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Abstract 

A central problem in stereo matching by computing correlation or sum of squared differences 
(SSD) lies in selecting an appropriate window size. If the window is too small and does not cover 
enough intensity variation, it gives a poor disparity estimate, because the signal (intensity variation) 
to noise ratio is low. If, on the other hand, the window is too large and covers a region in which 
the depth of scene points varies, then the disparity within the window is not constant. As a result, 
the position of maximum correlation or minimum SSD may not represent a correct estimate of 
disparity. For this reason, an appropriate window size must be selected locally. There has been, 
however, little research directed toward the adaptive selection of matching windows. 
The stereo algorithm we propose in this paper selects a window adaptively by evaluating the local 
variation of the intensity and the disparity. We employ a statistical model that represents uncertainty 
of disparity of points over the window: the uncertainty is assumed to increase with the distance 
of the point from the center point. This modeling enables us to assess how disparity variation 
within a window affects the estimation of disparity. As a result, we can compute the uncertainty 
of the disparity estimate which takes into account both intensity and disparity variances. So, the 
algorithm can search for a window that produces the estimate of disparity with the least uncertainty 
for each pixel of an image. The method controls not only the size but also the shape (rectangle) of 
the window. The algorithm has been tested on both synthetic and real images, and the quality of 
the disparity maps obtained demonstrates the effectiveness of the algorithm. 



1 Introduction 
Stereo matching by computing correlation or sum of squared differences (SSD) is a basic technique 
for obtaining a dense depth map from images [MSK89][FP86][Woo83][MKA73]. A central 
problem with this method lies in selecting an appropriate window size. If the window is too small 
and does not cover enough intensity variation, it gives a poor disparity estimate, because the signal 
(intensity variation) to noise ratio is low. If, on the other hand, the window is too large and covers 
a region in which the depth of scene points varies, then the disparity within the window is not 
constant. Therefore, the position of maximum correlation or minimum SSD may not represent a 
correct estimate of disparity. For this reason, an appropriate window size must be selected locally. 

However, there has been little research for adaptive window selection. Most correlation- or 
SSD-based methods in the past have used a window of a fixed size that is chosen empirically for 
each application. Uncertainty in matching due to the variation of unknown disparities within a 
window is unaccounted for by existing stereo algorithms. Levine et. al [LOY73] presented a 
method of changing the window size locally depending on only the intensity pattern. However, 
window selection must also depend on the disparity (ie. depth) variations which changes from 
pixel to pixel in an image. In fact, the difficulty in obtaining an adaptive window lies in a difficulty 
in evaluating and using disparity variances. While the intensity variation is directly obtained from 
the image, evaluation of the disparity variation is not easy, since the disparity is what we intend to 
calculate as an end product of stereo. To resolve the dilemma, an appropriate model of disparity 
variation is required which enables us to assess how disparity variation within a window affects 
the estimation of disparity. 

The stereo algorithm we propose in this paper selects a window adaptively by evaluating the 
local variation of the intensity and the disparity. We employ a statistical model that represents 
uncertainty of disparity of points over the window: the uncertainty is assumed to increase with 
the distance of the point from the center point. This modeling enables us to compute both a 
disparity estimate and the uncertainty of the estimate. So, the algorithm can search for a window 
that produces the estimate of disparity with the least uncertainty for each pixel of an image. The 
method controls not only the size but also the shape (rectangle) of the window. 

