
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Grammatical Approaches to Design

by

S. Mullins, J. R. Rinderie

EDRC 24-27-90

Grammatical Approaches to Design

Scott Mullins James R. Rinderle
Research Assistant Associate Professor

Mechanical Engineering Department Mechanical Engineering Department
Purdue University Carnegie Mellon University

West Lafayette, IN. 47907 Pittsburgh, PA. 15213

Abstract
A grammar is a definition of a language written in a transformational form. To the extent
that design requirements and designed artifacts can be represented by some language, and
to the extent that design is a transformation from function to form, grammars may
facilitate the development of theories and methods for design. Furthermore, the
computational complexity of various grammatical formalisms may provide a foundation
upon which to base complexity measures in design. We discuss grammatical formalisms
and give examples of how grammars might facilitate design automation. ,

The syntax and lexicon of a formal language are analogous to the configuration and the
components in an engineering design. Similarly, the complexity of alternative
grammatical formalisms is related to the complexity of design, and to the specific
representations chosen. Attribute grammars are convenient for managing relationships
among engineering parameters, even when configurations are not known a priori. In this
way the grammatical formalisms provide a bridge between conventional rigid
parameterizations and ad hoc design representations.

1. Introduction
The degree of automation in mechanical design is modest in comparison with that in
other domains, such as integrated circuit design. One difficulty in automating
mechanical designs is the highly integrated, tightly coupled nature of mechanical devices
which precludes a direct application of various decompose and transform methodologies
[Rinderle 87] [Finger 89]. It is also the case that relationships between three

dimensional geometry and configurational alternatives preclude morphological methods
often inherent in many expert system applications. Alternative representations for the
function and form of mechanical devices and alternative methodologies for transforming
function to form are needed to advance the state of the art of mechanical design education
and to provide a foundation upon which to base designer assistance systems. One
approach to alternative representations is based on formal languages [Sony 80] [Fitzhorn
86].

The transformational nature of grammars is critical from a design perspective since
design can be viewed as a transformation of functional requirements to a physical device
[Mostow 85] [Rinderle 87]. Furthermore, grammars can be thought of as formal

UNIVEftSITYUBRARfES
CARNEGJE-MELLOM UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15223

computational procedures for generating and computing the elements of a language,
perhaps a language of mechanical design. I this light, grammars are relevant to
engineering design.

The formalism of grammars has been the subject of a great deal of research lately in the
field of design theory and design automation. There are several reasons why the idea of
language formalisms for mechanical design seem attractive.

• Formal methods facilitate the characterization of the mechanical design
problem more precisely.

• The absence of a fixed structure in mechanical design decision making, e.g.
hierarchical decomposition, makes formal but less rigid methods attractive.

• Recent work in the representation of geometry as strings or graphs [Fitzhorn
86] makes methods which operate on strings or graphs useful.

• A grammatical approach to design makes it possible to leverage related work
in computer science.

We proceed with a review of grammatical formalisms in the context of design. ?

2. An Example of a Design Grammar
A grammar is a structured way of describing the relationships between the entities of a
language, whether that language be English prose, a computer programming language, a
shape language or perhaps a language of mechanical function and form. A grammar
defines the syntactic structure or rules of the language and hence provides the framework
upon which to interpret the language. English grammar, for example, specifics a
structure among sentences, noun phrases, modifiers, adjectives, adverbs, and nouns that
make it possible to unambiguously interpret phrases such as:

I hit only him.
Only I hit him.

A grammar itself specifies only the syntax of a language. The syntactic correctness of an
element of the language is necessary but not sufficient to insure that the element is a
meaningful message. The interpretation of the language completes the "string to thing*9

transformation. Interpretation or the semantics of the language can be defined as anything
pertaining to the meaning. The semantics of a language are based upon both the
syntactical information gained from the grammatical analysis and from the lexical
information inherent in the individual components of the language. For natural languages
the lexical information is contained in the dictionary definition of the words. For
mechanical designs the lexical information can be thought of as the behaviors and
features associated with individual components of the design.

We present a simple design grammar to illustrate some key points. The grammar
generates two dimensional, truss-like bridge structures which are constructed from
triangular substructures and spans. Adjacent triangular structures are understood to be
connected at their apexes as well as at the base. Triangular structures connect to the

mid-point of an adjacent span. The grammar is designed to prohibit adjacent spans since
such a structure would not be stable. The bridges can be of any length. An example of an
acceptable structure is shown in Figure 1.

Since any bridge structure can be described as a sequence of triangular structures and
spans we may describe any specific structural configuration as an arbitrary length
sequence of the characters t and 5. Since these and only these symbols will be present in
a complete description of a bridge structure, we say that these are the terminal symbols of
the bridge language.

The grammar will generate sequences of t's and s's which are valid bridge structures. If
we begin with a generic bridge, indicated as B, we may write transformation rules which
elaborate the generic bridge into one of possibly many allowable basic configurations
comprised of substructures. Each substructure is subsequently elaborated into other
substructures and ultimately into terminal components.

A bridge, B, for example, consists of a rigid substructure, R, which in turn can either end
in a span or not end in a span, R^ES* ^DES respectively. A rigid section whicft docs not
end in a span must consist of a triangular structure alone or some rigid structure followed
by a triangular structure. Similarly, a rigid structure which does end in a span must
consist of either a single span or some rigid structure ending in a span, however, the rigid
structure preceding the span must itself not end in a span so as to guarantee stability
between adjacent sections. These compositional rules or productions in the bridge
grammar may be shown as:

B -* R

R —> RNES '
RNES -> T I RT
RDES "* S
S -> S
T -> t

The I indicates that the symbol on the left hand side of the rule can be transformed into
either of the strings on the right hand side. The symbols, B, R, R ^ E S ' RDES' T' ^ ' d o n o c

appear in the final language but are useful in constructing the final language. These
symbols are referred to as the non-terminal symbols of the language. The symbol B is a
special symbol called the start symbol from which the entire bridge language can be
generated. The interpretation of the individual symbols, apart from their relationship to
the other members of the string, is the lexical information of the language.

