
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Concurrent Design

by

S. Finger, M. Fox, F.B. Prinz, J.R. Rinderie

EDRC 24-26-90

Concurrent Design
Susan Finger, Mark S. Fox

Friedrich B. Prinz, James R. Rinderle

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract r '

Given the initial functional specifications for a product, a designer must create the description of a
physical device that meets those requirements. The final design must simultaneously meet cost and
quality requirements as well as meet the constraints imposed by activities such as manufacturing,
assembly, and maintenance. Mechanical designs are often composed of highly-integrated, tightly-coupled
components where the interactions are essential to the behavior and economic execution of the design.
Therefore, concurrent rather than sequential consideration of requirements, such as structural, thermal, and
manufacturing constraints, will result in superior designs.

Our goal is to create a computer-based design system that will enable a designer to concurrently consider
the interactions and trade-offs among different, and even conflicting, requirements. We are creating a
system that surrounds the designer with experts and advisors that provide continuous feedback based on
incremental analysis of the design as it evolves. These experts and advisors, called perspectives, can
generate comments on the design (eg. comments on its manufacturability), information that becomes part
of the design (e.g. stresses), and portions of the geometry (e.g. the shape of an airfoil). However, the
perspectives are not just a sophisticated toolbox for the designer; rather they are a group of advisors who
interact with one another and with the designer.

This paper presents an overview of a body of research that has resulted from the multi-disciplinary group
that is creating this design system. The research falls into four broad categories: geometric modeling,
features, constraints, and system architecture.

1. Introduction
In creating a concurrent design system for mechanical designers, our goal is to infuse knowledge of
downstream activities into the design process so that designs can be generated rapidly and correctly. The
design space can be viewed as a multi-dimensional space in which each dimension is a different life-cycle
objective such as fabrication, testing, serviceability, reliability, etc. These dimensions are called
perspectives because each dimension can be thought of as a different way of looking at the design.

Our goal is to create a computer-based design system that will enable a designer to concurrently consider
the interactions and trade-offs among different, and even conflicting, requirements. We are creating a
system that surrounds the designer with experts and advisors that provide continuous feedback based on

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

incremental analysis of the design as it evolves. These experts and advisors, called perspectives, can
generate comments on the design (e.g. comments on its maraifacturability), information that becomes pan
of the design (e.g. stresses), and portions of the geometry (e.g. the shape of an airfoil). However, the
perspectives are not just a sophisticated toolbox for the designer; rather they are a group of advisois who
interact with one another and with the designer.

The design model is integrated around a shared, domain-neutral representation of the design from which
each perspective can extract and reason about features of the design. Constraints are the language by
which perspectives communicate with one another and with the designer. The perspectives are
coordinated through a blackboard architecture that uses a heterarchical control structure.

This paper presents an overview of a body of research that has resulted from the multi-disciplinary group
that is creating this design system. The research falls into four broad categories: geometric modeling,
features, constraints, and system architecture. In this paper, we do not present detailed research results
which can be found in the individual references.

}' '2. Design Representation

A complete representation of a design would include attributes like the initial specifications, the geometry
with dimensions and tolerances, the material and structural properties, the manufacturing and assembly
sequences, the design history including versions and configurations, the bill of materials, and the
maintenance procedures. Depending on the design domain, the importance of representing particular
attributes will vary. We have focused on representing the geometry, features, and constraints associated
with a design.

Our system is based on the concept of a shared representation. The shared representation of the design is
maintained on the blackboard, and all comments, constraints, and design changes are made in terms of i t
Our architecture does not preclude a perspective from creating its own representation, but communication
is always through the shared representation.

During the design process, large quantities of information about a design are used and generated We
have made the decision to include in the shared representation only those attributes which are of interest
to more than one perspective. Using perspectives enables us to partition the design knowledge into
manageable chunks, while allowing us the flexibility to add new information to the representation. For
example, the manufacturing perspective may have a constraint on the maximum length of a cast turbine
blade. As long as this constraint is not violated, it remains within the perspective; however, if it is
violated, the manufacturing perspective would post the constraint on the blackboard.

2.1. Geometric Representation
The representation of geometry has been an active area of research over the last fifteen years. In a review
paper, Requicha and Voelcker [28] discuss the progression from early CAD systems to advanced solid
modellers. Voelcker [40] also discusses the limitations of current geometric models as design systems
because they can only represent the geometry of a completed geometric object rather than an evolving
design. Discussions along similar lines can be found in Nielsen [23] as well as in Gursoz and Prinz [15].

In surface boundary representations, known as b-reps* objects are modeled by representing their enclosing
shell. The basic elements of a b-rep are faces, edges, and vertices. The topology of an object is made
explicit by giving the connections between its elements, and the geometry of the object is made explicit

by giving coordinates to the vertices, giving lengths to the edges, etc. In constructive solid geometry
(CSG), objects are modeled as boolean combinations of a set of primitive solids; that is, an object is
constructed by adding and subtracting the basic primitives. An object is represented as a binary tree in
which the terminal nodes of the tree are solid primitives, and the intermediate nodes are boolean
operations that operate on the primitives to create the desired object

Both the b-rep and CSG approaches were created to represent solid objects in R3 space. These models are
not able to represent incomplete objects. The non-manifold geometric modeling systems created by
Weiler[43] and by Gursoz and Prinz[14] address this issue. These representations build upon the
boundary representations, but they are able to represent the more complex adjacency patterns such as
dangling edges or nested cones that can occur in non-manifold objects. Figure 1 gives some examples of
non-manifold objects.