In this paper, we first develop a model of stereo matching in section 2. Section 3 shows how 
to estimate the most likely disparity and the uncertainty of the estimate based on the modeling in 
section 2. These two sections provide theoretical grounds of our proposed algorithm. In section 
4, we describe a method to select appropriate window size and shape adaptively for each pixel, 
Section 5 provides experimental results with synthesized and real stereo images. The quality of 
the disparity maps obtained demonstrates the effectiveness of the algorithm. 
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2 Modeling Stereo Matching 
We will first develop a statistical model of the difference of intensities of two images within a 
window. The analysis is based on the uncertainty model presented in [OK90b]. Let the stereo 
intensity images be/i(jc,y) and / 2 0c ,y). Assume that the baseline is parallel to the x axis, and 
f\(x,y) and / 2 0c ,y) come from an underling intensity function f(x,y) with a disparity function 
dr(x,y). Then, 

f\(x,y) = f(x,y) + nx(x,y) (1) 
fi(x,y) = f(x-dr(x,y),y) + n2(x,y), (2) 

where n\(x,y) and nz(x,y) are independent Gaussian white noise for both images, such that 

*i(x,jO, n2(x,y) ~ N(0,a2

H). (3) 

From equations (1) and (2), 

f\(x,y)-f2(x + dr(x,y),y) = n(x,y), <4) 

where n(jc,y) is Gaussian white noise such that 

n(x,y) ~ N(0,2<7*2). (5) 

To simplify the notation, suppose that we want to compute the disparity at (x,y) = (0,0), i.e., 
the value d r(0,0). Also, suppose a window W = {(£, r/)} is placed at the correct corresponding 
positions in both images, that is, at (0,0) in image f\(x,y) and at (d r(0,0),0) in image fi(x,y). 
Figure 1 illustrates the situation. Then, the difference of intensities between f\ and/2 at (f, rj) in 
the window can be approximated by using the Taylor expansion of the left hand side of equation 
(4) 

/ i«.»7)-/2 (e + *(0,Q),»7) « 1 7 ) - 4 ( 0 , 0 ) ) ^ (6) 

At this point, let us introduce the following statistical model for the disparity dr(£, rj) within a 
window: 

dr(£,r/)-¿(0,0) - tf(o,c*^ + i j*) f (7) 
where is a constant that represents the amount of fluctuation of the disparity. That is, this 
model assumes that the difference of disparity at a point (f, rj) in the window from that of the 
center point (0,0) has a zero-mean Gaussian distribution with variance proportional to the distance 
between these points. In other words, the expected value of the disparity at (f, rj) is the same as 
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2 MODELING STEREO MATCHING 3 

the center point, but it is expected to fluctuate more as the point is farther from the center.1 Or, in 
terms of the scene, the surface covered by the window is expected to be locally flat and parallel to 
the baseline, but it is less certain as the window becomes larger. We also assume that the image 
intensity derivatives §^fi(.£,, v) within a window follow a zero-mean Gaussian white distribution.2 

These assumptions allow us to model a statistical distribution of the intensity difference (6). 
Let us denote the the right hand side of equation (6) by ns(£, rj). By assuming J^foC^, vj) and dr(£, rj) 
to be mutually independent, we can compute the mean and variance of ns(£, rj). 

E[ns(^r,)} = E[dr(Z,ri)-dr(OME 

= 0 

^/2(£ + dr(0,0),T7) + E[n((,r])} 

(8) 

T7))2] = E 

+E 

77) - dr(0,0))^/2(£ + dr(0,0), 77) 

2(dr(£, 77) - dr(0,0)) (Jfzit + dr(0,0), 7 7 ) ) 77) 

+2? [(*(£, T 7 ) ) 2 ] 

= £[(4(e ,77)-d r (0,0)) 2 ]£ ^ / 2 ( £ + d r (0 ,0 ) , 7 7 ) • £ [ ( * ( £ , r?))2] 

(9) 

where 

OCf = E ( ^ / 2 « + 4(0,0) , 7 7 ) ) (10) 

From equations (6), (8), and (9), we can show that /t,(£, 77) is approximated by Gaussian white 
noise such that 

ns(£,Ti) « MtiV) - / 2 ( £ + 4(0,0),rj) ~ N(oM + «f<*<i\/e + tf)' ( ID 

The intuitive interpretation of (11) is as follows. Referring to figure 1, n,(f, 77) is the difference 
between f\ and / 2 at (£, rj) within a window when the window is placed at the corresponding 

'The statistical model of (7) can be shown equivalent to assuming that dr(£, rj) is generated by Brownian motion 
(refer to [BN68][\bs87]). More generally, we can assume rj) to be a fractal. This corresponds to choosing a 
different degree of £ 2 + rf in the variance in (7). The Brownian motion is the simplest case in which the degree is j . 
However, our preliminary experiments have shown no noticeable advantage of using a general fractal assumption. 

