
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Concurrent Garbage Collection for C++

David L. Detlefs
4 May 1990

CMU-CS-90-119 2

School of Computer Science
Carnegie Mellon Universi ty

Pit tsburgh, PA 15213

A shorter version of this report will appear in
Topics in Advanced Language Implementation,

edited by Peter Lee, published by the MIT Press.

Abstract
Automatic storage management, or garbage collection, is a feature usually associated with languages
oriented toward "symbolic processing," such as Lisp or Prolog; it is seldom associated with "systems"
languages, such as C and C++. This report surveys techniques for performing garbage collection for
languages such as C and C++, and presents an implementation of a concurrent copying collector for C++.
The report includes performance measurements on both a uniprocessor and a multiprocessor.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD) and monitored by the
Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-
Patterson AFB, Ohio 45433-6543 under contract number F33615-87-C-1499, ARPA Order No. 4976, Amendment
20.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the US Government

Keywords: Allocation/deallocation strategies, fault-tolerance, transaction processing, concurrency.

2

1. Introduction
Automatic storage management, or garbage collection, is a feature usually associated with languages

oriented toward "symbolic processing," such as Lisp or Prolog; it is seldom associated with "systems"

languages, such as C and C++. The advantages of automatic storage management are obvious: since the

system reliably determines when storage may be reclaimed, programs are simpler and less error-prone.

Reasons typically cited for not providing garbage collection in a language are implementation difficulty

and performance penalties. It is usually argued that garbage collection overhead is unacceptable for

languages intended to support low-level systems work. This argument certainly has merit; however, its

merit has declined for two reasons: 1) advances in garbage collection technology have made garbage

collection overhead smaller, and 2) the boundary between "systems" and "applications" languages have

become blurred. This paper will present measurements to support the first point The second point is

illustrated by the fact that Lisp is used as a "systems" language in the Lisp Machine operating system,

while C extensions such as C++ [Stroustrup 86] and Objective-C [Cox 86] are often used to build high-

level applications. Other examples of languages intended to support a wide spectrum of applications

include Cedar/Mesa, Modula-2+ and Modula-3, Clu, ML, and Eiffel; all provide garbage collection.

This paper explores techniques for implementing garbage collection for C and C++. In particular, I

present a concurrent, copying collection algorithm for C++ — the program proper may proceed

concurrently with the garbage collector. This concurrency results in performance improvements on both

uniprocessors and multiprocessors. Performance issues, however, are not the sole consideration in the

design of this algorithm. Because I would like garbage collection to become widely used in C++,

portability is also a major concern. A technique that requires extensive modifications to existing

compilers will be considered inferior to a technique that requires minimal compiler changes, unless the

first technique results in dramatically better performance.

The rest of this paper is organized as follows: Section 2 presents the three basic classes of garbage

collection algorithms. Section 3 poses two fundamental questions that any garbage collector must

answer, and explains why these questions present difficulties for garbage collectors for C or C++. Section

4 describe how previous researchers have approached these problems. Section 5 presents my garbage

collection algorithm, in a non-concurrent form. Section 6 discusses concurrent garbage collection, and

the techniques used to make my collection algorithm concurrent. Section 7 presents some performance

measurements. These include measurements on a shared-memory multiprocessor. Section 9 describes

some problems that my collector does not solve. Section 10 presents conclusions and suggestions for

future work.

2. Three Classes of Garbage Collection Algorithms
Garbage collection algorithms can be divided into three main classes: reference counting,

mark-and-sweep, and copying collectors. This section will examine each of these in turn, to provide
background for the rest of the paper.

3

2.1. Reference Counting Collectors
An object is garbage if and only if there are no references to it. A reference counting collector detects

unreferenced objects by maintaining a count of the number of active references to each object. The count

may be kept in the actual object, or there may be an auxiliary data structure that maps object addresses to

reference counts. Whenever a new reference to an object is created, the count is incremented; whenever a

reference is destroyed, the count is decremented. If decrementing a reference count causes it to become

zero, then the object may be reclaimed. Figure 2-1 illustrates a reference-counting collector. Call frames

containing variables local to particular procedures are stored on a thread stack; multi-threaded programs

may have more than one stack. The global data area contains statically allocated objects accessible from

all parts of the program. The heap area contains dynamically allocated objects. Pointers may cross any

of these boundaries. Note that only the heap is essential to this development; Clu, for example, does not

allow global data, and ML allocates call frames in the heap. Figure 2-1 shows two heap objects; object A

referenced by three pointers, and object B by only one.

Global Data
Heap

Thread Stacks

Figure 2-1: Reference Counting Garbage Collection

The main advantage of reference counting collection is simplicity. It is easy to understand and easy to

implement. Another advantage is that garbage objects are recognized and reclaimed as soon as they

become inaccessible; if memory is in short supply, timely reclamation may be important

Reference counting also has a number of disadvantages. If the heap contains a circularly linked data

structure, then each object in the circular pointer path will always have a reference count of at least one,

even if there are no references to any of the objects from outside the data structure. Reference counting

will not recognize the objects in such a data structure as garbage.

Another problem is reference count overflow. If objects contain their own reference counts (as is the
case in many implementations), then some number of bits in each object must be assigned to hold the
reference count. Since there are few references to most objects, there is a temptation to use a small
number of reference count bits. However, if some object is referenced by the maximum number of
references representable with these bits, then it is no longer possible to keep an accurate count of the

4

number of references to that object. There is no way to record an additional reference. Thus, a full

reference count may never be safely decremented - if the reference count returns to zero, there may still

be references to the object that were added while the count was full. If the object is reclaimed as garbage,

the program may malfunction.

The inability to reclaim circular data structures and the possibility of reference count overflow mean

that in actual implementations, reference counting is sometimes combined with some other garbage

collection algorithm. Reference counting usually suffices, but the more general algorithm is
intermittently invoked to reclaim these troublesome cases. The Cedar system, for example, normally uses

a reference counting collectore, but must sometimes call a mark-and-sweep collector [Rovner 85].

It might appear that reference counting would be suitable for "real-time" applications because garbage

is recognized immediately, and the interruption caused by garbage collection is short However, there are

cases in which garbage collection interruptions can be long. Note that if an object's reference count

becomes zero, then the reference counts of all the objects to which it contains references must also be

decremented. If one or more of these also goes to zero, the counts of the objects they reference must also

be recursively decremented. For example, if the pointer to object B in Figure 2-1 is changed, B's

reference count will become zero and B will be reclaimed. Since B contains a reference to A, the

reference count of A must also be decremented. Thus, deletion of a single reference may result in a large

amount of reclamation activity - consider the case of the deletion of the only reference to the head of a

long linked list. Such interruptions can be limited by using a stack of freed cells to defer some of the

work until the next reclamation [Cohen 81].

The most important drawback of reference counting from the point of view of garbage collection for C

and C++ is that reference counting requires mutator cooperation. Mutator is a term used in garbage

collection literature for the program proper - it does the actual work, but from the point of the garbage

collector, it simply "mutates" things by allocating storage and modifying references. A compiler for a

language using reference counting must insert special code to modify and check reference counts

whenever a pointer value is changed. This extra code imposes some performance overhead, but more

importantly, it limits the portability of the garbage collector by binding it strongly to a particular

compiler. As discussed in Section 1, portability is a major concern, so I would like to minimize this kind

of connection as much as possible. For this reason, I will not discuss reference counting collectors in the

rest of this paper.