Figure 1: Examples of non-manifold objects

Because one-, two-, and three-dimensional objects can be represented consistently in non-manifold
representations, they are highly suited to design systems. With non-manifold representations, the design
can include a center line of a hole, a parting plane for a mold, and internal boundaries for a finite-element
mesh, as well as the enclosing shell of the designed object Figure 2 shows the evolution of the
construction of a solid from a wireframe in a non-manifold representation.

2.1. Feature Representation
Our research in feature-based representations of designs has been motivated by the realization that
geometric models represent the design in greater detail than can be utilized by designers, process
planners, assembly planners, or by the rule-based systems that emulate these activities. Experts often
abstract geometry into features like ribs, parting planes, and chamfers; however, the same product design
looks quite different when viewed by different expeits. Each perspective emphasizes particular aspects of
the design and suppresses certain details in order to evaluate and synthesize. In addition, as the design

Wireframe Model

•

Surface Model

Solid Model

Figure 2: Evolution of a solid model

evolves, so does the view from each of the perspectives; that is, what is emphasized and what is
suppressed changes depending on the current state of the design. Figure 3 illustrates a turbine blade as
viewed from several different perspectives.

To date* our research has been on defining and recognizing shape features, that is, features that are
derivable from the geometry and topology of the design. We represent shape features using a graph
grammar based on the non-manifold representation. The geometry of the designed objea and the feature
definitions both use the non-manifold representation, so features can be recognized by parsing a feature
graph against the graph of the object.

Because each perspective views the design differently, each perspective defines its own set of features.

Manufacturing
features:

Assembly
features*
weight

symmetry
tolerance

cooling holes
surface treatment

features

FEM elements

Materials
features:

microstructure
manufacturing

process

Function

features

potential
flow field

Figure 3: The features of a turbine blade as viewed from several perspectives.

And, because the features are defined in terms of the shared representation, the perspectives can
communicate by referring their features to the shared representation.

23. Constraint Representation
The representation shared among perspectives must include not only the evolving product geometry and
features, but it must also include the allowable limits on geometry, the relationships among behavior and
geometry and other constraints. The set of constraints asserted by any one perspective is an encoding of
the life-cycle concerns of that perspective. The collection of all constraints is the set of currently relevant
life-cycle concerns that determine the acceptability of a design alternative. Each perspective, when
commenting on the design or suggesting design changes, can view all posted constraints and therefore
suggest modifications which minimize conflict Additionally, the design perspective may characterize
design trade-offs by evaluating competing constraints. As the design evolves, features are added and
modified causing individual perspectives to assert additional constnunts and to modify or retract existing
constraints. In this way the collection of constraints is an embodiment of the evolving life-cycle
constraints on an acceptable design.

2.4. Quantitative and Qualitative Representations
Qualitative representations provide a means for reasoning about complex systems without the need for
quantitative data. Most design systems perform quantitative analysis of the results of the design process.
Numeric algorithms, given numeric input, produce numeric descriptions for properties of the design. On
problem with numeric models is that the underlying relationships are often lost or hidden in quantitative
representations. In addition, these underlying relationships cannot be manipulated symbolically.
Qualitative representations extend quantitative representations by making implicit relationships explicit
and accessible.

Procedural knowledge provides a representation for the processes necessary to perform some tasks. It can
be algorithmic, such as a finite element analysis program, or heuristic, such as problem-solving. The
design representation requires both algorithmic and heuristic information, one augmenting the other.
Some tasks have algorithmic solutions that result in some relationship between design parameters. Other
tasks use heuristic methods, such as pattern directed search that guides the problem-solving process.

IF 'f

1. there is a constraint on the life-time of the blade;

2. and there is a proposed geometry for the shank;

3. and the stress concentrations in the shank are unknown;
THEN

1.execute the f in i te element model on the shank geometry

Figure 4: Sample Production

Consider the pattern, or production, in Figure 4. The production is composed of a condition and an
action. When the condition is satisfied, the action is invoked. In this case, the stress concentrations in a
turbine blade shank are computed when a shank geometry is proposed by the designer. Production
systems use pattern-directed search to encapsulate operational descriptions for problem-solving tasks.

3. Features
One motivation for creating feature-based design systems is that a product design is viewed differently as
the design evolves and as viewed by different experts. Features provide both an abstraction mechanism
and a mechanism for communicating among experts in a heterogeneous environment

Our approach is to describe features using a graph grammar. Because the designed object is an element in
the language generated by this grammar, features can be recognized by parsing a feature graph against the
graph of the object We provide a representational link between the low-level geometric representation
and the high-level design abstractions by formalizing a language to express classes of high-level objects
in terms of the low-level ones. Given this language, we are able to extract the high-level elements from
the neutral low-level geometric representation. For a more detailed discussion of the representation and
the algorithms, see [91, [25], [30], and [31].

3.L Life-Cycle Features
Features provide a domain-neutral foimalism for extracting information firom a geometric model for life-
cycle analyses* Individual life-cycle perspectives view an evolving design through their own set of
features and analyze the design based on these features. Because features are defined for specific
purposes, the features of one perspective need not have any correspondence to the features defined for
another perspective.