2This is also equivalent to assuming the pattern /2^, rj) to be result of Brownian motion: i.e., locally it has a 
constant brightness, but has more fluctuation as the window becomes bigger. 



2 MODEUNG STEREO MATCHING 4 

positions for obtaining the disparity at (0,0). If there is no additive noise n(x,y) in the image 
(i.e., a* = 0) and the disparity is constant within the window (i.e., ad = 0), then the two images 
match exactly, and ns(£, TJ) must be null. Otherwise, however, the difference has a value which 
shows a combined noise characteristic which comes from both intensity and disparity variations. 
As derived in (11), it can be modeled by zero-mean Gaussian noise whose variance is a summation 
of a constant term and a term proportional to yjt2 + rj2. The constant term is from the noise added 
to the image intensities. The second term is from uncertain local support. That is, while the points 
surrounding the center point in the window are used to support the matching for the center point, it 
should be noted that these points may actually increase the error in computing the disparity of the 
center point. This is because, in general, the disparity of the surrounding points deviates from that 
of the center point. This uncertainty is represented as if the intensity signals have additional noise 
whose power is proportional to the distance from the center point in the window. If the disparity is 
constant over the window (i.e. = 0), the additional noise is zero. If the disparity changes more 
in the window (i.e., the larger a* is), its effect becomes larger and the information contributed by 
the surrounding points becomes more uncertain. 



3 Estimating Disparity and Its Uncertainty 
Now, we will show how the disparity and its uncertainty can be estimated based on the modeling 
presented in the previous section. Let do(x,y) be an initial estimate of the disparity dr(x,y). By 
using the Taylor expansion, equation (11) becomes 

- / 2 ( £ + 4>(0,0),»j) - z M ^ / 2 ( £ + do(0,0),77) = / i , ( £ , * 7 ) , (12) 

where Ad is an incremental correction of the estimate to be made, such that Ad = dr(0,0)—do(0,0). 

Dividing both sides of this equation by \jlcr\ + a /o^y^ 2 + rj
1 yields 

№,V) -/2(e + 4>(0,0),*?) ~ ^ ^ 2 ^ + ^(0 ,0) ,^) _ 

where nn(£, rf) = >
 n

'^'
v

) is Gaussian white noise such that 

= nn&ri), (13) 

By letting 

(i4) 

= / (
1 5

> 
yj2al + afady/(

2 + r}
2  

+db(0,0),»?) *f t t f + 4>(0,0),»?) 

we have 
MZ,n)-AdMt,ri) = (17) 

Now, by sampling <£i and <f>2 at (&, T7y) in the window W we can define £,y as 

& = M & »&) - ¿ # 2 ( 6 , »&•) = »&•)• (18) 

From equation (14), the conditional probability density function of given is 

p « , | ^ - cxp ( - ( * ' « ^ - f ^ » 2 ) . (19) 

Since n n(£, 77) is white noise, £/, are mutually independent. So we get 

piZittJ € W ) | = I] P(&l̂ 4>> (20) 
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where p(&j(i,j € W)|Af) is the conditional joint probability for the points in the window, and 
Hi jew denotes the product over the window. From the continuous version of Bayes' theorem, 

p(AdMu € W)) - ^ p m J e ^ ^ p { A m { A d ) - (2D 

Assuming no prior information of Ad (i.e.,p(Ad) = constant), substitution of (19) into (21) yields 

p(Ad\Zij(iJ eW)) = -^L— exp ( - ( ^ 2 ~ 2 ^ 2 ) > ( 2 2 ) 

where 

where Y,ijew denotes the summation over the window. Or, by substituting equations (15) and (16) 
into equations (23) and (24), we obtain 