The semantics of the language define the interpretation of the string as a whole. The
implicit triangle-triangle and triangle-span connections, for example make it possible to
understand how a string of t 's and s9s can be thought of as a bridge. Semantics specified
in this way are called the static semantics because the interpretation is the same no matter
what the overall form of the string. The bridge corresponding to the string, t s t t tf is
shown in Figure 1 along with a tree that shows how the string is derived using the
grammar. The start symbol, B, representing a generic "bridge,11 is at the top of the tree

and the "leaves" of the tree are the symbols in the string.

We have just seen a simple example of how a design grammar can be used to generate a
design alternative. If instead we dunk of the grammar operating in reverse, we will be
able to determine whether a particular design alternative, in this case represented by a
string of Vs and s's, could have been generated by the grammar and therefore determine
whether or not a design alternative is valid. In this case we are using the grammar to
parse an element of the language. The bridge grammar productions were chosen to
preclude any bridge configuration with two adjacent spans. An "invalid" bridge
represented, for example, by the string, t s s 11, can not be parsed to recover the start
symbol and therefore, the string is not part of the bridge language, and is therefore, not a
valid bridge configuration.

Parsing not only provides a test of validity but also results in the identification of a

B

I
R

K
NES

NES

Triangle Span

A

Figure 1: String Interpretation and Derivation Tree

sequence of productions which produces the string from the start symboL The
productions themselves and the meaningful non-terminal symbols which they produce
are themselves useful in interpreting and operating on the language.

Although grammars may be used to parse a string as is common in the the interpretation
of the English language or in the translation of computer languages, they may also be
used to generate elements in the language. In the context of engineering design,
generation corresponds to the identification of design alternatives [Stiny 80]. Controlling
a grammar so as to focus the generation of alternatives is a key issue.

3. Theoretical Properties of Grammars
Grammars are both quite general and powerful They allow for a very compact
representation of a possibly infinite set of strings. Furthermore, the transformational
paradigm inherent in grammars allows for a wider variability than is possible with other
types of procedural formalisms. The generality, however, has a direct impact on the
difficulty in parsing and in determining the characteristic of a language. The properties
of various grammatical formalisms were first explored by Chomsky [Chomsky 66] and
their computational properties were derived through their relationship to Turing machines
[Moll 88] [Revesz 83]. We discuss various of the grammatical formalisms and their

characteristics as a foundation upon which to discuss the complexities of mechanical
design formalisms.

3.1. String Grammars
The bridge grammar presented in the previous section is an example of a string grammar
in that it prescribes transformations on, and therefore, relations among, symbols in a
string. String grammars are used to specify the syntax of natural languages and of most
programming languages. In general the formalisms of other types of grammars, such as
graph grammars, shape grammars, and structure grammars, are extensions to the string
grammar formalisms.

String grammars are defined in terms of two sets of characters, a set of productions which
transform strings of characters into alternative strings and a special character called the
start symbol. Formally a string grammar consists of four elements, also called a 4-tuple:

G = [NfT,P,S)
where N is a set of non-terminal symbols

T is a set of terminal symbols with NnT=0
F is a set of productions
S is a special symbol called the start symbol.

The representational power of a string grammar depends strongly on the form of the
allowable productions in the grammar. The form of the productions also have a
significant impact on the computational complexity of characterizing a language or
parsing an element of that language. In the following sections we will look at various
grammatical formalisms and discuss these characteristics.

3.2. Context-Free Grammars
In a context free grammar the left hand side of all productions must consist of a single
non-terminal symbol, i.e., they take the form:

Each production causes a single non-terminal symbol v to be replaced by a string of
terminal and non-terminal symbols. In this case the firing of a production depends on a
single symbol, i.e. the context of the non-terminal symbol is not relevant The bridge
design grammar in the previous section is a context-free grammar. A derivation or parse
for a context-free grammar is always representable by a tree such as shown in Figure 1
because a single symbol is always replaced by one or more symbols. In this sense it is a
hierarchical derivation which continues until the string contains only terminal symbols.

The formal definition for the bridge grammar presented in the last section is:
S , T}

5={B) '
and the productions for the grammar are the transformation rules as defined before. The
bridge grammar is infinite in that there is no limit to the possible length of the strings that
can be generated.

It is important to note that while the bridge grammar is context-free the bridge design
problem itself is not The placement of the spans and trusses do in fact depend on the
type of bridge element located next to it This is due to the constraint that spans in the
bridge may not be adjacent This "physical" context-sensitivity is taken care of by a
careful choice of the non-terminal symbols and productions. As will be demonstrated
later, alternative grammatical formulation may incur severe computational penalties.

Two grammars Gj and G2 are said to be equal iff they can generate the same language,
L(G{) = L(G2). In general, the problem of determining whether or not two grammars
generate the same language is undecidable.1 The problem of determining whether an
arbitrary string is a member of the language of a context free grammar is decidable.
Moreover, the time complexity for the parse is at worst O(n3), where n is the length of
the string of terminal symbols being parsed.

Several other theoretical characteristics of context-free grammars are worth noting. A
grammar is said to be ambiguous if there are multiple parse trees for the same string in a
language. The question of whether or not a grammar is ambiguous is undecidable. It is
also undecidable, in the general case, as to whether or not the language of one context-
free grammar properly subsumes the language of another grammar, or L(Gj) c

lA property is said to be decidable if an algorithm can be written that will compute that property in i
finite amount of time for any member of that class of problems. A property can be undecidable for the
general case and be decidable for specific problems in that class.

Despite this, given a finite language Lx and a context-free grammar G it is dccidable
whether or not Lj Q L^G) and I, nL^G) = 0. It is also decidable if the language of a
grammar, Up)* is infinite. The procedure is to find a non-terminal symbol A such that
there is a derivation:

A -*. . . •-> XAY

This type of derivation denotes a recursive grammar.