In Figure 5, a designer and a manufacturer each define features to view a shared model The designer
sees in the artifaa two slots, defined by their width and depth, which serve a functional role in meeting a
requirement of the design* The manufacturer is concerned with making the artifact and not only sees the
two slots but also the wall created by them. A manufacturing analysis of this wall indicates that it is too
thin to be milled to the given tolerance. Although the designer lacks the wall feature, the manufacturer's
definition is used to improve the design. The neutral geometric model is a basis of communication via
feature definitions for the two perspectives.

a. Initial design

b. Designer's feature

c. Manufacturer's features

Figure 5: View-point specific feature interaction

Previous research in using features in CAD systems has focused on single domains. Woo [44] utilizes
decomposition using form features to perform structural analysis. Several researchers, including Unger
and Ray [39], Cutkosky and Tenenbaum [5], Chang et al. [4] and Hayes [16] have explored the use of

features in constructing process plans for parts.

3-2. Feature Definitions
Two approaches to using features in design have been explored. One is to restrict the designer to a set of
labeled, primitive features to use in the design. A restricted set of features limits the expressiveness of the
design system and allows only one interpretation of the design. This approach has the advantage that
feature extraction is relatively straightforward because the features on the design can be tracked as they
are added.

The other approach is to use a neutral geometric representation of the design and to extract the locations
of the features when required. We have taken the second approach because we must support multiple
perspectives that each require a different grouping of primitive elements into features.

Figure 6 illustrates several features, all labeled hole. From a functional point of view, a designer might
specify a hole only by it's centeriine, radius, and purpose (e.g. alignment) while a manufacturer might
define a hole by its location, radius, and manufacturing process (e.g. a punched hole). Both the designer
and manufacturer use the label hole. While the features labeled as holes are similar, they *re not
identical. The difference of perspective for characterizing the concept hole necessitates differing feature
definitions.

Designer Assembler Manufacturer

Figure 6: A Hole from three different perspectives

Figure 6 illustrates that the ability to represent both manifold and non-manifold objects is essential in
describing partial designs or referring to non-existent elements such as center lines or symmetry planes.
The design feature, hole, is a non-manifold feature defined in terms of its centeriine and radius - lines in
3-space not associated with any surface.

Our approach to defining features is based on Pinilla's [25] work. He defines form features by a context-
sensitive graph grammar called an augmented topology graph grammar. This grammar represents
features as topological and geometric entities and permits pattern-directed recognition and generation of
salient features from a solid model.

Because features can be arbitrarily complex, complete enumeration of all possible features is impractical.
A grammatical formalism permits the specification of families of related features. Through the
application of transformations to base features, a complex feature can be recognized as an instance of the

base feature. For example. Figure 7 depicts a grammar for a slot family. The definition permits the single
face representing the bottom of the slot to be split So, a model that contains a slot with six faces can be
recognized as a member of this family through one application of the rewrite rule.

a. Rewrite rule to split slot wall

b. Slot Feature

c. One application of rule to slot feature

Figure 7: Definition of a slot feature family

33. Feature Recognition
In [30], we present an algorithm for feature extraction. We define and extract features from a solid
model. Because our method of feature recognition is bottom-up, features can be extracted from an
incomplete model while the model is being constructed. As the graph representing the model is built, the
vertices of the graph can be mapped on the recognizer. As features come into existence, analyses can be
performed, and the designer can be given feedback on the design as it evolves.

Several researchers have constructed systems that extract features from two-manifold solid models.
Using a boundary representation, these systems define features as patterns and instances of the panem art
extracted from the model Sakurai and GossaitTs system [32] uses graph matching to recognize instances
of features taught to the system, but lacks a formal method of defining features. Henderson's work (18) is

similar to Gossaid's. Although he does not develop a formal representation, he uses feature-specific
heuristics to anchor the search. Falcidicno and Giannini [8] and Floriani [10] use a pattern-directed
language to define feature classes in a two-manifold boundary representation.

We use three levels of abstraction for recognizing features. At the lowest level is a non-manifold solid
modeller. This level provides complete information for representing a design, including all topological
and geometric data about the modeL The intermediate level of abstraction is the augmented topology
graph of Pinilla. This level captures the geometric relationships from die input grammar and maintains
the non-manifold representation. The most abstract level represents manifold features and any manifold
portion of non-manifold features such as geometric and topological relations between faces. Any non-
manifold portion of these feature is represented at the intermediate level. By providing multiple levels of
abstraction, we reduce the search space and concentrate the search on the areas most likely to match
particular features.

4. Constraints
In the context of engineering design, a constraint can be thought of as a required relationship* among
design features and characteristics. Constraints may embody a design objective (e.g. weight)/a physical
law (e.g. F = ma), geometric compatibility (e.g. mating of parts), production requirements (e.g. no blind
holes), or any other design requirement Collectively, the constraints define what will be an acceptable
desiga The number, diversity, and variable context of constraints make finding an acceptable design a
difficult task. Furthermore, finding the design that satisfies all the constraints is only possible when the
constraint network represents all design alternatives, when it is complete and consistent, and when it
results in a unique solution. These conditions are rarely, if ever, met Perhaps more importantly, just a
solution to a set of constraints does not necessarily contribute to the designer's understanding of the
relative impact of various constraints and therefore does not assist the designer in identifying alternative
design configurations that are not governed by similar constraints.