2.2. Mark and Sweep Garbage Collection
A mark and sweep garbage collector does not keep reference counts. Instead, it waits until there is no

more storage available for allocation, and then initiates a collection. The collector first examines all the
pointers in the roots of the system; that is, the stack(s) and global variables. Figure 2-2 shows four
pointers from the roots into the heap. Any heap objects accessible from the roots are marked. Marks are
usually kept in the objects they refer to, but may also be kept in an auxiliary data structure outside the

5

heap. The marked objects are examined for pointers, and any unmarked objects they refer to are marked.

The marking phase concludes when all accessible objects have been marked. After marking, a sweep

phases traverses the heap, searching for unmarked storage. All such storage is returned to the allocation

pool. Figure 2-2 shows a marie and sweep collection just after the mark phase has completed. The

marked objects are shown as shaded. The sweep phase will ensure that all unmarked storage is available

for allocation.

Global Data H e a P

Figure 2-2: Mark and Sweep Garbage Collection

23 . Copying Garbage Collection
The mark and sweep collectors that I consider in this paper do not perform compaction: they do not

move accessible objects to contiguous locations. Compaction has two virtues. First, by moving the

accessible objects to contiguous locations, the free storage is also made contiguous. This elimination of

fragmentation makes it easier to satisfy allocation requests quickly. The second virtue of compaction is

that the accessible objects occupy fewer memory pages, decreasing the need for paging in a virtual

memory system. Compaction is seldom used in mark and sweep algorithms because if compaction is

desired, copying collectors are a superior solution.

In a copying collector, the heap is divided into two semi-spaces, from-space and to-space. Between
collections, all storage is allocated in from-space. Thus, all valid heap pointers point into from-space.
When the available storage in from-space is exhausted, a collection begins. As in the mark and sweep
algorithms, the collection begins by examining the roots for pointers into the heap. Any objects pointed
to are copied from from-space to to-space, filling it contiguously. The pointer is adjusted to point to the
new location, and a forwarding pointer is left in the from-space copy of the object. If another reference is
found to the object (from the roots or from another heap object), the forwarding pointer indicates where it
has been copied to, so that the reference may be updated. After the objects pointed to by the roots have
been copied, the copied objects themselves are examined for pointers into from-space. The objects they
point to are also copied to to-space, and forwarding pointers left in the from-space copies of those objects.
Eventually, all (and only all) accessible objects will have been copied into a contiguous region of to-

6

space. The collection is then complete; no pointers into from-space remain, so its storage may be reused

in the next collection, and new storage may be allocated from the unused portion of to-space. From-space

and to-space exchange roles, and the program resumes operation.

Figure 2-3 illustrates a copying collection.

3. The Two Fundamental Garbage Collection Questions
I have described three classes of garbage collection algorithms. While different in many ways, each

must answer two fundamental questions:
L Given an object, what pointers does it contain?

EL Given a pointer, where is the start and end of the object to which it points?

Question I is necessary to ensure that all accessible objects are found. Question n is necessary to

ensure that when a pointer is found, the (entire) object it actually points to is retained.

The answers to these questions may be quite trivial. Lisp systems often settle Question I by using

tagged data; each data item contains a code indicating whether it is a pointer or some "immediate" type,

such as an integer. These tags are checked at run-time to determine how operations such as " + " should

be executed. The garbage collectors may use tags to decide which words in an object contain pointers.

Question II may be answered by requiring that all pointers refer to the beginning of objects, and that all

variable-sized objects contains an encoding of their length. Fixed-size objects such as c o n s cells are

often allocated in distinguished areas of memory - the object size is known by the fact that it resides in

the c o n s area.

Unfortunately, these simple answers are unsuitable for C and C++. The emphasis these languages place
on performance precludes the use of run-time type checking via tags. Lisp compilers for stock hardware
must generate instructions that mask off tag bits from data values to recreate a 4 ' r aw" data value suitable
for the arithmetic or pointer operations of the machine. Other instructions are needed to place tag bits in

7

newly created instructions. Measurements indicate that tag checking and manipulation can constitute as

much as 30% of the running time of Lisp programs [Steenkiste 90]. Some languages, such as ML, do not

use tags for run-time type-checking, but only to distinguish pointers from non-pointers during garbage-

collection. The cost of this use of tags should be smaller; still, Steenkiste measured tag insertion and

removal to occupy about 10% of the running time of the programs he measured. A tagged

implementation of ML or C would have to do at least some of these insertions and removals. Again,

considerations of portability as well as performance should be taken into account The requirement that

mutator code behave differently in order to enable the garbage collector to function limits portability,

since a special compiler must be used. This coupling is another example of mutator cooperation. All

these considerations indicate that for C and C+f, tagged data is not an adequate answer to Question I.

Question II also becomes more complicated, because C and C++ semantics allow pointers into the

interiors of objects. Consider the following C++ program:

char* str * new char[26];
strcpy(str, "This is a 25 char string."
str += 10;
// GC occurs now;
str -= 10;
cout « str « "\n";

When the collection occurs, str is an interior pointer; it points into the interior of the object it

references, rather than at the head of the object A correct garbage collection must preserve the complete

body of each accessible object, even objects that are only referenced by interior pointers. The code

fragment above illustrates this situation: the programmer has every right to assume that the first ten

characters of str will still be there after garbage collection. Thus, the collector must be able to locate the

start of the string object referred to by the interior pointer str, as well as the end of the object

4. Previous Work
This section describes approaches other researchers have taken to provide solutions to the questions of

the previous section for C-like languages. The first three will be mark and sweep collectors, and the last a

"most-copying" collector.

4.1, Britton's Pascal Collector
Britton [Britton 75] described a garbage collection algorithm for Pascal. Appel [Appel 89] recently

evaluated this algorithm for use in other languages. While Britton's algorithm was not implemented for C

or C++, it is relevant because it contains techniques which are used in the C and C++ collectors described

later, specifically my algorithm and Bartlett's algorithm [Bartlett 88].

Britton's algorithm relies on "perfect knowledge" of each variable's type at each point in a program's

execution. The strong type-checking of Pascal makes it possible to maintain this level of knowledge. At

compile-time, the compiler constructs the following data structures:
1. stack — maps program counter values into stack frame layouts; that is, the local variables on

8

the stack and their types.

2. globals — maps global variable addresses into the types of those variables.

3. types - maps type names into type descriptions. For record types, a type description
encompasses the order and types of the record fields.

These data structures are linked into the eventual executable, and the collector uses them to accomplish
the mark phase of a mark and sweep algorithm. Figure 4-1 illustrates a snapshot of a programs execution

and how these data structures the collector to accomplish marking.

globi .

Global Data

Thread Stacks

Heap

TYPES

— 17, / — 17, /

42.3.14

abcdefgh

A

B

C

D

int,B*

char[8]
int, float

float, C*

GLOBALS

globi D

STACK

main int, int

foo A*

bar int,B*

Figure 4-1: Britton's "Perfect Knowledge" Collector

The first step of the collection is for the collector to unwind the stack. The stack data structure allows

the collector to map the current program counter value into the stack frame layout for the top stack frame.

It finds that the program was in procedure f o o , and that this stack frame has only a single variable, a

pointer to an object of type A. The collector marks this object, and then recursively examines it in a

depth-first marking process. The types map is used to determine that A is a record of two fields, an

integer and a pointer to a B . This second pointer is followed and the object marked. The types structure

allows the collector to determine that B objects contain no pointers, so this search is terminated. Next, the

collector proceeds to the next stack frame down (using return address information and the stack data

structure.) Eventually, all stack frames are examined, and the collector can initiate a similar marking

search from each of the global variables. When the stack and all the global variables have been

examined, all accessible objects are marked. The sweep phase can then collect unmarked storage.