(fi(fciy)-/a(& (̂0,o),»y))̂ i№ »̂ow 
Ad = v 1 (25^ 

^ = ~ ( ^ / 2 ( ^ ^ ( 0 , 0 ) , ^ ' ( 2 6 ) 

Equation (22) says that the conditional probability density function of Ad given the observed stereo 
intensities over the window becomes a Gaussian probability density function. The mean value and 
the variance of the Gaussian probability are Ad and cr^, computed with equations (25) and (26). 
That is, Ad and a2

^ provide the maximum likelihood estimate of the disparity (increment) and the 
uncertainty of the estimation for the given window W, respectively. 

ad and otf are parameters that represent the disparity fluctuation and the intensity fluctuation, 
respectively. We estimate them locally within the window from equations (7) and (10), 

A D = N~ ^ W T l
 ( 2 7 ) 

<tf = ( ^ 2 ( 6 + * ( 0 , 0 ) , ^ , (28) 

where NW is the number of the samples within the window. These parameters change as the shape 
and size of a window changes. 



4 Iterative Stereo Algorithm with an Adaptive Window 
In the previous sections we have developed a theory for computing the estimates of the disparity 
increment and its uncertainty, which take into account the fact that not only the intensity but also 
the disparity varies within a window. We now describe the complete stereo algorithm based on the 
theory: 

1. Start with an initial disparity estimate do(x,y). This initial estimate can be obtained by any 
existing stereo algorithm. 

2. For each point (x,y)> choose a window that provides the estimate of disparity increment 
having the lowest uncertainty. For the chosen window, calculate the disparity increment by 
(25) and update the disparity estimate by di+\(x,y) = difay) + Ad(x,y). 
Here we need a strategy to select a window that results in the disparity estimate having the 
lowest uncertainty. In the discussions so far the shape of the window can be arbitrary. In 
practice we limit ourselves to a rectangular window, as illustrated in figure 2, whose width 
and height can be independently controlled in all four directions. Our strategy is as follows: 

(a) Place a small 3 x 3 window centered at the pixel, and compute the uncertainty by using 
(27), (28), and (26). 

(b) Expand the window by one pixel in one direction, e.g., to the right JC+, for trial, 
and compute the uncertainty for the expanded window. If the expansion increases 
the uncertainty, the direction is prohibited from further expansions. Repeat the same 
process for each of the four directions J C + , X — ,y+, and y— (excluding the already 
prohibited ones). 

(c) Compare the uncertainties for all the directions tried and choose the direction which 
produces the minimum uncertainty. 

(d) Expand the window by one pixel in the chosen direction. 
(e) Iterate steps (b) to (d) until all directions become prohibited from expansion or until 

the window size reaches to a limit that is previously set. 

Thus, our strategy is basically a sequential search for the best window by maximum descent 
starting with the smallest window 

3. Iterate the above process until the disparity estimate di(x,y) converges, or up to a certain 
maximum number of iterations. 

Now, by using synthesized data we will examine how the window is adaptively set by the 
stereo algorithm for each position in an image, and demonstrate its advantage. Figures 3 (a) and 
(b) show the left and the right images of the test data. In generating the data set, a linear ramp in 
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4 ITERATIVE STEREO ALGORITHM WITH AN ADAPTIVE WINDOW 8 

the direction of the baseline is used as the underlying intensity pattern. It is deformed according 
to the disparity pattern in figures 3 (c) and (d), and Gaussian noise is added independently to both 
images. We apply the iterative stereo algorithm to the resultant data. 