Design constraints are usually numerous, complex, and highly nonlinear. Our objective is to provide the
designer with insights about the critical interactions among features, redundant requirements, and
inconsistencies. This information is useful to the designer even if the constraints can be solved
numerically because a purely numerical solution does not facilitate understanding of the design task.

In many cases, it is difficult for a designer to understand the nature of a solution or deadlock, particularly
if constraints refer to each other in a circuitous structure. Some of this difficulty can be alleviated by
identifying suitable transformations on constraint networks that result in directed rather than circuitous
structures. The numerical evaluation of circuitous constraints is relatively straightforward. The algebraic
transformation is significantly more difficult, especially if the goal is to find transformations that have
physical significance to a designer and that augment a designer's insight into the design problem [42].

In design, a small set of constraints often is critical in determining many other design relations. The
ability to identify and address these critical constraints early in the design process is important to the
designer. As different perspectives impose new constraints on the design the importance of identifying
bottle-neck constraints becomes even greater. We are currently exploring several different techniques for
identifying these bottle-neck constraints.

10

4.1. Monotonidty Analysis and Interval Methods
Monotonicity analysis [24] facilitates the simplification of a constraint netwoik and the identification of
inappropriately bounded constraint networks. Unfortunately, most engineering design constraints do not
exhibit the global monotonicity required for the application of monotonidty analysis; however, regional
properties of functions can be exploited. The regional information can then be reassembled to draw
global inferences. We are using a methodology based on interval analysis to represent, utilize, update,
and reassemble regional information.

Using the monotonicity principles can result in the deletion of constraints and reduction in size and
complexity of the model when variables are regionally monotonic. Similarly, different constraints may
become active and dominant in different regions; hence we gain leverage by exploiting regional
informatioa We apply interval methods to represent, abstract, and manipulate regional information.

Interval arithmetic is used as the basis for evaluating algebraic relations containing interval variables,
yielding interval results. By using interval methods, we can characterize regional monotonicities,
regional feasibilities, etc. of design constraints. The four basic arithmetic operators produce exact
intervals, but the representation of higher level functions in terms of these basic arithmetic operators
introduces some difficulty. Conservative interval calculation destroys the one-to-one correspondence
between intervals on arguments and intervals on functions. This has important implications for design
systems, in which it is often necessary to determine what range of arguments will satisfy a range on a
function itself. The extent to which a computed interval deviates from the actual interval determines how
strong the inferences are that can be made on the intervals on variables.

«
Some specific techniques can be used to mediate against the expansion of intervals. One such approach is
the centered form of functions based on a Fourier expansion of the intervals and is described in [21].
Other heuristics, for example dealing with even exponents, are also useful. In addition, several ad-hoc
methods obtain less conservative intervals and even exact intervals.

42. Constraint Propagation in Design
When a design decision is made, constraints can be used to propagate the decision to other parts of the
design. For example, once a motor shaft diameter is specified, it is possible to determine some
characteristics of other components such as the bearings. Depending on the topological structure of the
constraint network, propagating and checking the consistency of constraints is difficult In addition, a
designer needs not just the solution, but also needs an understanding of the nature of the solution. In
particular, a designer needs to understand how certain design decisions or variables were set, how those
variables depend on other design variables, and the leverage that design variables and constraints have
upon other design decisions. We address this need by providing a solution and an explanation of the
solution that tracks the dependencies in a constraint network and evaluates the impact of a decision on
other design variables.

Another important issue in the satisfaction of a constraint network is the scope of changes in a design that
result from a single design decision or a change in a constraint When changes can be localized,
understanding the nature of the constraints is straightforward. However, a small change that at first may
appear to be local, may in fact propagate across the entire design space. The effects of such changes are
difficult to track and understand.

Intervals can be effective for representing and reasoning about design parameter values. Interval values

11

can also be propagated through a set of constraints so that potential constraint violations can be detected.
By propagating design decisions through constraints, the effect of some design parameters on OTC another
can be determined. In die process, redundant constraints are identified and eliminated. The intervals of
the parameters can also be refined in this process.

Any variable can affect any other variable if there is a chain of constraints connecting them. Propagation
can occur in any direction; it is not the case that one variable in a constraint must be selected a priori as
being dependent while all others are regarded as independent As constraints are propagated and as
intervals narrow, specifications may be found to be inconsistent with other constraints, thereby
identifying violations and redundancies before design decisions are made. Interval propagation provides
insight about a design without the need to choose specific values for design parameters. We believe that
the ability to draw important inferences about a design problem early in the process is important in
concurrent design.

A large body of research exists on solving constraint propagation problems including that of Sutherland
[37], Mackworth [20], Boming[2], Sussman and Steele[36], Gosling [13], Popplestone [26], Steward
[35] and Serrano [34]. These techniques provide a core of solution methods directly applicable to

algebraic constraints in real variables. Based on these methods, we are developing propagation
techniques applicable to constraints among interval variables. Some important differences exist when
dealing with interval constraints: the distinctions between equality and inequality constraints change,
constraints may be evaluated when any number of interval variables are not yet specified or even when all
intervals are finite, and a single constraint may be evaluated many times to obtain additional design
information. .

4 3 . Interval Criticality, Dominance, and Activity
The large number of constraints which arise in a concurrent design environment make it useful to
characterize die relative importance of each constraint Some constraints are active; their presence
influences the design. Constraints that are known to be inactive can be eliminated without influencing the
design. Some of the active constraints are critical; they determine a part of the design solution. Most
critical constraints are inequality constraints that are satisfied as equalities in the final design. Some
constraints dominate others; satisfying the dominant constraints insures the satisfaction of the others.
Dominated constraints are inactive and can be deleted.