The idea of maintaining perfect knowledge throughout the execution of the program is at least
conceptually simple. Another advantage of perfect knowledge is that it allows a collector to retain only
that storage that is actually accessible. This is not the case for some of the "conservative" collectors I
will examine later. Finally, as Appel points out, this algorithm could easily be modified to become a

9

copying collector.

There are also a number of disadvantages with this style of collection. The auxiliary data structures

increase the size of executable files. Looking up types in the types structure and interpreting the type

description to find pointers incurs some cost The collector relies on the type-safety of Pascal, despite the

fact that many implementations of Pascal are not completely type-safe: variant records contain a

case field taken to indicate which variant is currently in use, but this assumption relies on programmer

convention, not on any guarantee of the language implementation. In C and C-H-, the corresponding

u n i o n construct does not even have a syntactically distinguished case field. Perhaps the most important

drawback of this scheme, however, is the tight coupling between the collector and the compiler it

requires. This coupling increases the complexity of the compiler, and decreases the portability of both the

collector and the compiler. 1 I will try to avoid this coupling as much as possible.

4.2. Conservative Mark and Sweep Collectors
*'Perfect knowledge" is one way to answer Question I and identify all pointers. A less stringent

technique results from observing that a collector need not collect all storage that the program is not using.

Uncollected garbage will not affect the semantics of the program, 2 as long as enough garbage is collected

to allow allocation to continue. A collector that may leave some garbage uncollected is called a

conservative collector. This strategy forms the basis for C garbage collection strategies proposed by

Boehm and Weiser [Boehm&Weiser 88] and Caplinger [Caplinger 88]. Conservative strategies have also

been used in collectors for other languages (e.g. Cedar [Rovner 85].)

The Boehm and Weiser collector and the Caplinger collector are both mark and sweep algorithms.

Both answer Question I in the most conservative way: all properly aligned words are assumed to be

"possible" pointers. If the value a word contains "points" into the heap when interpreted as a pointer,

then the object "pointed" to is assumed to be accessible, and is marked. This conservative strategy could

fail if many non-pointer data values are interpreted as pointers, causing many objects that are actually

garbage to be retained in the collection. Neither Boehm and Weiser nor Caplinger observed this problem

in the use of their collectors. The problem is probably avoided because even a large heap occupies only a

small fraction of a full 32-bit address space, making the likelihood of an incorrect interpretation small.

(Non-pointer data items are often integers, and integer variables tend to have quite small values.)

Each algorithm starts by considering the roots of the program, the stack(s) and global variables. Each

properly aligned word is considered as a pointer; if the word "points" to an unmarked object, that object

is marked. When either collector finds that an object is referenced by a value that may be a pointer, it

*ln fact one c o . e c , storage management policy would be never to attempt ,o reclaim unused storage at all. TO. may be a
reasonable choice for short-lived programs with relatively small memory rcquiremcms.

http://co.ec

10

marks the object and considers the words in the object as pointers, recursively giving the same treatment

to any unmarked objects to which the words "point ." (Caplinger explicitly presents this depth-first

recursive marking procedure, which may consume large amounts of stack space in the collector. Boehm

and Weiser do not specify a strategy. Note that constant-space marking algorithms exist [Knuth 73].)

When all the root objects have been considered, then all accessible objects are marked. The algorithms

now collect unmarked storage. They do this in different ways, depending on their allocation strategy.

Caplinger's collector uses a first-fit allocator. Unused memory is organized as a sequence of segments,

each of which begins with a segment header giving the segment size and whether it is in use. Allocation

uses a simple linear search to find the first segment that is large enough to satisfy the request and is not in

use. The segment is split into two segments; an initial segment that is marked as in use and returned to

the user, and the remainder, which is still available for allocation. (If the remainder would be sufficiently

small, the entire original segment is returned to the user and marked as used, to avoid cluttering the heap

with small free segments.) After the marking phase of a garbage collection, a linear scan of the heap

coalesces all contiguous free segments into single segments.

The Boehm and Weiser collector uses an allocation strategy similar to that used by Berkeley 4.2

malloc. There is a free list assigned to each power-of-two object size, and an allocation request is

satisfied from the free list for the smallest size greater than the request. If a free list is empty, a new

chunk is allocated, and divided up into linked blocks of the size associated with the free list. All blocks

within a chunk are the same size, and each chunk contains a header indicating that size. Each chunk is an

integral multiple of a fixed size; Boehm and Weiser used 4 Kbytes as the minimum chunk size. The

header of a chunk also contains a mark bit for each block in the chunk. An object is marked by setting

this bit. After the marking phase of the collection, the Boehm and Weiser algorithm scans each chunk for

unmarked blocks that are not on the free list of the chunk, and adds them to that free list.

Neither the Caplinger algorithm nor the Boehm and Weiser algorithm adequately answer Question II.

Only pointers that point directly to the beginnings of objects will cause those objects to be retained.

Thus, the garbage collector will malfunction if an object is referenced only by interior pointers.

Interestingly, sufficient information is maintained by the Caplinger collector to deal with Question n, but

it is not used. (See Section 5.3.) Boehm and Weiser note that they could have solved Question n at the

cost of a more complicated marking algorithm, but did not implement this extension.

4.3. "Mostly-Copying" Collection
The advantages of compaction make it desirable to design a copying garbage collector for C or C-H-.

However, the problem of answering Question I without tagged data makes the design of such an
algorithm a difficult undertaking. When a copying collector moves an object, it must update all pointers
to that object. This requires the collector to be able to reliably locate all pointers in the system: it must
exactly identify the set of words that contain pointers. It would be incorrect to simply assume that all data
items that might be pointers are pointers, as is done in the conservative mark-and-sweep collectors

11

discussed above. To see why, consider the following code fragment:

Foo* f = new Foo; // f happens to get 0x53f36
f - NULL;
int i = 0x53f36; // Happens to be a relevant value
// Collection occurs now...

When the collection occurs, the stack contains a value for the integer variable i that looks like a pointer

to the object allocated in the first line. However, if the collector treats i as a " r ea l " pointer, it will copy

the object and update the "pointer" i to refer to the new location. The program will observe this update

as a "spontaneous" (and incorrect) change in the value of the integer variable i. Bartlett proposed a

solution to this dilemma [Bartlett 88]. Essentially, his idea is to be conservative in the roots, but rely on

"perfect knowledge' ' in the heap.

The first part of Bartlett's scheme is implemented by promoting pages containing objects that may be

referenced from pointers in the stacks and globals instead of copying those objects. Unlike a traditional

copying collector, Bartlett's heap does not contain two physically distinct semi-spaces. Instead, each

page has an associated "space identifier" indicating what space it is currently a member of. Thus,

"from-space" and "to-space" may be distributed throughout the heap. When a stack value is found that

(when interpreted as a pointer) would point to a heap object, the space identifier for that page is changed

to that of "to-space." This promotion conceptually "copies" all the objects on that page into to-space.

However, since the objects do not actually change location, the data value that "pointed" to the object

(which may not be a pointer at all) is not modified. Figure 4-2 illustrates this process. The shaded

from-space pages have been promoted because they contain objects that are referenced by possible

pointers in the roots. These are now part of to-space. After the roots have been scanned, a normal

copying collection begins. The figure shows an object on a non-promoted page in from-space that was

referenced by an objects on a promoted page. Following the normal copying collection algorithm, the

object on the non-promoted page has been copied to a to-space page, a forwarding pointer (shown with a

dashed line) left in the from-space copy, and the pointer in the object on the promoted page updated to

refer to the new location. This technique is used to " c o p y " all objects that may be referenced from the

stacks or globals into to-space; the objects that may be referenced are marked during this phase.

In order to do some copying and achieve some compaction, another technique must be used in the heap.