The proofs for these properties can be found in [Revesz 83]. In general the proofs follow
from the relationship between grammars and Turing machines.

The preceding theoretical results along with the ones presented later in the paper are
important in understanding the implementational difficulties associated with any
particular model of the design process. The type of grammar needed to generate or parse
a particular language is not always obvious, as will become more apparent in the next
section. A strictly hierarchical evolution of a design can be easily captured in a context-
free grammar. Since context-free grammars have the most advantageous computational
properties of all the grammars this is an attractive possibility, it is, however, unrealistic to
expect that all design problems, particularly mechanical design problems, can be
simplified to this extent Nevertheless, a careful formulation of the grammar used to
model the design process will mediate against the computational complexity of the
problem.

3.3. Context-Sensitive Grammars
The definition for context-sensitive grammars takes the same form as for the context-free
grammars. That is, a CSG also consists of a four-tuple;

G = {N9T9P9S)
where the symbols have the same meaning as for the CFG.

Context-sensitive grammars differ from context-free grammars in the restrictions placed
on the form of the productions. Whereas the productions in context-free grammars have
a single non-terminal symbol on the left hand side, context-sensitive grammars can have
strings of terminals and non-terminals that contain at least one non-terminal symbol. In a
CSG, the productions replace one of the non-terminals in the left hand side with a string
of terminal and non-terminal symbols.

The basic form of the productions for a CSG is [Revesz 83]:
slv S2 "* 5 l^2

where v e N and Si% S2* and P arc strings in (N u T), and P * X

Context-sensitive grammars provide a convenient bridge between string grammars and
graph grammars. Even though the final output of a context-sensitive grammar is a string
of non-terminals, the derivation for it is most easily represented by a graph rather than a
tree. The graph representation for a context-sensitive grammar derivation is shown in

Figure 2. This grammar is a context-sensitive alternative to the context-free bridge
grammar presented in the previous section. The derivation graph shown produces the
same string, and therefore the same bridge as the first bridge grammar example.

A careful examination of the productions in Figure 2 will also reveal that there is more
than one derivation graph and therefore more than one sequence of productions that will
produce the string shown. This is an example of grammatical ambiguity. If the sequence
of productions is critical for the interpretation of the string, for instance if the production
sequence for the bridge grammar were a guide to the fabrication of the bridge, then this
ambiguity becomes a significant feature of the representation. If there is more than one
way to put together a bridge, this may in fact provide a more accurate model of the
domain. It is, however, important that this issue be recognized and understood.

* : • '

Productions:

B —*• sR I tR
SR —*> stR I s t
tR —^ tsR I ttR | t s | t t I tRt

Non-terminals: R

Terminals: t , s

String - tsttt

t t

Figure 2: Derivation Graph for a Context-Sensitive Grammar

It may seem at first glance that the context-sensitive bridge grammar is simpler than the

context-free grammar. While the CFG has more productions and intermediate symbols
than the CSG, the CFG has certain computational advantages over the CSG. This is an
important point in any planned implementation of a design grammar. Context-sensitive
grammars can explicitly incoiporate aspects of inter-component coupling, at the expense
of computational complexity, however, this is not the only way that this coupling can be
handled A cleverly chosen grammar can ease these difficulties.

It is provable that context-sensitive grammars ait inherently more powerful than context-
free grammars, meaning that there are languages that can be generated by CSG*s that can
not be generated by CFG's. However, it is impossible to determine whether or not an
arbitrary language can or can not be generated by a context-free grammar.

Context sensitive grammars are more complex than context free grammars. Any question
that is undecidable for context-free grammars is also undecidable for context-sensitive
grammars. Other interesting properties of context-sensitive grammars are that it is
undecidable as to whether or not an arbitrary CSG is infinite and whether or not an
arbitrary CSG generates an empty language (i.e. L(G) = 0) . A positive property of
context-sensitive grammars is that the membership problem is decidable. In other words,
for any arbitrary string of terminal symbols P finding out if P e L(G) is possible, but not
in polynomial time.

3.4. The Chomsky Hierarchy
Context-free grammars and context-sensitive grammars fit into a broader family of
grammar types called the Chomsky hierarchy. This hierarchy orders the grammars
according to their generative power and according to their computational complexity. It
should not be surprising that there is a direct relationship between these two properties in
that as the generative power increases the difficulty associated with computing it also
becomes greater. The hierarchy is based upon restrictions applied to the form of the
production rules used in defining the grammar.

The grammars in the Chomsky hierarchy are said to be Type i if they conform to the
following restrictions:

• i=0: Phrase Structure Grammars..
No restrictions to the production rules. Type 0 grammars have the greatest
generative power. For an arbitrary Type 0 grammar determining whether or
not a string w is derivable from a string y is undecidable. This is the
membership problem for arbitrary grammars. Graph grammars generally fall
into this category.

• i=l: Context Sensitive Grammars.
Every production rule has the form

where A € N and the strings Ql9P,Q2 are in (W u T)*2, and P * X (the null
string). The only exception to this last restriction is that the start symbol may
be in the production S -> X but then S may not appear in the right hand side
of any production. Type 1 grammars are also loiown as length-increasing
grammars.

/=2: Context Free Grammars.
The production rules are restricted to the form:

A -» FwhcreA € Wand/Msastringin

• i=3: Left Recursive Grammars.
The production rules are restricted to the form:

A-* RB or A -> R where A9B e N and the string/? is in T*.

These are also known as the regular or finite-state grammars.
LR grammars are unambiguous.

A language is said to be Type i if it can be generated by a Type i grammar. The'following
assertions about the hierarchy of the languages can be made [Revesz 83].

meaning that every Type 3 language is also Type 2f and so forth.

The importance of this classification scheme is that it provides a simple test for any
grammatical model used in a design system. By comparing the productions in the design
grammar to the restrictions in the Chomsky hierarchy it is possible to quickly determine
some important computational properties of the design system.