Constraints in design may not be globally monotonic, active, dominant or critical, but may have these
properties within a region. Therefore, the concepts of constraint criticality, dominance, and activity
defined over regions are more effective in identifying the critical constraints and eliminating the
insignificant ones. Interval methods can again be used to characterize regionally dominant, critical and
active constraints [19,29].

Constraint dominance is an especially useful property for the following reasons:
• Dominance is transitive; dominance relationships can be propagated.

• Dominance often is context independent; the dominance relationship between two constraints
may be independent of objective and other constraints.

• Context-dependent properties, like constraint activity and criticality, can be identified using
constraint dominance.

• Dominance can help manage constraints in a concurrent design setting where constraints may

12

be dynamically asserted The significance of newly asserted constraints can be evaluated by
examining their interaction with currently dominant constraints.

In a concurrent design setting where life-cycle constraints can be dynamically asserted, the effect of a
newly introduced constraint can be studied by testing for dominance against the currently dominant
constndnt in different regions of the design space. If a new constraint dominates the currently critical
constraint in some region of the design space, then the new constraint is criticaL Thus, the transitivity of
dominance can be used to prove criticality of a new constraint

4A Global Optimization
Global optimization of a general, nonlinear, nonconvex objective function subject to nonlinear constraints
is an unsolved problem. There is no single best method to attain a globally optimal solution. Most
traditional nonlinear programming techniques are local methods and can get stuck in local valleys. Also,
only under strong assumptions about the function can a solution be guaranteed to be globally optimal.

Interval methods have been used to solve the global optimization problem [27]. The methodology behind
these approaches for unconstrained optimization is as follows: r '

• Use interval methods to represent regional information.

• Exploit the bounds provided by the interval method to guide the branch and bound search
strategy in which regions of the design space which have lower bounds are examined first,

• Use a subdivisioning procedure to accelerate the search by yielding tighter bounds.
«

To solve the constrained optimization problem, these methods successively subdivide the constrained
design space until they arrive at a part of the space that satisfies all the constraints. Due to the the
extreme conservatism of interval calculations and the nonlinearity of the constraints, it is difficult to
obtain a region that satisfies all the constraints through interval calculations. On the other hand, it is not
necessary that each and every constraint be satisfied in every region through interval calculations. A
large portion of the constraints are dominated in some regions and can be deleted from those regions.

4*5. Reduction of Computational Complexity
Design problems often have large numbers of complex constraints that must be satisfied to complete a
design task. Because it is impossible to guarantee the simultaneous solution of a large set of design
constraints, we have investigated algorithms for planning and simplifying constraint satisfaction.
Satisfying a large number of constraints does not imply that all the constraints must be solved
simultaneously. We have developed algorithms for finding coupled constraints and for creating a solution
plan that minimizes the need for simultaneous solution.

The simplest type of constraint sets are those that do not need to be solved simultaneously. Constraint
sets are said to be serially decomposable if the constraints can be solved serially, yielding the value of one
new variable for each constraint evaluation [35]. We have also found that estimating the value of critical
variables can sometimes uncouple equations, thereby reducing or eliminating simultaneity.

A serially decomposable constraint set can be ordered using a simple row and column elimination
algorithm. This algorithm fails if the constraint set is not serially decomposable. An algorithm for
assessing the decomposability of a constraint set, prior to ordering, has been proposed by Rane et al. [19).

13

When a constraint set is not serially decomposable, portions of the constraint set must be solved
simultaneously. Using algorithms based the woik of Serrano [34] and Steward [35], subsets of the
constraint set can be identified and isolated to be solved simultaneously. The algorithm consists of two
stages: watching and ordering. A matching should be maximal, that isv the maximum number of possible
matchings should be found. This is achieved using a standard bipartite matching algorithm [1]. A
maximal match determines which variable is computed from which constraint, but does not determine the
order of solution. The ordering of the computation is based on variable-constraint matching. These
dependencies can be represented as a directed graph among variables. When these dependencies are
circuitous, a group of constraints, said to comprise a strong component, must be considered
simultaneously. Strong components can sometimes be broken or simplified by estimating the value of
one of the variables in the strong component The process is analogous to untying knots in a string.
Untying a large knot might either reveal smaller knots or might eliminate the knot altogether. By
breaking a strong component, single-degrce-of-freedom search can be performed on one variable instead
of solving for all the variables simultaneously.

It is our hypothesis that this idea can be extended to larger problems. In [22], we present algorithms that
help to identify the best variables to select to simplify a given constraint problem. We al̂ o present
experiments that show that in many cases it is possible to eliminate simultaneity by estimating the value
of just one variable.

The notion of using bipartite matching and the strong components algorithm together was originally
suggested by Wang [41]. The algorithms were used to solve Gaussian matrices for solving sets of
equations using Newton-Raphson-like methods. Serrano [34] applied a similar algorithm for finding
strong components in sets of constraints. The aim of his work was to concentrate solution on components
and to avoid solving the entire constraint set simultaneously. Both these efforts are aimed at bi-
directional constraints. We have extended the algorithms to uni-directional constraints. We have also
developed the notion of breaking strong components using heuristic approaches.