First, we will examine the result of window selection. The four images in figure 4 show the 
length (increasing brightness corresponds to increasing length) by which the window has been 
extended in each of the four directions. For example, the vertical dark stripes in figure 4 (a) on 
the right hand side of the vertical disparity edge show that the windows for those points are not 
extended to the left so that the windows do not cross the disparity edge to a region of different 
disparity. We observe the same phenomena in the other directions. We can examine the size and 
shape of selected windows at several representative positions shown in figure 5. The windows 
selected at those positions are drawn by dashed lines in figure 6 relative to the disparity edges drawn 
by solid lines. For example, at PO a window has been expanded to the limit for all directions, 
whereas at PI expansion to the right has been stopped at the disparity edge. At P5> a window is 
elongated either vertically or horizontally, depending on the image noise, but consistently avoids 
the corner of the disparity jump. 

Next, let us examine the computed disparities. For comparison, we also have computed 
disparities by running the same iterative algorithm but with a fixed window size; that is, in Step 2 
of the stereo algorithm we use a window of predetermined size rather than the window selection 
strategy. We run with three window sizes, 3 x 3,7 x 7, and 15 x 15. Figures 7 (a), (b) and (c) show 
the result produced by fixed window sizes, and (d) by the adaptive-window algorithm. We can 
clearly see the problem with using a predetermined fixed window size. A larger window is good for 
flat surfaces, but it blurs the disparity edges. In contrast, a smaller window gives sharper disparity 
edges at the expense of noisy surfaces. The computed disparity by the proposed algorithm shown 
in figure 7 (d) shows both smooth flat surfaces and sharp disparity edges. The improvements are 
further visible by plotting the absolute difference between the computed and true disparities as 
shown in figure 8, with a table that lists their mean error values. The adaptive-window algorithm 
has the smallest mean error, but more importantly we should observe that the algorithm has reduced 
two types of errors. A small fixed window results in large random error everywhere. A large fixed 
window removes the random error, but introduces systematic errors along the disparity edges. The 
adaptive-window based method generates small errors of both types. In fact, we have shown that 
at each point the expected value of the error by the adaptive-window method is always smaller 
than or equal to that produced when any fixed-size window is used [OK90b], 

Figures 9 (a) and (b) show another example of synthesized test data. Figure 10 presents the 
computed disparity by the new method in (d), together with the results produced by fixed window 
sizes in (a) to (c) for comparison. As with the previous example, we clearly see better performance 
with the new method. 

2 Actually these are the average of ten runs with different noises to obtain the general tendency, rather than accidental 
set up. 



5 Experimental Results 
We have applied the adaptive-window based stereo matching algorithm presented in this paper to 
real stereo images-

Figures 11 shows images of a town model that were taken by moving the camera vertically. 
The disparity, therefore, is in the vertical direction. To give an idea of the arrangement of objects 
in the scene, a picture taken from an oblique angle is given in figure 11 (c). 

For initial disparity estimates, we have used a technique of multiple-baseline stereo matching 
[OK90a] which can remove matching ambiguities due to repetitive patterns, especially in the top 
portion of the image. Figure 12 (a) shows the disparity map computed by the adaptive window 
algorithm. In addition, the uncertainty estimate computed by the algorithm is shown in figure 12 
(b): increasing brightness corresponds to higher uncertainty. With this uncertainty estimate we can 
locate the regions whose computed disparity is not very reliable (very white regions in figure 12 
(b)). In this example, they are either due to aliasing caused by the fine texture of roof tiles of a 
building (in the middle part of the image) or due to occlusion (the others). The disparity estimates 
of those uncertain parts can be discarded for later processing. The isometric plot of the disparity 
map is shown in figure 12 (d), which roughly corresponds to the viewing angle of figure 11 (c). 
We can see that each building wall has a smooth surface and yet is clearly separated from others, 
and the shape of the distant bridge (on the left) is recovered. 

Figure 13 shows perspective views of the recovered scene by texture mapping the original 
intensity image on the constructed depth map and generating views from new positions which are 
outside of the original stereo views. They can give an idea of the quality of reconstruction. This 
stereo data set is the same one used in [MSK89]. We can observe a noticeable improvement of 
the result over the previous result. Also it should be noted that this is extremely narrow baseline 
stereo: the baseline is only 1.2 cm long and the scene is about lm away from the camera, thus the 
depth to the baseline ratio is approximately 80. 