Bartlett relies on a pair of conventions:

1. All struct ' s must be coded so that all pointer fields occur contiguously at the beginning
of the struct.

2. All calls to malloc are replaced by calls to Bartlett's gc_alloc, which takes the same
size argument as malloc, but also an additional argument indicating the number of pointer
fields in the type being allocated.

Gc alloc inserts its second argument into a word preceding the block it allocates for the object, as

shown in Figure 4-3. The collector can then use this field to determine how many fields in the beginning

of an object to interpret as pointers. If the programmer correctly provides this information to gc_alloc,
then the collector can safely copy the objects these pointers refer to, and update the pointers.

12

struct {

foo* fp;

bar* bp;

int i;

float f;

char str[4];

1

3.14

abed

Figure 4-3: Header Structure in Bartlett's Collector

A final problem that Bartlett's collector must solve is the problem of "unsure references." For

Bartlett, these arise when a Scheme program creates a continuation object, which essentially results in

register values and part of a stack being stored in the heap. When scanning continuation objects, the

collector has no more knowledge about which parts are pointers than it does for the stack: the references

in the continuation are "unsure ." In general-purpose C and C++ code, unsure references can arise

because of union types, as shown below.

union Unsure {
char* str;
int i;

};

At collection time, the collector does not know whether this union contains a pointer or an integer.

Bartlett solves the problem of unsure references in the heap in same way as for the stack: the pages
containing the objects the unsure references "poin t" to are promoted. However, promoting objects after
the root scan raises a different problem. Assume that the collector scans object A, finding a sure
reference to object X. It copies X and updates A's pointer. Later in the collection, object B is found to
contain an unsure reference to X. If the collector promotes X's page, the sharing structure of the program

13

is not preserved; after the collection A and B will no longer point to the same object. Bartlett avoids this

situation by making collection a two pass process. In the first pass, the detection of a pointer to a

from-space object causes that object to be copied to to-space, and a forwarding pointers to the new-

location to be inserted into the from-space copy. However, the pointer that caused the object to be copied

is not changed. Similarly, pointers referring to from-space objects that have already been copied, which

would be updated by following the forwarding pointer in a normal copying collection, are not updated in

the first pass of the two-pass algorithm. Unsure references found during this first pass cause page

promotions. Since all retained objects are scanned in this first pass, all unsure references will be found.

Thus, all promoted pages are identified in this first pass. The second pass adjusts pointers. If a pointer is

found to point to a from-space page, then it is updated by following the forwarding pointer left by the first

pass. If it points to a to-space page, the page it points to must be a promoted page, so the pointer is not

modified.

Though this solution allows heaps containing unsure references to be correctly collected, it also

introduces two possible performance problems. The first is that using two passes roughly doubles

collection time (though collection time remains proportional to retained storage rather than total heap

size.) The second is that a program that allocates many objects containing unsure references may have

trouble reclaiming much storage. Any from-space pages containing an object that is the target of an

unsure reference will be promoted. If too many pages are promoted, then little copying will be done, and

little storage will be freed. This situation actually arose in the first large-scale test of my implementation

of Bartlett's algorithm. I built a garbage-collecting version of the AT&T c f r o n t compiler, which

makes extensive use of the C++ anonymous u n i o n construct in its internal data structures. These

u n i o n ' s often contain pointer and non-pointer members, making them unsure references. The use of

these u n i o n s was so extensive that virtually no storage was reclaimed when I ran my system on the

original code. Once the code was modified to segregate such u n i o n ' s into pointer and non-pointer

u n i o n ' s (at a cost in space efficiency), the fraction of storage reclaimed rose to reasonable levels.

Section 6.2 discusses other reasons for performing this segregation.

Bartlett actually presents two variations on his two-pass algorithm that differ in how they handle
objects on promoted pages. The simplest version can be somewhat wasteful. It scans all objects on
promoted pages, even if they are not pointed to by the roots. This method has the advantage that it
simplifies the treatment of heap objects containing pointers to objects on promoted pages: any pointer to a
promoted page can be ignored, because the object it points to will survive the collection and will be
scanned. The other variation is more selective about which objects on promoted pages it scans. Only
those objects that are possibly referenced from the roots are scanned. Bartlett's measurements indicate
that these algorithms retain similar amounts of storage for small page sizes. As the page size used by the
collector becomes larger, the less selective algorithm retains and scans more garbage objects on promoted
pages. Since the page size used by the collector is independent of the hardware page size, he chose to use

14

the simpler algorithm with a small page size. 3

Bartlett's algorithm successfully integrates the conservative and the perfect knowledge approaches.

One cost of this integration is the space wasted on promoted pages by objects that are not marked; that

space is never utilized. However, his measurements show that this waste is small for the test cases he

tried; only a few pages are promoted during each collection. Still, Bartlett's algorithm is incomplete in

some respects; section 5.1 examines these deficiencies and how my algorithm remedies them. (Note that

this incompleteness is deliberate; Bartlett's system was intended for use by C code generated by his

Scheme-to-C translator, not as a general purpose collector for C or C++.)

4.4. Mark and Sweep vs. Copying
I will complete this section by comparing the mark and sweep algorithms with the copying algorithm.

A major advantage of the mark and sweep algorithms is that they allow the program to continue to use

explicit free (delete in C++) commands in cases when the programmer has determined that storage is

no longer in use. Both Boehm and Weiser's and Caplinger's collectors offer this facility. 4 Such

collectors can also be used as "malloc debuggers" for programs not intended to use garbage collection.

In this mode, an explicit free sets a flag in the header of the freed object. If the collector determines

that an object with this flag set is probably accessible, it can emit an error message indicating that the

object may have been deallocated prematurely. Support for explicit free could probably be grafted onto

a copying collector, but it would make the allocation routine more complicated and slower, since it would

have to check to see if an allocation request could be satisfied from a free list Finally, mark and sweep

collectors do not move objects, preserving the "normal" C property that an object's address does not

change during its lifetime. Section 9.1 examines how violation of this property can invalidate some

programs.

Copying collection has several advantages. The obvious advantage is that copying collection offers

compaction. Another advantage is in algorithmic complexity: copying collection takes time proportional

to the amount of retained storage, whereas mark and sweep algorithms, because of the sweep phase, must

traverse the entire heap [Baker 78]. If sufficient memory is available to allow a heap significantly larger

than the average storage retained in a collection, then less frequent collection can amortize the cost of

reclaiming garbage over more allocations, increasing system performance [Appel 87]. Finally, copying

collection is compatible with advanced techniques that can make garbage collection less intrusive:

generational collection and concurrent collection. Each of these strives to minimize interruptions caused

by garbage collection. Generational collection attempts to break collection into a number of small, fast

3Apparently C-H- programs making extensive use of u n i o n s can contain many more unsure references in the heap than typical
Scheme programs. Even when running the c f r o n t example with a 256 byte page size, most pages were promoted.

'̂ The Boehm & Weiser collector is intended for use with a C-producing compiler for Boehm's language Russell, much as
Bartlett's collector is intended for use with his Scheme-to-C compiler. Compile-time analysis can sometimes determine with
complete safety that an object is inaccessible, and the compiler can explicitly f r e e the object in the C code it emits.

15

collections. Bartlett has recently modified his "mostly copying" collector to use generational techniques

[Bartlett89]. Concurrent collection allows the mutator to proceed concurrently with the collector. I have

taken this latter path; Section 6 details this work, as well as briefly discussing generational techniques.

5. Sequential Copying Collection for C++

5,1. Incompleteness of Bartlett9s System
As previously mentioned, Bartlett's collector was intended to support only the subset of C emitted by

his Scheme-to-C compiler. As a result, there are several ways in which Bartlett's collector is not

adequate for general purpose C or C++. The goal of my collector will be to eliminate those inadequacies

to the greatest extent possible, producing a compiler/collector system that will work for most off-the-shelf

C++ programs.