5. System Architecture
The role of an architecture is to integrate design methods and algorithms around a shared representation.
In particular, an architecture provides a means for dynamically coordinating the application of methods as
required by the problem and the designer. For example, integration permits communication between
tasks without the designer having to execute multiple routines. A shared representation gives the various
modules a common vocabulary, releasing the designer from tasks such as data transformation (e.g.
transforming between geometric representations). Integration and a shared representation facilitate the
solving of large portions of the design problem. Designers are freed to concentrate on the design, not the
process.

Two components of the design system are the design database and the control strategy for manipulating
the database. The database contains the current representation of the design and its specifications. The
control strategy coordinates a set of operations that manipulate the database as the design changes. The
choice of these operations depends upon the control strategy and the representation of the data.

Perspectives are represented as knowledge sources that can view the designs in parallel. Once a change
occurs and is propagated, each perspective can comment on the change and can also add information to
the design.

14

5.1. Heterarchical Control
The architecture coordinates and manages the multiple design activities. The competing goals of the
designer and the different life-cycle perspectives as well as the interactions between specifications and
geometry of the artifact provide many sources of complexity in this system. The architecture constrains
this complexity by applying a structure to the system [11]. Hierarchical structures provide one or many
levels of authority; heterarchical structures permits competition between agents that are cooperating
toward a common goaL

Hierarchical structures vest decision-making authority in one or more agents. Simple hierarchies have a
single decision maker, either one agent or a group of cooperating agents. Uniform hierarchies apply
multiple levels of decision-making to filter competing information. Information moves up a uniform
hierarchy, while decision-making control propagates down from higher-levels. Brown and
Chandrasekaran [3] use a hierarchy to manage complexity in a system that performs routine design.
Specialists that design specific components of an artifact are organized in a uniform hierarchy. More
specific specialist are invoked from the higher, more general levels in the hierarchy.

Heterarchical systems have many disjoint agents available for particular tasks. Coordination is by
negotiation and contract based upon the marginal cost of the task [6,38,33]. Agents compete /or tasks
with all other forms of control eliminated between units. Each agent in the heterarchy pursues its own
goals in correspondence to the needs of another. Heterarchical systems provide a structure for problem-
solving in design systems with multiple perspectives. Negotiations between multiple competing
perspectives decide particular strategies to pursue in the design process. A shared representation of the
design supports inter-perspective communication.

Design agents can be organized in either hierarchical or heterarchical structures that determine the
decision making process, but the problem of coordinating these agents remains. Systems that plan
coordinate the activities of the agents by exploring and evaluating alternate design processes before
committing to an acceptable one [12]. Systems must also schedule the activities of the agents, selecting
appropriate agents to evaluate and participate in the design process at appropriate times [17,3]. The
architecture must provide either planning, scheduling or a combination of both to coordinate the activities
of design agents.

The role of an architecture is to integrate partial solutions around a central representation. Problem-
solving architectures are composed of a database and a method of coordinating operations on the
database. Semantic networks provide a representation for encoding qualitative and quantitative design
data in a shared database. Hierarchical and heterarchical structures can be used to coordinate the access
of multiple design agents to the database.

5.2. Black Board Architecture
Our architecture, based upon the blackboard model [7], is shown in Figure 8. Each design version,
composed of features connected by constraints, is represented in the design blackboard.

Using perspectives that communicate through a blackboard architecture enables us to partition the design
knowledge. Each perspective can define its own internal set of features, constraints, and variables.
Inconsistent requirements, names, and definitions are contained within the perspectives because the
communication is through the shared representation. Inconsistencies and conflicts in goals inevitably
arise during the design process. These inconsistencies are tolerated by the system but are also tracked.

15

Perspectives

Figure 8: Design Fusion system architecture

The designer is notified of inconsistencies when appropriate.

The architecture uses conceptual knowledge about the design to support the design task. A design record
tracks the design decisions that led to the creation of a constraint or feature. Design records are defined
by the perspective which generated the decision, the type of processing that led to the decision, and the
information upon which it was based. This information can be used to maintain design consistency when
undeilying assumptions of the design change or to track constraint violations back to the sources.

16

6. Conclusion
We have implemented the first version of the design system that embodies the research presented in this
paper. This system, known as Design Fusion, has enabled us to test and refine our ideas on concurrent
design. In the process of implementing the Design Ftision system, we have

• created a method for defining and recognizing non-manifold features and have begun to
implement an efficient algorithm for recognizing features in an evolving design

• created an architecture that integrates partial solutions to portions of the design problem
based on a common representation

• created new algorithms for reasoning about constraints using interval methods and regional
partitioning.

The Design Fusion system supports concurrent design by enabling the simultaneous consideration of
life-cycle constraints. It uses a shared representation of the design which can be parsed using perspective-
specific features. It uses constraints as a language by which perspectives communicate with one another
and with the designer. The perspectives are coordinated through a blackboard architecture that uses a
heterarchical control structure.

r '

Acknowledgments
This woric has been sponsored in part by Defense Advanced Research Projects Agency (DARPA) under
contract No. MDA972-88-C-0047 for the DARPA Initiative on Concurrent Engineering (DICE) and by
the National Science Foundation under the Engineering Research Centers Program, Grant CDR-8522616.

We wish to acknowledge the woric of Yung-Cheng Chao, Eric Gardner, Jerry Griffin, Levent Gursoz,
V. Krishnan, D. Navinchandra, Harold Paxton, Miguel Pinilla, Scott Safier, Atul Sudhalkar, and
Christopher Young, all of whom have contributed many ideas and substantial time to the creation of the
Design Fusion system.

