for only one
variable. Every variable will be calculated from one constraint. It is for this reason that we start by
matching constraints to variables. It is important to try and find as many matchings as possible. For
example, in the two equations F1(x.y) and F2(x), there are two variables x and y which have to be
matched. The matching problem is shown in Figure 2-10 (a). The variables are listed on the left and the
constraints are listed on the right. The lines indicate which variable is involved in which constraint. This




33

Tnominil Toonuiul

Tdesign Tdesign

Dout Dout

Din Din

Fa Fa

De De
Shoop Shoop Om

Figure2-11: Bipartite Matching
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Figure 2-12: Dependency graph among variables

In the digraph, T mymimi does not depend on any unknown quantity and hence can be immediately
determined from the equation it wasmatched to. Once T nomiioear ISKNOWN, T guiim Can becalculated. The
rest of the variables, however, cannot be chained asthefirst two. ThevariablesDgg D* D, and Fe arein
a cycle of dependencies. That is they depend on one ancther and have to be solved smultaneoudy. The

variable Syop IS NOt in the cycle. Cycles are identified using a gandard graph theoretic algorithm called
the Strong Component Algorithm.

A grong component of a digraph is a maximal set of nodes in which there is a path from any node
(variable) in the set to any other node in the set A depth-first search based technique is used to determine

strong components efficiently (Aho, Hoperoft & Ullman V84]. The strong component algorithm consists
of the following steps:

1. Perform a depth-firs search of the digraph (G) garting at any nodeN. Make a note of all the
nodesvigted in thelist L 1. The depth first search procedure is as shown below:

DFS(G, Current-Node)
1. Add Current- Nodetogloballyde‘lnedllst VISITED

2. Get the dependents (D) of the Current-Node which are not in VIS TED
3. IF there are no such dependentsreturn NUL L
EL SE each dependent (d) do DFS(G, d)
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2.19*2 The Complete Planning Algorithm
In summary, the steps arc asfollows.

Step L Astheevaluation of acongdraint yields the value of only onevariable at atime, we have
to first decide which variables will be ralnilatrri. from which constraint As we would like to
evaluate as many variables as possible, the matching of variables to congraintsis done using a
bi-partite graph matchingtechnique.

Step 2. A directed graph of dependencies among variablesis generated. For example, if one is
going to calculate for variable a from the constraint” h c)o then ais said to depend on b and
C.

| Step 3. Cyclesin the above di-graph indicate smultaneity among variables. Using an algorithm

to find strongly components in the di-graph, the smallest cycles are found and isolated.

Step 4. After all cycles are isolated, the rest of the di-graph becomes a tree. A reverse

topological sort yields the steps which can be taken to find the values of the variables. The
algorithm (RTS) isasfollows:

RTS(Tree) .
Step A. Initialize a stack called ORDER y

Step B. Ifthere areno nodesin the Tree, return ORDER

Step C Find all nodesthat have no children (depend on no other variable)
If there are no such nodes, then theinput graph isnot atree.

Step D. For each node found in Step C, do the following:
i. push the node onto the sack ORDER
ii. remove the node from the digraph

Step E. Goto Step B.

The agorithm is based on three dandard graph theoretic algorithms  Bipartitematching, Strong
Components and Reverse Topological Sort. These algorithms are all described in introductory graph
theory texts. Please see [Aho, Hopcroft & UUman '83].

2.20 Breaking the Strong Components
Strong components can sometimes be broken or smplified by picking the value of one of the variables in
the srong component The process is analogous to untying knots in a string. Untying a large knot might

- dther reveal smaller knots or might eiminate the knot altogether. The idea behind breaking a strong
- component is to perform a single-degree-of-freedom search on one variable ingead of solving al the
-* variables smultaneoudy. . Consder, for example, a coupled congraint set with n variables and n
‘condraints. Assume that all smultenaety is diminated if one variable x is guessed. After guessing x the
-values of all the remaining n-1 unknowns can be easlly determined from n-1 condrairits. The
remaining congdraint can be used to calculate anew value for x The new value is compared to the guessed
value. If there is some eror, a new value for x is guessed and the process is repeated. Iterations are
carried out untill the error is within acceptable limits.
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isadded inthe diesecond stage. The heurigtic will wr-ongly consgder F, andD, aspossible candidates.