It is of interest in our discussion to note that Type 0 grammars are Turing equivalent. In
other words they display the same computational complexity and power as do Turing
machines. This fact forms the basis for many of the assertions regarding the
computational properties associated with the grammatical formalisms discussed in this
paper. Additionally it has been postulated that design is inherently Turing equivalent
[Fitzhorn 88] [Harrison 74]. As such it is interesting to note the number of undecidable

properties associated with Turing machines. These difficulties certainly mirror those of
design in that it is often very difficult to determine whether or not a particular functional
specification can be met A detailed discussion of Turing machines is presented in
[Lewis 81].

2The symbol * indicates the set of all possible combinations of the symbols contained in the set. For this
case it indicates that P, Qx% and Q2 can be any combination of terminal and non-terminal symbols,
including combinations that contain repeated symbols. The inclusion of strings that have repeated members
makes this different than the power set

10

3-5. Graph Grammars
To apply the string grammar formalism to design requires that the design be
reprcsentable as some string of symbols. Mechanical designs however, consist of many
different components configured in space and are more naturally represented as graphs.
Although any graph can be represented as a string, doing so often obscures useful
topological information, e.g. physical adjacency, which is explicit in a graph structure. It
is useful, therefore, to consider an extension of the string grammar formalisms to graphs.

The concepts underlying graph grammars are fundamentally the same as those for string
grammars. Differences arise only in specifying unambiguously how each of the
productions is to operate. Specifically questions of graph matching, sub-graph removal
and the embedding or attachment of some new graph to the parent graph.

A graph consists of a set of vertices connected together by a set of arcs. Formally we say
that a graph g is defined as g = (V,B) where V is the set of vertices in the graph and B the
set of arcs. In this context vertices are also referred to as nodes or knots and the arcs are
also called edges. There can be labels for the nodes and/or the arcs taken from the node
label alphabet, Zn, and the arc label alphabet, Zfl, respectively. The arcs can b$ directed,
in which case the graph is a di-graph, or they can be undirected. A self-loop in a graph is
an arc that starts and ends at the same node.

There are several operations that apply to graphs that are important in the definition of
graph grammars. We say that a graph g = (V,B) is isomorphic (equal) to graph
h s (V*,fl*) iff there is a function Hf such that *F is bijective from Vto V* and from
BtoB*. By bijective we mean that there is both a one-to-one and an onto
correspondence between the two sets. That is, for every node in g there is one equivalent
node in h and vice versa and for every arc between two nodes in g there is one equivalent
arc in h and vice versa . The definition of isomorphism can include or exclude the use of
node and arc labels.

A graph g is said to be included in graph G if there is a subgraph of G, A, such that g is
isomorphic to h. In any graph G there could be several subgraphs that are isomorphic.
Finding a particular subgraph in a larger graph is called graph matching and is
np-completc3 for the general case.

The graph difference operation, given that a graph g is included in a graph G, is defined
to be:

where G = (V,B)

and B** is the set of all the arcs in B for which neither of their nodes has been deleted. In

3Np-compIete means that (he problem is not solvable in polynomial time. NP stands Tor
non-deterministic polynomial.

11

Graph Isomorphism

B

Graph Difference

B

C C

Figure 3: Graph Isomorphism and Graph Difference

other words the difference operation is performed on the graph G by removing the nodes
and arcs of g from it including any dangling arcs left by the removal of the nodes. Figure
3 shows these operations as performed on an example graph. It should be obvious that
there are two subgraphs in the graph of Figure 3 on which the graph difference operation
could be performed. Either of these subgraphs could be removed by the graph difference
operation. In the graph difference and inclusion operations defined above, the graph G is
called the parent graph and graph g is called the target graph. The set of nodes directly
connected to the target graph by an arc is called the neighborhood of the target graph.

A graph grammar is defined as a four-tuple in much the same way as were string
grammars. [Ehrig 78] [Nagl 78] [Ehrig 86] [Nagl 86].

G = (Zn,Za,P,S)
where £„ is the set of all node labels.

Za is the set of all arc labels.

12

P is the set of productions of the grammar.
5 is the stan graph.

The productions of a graph grammar G are defined by the triple (gvg#E) where gt is the
target graph of the production, gd is the daughter graph, and E is the embedding function
of the production. The basic approach to graph rewriting using grammars defined in this
way is called the LEARRE method LEARRE is an acronym that stands for the sequence
of operations performed in applying a production: Locate an isomorph of the target graph
gt in the parent graph, establish the Embedding Area in the parent graph, Remove gr

Replace gt with the daughter graph gd, and Embed it to the parent graph. The embedding
rule E for a production determines how the daughter graph will be attached to the parent
graph. Figure 4 shows the process of applying a production to a graph.4 For the
production shown in Figure 4 the embedding rules are:

1. Connect node(lc) to neigh(la)
2. Connect nodc(ld) to neigh(l^

Where neigh indicates the neighborhood of the node label in parenthesis. The subscripts
of the node labels in the production shown in Figure 4 are used only to danfy the
explanation of the embedding rules. The subscripts do not play a role in the matching,
graph difference, or embedding operations. Figure 4 is a good example of why graph
grammars are of interest. Graphs have the ability to explicitly represent the connectivity
between elements of the language. The graphs in Figure 4 could be represented by strings
but much would be lost in terms of our ability to extract information from the
representation. Representational convenience and computational complexity are both
critical to any graph grammar implementation.5 This motivates the study of well defined
classes of graph grammars for which certain properties are known.

There are many specialized variants of the graph grammar formalism, including the edge-
label controlled grammars and node-label controlled (NIX) grammars [Rozenbcrg 86]
[Janssens 82]. In these formalisms the productions are restricted to replacing a single arc

or a single node, respectively.