One problem with using Bartlett's collector is that programmers must manually modify code to use it.

Structures must have pointers only at the beginnings of their extent, and all calls to malloc must be

replaced with a call to gc_alloc that correctly gives the number of pointers in the structure being

allocated. The latter point is an only an inconvenience, but still source of possible error. The requirement

that all structures contain pointers only at the beginning is a more serious deficiency; some programs

cannot be modified to meet this requirement, as the following example shows.

struct A { struct B{
int i; A aaa[3];
char* str; int j;
Foo* f; };
float f;

In­

s t r u c t A can be reorganized so that all pointers are at the start, but s t r u c t B cannot. Thus, some

more complicated encoding of pointer locations must be used.

Another problem with Bartlett's collector is that, like the other collectors for C and C++, it does not

completely address Question II: it does not guarantee that an object will survive collection even if it is

only referenced by one or more interior pointers. One of the variations of his algorithm that Bartlett

presents (" G C - 2 " , [Bartlett 88, p. 20]) handles interior pointers found in the roots, but not interior

pointers found in heap objects. It may be that Bartlett's Scheme compiler guarantees that no interior

pointers appear in heap objects. In any case, arbitrary C or C++ code can contain interior pointers in heap

objects, so Bartlett's algorithm must be extended. Section 5.3 details how I use a technique similar to

Bartlett's to handle all interior pointers.

5.2. Finding Pointers
As noted above, a mechanism more general than Bartlett's "number-of-pointers-at-the-front" scheme

is needed to allow a collector to reliably find pointers in heap objects. In [Bartlett 89], Bartlett proposes
and implements a callback mechanism. At allocation time, the user provides the address of a user-written

16

"pointer-finding" procedure. This address is stored in the object header. When the collector needs to

find the pointers in the object, it calls this procedure, which then calls a publicly-declared garbage

collection function with the address of each pointer in the object. This scheme is completely general,

since the user has complete control over the pointer-finding procedure. Moreover, this scheme can

eliminate the unsure reference problem for union ' s : such union ' s are almost always used in

conjunction with another structure field indicating which member of the union is currently in use. The

user can write the pointer-finding procedure to incorporate this knowledge. 5 The Xerox PARC Portable

Common Runtime uses a similar callback mechanism.

A disadvantage of this callback scheme is that programmers, rather than a compiler, must generate the

pointer-finding procedures for their classes. While this requirement allows Bartlett's collector to work

with any compiler, it is an inconvenience to programmers, and increases the likelihood of errors that will

be particularly difficult to discover. For example, consider a user who adds a pointer field to a class, but

neglects to update the pointer-finding procedure of the class. Bartlett's collector has a mode in which it

uses conservative-style heuristics to attempt to detect such omissions, but users may neglect to use this

mode. 6 Since the purpose of garbage collection is to make programs safer, I have chosen to use only

automated methods that require as little user modification of programs as possible.

The mechanism used to locate pointers in my collector is a more sophisticated version of Bartlett's

original scheme. The allocation routine inserts an object header preceding each object. One of the

elements of an object header is an object descriptor, which describes what fields in the object contain

pointers. An object descriptor serves the same purpose as a "ref-containing m a p " in the Cedar system

[Rovner 85]. An object descriptor takes one of the following forms:
• A bitmap: a word in which the " 1 " bits correspond to words containing pointers in the actual

object. Bitmap descriptors are used only for objects that do not contain any unsure references
and whose pointers only occupy the first 32 words (assuming a 32-bit architecture).

• An indirect descriptor. This is a pointer to an array of bytes that is interpreted by the
collector. Different byte values encode sure references, unsure references, skips (non-pointer
data), and repeated instances of smaller descriptions. Repeats are useful for encoding arrays,
and nested repeats allow objects of any finite size to be represented.

• A fast indirect descriptor. Byte-interpretation of indirect descriptors turns out to be
somewhat slow, so for all but the most complicated types the fast indirect representation is
used. Here the object descriptor is a pointer to an array of integers. The first integer in the
array is a repetition count, indicating how many times the rest of the the descriptor should be
scanned. This convention allows fast indirect descriptors to describe large arrays. Each
integer after the first indicates the number of words that must be skipped to find each
successive pointer in the object. A negative integer indicates that the next reference is found
by skipping the absolute value of the integer, but that the reference is unsure. Zero
terminates the array.

5 This capability does not allow the elimination of the unsure reference problem for continuations, since no such external
knowledge is available for continuations.

6Consider the use of l i n t by C programmers...

17

To illustrate these object descriptors, consider the following types:

struct X {
int i;
char* str;
float* fp;
int in­

struct Y {
X aaa[3];
union {

int i ;
char* s;

Struct X can be described by a bitmap descriptor 0x6 - the second and the third bits are on. Struct
Y cannot be described by a bitmap descriptor, because it contains an unsure reference. It must be

described by an indirect descriptor pointing to a byte array corresponding to

REPEAT(3), SKEPQ), SURE(2) SKIP(l), REPEAT_END, UNSURE(1), DESCJEND.

Alternatively, struct Y can be described by a fast indirect descriptor, a pointer to the integer array

[1 , 2 , 1 , 3 , 1 , 3 , 1 , - 2 , 0] .

Much as Bartlett's allocation function requires an argument indicating the number of pointers in the

object or a pointer to a callback procedure, my allocator requires an object descriptor for the type being

allocated It would obviously be time-consuming and error prone to require users to create these fairly

complicated encodings. Instead, I have modified the AT&T C++ 1.2.1 compiler (cf ront) to derive

these encodings automatically. Section 5.4 describes this implementation more fully.

S3. Finding Objects
Previous collectors for C and C++ have not adequately addressed Question n, how to reliably identify

the whole object pointed to by a pointer. The Boehm and Weiser collector was intended to work with

machine-generated code that was known not to use interior pointers. Caplinger argued that interior

pointers were rare, and therefore not worth handling. 7 Bartlett presents a variation on his basic algorithm

that handles interior pointers, but apparently only when they occur in the stacks or registers [Bartlett 88,

p. 20]. It would be preferable to find a solution that correctly handles interior pointers wherever they

occur without imposing much cost in the normal case, where pointers point to object heads.

The version of Bartlett's collector that recognizes some interior pointers does so using an allocation
bitmap, an array of bits separate from the heap. Each bit in the bitmap corresponds to a word in the heap.
The allocation routine of the garbage collector maintains the invariant that a bit in the bitmap is set if and
only if the corresponding word in the heap is the start of an object My collector maintains the same data
structure, but uses it to locate the start of the object referenced by each pointer, not just pointers in the
stacks or globals. Since most pointers actually point to the head of an object, rather than to an object
interior, the collector optimizes this case using a C++ inline function. This function quickly checks the bit
corresponding to the pointer, returning the pointer if the bit is set It is only when the pointer is an interior

7StiU, Caplinger found that his collector would not work with the Sun window system, and speculated that interior pointers
may have been caused the problem.

18

pointer and the bit is not set that a search procedure is called. This procedure locates the start of the

object referenced by an interior pointer by scanning the bitmap for the first " 1 " bit preceding the bit

corresponding to the pointer. The word corresponding to the " 1 " bit begins an object An object header

will immediately precede this object in the heap. For safety, the search procedure verifies that the

original pointer lies within the extent of the object, as determined by the object start and the size field of

the object header.