Figures 14 (a) and (b) show another set of real stereo images which are top views of a coal mine 
model. Figures 15 (a) and (c) show the isometric plots of the computed disparity. For comparison, 
actual pictures of the model taken from roughly the same angles are given in figures 15 (b) and (d). 
The shapes of buildings, a A-shaped roof, a water tank on the roof, and a flat ground have been 
recovered without blurring edges. 
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6 Conclusions 
In this paper, we have presented an iterative stereo matching algorithm using an adaptive window. 
The algorithm selects a window adaptively for each pixel. The selected window is optimal in the 
sense that it produces the disparity estimate having the least uncertainty. By evaluating both the 
intensity and the disparity variations within a window, we can compute both the disparity estimate 
and its uncertainty which can then be used for selecting the optimal window. 

The key idea for the algorithm is that we employ a statistical model that represents uncertainty 
of disparity of points over the window: the uncertainty is assumed to increase with the distance of 
the point from the center point. This model has enabled us to assess how disparity variation within 
a window affects the estimation of disparity. 

The experimental results have demonstrated a clear advantage of this algorithm over algorithms 
with a fixed-size window both on synthetic and on real images. 
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7 Figures 

Figure 1: Illustration of n,(f, 77) in one dimension. The graph at the top shows/.(*); the middle 
ontyf2(x) (the thicker curve) with/i(x) shifted by dr(0) (the thinner curve); the bottom one, dr(x). 
The region indicated by the very thick lines on the axes indicate the region covered by the window. 
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6 FIGURES 12 
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Figure 2: Window expansion 
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6 FIGURES 13 

(c) (d) 

Figure 3: Synthesized stereo images, with a 
ramp intensity pattern with Gaussian noise: (a) 
Left image; (b) Right image; (c) Disparity pat­
tern; (d) An isometric plot of the disparity pat­
tern 

(a) (b) 

(c) (d) 

Figure 4: Extent of window-size expansion for 
each direction: (a) Left (X-minus) direction; (b) 
Right (X-plus) direction; (c) Down (Y-minus) 
direction (d) Up (Y-plus) direction 



7 FIGURES 14 

Figure 5: Positions for which size and shape of selected windows are examined. 

r P 6 I I 'PS I 

1 j 1 1 1 L*_! L3 
Figure 6: Selected windows for each position 



7 FIGURES 15 

Figure 7: Isometric plots of the computed disparity by: (a) a 3 x 3 window; (b) a 7 x 7 window; 
(c) a 15 x 15 window; (d) the adaptive window algorithm. 



7 FIGURES 16 
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3x3 0.22 

7x7 0.20 

15x15 0.34 

Adaptive 0.08 
Window (pixel) 

(c) (d) 

Figure 8: Difference between the true disparity and the computed disparity: (a) by a 3 x 3 window; 
(b) by a 7 x 7 window; (c) by a 15 x 15 window; (d) by the adaptive window. 
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7 FIGURES 18 

(c) (d) 

Figure 10: Computed disparities by: (a) a fixed 3 x 3 window; (b) a fixed 7 x 7 window; (c) a 
fixed 1 5 x 1 5 window; (d) the adaptive window. 



7 FIGURES 19 

(c) 

Figure 11: "Town" stereo data set: (a) Upper image of stereo; (b) Lower image of stereo; (c) 
Oblique view. 
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7 FIGURES 21 

Figure 13: Perspective views of the recovered scene: (a) from the original camera position; (b) 
from an upper position; (c) from an upper left position; (d) from an upper right position. 
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(a) 

Figure 14: "Coal mine" stereo data set: (a) Lower image; (b) Upper image. 



7 FIGURES 23 

(c) (d) 
Figure 15: Isometric plots of the computed disparity map and their corresponding actual view: (a) 
(b) Isometric plot and corresponding view from the lower left comer, (c) (d) Isometric plot and 
corresponding view from the upper right corner. 
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