M oét-Depende‘nts Heuristic

We have found that the best variables to pick are often the ones which are most "coupled." Smply put,
we son the nodes (variables) in the grong component by the total number of dependent variables in the
strong component. In die clutch digraph, applying this heuristic places Dy and D, as the best choices
(Figure 2-15). The numbersin the figureindicate the number of dependents at each node.

Shoop

N

2 N 2
e ——
Fa =

»Tdesign =—=—="Tnominal

Figure 2-15: Counting the number of dependents at each node. v
The number of dependents of a variables is a heuristic measure of how critical it is to know the value of a

variable, before other parts of the design can be determined. It is this property that, we believe, makes the
heuristic work. We have conducted experiments to verify this hypothesis.

2.20.1 Experiments with the M ost-Dependent Heuristic

We are currently conductive extensive experiments to assess the efficacy of heuristic approaches to
selecting variables which can break a given strong component The experiments are being run on
hundereds of randomly generated constrai nt sets.

Preliminary results show, that if one uses the Most-Dependents heuristic it takes (on the average) two
tries to find avariable which breaks the strong component 1f no heuristic is used it takes about five or Sx
tries before the appropriate variable is found. These experiments yielded results only for smal
components. Larger components were rarely eiminated by choosing a single variable. Detalled
experimental results will be reported in alater version of this document

2.21 Handling Uni-Directional Constraints
One of the assumptions made in the above ordering algorithm isthat al constraints are invertible. That is.
for any function F(X\ one can find the value of any variable x-,in X if the values of &l the other variables
are known. Not al constraints are explicit and not al constraints are invenible. For example, a Finite
. Element Method (FEM) based tool takes some inputs and produces outputs. One cannot determine the
inputs from the output: The constraint is a Black-Box. Algebraic constraints can also be implicit For
example, it may not be possible to calculate for al the variables in a very complex transcendental
function. For such constraints only a subset of the involved variables can be solved for, thereby making
the rest of the variables serve merely as inputs.
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Figure 2-17: A Directed Bipartite Graph representation

case of an irreversible constraint, the matched variable is only dependent on the inputs to the constraint.
In other words, one need consider only those uni-directional arcs which point from variables 0
- constraints. In the clutch example, the matchings are as follows:

MaxStress IRR1:Case2 (T ypyigns Do)
" Tomina FS( Tt )

Ton FA(T ooy Taeien)

Do IRR1-Casel (T )

D, . F6(D, D, )

F, FI(T4.F,D,)

D, F2( D, D D,)

Smp n(DM'DiD'FC'Sm)
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2.22 Related Work :

The notion of using bipartite matching and the strong components algorithm together was originally
suggested by Wang (Wang 73). The algorithms were originally used to solve Gaussan matrices for
solving sets of equations using Newton-Raphson like methods. Serrano applied a smilar algorithm for
finding srong components in sets of condraints (Serrano 87). The aim of this work was to concentrate
solution on components and to avoid having to solve the entire congraint set smultaneoudy. Both these
efforts are aimed at bi-directional congraints. We have extended the algorithms to uni-directional
congraints. We have also developed the notion of bresking strong components using heurigic
approaches.

Recently, Eppinger & Whitney have described a coordination problem in complex design projects
[Eppinger & Whitney '89]. A design project is viewed as being composed of several tasks, each of which
needs some input data and produces (as output) some data for other tasks. The dependencies among the
tasks can be expressed in an adjacency matrix. The paper presents a heurigtic approach to ordering the
tasks. A comparison sudy of our approach to ordering uni-directional congraints and the proposed

heurigtic approach isin order. ,
v



P
T

45

[Sutherland 83)  Sutherland, IE.
Sketchpad® AMan-MachineGraphical Communication System.
Technical Report TechRepoit #296, MTT Lincoln Lab. Cambridge, M assachusents,
1983.