I also considered a magic number scheme, where the beginning of an object is marked by the presence

of a special bit string in the heap. This scheme has the disadvantage of admitting the possibility of some

user data value being the same as the magic number, causing the collector to incorrectly identify the start

of an object There is no such danger with the allocation bitmap, because the contents of the bitmap are

controlled completely by the allocator. Interestingly, the allocation bitmap may incur less space overhead

than magic numbers. Assuming 32-bit words, the bitmap requires a constant 1/32 of the heap. If 32-bit

magic numbers are used, the average object size has to reach 32 words to equal this space efficiency. The

average object size in the programs I have tested is approximately half this size.

5.4. Implementation
My garbage collector takes the form of an instance of a C++ class called GcHeap. GcHeap has a

member function alloc that allocates storage from the heap, beginning garbage collections when there

is not enough free space in the heap to satisfy allocation requests. The implementation of this class and

its supporting types form a Unix library, libGc. a , Because my goal was the ability to make existing

C++ programs use garbage collection automatically, I created a special version of a C++ compiler oriented

towards my allocator. As previously mentioned, I modified AT&T cfront 1.2.1. (Cfront is a

compiler that uses C as an assembly language, for portability.) When this modified compiler compiles a

C++ file, it first implicitly includes a header file that declares the GcHeap type, so that the alloc
function can be used. The compiler computes and remembers an appropriate object descriptor for each

type declared in a program. All calls to the C++ operator new are changed to calls to GcHeap: : alloc.
GcHeap: : alloc expects an extra ObjHead argument containing an object descriptor for the type

being allocated; this object descriptor is provided by looking in the previously constructed table. If the

object descriptor is one of the indirect descriptors, then the compiler defines the appropriate static array of

characters or integers. An indirect object descriptor is defined only once per type per file, and only if an

object of that type is allocated in the file. An object descriptor is also associated with each global variable

containing pointers in the program, and a list of the addresses of all such variables is defined for later use

by the collector. Calls to delete are ignored by translating them into null C statements, and destructors

are similarly eliminated. (Section 9.2 discusses how this decision alters the semantics of the language.)

The collector works in much the same way as Bartlett's. As previously mentioned, the storage
allocator inserts an object header before each object, containing the size of the object and an object
descriptor. The complete definition of an object header adds space for a marked bit and a scanned bit.
These are reset at allocation time. As in Bartlett's algorithm, my collector maintains a list of to-space

19

pages, the tsjist. My collector also uses a queue of object addresses called the Imojiueue (for late

marked object queue) to handle intra-page references found while it scans a promoted page.

void collect () {
tsjist = empty_list () ;
scan_stacks () ;
scan_globals();
scan_heap () ;
correct_globals();
correct_heap() ;

>

void scan_heap() {
for (each to-space page page in tsjist)

scan__page (page) ;
}

void scan_page (int page) {
if (promoted (page)) {

Imojqueue = empty_queue () ;
for (each marked object O on page) {

scan_object(O);
set scanned bit and clear marked bit of O;

}
while (! Imojqueue. empty ()) {

O - Imojfueue. deq () ;
scan_object (O) ;

}

} else { // Not a promoted page: scan all objects,
for (each object O on page)

scan_object (O) ;
}

}

Figure 5-1: Overall Collection Algorithm

Figure 5-1 shows the top level of the collection algorithm. The collect procedure performs a

collection. This procedure starts by setting the tsjist to the empty list. It then invokes scan_stacks,
which scans the stacks of all mutator threads. Whenever the collector finds a word on a stack that

references a heap object when interpreted as a pointer, it sets the marked bit of that object, promotes the

page(s) on which the object resides, and appends the page to the tsjist, Scan__globals then scans

every global data object for pointers to heap objects, copying these objects to to-space pages. A to-space

page is added to the tsjist when objects are copied to i t

Scan_heap scans every page on the tsjist. All objects on non-promoted heap pages are scanned.

When scanning a promoted page, however, the collector considers only marked objects. When the

collector finishes scanning a marked object, it resets the marked bit, and sets the scanned b i t This

prevents it from scanning the object again. Scanning objects on a promoted page may reveal further

accessible objects on the page that must be scanned. The scan_ob ject procedure (described below)

20

enqueues the addresses of these objects on the Imojjueue. Thus, the collector scans all objects on the

lmo_queue before finishing with a promoted page.

void scan_object (Object 0) {
for (each possible pointer P in O) {

Object 02 « *P;
if (02 has a forwarding pointer or scanned bit set) return;
// Otherwise...
int page = obj2page(02) ;
if (! promoted (page)) {

II Page of 02 is not promoted. Should it be?
if (P is an unsure reference) {

promote_page (page) ;
set marked bit of 02;

} else { 11 is sure reference; copy.
Object 03 = GcHeap:: alloc(sizeof(02), ObjHead (0 2)) ;
03 « 02;
set forwarding pointer in 02 to address of 03;

)
} else { // The page of 02 is promoted,

if (unscanned (page)) {
set marked bit of 02;

} else if (being_scanned (page)) {
set scanned bit of 02;
Imojqueue. enq (02) ;

} else {
// Page must have been scanned already,
set marked bit of 02;
delete page from ts_list and insert at end;

}
}

}
}

void correct_object (Object 0) {
for (each possible pointer P in 0) {

Object 02 = *P;
int page = ob j2page (02) ;
if (! promoted (page)) {

P = 02. f orwarding__ptr;
} else if (02 has a forwarding pointer) {

// Copy back overwritten object descriptor.
02 = *02.forwarding_ptr;

}
}

}

Figure 5-2: Scan__ob ject Algorithm

Figure 5-2 shows the algorithm used to scan individual objects. Scan__ob ject considers each object

referenced by the object being scanned. Nothing needs to be done if the referenced object has already

been scanned or copied. If the referenced object has not been scanned, the collector must ensure that it is

scanned later. How it does this depends on the state of the page the referenced object resides on.

21

Consider first the case in which the page is not promoted. Each pointer considered is either a sure or an

unsure reference; unsure references arise from union ' s . If the pointer is unsure, the object it references

cannot be moved, so the page of the referenced object is promoted and the referenced object marked. If

the pointer is a sure reference, the collector copies the referenced object to a to-space page and leaves a

forwarding pointer in the object header of the from-space copy (overwriting the object descriptor). Now

consider the case in which the referenced object resides on a promoted page. In this case, the collector

first considers whether the page has been scanned or not. If the page has not been scanned, then merely

marking the object will ensure that it is considered when the page is eventually scanned. If the page

happens to be the page currently being scanned, the address of the referenced object is enqueued on the

Imojqueue. The scanned bit of the object is also set to prevent the object from being inserted on the

queue twice. Finally, if the page has already been scanned, then the referenced object is marked, and the

page is moved to the end of the tsjist to ensure that it is scanned again.

Note that no pointers in object bodies are changed during scanning, since the collector must discover all

promoted pages. Pointers are changed during the correction pass. The correction examines each pointer

in each global object, each object marked as scanned on promoted heap pages, and every object on

non-promoted to-space pages. If the pointer references an object whose header contains forwarding

pointer, the pointer is changed to point to the object referenced by the forwarding pointer.

The use of the lmo_queue and re-enqueuing pages on the tsjjueue might seem more complicated

than is necessary. An alternative would be to call a recursive s c a n _ o b j e c t procedure whenever a

previously unscanned object on a promoted page is found. However, this recursion can require

unbounded stack space, while the solution above uses constant space. Note that the maximum size of the

Imojqueue is bounded by the number of objects that can fit in a page.

I might seem inconsistent by modifying a compiler to support my garbage collector, yet rejecting

schemes that require "mutator cooperation" because they bind the compiler and collector too tightly.