4. Attribute Grammars
Grammatical formalisms are a convenient means to generate or to verify the validity of
configurations of mechanical components. When we think of a description of a design,
however, we think not only of a configuration but also of a specification of parameters or
attributes of the components which comprise that configuration. The formalism of

4The graph production shown in Figure 4 is a behavior preserving transformation as applied to bond
graphs. Bond graphs are used to model the dynamics of physical systems. Since bond graphs are graphs
they are convenient in the formalism of graph grammars. A more detailed discussion of grammars for bond
graphs is presented in [Finger 89].

5Habel [Habel 86] notes that "It is easy to introduce a complicated mechanism of graph rewriting so thai
the general framework becomes nearly infeasible, the theoretical achievements are rare and poor, and the
best you can learn is the undecidability of everything interesting/

13

I Production: |

1 TFW 1
c b d

|Derivation: |

1 T 1

.• l I .
• >f 1 # •

C " R

Figure 4: Application of a graph production

attribute grammars is convenient for including, propagating, and computing engineering
attributes of components and configurations.

In an attribute grammar, we associate with every symbol in the grammar a set of
attributes and ultimately values for those attributes. The attribute-value pairs for any
symbol can be related to the attribute-value pairs for other symbols. The rules, or
attribution relationships, among the attributes are not directly associated with any string
or graph fragments produced by the grammar but rather they are associated with the
individual productions that generate these language fragments. As a result, relationships
among attributes of symbols need not be static or invariant but rather may depend on the
specific productions employed to produce the language fragment

14

Formally an attribute grammar is a grammar where every symbol, X € (NKJT) has
associated with it some finite set of attributes denoted AttrfX) which are referred to
individually asXM where a e AttrQc). We also associate with each production,/? € P, a
set of attribution rules which specify relationships among attributes. These attribution
rules may, in the most general case, assert an arbitrary relationship among any or all of
the attributes of any or all of the symbols used in the production. For a more complete
description see [Knuth 68] and [Deransart 88].

Consider briefly how an attribute grammar could be useful in the context of engineering
design. A boom grammar is a simplified version of the bridge grammar described
previously: It generates only sequences of connected triangular structures. We associate
with each triangular structure and with collections of triangular structures, attributes
corresponding to forces, sizes and weights. The modified grammar, including the
definition of attributes and attribution relations is shown in Table 1.

The attributes in this grammar correspond to the dimensions and forces in an end loaded
boom structure, as shown in Figure 5. The attribution relations among ihe' boom
dimensions and forces are very simple and fall into a special case of attributional
relationship referred to as inherited. In this case the attributes associated with the symbol
on the right hand side of any production depend only on the attributes of the symbols of
the left hand side of the production. As a result, when the grammar is used to generate
designs (from the generic boom start symbol, B9 and attributes corresponding to the
desired length, height and end load) it is possible to compute substructure dimensions and
forces in parallel with the grammatical evolution of the boom configuration without
iterating.

If alternatively the attributes of symbols on the left hand side of all productions depend
only on the attributes of the symbols on the right hand side, we would say that the
attributes are synthesized. The Weight attribute in the boom grammar is a synthesized
attribute. Grammars which are wholly inherited or wholly synthesized are extreme cases
which correspond respectively to grammars in which all attributes can be computed
during generation without backtracking or computed during parsing without
backtracking. In many cases neither of these extremes apply, however, it is still often
possible to compute the values for all attributes without iteration. In these cases the
dependency among attributes is not cyclic and the attribute grammar is said to be well
defined. It is obvious that the boom grammar is well defined because all dimensions and
forces can be computed as we "proceed" down the derivation tree shown in Figure 5 and
that all weights can later be computed as we "climb" the tree.

In cases where a circular dependency among attributes does exist, simultaneous
consideration of attributional relationships will generally be required. Although
simultaneous solution of this sort might not be difficult (depending on the complexity of
the attributional relations) it will preclude an evaluation of all attribute values in parallel
with a parse or generation of a design alternative.

IS

Grammar Definition

Grammar Symbols and Attributes

B :

B

B

Boom Section
Attributes

J
.h
.al
J
.W

Triangle Section
Attributes

.1

.h

.al
•Fa
•Fb

.W

length
height
attachment length
end load
weight

i (and lef

length
height

it attachment)

attachment length
force in
force in
force in
weight

attachment links
base strut ,•
angled (upright) members

Auctions and Attribution Relations

-+ t

-> tB

tl =
th m
th =
t.al =
LFa =

t.Fb =

t.Fu =
tW =

tl =
th =
tal =
t.Fa =

t.Fu =
tW =

Brl =
Brh =
Bral =
BrF =
B.W =

B.1
B.h
B.h
B.al +1.1/2
B.F*B.1/B.h
B.F*B.l/(B.h*2)

B.F*Vl+(B.l/(2*B.h))2

f(t.l, th, tal, t.Fa, t.Fb, t.Fu)

mintC! * B.h, B.I)
B.h
B.al + Ll/2
B.F*B.1/B.h
B.F*(B.l-tl/2)/th

B.FNl+(tl/(2*th))2

f(tl, th, tal, t.Fa, t.Fb, tFy)

B.1 - tl
B.h
tl/2
B.F
B_W + tW

Table 1: Attribute Grammar Table

16

FigureS: Attribute Grammar

17

Attribute grammars are as powerful a method of semantic analysis as any that can be
imagined in that the value of one attribute can depend, at least indirectly, on die value of
any other attribute anywhere in the tree [Knuth 68]. The formal restriction of attributes to
the specification of purely semantic, rather than lexical, properties is unimportant The
attribute values associated with a symbol can specify information that is purely local to
that symbol. An example of this can be seen in Figure 6 where attributes associated with
the I elements correspond to the inertia of the mechanical components they each
represent

The attribute grammar formalism applies generally to graph grammars. The extension of
attribute grammars to graphs has been formalized in the Node Label Control grammars,
but the extension to more general graph grammars is possible [Kaplan 87]. We
demonstrate their utility with an example based on the bond graph.