17

References

1. Aho, A. V.f Hopcroft J. R and Ullman, J. D., Data Structures and Algorithms, Addison-Wesley
Publishing Company, Reading, Massachusettes, 1983.

2. Boming, A^ "ThingLab- A Constraint Oriented Simulation Laboratory," Technical report, Xerox
Palo Alto Research Center, 1979.

3. Brown, D. C. and Chandrasekaran, B., "Knowledge and Control for a Mechanical Design Expert
System," IEEE Computer, VoL 19, No. 7, July 1986, pp. 92-100.

4. Chang, T. C, Anderson, D. C. and Mitchell, O. R., "QTC - An Integrated
Design/Manufacturing/Inspection System for Prismatic Parts," Computers in Engineering
1988, American Society of Mechanical Engineers, San Francisco, CA, August 1988, pp. 417-426.

5. Cutkosky, M. R., Tenenbaum, J. M. and Muller, D., "Features in Process-Based Design,"
Proceedings of the International Computers in Engineering Conference, American Society of
Mechanical Engineers, San Francisco, CA, July 1988.

6. Davis, R. and Smith, R. G., "Negotiation as a Metaphor for Distributed Problem Solving,"
Artificial Intelligence, VoL 20,1983, pp. 63-109.

} '
7. Ernian, L. D., Hayes-Roth, F. Lesser, V. R. and Reddy, D. R., "The Hearsay-H Speech

Understanding System: Integrating Knowledge to Resolve Uncertainty," Computing Surveys, VoL
12, No. 2,1980, pp. 213-253.

8. Falcidieno, B. and Giannini, F., "Automatic Recognition and Representation of Shape-Based
Features in a Geometric Modeling System," Computer Vision, Graphics, and Image
Processing, Vol. 48,1989, pp. 93-123.

9. Finger, S. and Sailer, S. A., "Representing and Recognizing Features in Mechanical Designs,"
Second International Conference on Design Theory and Methodology, DTM
9 90, ASME, Chicago, September, 1990.

10. de Floriani, L., "Feature Extraction from Boundary Models of Three-Dimensional Objects," IEEE
Transactions on Pattern Analysis and Machine Intelligence, VoL 11, No. 8,1989, pp. 785-797.

11. Fox, M. S., "Organization Structuring: Designing Large Complex Software," Technical report
CMU-CS-79-155, Carnegie Mellon University, December 1979.

12. Gero, J. S. and Coyne, R. D., "Knowledge-Based Planning as a Design Paradigm," Design Theory
in Computer-Aided Design, Proceedings of the IFIP WG 5.2 Working Conference 1985,
Tokyo, Yoshikawa, H. and Waiman, E. A., ed., North Holland, Amsterdam, 198S, pp. 261-29S.

13. Gosling, J., Algebraic Constraints, PhD dissertation, Department of Computer Science, Carnegie-
Mellon University, 1983.

14. Gursoz, E. L., Choi, Y. and Prinz, F., "Vertex-based Representation of Non-manifold
Boundaries," Second Workshop on Geometric Modeling, IFIP, New Yoik, 1988.

15. Gursoz, E. L. and Prinz, F. B., "Comer-Based Representation of Non-manifold Surface
Boundaries in Geometric Modeling," Technical Report, Engineering Design Research Center,
Carnegie Mellon University, 1989.

16. Hayes, C. C. and Wright, P. K., "Automating Process Planning: Using Feature Interactions to
Guide Search," The Journal of Manufacturing Systems, VoL 8, No. 1, January 1989.

17. Hayes-Roth, F. and Lesser, V. R., "Focus of Attention in a Distributed Logic Speech
Understanding System," Proceedings of the International Joint Conference on Artificila
Intelligence, 1977, pp. 27-35.

18

18. Gavankar, P., Chuang, S. H.9 Henderson, M. R. and and Ganu, P., "Graph-Based Feature
Extraction," Proceedings of the First International Workshop on Formal Methods in Engineering
Design, Manufacturing, and Assembly, Colorado State University, January, 15-17 1990, pp.
167-183.

19. Krishnan, V., Navinchandra, D., Rane, P. and Rinderie, J. R., "Constraint Reasoning and Planning
in Concurrent Design," Technical report CMU-RI-TR-90-03, Robotics Institute, Carnegie Mellon
University, 1990.

20. Mackworth, A. YL, "Consistency in Netwoik Relations," Artificial Intelligence, Vol. 8,1977, pp.
99-118.

21. Moore, R., Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

22. Navinchandra, D. and Rinderie, J. R., "Interval approaches for Concurrent Evaluation of Design
constraints," 1989 ASME Symposium on Concurrent Product and Process Design, American
Society of Mechanical Engineers, San Francisco, December 1989.

23. Nielsen, E. H., Dixon, J. R. and Simmons, M. KL, "How Shall We Represent the Geometry of
Designed Objects?," Technical Report 6-87, Mechanical Design Automation Laboratory,
University of Massachusetts, 1987.

24. Papalambros, P. J. and Wilde, D. J., Principles of Optimal Design, Cambridge University
Press, New Yoric, 1988.

25. Pinilla, J. M., Finger S. and Prinz, F. B., "Shape Feature Description and Recognition Using an
Augmented Topology Graph Grammar," NSF Engineering Design Research
Conference, University of Massachusetts, Amherst MA, June 11-14,1989, pp. 285-300.