This inconsistency can be justified by considering the extent and nature of the modifications required to

port my collector to a new compiler. Most of the system (31 files, 4114 lines) is in the l i b G c . a library,

and should be completely portable to any compilation system compilable with C++. The modifications to

the c f r o n t compiler involved changing or adding 107 lines in 5 existing files, and creating 4 new files

totalling 667 lines of code. These new files are mostly devoted to translating the c f r o n t representation

of a type into an object descriptor. This translation is relatively simple, partly because it can be done in

the front-end of the compiler. In contrast, some of the other examples of compiler-collector cooperation

I've considered in this paper would require interaction at the code-generator level, which would be

considerably more complicated. I believe that at least the logic and structure of the files that do the

type-to-descriptor translation would be transferable to a new target compiler. The collector library

contains a number of classes useful in constructing object descriptors, which may be used by any target

compiler that can be compiled by C++.

22

6. Concurrent Copying Collection for C++

6.1. Generational and Concurrent Collection
Even if a garbage collector entails little overhead when amortized over the lifetime of a program, its use

may still be unacceptable in some applications if the mutator must halt for the duration of each collection.

Interactive applications are especially sensitive to the duration of interruptions. In section 4.4, I

mentioned two advanced collection techniques used to decrease the duration of garbage collection

interruptions. I will briefly examine generational collection, and then describe my implementation of the

other alternative, concurrent collection.

In generation scavenging [Ungar 84], perhaps the simplest form of generational collection, the heap is

divided into two areas, a large old area and a small new area. The new area is further divided into

semi-spaces, as in conventional copying collection. Storage is always allocated from the from-space of

the new area. The new area is collected often. Ungar and Jackson's data for Smalltalk [Ungar&Jackson

88] indicate that newly allocated storage is more likely to become garbage than longer-lived storage, so

collections of the new area tend to reclaim a large fraction of the area. Because the new area is small, and

little storage tends to be retained, these collections are fast To keep the new area sparsely populated,

objects that survive a certain number of collections are moved into the old area. The old area is collected

rarely if at all. This idea may be carried further by adding more generations, each collected more rarely

than the one before. Bartlett describes an implementation of generational collection for C++ [Bartlett 89].

Another technique for decreasing the duration of garbage collection interruptions is concurrent

collection, in which the mutator is allowed to proceed while garbage collection is in progress. When run

on a multiprocessor, concurrent collection can also decrease total running time, by doing collector and

mutator work at the same time. As always, the collector must ensure that all accessible objects are

retained. Concurrency makes this more complicated, since the mutator may change references while

collection is in progress. Consider an object X referenced by a pointer in object A at the start of a

collection. If the mutator destroys this reference and moves it elsewhere before the collector scans A, X
may never be copied (or marked.) Thus, the mutator and the collector must somehow be coordinated.

Dijkstra and others [Dijkstra et al. 75], and Kung and Song [Kung&Song 77], present algorithms for

doing concurrent mark-and-sweep collection. These require mutator cooperation: the mutator must

"co lor" an object whenever it creates a reference to it during collection. Again, I will not consider

algorithms requiring mutator cooperation.

Another way to coordinate the mutator and collector is to serialize a copying collection, so that the
entire collection appears to the mutator to occur at one point in time. Before this point, the mutator
observers only pointers into from-space; after this point, only pointers into to-space. North and Reppy
achieve approximately this result for their language Pegasus by requiring that all mutator "object
updating be done atomically..." [North&Reppy 87p. 123]. Similarly, the collector scans objects as " a
series of of small atomic operations..." Since their system is intended to run on uniprocessors, atomicity

23

can be obtained by a special call to the scheduler, disabling pre-emption. To exploit a true

multiprocessor, some kind of locking would be necessary to guarantee atomicity. The concurrent

collection in Pegasus is not completely serialized; the mutator can observe from-space pointers during

collection. North and Reppy maintain correctness by requiring their compiler to insert extra code into

each operation that modifies an object. This extra code checks whether a collection is in progress and the

object has already been scanned; if so, it causes the collector to rescan the object. Without rescanning,

the mutator could insert a pointer to an otherwise-unreferenced from-space object into a scanned object,

and the collection would not copy the from-space object to to-space. I will not consider this scheme

further because of the required mutator cooperation.

Ellis, Li, and Appel [Ellis et al. 88] present an algorithm that is somewhat similar to North and

Reppy's, but achieves complete serialization without requiring mutator cooperation. When a collection

begins, the mutator is suspended for a short time while the objects accessible from the roots are copied to

to-space. These objects are " locked" by the collector, preventing mutator access. When the root scan is

finished, the mutator is allowed to resume while the to-space objects are scanned. Whenever the mutator

attempts to access a to-space object, it must wait until the collector has scanned it and "unlocked" i t

This protocol maintains the invariant that the mutator never observes from-space pointers during a

collection. The main innovation of Ellis, Li, and Appel is the use of virtual memory primitives to

simulate locking. To " l o c k " the objects on a page, the collector protects the page from the mutator. It

also sets up an exception handler to field any protection faults caused by an attempted mutator access to

the protected page. The exception handler causes the mutator to wait until the collector has scanned and

unprotected the page, and then allows the mutator to resume.

6.2. Adaptation of Concurrent Collection to C++
It was fairly easy to incorporate the techniques of Ellis, Li, and Appel to my C++ collector. Since the

mutator and the collector both perform allocation during a collection, I had to add mutual exclusion locks

to create critical sections in appropriate places. Ellis, Li, and Appel [Ellis et al. 88] describe an

implementation for the Taos [Thacker&Stewart 87] operating system used on the DEC Firefly

multiprocessor workstation. In order to allow the collector to protect pages from the mutator, they needed

to add special kernel calls to the operating system. I targeted my collector for the Mach [Accetta et al.

86] operating system. The Mach interface allowed me to implement their algorithm using only existing

user-level calls.

Mach defines the concept of a task, analogous to a Unix process. Like a Unix process, a task is the
basic entity to which system resources, including virtual memory, are allocated. Unlike a process, a task
may contain multiple threads of control. A program using garbage collection is structured as two
separate tasks: the mutator task, in which the (possibly multi-threaded) program runs, and the collector
task, which runs the collector. The two tasks share the virtual memory comprising the heap. Separate
tasks are necessary to allow the collector task to use the v m j p r o t e c t call to specify the memory
protection observed by the mutator task for heap pages. This call requires that the collector provide the

24

task port of the mutator task, proving it has a capability to perform this operation. The mutator task sends

this port to the collector task in a message before first collection. Note that the collector task is created

only when the first collection occurs; hence, a program that never needs a collection does not incur the

overhead of task creation.

When the collector task has started and obtained the mutator's task port, it enters a loop where it waits

for a STARTGC message from the mutator. The mutator sends one of these messages to initiate each

garbage collection. Following the algorithm of Ellis, Li, and Appel, the collector task uses the Mach

t a s k _ s u s p e n d call to temporarily halt the mutator task. The collector next calls Mach's vm_read
primitive to copy the pages containing the stack(s) of the mutator task into its address space. (Tasks that

share stack pages will have different threads attempting to use the same stacks, so shared memory cannot

be used here.) The collector task Uses these copied stacks as the roots of the collection. Any from-space

page containing an object referenced from a mutator stack is promoted to to-space. When the root scan is

complete, the collector allows the mutator to task__resume, but not before creating a new exception
port for the mutator task. The collector creates a handler dispatch thread that waits for messages on this

port. When the collector allocates a to-space page to hold objects it copies from from-space, it protects

the page from the mutator task using the v m _ p r o t e c t call. The page is only unprotected after the

collector has scanned it and transformed all its pointers into to-space pointers. When a mutator thread

attempts to access a protected page, Mach translates this protection violation into a message to the

exception port The handler dispatch thread receives this message, and creates a new handler thread that

waits until the desired page has been scanned and unprotected, and then sends a return code message that

allows the appropriate mutator thread to resume. Before waiting, the handler thread also moves the

desired page to the front of the list of pages to be scanned. This optimization causes the collector to scan

and unprotect the desired page sooner, decreasing the time the mutator must be idle.