Figure 6 shows the production again. For this example the graph is taken to represent a
gear pair used in a mechanical transmission: The transformer (TF) indicates that the
speed is reduced and I elements represent the inertia of the gears. The symbols in the
production have the following attributes associated with them: V

TF.r reduction ratio
Li mass moment of inertia

The attribution rule for the production is:
1

TF2.r = TFxjr
The result of applying the production is shown in Figure 6.

The production in Figure 6 exemplifies some of the parallels mentioned earlier.
Mechanical components have properties, such as inertia that effect the behavior of the
design as a whole. How the component is connected to the rest of the design determines
what this effect will be. For the bond graph example, the component properties are
attributes (lexical information) and the configuration is established by the syntax of the
graph grammar. The attribution rules (the semantics) of the language provide a model of
the overall behavior.

In the context of engineering design it is quite natural to think of these attributes as
parameters of components, however, the attributes themselves need not have physical
significance. In many cases attributes are used to maintain some internal state of a
generation or parse. In this case the attributes may be used as a mechanism to interpret
the significance of various strings in a language. In this case attributes may be used to
enhance the semantics of a language.

5. Semantics and Grammars
The semantics of a language are derived from the syntactical relationships between the
elements of the language (as defined by the grammar) and from the lexical information
associated with each element in the language. A lexicon in natural language is a
dictionary that defines the individual meanings of words. For the bond graph language

18

TF TF

) * 30.7 lb-in

i(I) - 142,000
2

r(TF1) 8:1

) - 2,249

) - 8 :1

Figure 6: Attributed Graph Grammar Example Production

mentioned earlier the node TF symbolizes a transformation of velocity and force
associated with a gear pair for example. The lexical information of the symbol is then
combined with the way it is connected to the rest of the graph to determine what it does
in the graph. For our purposes certain parallels can be drawn between the way meaning is
derived from a language and the way behavior is exhibited by mechanical designs. The
lexical information corresponds to the behaviors and properties of the individual
components that make up the design. The syntax of a mechanical design domain
describes the allowable configurations of components. The semantics depend on both
types of information and results in a behavior of the design. This, however, is only one
paradigm for the use of grammars in design. Another, which will be used for the example
in the final section of the paper, is to treat the desired behavior of the artifact as the string
to be parsed. The result of the parse corresponds to a physical description of an artifact
that exhibits that behavior. In this way the functional specification is effectively
transformed into a description of a physical artifact The syntactic and lexical parallels
are the same but the meaning of semantics for this case is somewhat less clear. Suffice it
to say that the semantics still describe the behavior of the artifact but the semantics are
defined almost completely in terms of the syntax and lexicon.

There are two types of semantic information, static semantics and dynamic semantics.
The static semantics of a language are defined such that there is always one fixed way of
interpreting a given clement or group of elements of the language. The semantics for the

19

bridge grammar presented earlier provides a good example of static semantics. The
interpretation of the Vs and the s's does not depend on the form of the parse tree or the
order of the productions. A triangle is always connected by its apex to the adjacent
elements and the span is always connected from its midpoint The dynamic semantics of
the language, however, depend on the productions which were used to produce the string
or graph. Attribute grammars are useful for interpreting the dynamic semantics of a
language. The attributes of the symbols in the language are defined to capture the
semantic state. Semantic rules, which are directly analogous to attribution relations, are
associated with each of the productions in the grammar. The semantic rules prescribe
how semantic variables are related and therefore can be used to capture the evolving
meaning of a language element

The attribute grammar approach attaches meaning to the productions in the grammar.
Alternatively we may find a procedural semantics in which the semantics arc determined
by functions or procedures attached to each symbol in the language.

I '

6. Example: A Grammatical Approach to Logic Circuit Design
Logic circuit design displays many of the same problems associated with mechanical
design. While it is certainly possible to design and implement a circuit in which each
function of the circuit is performed by an individual component or group of components,
it is desirable to integrate as many of the functions as possible. Many of the difficulties
associated with geometry are absent from logic circuit design, thus providing us with a
more convenient domain in which to test some of our ideas. Furthermore, logic circuit
design is well understood, providing a bench mark by which to measure the success of
alternative approaches to design.

We wish to design a combinatorial logic circuit to be implemented with inverters and two
input AND, and OR gates. The specification for the logic circuit is given as a truth table
in Figure 7 where all combinations of inputs not explicitly represented in the table must
produce a zero or false output The method we demonstrate uses two different grammars.
The first is a string grammar which is used to parse a string representation of the truth
table. The parse provides not only a test of validity (i.e., is the function attainable) but
also identifies the productions in the grammar necessary to produce that string. The parse
tree is a graph which represents a functionally correct logic circuit and may, depending
on the string grammar, represent a canonical form of the desired functionality. Although
functionally correct, this tree is an ineffective implementation approach. We therefore,
use the tree as the starting symbol in a graph grammar which is used to generate
functionally equivalent but more economical implementations of that function.

The string to be parsed, taken from the table shown in Figure 7, is represented as:
0110x0100x1110

The x's signify that a separate line in the truth table has been started. For this grammar
AT = {AND, OR, N)
r={o,i,xj

20

A

0

0

1

B

1

1

1

C

0

1

1

D

0

0

0

Output

1

1

1

Figure 7: Truth Table for the Example

AND

Figure 8: Parse Tree for the Example

21

AND stands for an AND gate, OR stands for an OR gate, and N stands for a NOT gate.
For a more detailed explanation of logic circuits and their design see [Hill 81]. The
productions for the grammar are:

1: LC -> OR
2: OR -> OR,x,ANDIAND,x,AND
3: AND -* AND.N I AND, 111,AND I N,N I Nfl 11 ,N 11,1
4: N -> 0

The language of the grammar is any string of Ts, O's, and xfs. Any size truth table can
be accommodated by the grammar.6

As the parse proceeds the input label (e.g. A, B, etc.) associated with each terminal
symbol is maintained as an attribute for use in the subsequent design minimization
grammar. The parse tree for the truth table in Figure 7 is shown in Figure 8. The parse
tree corresponds to a logic circuit that has the required functionality however, that circuit
is not minimal. y '

The implementation minimization grammar is then used to take advantage of the function
sharing possible in these circuits. The parse tree generated by the string grammar is then
prepared to start the implementation minimization grammar by deleting, nodes labeled x
(and the dangling arcs) and by replacing the 1's and O's with the input variable they
represent. The input variable names are shown underneath the terminal symbols in Figure
8. The grammar is very similar to a graph grammar in the way in which graphs are
rewritten, however, it is not formally a graph grammar because each production is
actually an infinite family of productions specified using place holders (e.g. Q).