•
26. Popplestone, R. J., Ambler, A. P. and Bellos, I., "An Interpreter for a Language for Describing

Assemblies," Artificial Intelligence, Vol. 14, No. 1,1980, pp. 79-107.
27. Ratschek, H. and Rokne, J., New Computer Methods for Global Optimization, Ellis Horwood

Limited, Chichester, England, 1988.

28. Requicha, A. A. G. and Voelcker, H. B., "Solid Modeling: A Historical Summary and
Contemporary Assessment," IEEE Computer Graphics and Applications, March 1982, pp. 9-24.

29. Rinderie, J. R. and Krishnan, V.f "Constraint Reasoning in Concurrent Design," Submitted to
ASME Design Theory and Methodolgy DTM '90, ASME, 1990.

30. Safier, S. A. and Finger, S., "Parsing Features in Geometric Models; An abstract," SIAM
Conference on Geometric Design, Tempe, AZ, November 1989.

31. Safier, S. A. and Finger, S., "Parsing Features in Geometric Models," Technical Report, Robotics
Insitute, Carnegie-Mellon University, January 1990.

32. Sakurai, H. and Gossaxd, D. C, "Shape Feature Recognition from 3-d Solid Models," Proceedings
of the International Computers in Engineering Conference, American Society of Mechanical
Engineers, July 1988.

33. Sathi, A., and Fox, M.S., "Constraint Directed Negotiation of Resource Reallocations,"
Distributed Artificial Intelligence II, Morgan Kauftnann, Los Altos, CA, 1989.

34. Serrano, D., Constraint Management in Conceptual Design, PhD dissertation. Department of
Mechanical Engineering, Massachusetts Institute of Technology, 1987.

35. Steward, D. V.f "Partioning and Tearing Systems of Equations," Journal of SIAM, Numerical
Analysis Series B, Vol. 2, No. 2,1965.

36. Sussman, G. J. and Steele, G. L., "CONSTRAINTS- A Language for Expressing Almost

19

Hierarchical Constraints," Artificial Intelligence* No. 14V 198a pp. 1-39.

37. Sutherland, I. E., "Sketchpad - A Man-Machine Graphical Communication System," Technical
report #296, MIT Lincoln Lab. Cambridge, Massachusetts, 1983.

38. Sycara, K., "Resolving Goal Conflicts via Negotiation," Proceedings of the Seventh National
Conference on Artificial Intelligence. St Paul, MN, 1988, pp. 245-250.

39. Unger, M. B. and Ray, S. R., "Feature-Based Process Planning at the AMRF," Computers in
Engineering 1988, American Society of Mechanical Engineers, San Francisco, CA, August 1988,
pp. 563-569.

40. Voelcker, H. B., "Modeling in the Design Process," Design and Analysis of Integrated
Manufacturing Systems, National Academy Press, Washington, DC 1988, pp. 167-199.

41. Wang, R. T. R., Bandwidth Minimization, Reducibility Decomposition, and Triangularization of
Sparse Matrices, PhD dissertation. Computer and Infomation Science Research Center, Ohio State
University, 1973.

42. Watton, J. D.v Automatic Identification of Critical Design Constraints, PhD
dissertation, Department of Mechanical Engineering, Carnegie Mellon University, 1989.

43. Wetter, K. J., Topological Structures for Geometric Modeling, PhD dissertation, Renssalaer
Polytechnic Institute, 1986.

44. Woo, T. C, "Interfacing Solid Modeling to CAD and CAM: Data Structures and Algorithms for
Decomposing a Solid/' Computer-Integrated Manufacturing, ASME, New Yoric, 1983, pp. 39-45.

20

Hierarchical Constraints/ Artificial Intelligence, No. 14,198a pp. 1-39.

37. Sutherland, L E., "Sketchpad - A Man-Machine Graphical Communication System/ Technical
report #296, MIT Lincoln Lab. Cambridge, Massachusetts, 1983.

38. Sycara, K., "Resolving Goal Conflicts via Negotiation," Proceedings of the Seventh National
Conference on Artificial Intelligence, St Paul MN, 1988, pp. 245-250.

39. Unger, M. B. and Ray, S. R., "Feature-Based Process Planning at the AMRF," Computers in
Engineering 1988, American Society of Mechanical Engineers, San Francisco, CA, August 1988
pp. 563-569.

40. Voelcker, H. B., "Modeling in the Design Process," Design and Analysis of Integrated
Manufacturing Systems, National Academy Press, Washington, DC 1988, pp. 167-199.

41. Wang, R. T. R., Bandwidth Minimization, Reducibility Decomposition, and Triangularization of
Sparse Matrices, PhD dissertation, Computer and Infomation Science Research Center, Ohio State
University, 1973.

42. Watton, J. D.f Automatic Identification of Critical Design Constraints, PhD
dissertation, Department of Mechanical Engineering, Carnegie Mellon University, 1989.

43. Weiler, K. J.f Topological Structures for Geometric Modeling, PhD dissertation, Renss$la£r
Polytechnic Institute, 1986.

44. Woo, T. C , "Interfacing Solid Modeling to CAD and CAM: Data Structures and Algorithms for
Decomposing a Solid," Computer-Integrated Manufacturing, ASME, New Yoric, 1983, pp. 39-45.

20