[Waid89] Ward.A.G
A Theory of Quantitativel nferenceAppliedtoaMechanical Design Compiler.
PhD thesis, MiT ., 1989.

[Navinchandra & Rinderle '89]

Navinchandra D., J. Rinderle, Interval approaches for Concurrent Evaluation of Design Condraints, In
proceedings of the Symposium on Concurrent Product and Process Design, held at the American Society
of Mechanical Engineers Winter Annual M eeting, San Francisco, December, 1989

[Eppinger & Whitney * 89]

Eppinger, SD. , D. Whitney, Coordinating Tasks in Complex design projects, In Proceedlngs of the
MTT-JSME (Japan Society of Mechanical Engineers) joint workshop on Concurrent Engineering. Boston,
Nov, 1989.

[Aho,Hopcroft& Ullman '83] y;

.Aho, A.V., JE. Hopcroft, J.D. Ullma, Data gructures and Algorithms, Addison-Wedey series in

computer science and information processing. Addison-Wedey, Reading, MA 1983

[Serrano 87]

. Sarrano, D., Condraint Management in Conceptual Design, PhD dissertation, Dept of Mechanical

Engineering, MTT, 1987

[Siram etal '89]

Siram, D., G. Stephanopoulos, R.D. Logcher, D. Gossard, N. Groleacu, D. Serrano, D. Navinchandra,
"Knowledge-Based System Applications in Engineering Design: Research at MTT\ Al Magazine, Fall
1989

[Wang 73]
Wang, R.TH., Bandwidth Minimization, Reduablllty Decomposmon and Triangularization of Sparse
Matrices, PhD dissertation. Computer and Info. Science Resear ch Ctenter, Ohio State Univer sity, 1973




7
p* 3r
Zz « b-la
P»5

Therunisasfollows:
CLisp> (load "loop") ... ; load all the files
CLtsp> (setq equations
"((X- Y+ Z2** 2) (Y- X*2Z (B- C** 3
(A- (B* 10) / P)
(z-B-2*A (P-5 (P-3*R))
CLisp> (loop::order egns2 :verbose t) /verbose switch is on

Step 1: Solve for P fromconstraint:

(P - 5)
Step 2: Solve for R fromconstraint:

(P- 3*R
Under Constrained by 1 degrees of freedom; sone stats F ’
Col l apsing ((X Y)) ; trace information

Step 1. Solve for A fromconstraint
NI L

Step 2. Solve for B from constraint
(A- B* 10 / P)

Step 3: Solve for Z fromconstraint
(Zz-B-2*A

Step 4: Solve the follow ng variabl es sinultaneously:

' (X'Y)
fromthe constraints:

_ (Y- X*2Z) (X- Y+ Z** 2))
Step 5: Solve for C from constraint
(B- C** 3)

((P(P-5) (R(P-3*R)) (ABZ (XY) Q) /returned Ilist

The function used is order which is called ffom the loop package. The ordering is shown in two parts.
The firg pan indicates the part that is directly decomposed. The second pan is where components are
found. In this case, the problem is under constrained. This means that there is an extra variables during
bipartite matching. The system decides that variable A be determined from constraint NIL. This means
that the value of A has to be guessed, as it is an extra degree of freedom. The rest of the setps are self
explanatory.

The functionreturnstheresults as a list The list also two parts. The first pan is alist of lists. Each sublist
contains two elements. The first is the name of the variable and the second is the equation from which it
should be calculated. The second list in the result corresponds to the second part of the output The list
shows the order in which the variables have to be solved in. Variables in parenthesis have to be solved
simultaneously. In the ouput above, we can solve for A, B and Z¢ solve X and Y simultaneously and finally

" solve for C.