The productions for the graph grammar arc based on the method of mintemis [Hill
81] and are shown in Figure 9. The symbols Q, R, and S are used as place holders in the
productions for sub-graphs. These symbols indicate that those portions of the graph must
match with any other sub-graph in the production that carries the same label. The
embedding rules are simple tree-replacement rules as in NLC grammars. The
productions used in this grammar are all function preserving because replacing the target
graph with the daughter graph doesn't change the input/output relationship for the logic
circuit

The derivation for the graph grammar is shown in Figures 10 through 12. Figure 10
shows the intermediate graph resulting from firing Production 2. Figure 11 shows the
graph after firing Productions 2,7, and 2 in that sequence. The final graph, shown in
Figure 12 is obtained by firing Productions 5,4,2,7,2,1,4 and 5. There are then no more
matches for the productions and so the generation of alternatives is complete and the
grammar terminates. This graph represents the minimal logic circuit for the truth table

*For simplicity of presentation, the grammar does not parse pathologically small truth tables nor will it
parse strings that begin or end with an x or that do not contain any x's.

22

OR AND

Q *

2

3

4

5

*

7

OR

AND AND

Q R Q S

AND

/ \
N Q

1
Q

OR

N 0

Q

AND

/ \
Q 1

OR

OR e
/ \ S

Q R

AND

AND S

Q R

I
Q

AND

Q AND

R S

Figure 9: Graph Productions for the Example

given although the result is not unique.

This is a simple example of the transformational approach to design. The string
representing the desired logic circuit behavior is transformed, through the use of the two
grammars, into a physical description of a circuit with the required function. This
grammatical approach results in a physically realizable, minimal AND-OR-NOT,
solution to the (somewhat) practical problem of combinatorial logic synthesis. This is in

23

keeping with the goal of designing systems that take foil advantage of the functionality
and interactions of its components.

This grammar however, has two significant drawbacks. The first is that there is no
control structure to the firing of the graph production rules. This means that the grammar
will take a long time to generate solutions to even simple design problems. This
drawback is common to almost all graph grammars because of the difficulty of the
embedded graph matching problem. The second difficulty with the grammar is that it is
limited to using AND, OR, and NOT gates. The grammar can be augmented to include
other types of gates but this will increase the combinatorial difficulties associated with
the grammar. This is another example of the power/generality trade-off that is inherent in
most formalisms: The domain of the grammar can be expanded but only at the expense
of the ease of computation.

7. Discussion and Conclusions
The paradigm of design as a transformational process is a powerful one. Grammars are
useful in so far as they provide a framework for this transformational process, "however,
there remain many critical issues in applying grammatical formalisms to design. Some of
these are:

• Representation of function and behavior of mechanical designs.

• Representation of the form and structure of mechanical devices.

• Relationships between function and form.

• The generation of good designs.

Most common representations of behavior and geometry of mechanical devices are based
either on a rigid parameterization or are completely ad hoc. Other representations have
more recently been suggested with varying levels of utility and generality [Beitz 84] [Lai
87] [Fenves 87]. Representations based on formal grammars are attractive because it is
possible to represent both a wide range of configurational alternatives as well as the
traditional engineering parameters. Because the grammatical approaches are applicable
in general to string and graph representations, broader representations of behavior
[Rinderlc 87] and geometry [Pinilla 89] [Fitzhorn 86] are anticipated. Grammars will

provide a formalism with which to perform operations and transformations on these
representations.

Structuring relationships between behavior and geometry and the focused generation of
good design alternatives are perhaps more difficult problems. Although grammars by
their nature are suited to the generation of alternatives, there are only rare instances of
their use in design [Fleming 87]. While it is easy to generate syntactically correct
structures, it is difficult to generate useful or optimal structures. Attribute grammars are
useful in that they may be used to manipulate engineering equations, however, issues of
semantics and HstyleH must be addressed. Style in the english language refers to the
formation of sentences and paragraphs that are not only syntactically and semanticaily

24

AND
AND

/

AND
/

N
1
A 1ft J

/
AND

/
N

1
A]

N
1

B C

N

I
D

AND

/
AND

/I
N

A B C D

Figure 10: An Intermediate Graph in the Parse

AND

C C B

A B C D

Figure 11: Subsequent Intermediate Graph in the Parse

25

LC

AND

AND N

GOR B D

\
N

A

Figure 12: Final Graph

correct (i.e. they "sound" all right and convey the idea that was intended) but also are
clear and concise. In mechanical engineering a good "style" often consists of components
that display a great deal of functional integration. Generation focusing principles such as
this must be integrated into the grammar early in the design process. To facilitate this
integration, grammatical control strategies can be employed. The use of programmed
grammars is one one approach to controlling grammatical generation [Bunke 79].

A programmed grammar and certainly a designer must reason about relationships
between behavior and geometry at a level more abstract than detailed geometry or
function. Grammars support reasoning with abstractions since the transformational
paradigm inherent in grammars makes it natural to transform and elaborate abstract
entities providing a hierarchy of detail and refinement It is peiiiaps this characteristic of
grammars which will yield a near term benefit by bringing together detailed geometric
and behavioral representations with the abstract reasoning exhibited by practicing
designers.

The relationships between computational complexity of grammars and design might be
discouraging, particularly given the frequency with which properties of languages turn
out to be undecidablc. It seems natural, however, that a model of the design process
would have such properties. Design by its very nature is not deterministic and is not
strictly analytical. If design itself is undecidable, or at best np-complete, why wouldn't
the general model for it be also? Although designers address this issue daily, their design
problem solving strategies must be identified and made explicit so as to simplify
grammatical approaches to design and to facilitate the development of practical design

26

automation strategics.

Acknowledgments
The authors are pleased to acknowledge the support of the Design Theory and
Methodology Program of the National Science Foundation (NSF Grants DMC-84-51619
and DMC-88-14760) and the Engineering Design Research Center at Carnegie Mellon
University (NSF Grant CDR-85-22616).

References
[Beitz84]
P. Beitz A G. Paul, Engineering Design,
Springer- Verlag. 1984.

[Bunke79]
H. Bunke, HProgrtnuncd Graph Grammars,'9 in Graph
Grammars and Their Application to Computer Science,
Springer- Verlag, 1979, Lecture Note Series in
Computer Science

[Chomsky 66]
N. Chomsky, Syntactic Structures, Mouton &
Co. 1966.

[Deransart 88]
P. Deransart et al. Attribute Grammars,
Springer-Verlag, 1988.

[Ehrig78]
H. Ehrig, Introduction to the Algebraic Theory of
Graph Grammars,M in Graph Grammars and Their
Application to Computer Science and Biology,
Springer-Verlag, 1978, Lecture Note Series in
Computer Science

[Ehrig 86]
H. Ehrig, Tutorial Introduction to the Algebraic
Approach of Graph Grammars," in Graph Grammars
and Their Application to Computer Science,
Springer-Verlag, 1986, Lecture Note Series in
Computer Science

[Fenves 87]
S. Fenves & N. Baker, "Spatial and Functional
Representation Language for Structural Design," in
Expert Systems in Computer-Aided Design, Elsevier
Science, 1987.

[Finger 89]
S. Finger & J. Rinderle, "A Transformational Approach
to Mechanical Design Using a Bond Graph Grammar,"
Proceedings, Design Theory and Methodology
Conference, ASME, Montreal, September 1989.

[Fitzhorn 86]
P. Fitzhorn, "A Linguistic Formalism for Engineering
Sob'd Modeling," in Graph Grammars and Their
Application to Computer Science,
Springer-Verlag, 1986, Lecture Note Series in
Computer Science

[Fitzhorn 88]

P. Fitzhorn, "A Computational Theory of Design,"
Design Computing, January 1988.

[Fleming 87]
U. Fleming, "More than the Sum of Parts: the Grammar
of Queen Anne Houses," in Environment and Planning
B: Planning and Design,, 1987, vol. 14

•• r[Habel86]
A. Habel & H. Kreowski, "May We Introduce to You:
Hyperedge Replacement," in Graph Grammars and
Their Application to Computer Science,
Springer-Verlag, 1986, Lecture Note Series in
Computer Science

[Harrison 74]
M. Harrison, "Some Linguistic Issues in Design," in
Basic Questions of Design Theory, North-Holland
Publishing. 1974.

[Hill 81]
F. Hill SL G. Peterson, Introduction to Switching Theory
and Logical Design, Wiley & Sons, 1981.

[Janssens 82]
D. Janssens k G. Rozenberg, "Graph Grammars With
Node-Label Controlled Rewriting and Embedding," in
Graph Grammars and Their Application to Computer
Science, Springer-Verlag, 1982, Lecture Note Series in
Computer Science

[Kaplan 87]
S. Kaplan, "Incrmental Attribute Evaluation on Node-
Label Controlled Graphs," Technical report
R-87-1309, University of Illinois at
Urbana-Champaign, May 1987.

[Knuth68]
D. Knuth, "Semantics of Context-Free Languages," in
Mathematical Systems Theory, Springer-Verlag. 1968.

[Lai 87]
K. Lai A W. Wilson, MFDL • A Language for Function
and Rationalization in Mechanical Design," in
Computers in Engineering, ASME, 1987.

[Lewis 81]
R. Lewis A C. Papadimitriou, Elements of the Theory
of Computation, Prentice-Hall 1981.

[MoU 88]
R. Moll, M. Arbib, A Kfoury, An Introduction to

27

Formal Language Theory, Springer-Veriag, 1988.

[Moitow851
Mottow, U Towaid Better Models Of The Design
Process," The AI Magazine, Spring 1985.

[Nagl78J
M. NagL "A Tutorial and Bibliographic Surrey On
Graph Grammars/* in Graph Grammars and Their
Application to Computer Science and Biology,
Springer-Verlag. 1978, Lecture Note Series in
Computer Science

[Nagl86]
M. NagL "Set Theoretic Approaches to Graph
Grammars," in Graph Grammars and Their
Application to Computer Science,
Springer-Verlag, 1986, Lecture Note Series in
Computer Science

[Pinilla89]
J. Pinilla, S. Finger, & F. Prinz, "Shape Feature and
Recognition Using an Augmented Topology Graph
Grammar," Proceedings of the 1989 NSF Engineering

.AmhemMA^JuneDesign Research Confer
1989.

[Revesz83]
G. Revesz, Introduction to Formal Language Theory,
Mcgraw-HilL 1983.

[Rinderle87]
Rinderk, J. R^ "Funcdoo and Form Relttionshipi: A
Basis for Preliminary Design," Proceedings from the
NSF Workshop on the Design Process. Waldron, M. B.,
ed, Ohio State University, Oakland, CA, Febniary 8-10
1987, pp. 295-312.

[Rozenberg86]
G. Rozenberg, "An Introduction to die NLC Way of
Rewriting Graphs," in Graph Grammars and Their
Application to Computer Science,
Springer-Verlag, 1986, Lecture Note Series in
Computer Science

[Stiny 80]
Stiiiy, G., "Introduction to Shape and Shape
Grammars,* Environment and Planning B, Vol.
7. July 1980, pp. 343-351.

28