Another way in using Mach rather than standard Unix eased the implementation of my collector was in

its handling of virtual memory. When virtual memory is allocated in Mach, very little cost is incurred

until the page is actually accessed. Thus, it is easy to expand the heap. I initially allocate a very large

heap of 128 Mbytes, of which I use only 1 Mbyte. (Of course, the programmer may adjust the initial heap

size.) After each collection, the fraction of storage retained is evaluated; if this fraction exceeds a

threshold, then the portion of the heap currently used is doubled in size. This policy keeps collection

costs down by always keeping retained storage a small fraction of the heap size [Appel 87]. Some

advantage might be gained by measuring system resource utilization to decide between collection and

heap expansion. If physical memory and sufficient swap space are available, then it is probably

preferable to do a cheap heap expansion instead of a relatively expensive collection.

Concurrent collection imposes a constraint on the C++ programs that use it: programs using concurrent
collection cannot contain unsure references. Section 4.3 explained why unsure references necessitated a
two-pass algorithm, where one pass scans and copies objects, and the other pass adjusts pointers. If a
two-pass algorithm is used, however, most concurrency is lost The collector cannot unprotect a to-space

25

page until it contains no pointers into from-space. Since pointers are only adjusted during the second

pass, no pages may be unprotected during the first pass. The mutator would essentially be halted

completely for the first half of the collection.

To avoid this problem, my modified compiler forbids the existence of unsure references in the heap.

Presently, an error message is generated whenever code is encountered that attempts to new a type

containing an unsure reference. Note that the compiler could automatically eliminate unsure references in

almost all cases by a simple transformation:

union A { struct A {
int i; union {
char* s; int i;
float f; float f;
foo* fp; becomes } ;

}; union {
char* s;
foo* fp;

};
};

The u n i o n becomes a s t r u c t whose members are anonymous unions. In C++, a s t r u c t may contain

unnamed u n i o n ' s . The members of such a u n i o n share storage, but may be named as if they were

independent members of the s t r u c t . All the pointer members in the u n i o n are moved to one u n i o n

in the s t r u c t , and all non-pointer members are moved to another. The space requirements of the type

increase by at most a factor of two. Though this transformation would handle essentially all cases that

occur in practice, pathological cases complicate the construction of a general algorithm. Consider the

following u n i o n :

union ThreeStruct {
struct { int il; int* p2; int* p3; } si;
struct { int* pi; int i2; int* p3; } s2;
struct { int* pi; int* p2; int i3; } s3;

};
If we were willing to expand the space requirements by a factor of three, the u n i o n T h r e e S t r u c t

could simply be made into a s t r u c t with three members. If we were willing to try a more complicated

algorithm, it could be translated to the union shown below.

union ThreeStructAligned {
struct { int* dummy1; int il; int* p2; int* p3; } si;
struct { int* pi; int i2; int* p3; } s2;
struct { int* dummyl; int dummy2; int* pi; int* p2; int i3; } s3;

};
Despite the fact that the three struct members share storage, pointers are aligned only with pointers, and
i n t ' s with i n t ' s . Thus, there are no unsure references. Assuming that " d u m m y " members are never
referenced, naming semantics are preserved. Space requirements increase by less than a factor of two.
Unfortunately, this solution is not general: the u n i o n below requires a space expansion greater than a
factor of two, because there is no way to adjust alignment so that pointer fields line up with pointer fields.

26

union CannotAlign {
struct { int il; int i2; int i3; int i4; } si;
struct { int* pi; int* p2; int* p3; int* p4; } s2;
struct { int il; int* p2; int i3; int* p4; } s3;

};

6.3. Implementation
Forbidding unsure references in the heap allows a return to a one-pass algorithm. Pointers to from-

space objects can be updated to point to to-space copies of those objects during the scanning pass. Since

a correction pass is no longer necessary, there is no need to maintain the tsjist of to-space pages.

Instead, a queue of pages, the tsjqueue, is used. A page is on the queue if and only if it contains objects

that need to be scanned. Figure 6-1 shows changes in the overall concurrent collection algorithm. The

scan__page procedure is the same as in Figure 5-1, and is not shown. Figure 6-2 details the object-

scanning algorithm. Changes with respect to figure 5-2 are highlighted and labeled.

void collect () {
tsjqueue = empty__queue () ;
scan__stacks () ;
scan__globals () ;
scan__heap () ;

}

void scan_heap() {
while (! tsjqueue. empty ()) {

int page = tsjqueue. deq () ;
scan_page (page) ;
unprotect (page) ;

}
}

Figure 6-1: Overall Concurrent Collection Algorithm

Change 1 (which appears in two locations) simply reflects the fact that pointer adjustment is done

during scanning. Change 2 removes page promotion because of unsure references found in heap objects.

To understand Change 3, recall from section 5.4 that my collector must rescan scanned promoted pages if

it encounters a reference to a previously unreferenced object on such a page. Until this page is re-

scanned, this object will contain from-space pointers. If the page containing the reference is unprotected,

the mutator may observe from-space pointers. Therefore, my collector reprotects the promoted page from

the mutator before reinserting it into the tsjqueue. Change 4 shows that it is sometimes necessary to

reprotect non-promoted pages, as well. This situation requires some explanation. At any point, there is a

to-space page to which the collector is copying objects. Call this page the GC allocation page.
Normally, the GC allocation page will be the last page scanned in a collection. However, if scanning the

GC allocation page causes a promoted page to be reinserted in the queue, then scanning the promoted

page might cause another object to be copied to the GC allocation page. The copied object may contain

27

}

//

void scan_object (Object O) {
for (each possible pointer ? in O) {

Object 02 = */>;
if (02 has a forwarding pointer F) {

P = F;
return;

}
if (02 has scanned bit set)] return;
// Otherwise. . .
int page = obj2page(02) ;
if (! promoted (page)) {

II Note that unsure references are not allowed. //
Object OS = GcHeap: -.alloc (sizeof (02) , Ob jHead (02)) ;
03 - 02;
set forwarding pointer in 02 to address of 03;
set /* to point to 05; //

* * *

* **

int 03__page = ob j2page (03)) ; // *** 4
if (scanned(03_page)) { // *** 4

tsjqueue. enq (03_page) ; // 4
protect(03_page); // *** 4

j
else { // The page of 02 is promoted,

if (unscanned (page)) {
set marked bit of 02;

} else if (being_scanned (page)) {
set scanned bit of 02;
Imojqueue. enq (02) ;

} else {
// Page must have been scanned already,
set marked bit of 02;
protect (page) ;
ts_queue . enq (page) ; // *** 3

}

/ / *** 3 ***

Figure 6-2: Concurrent S c a n _ o b j e c t Algorithm

from-space pointers, so the GC allocation page must be reprotected and reinserted in the scanning queue.

Thus, s c a n _ o b j e c t checks for objects copied to previously scanned pages. My implementation

attempts to avoid this situation whenever possible by deferring scanning of the GC allocation page

whenever there is any other page in the ts_queue to scan.

7. Performance Measurements

7.1. Allocation Efficiency
The first set of measurements I present considers allocation only, ignoring collection. Allocation in a

heap using copying garbage collection can be quite efficient, since it normally needs only to increment a

28

pointer by the size of the object, and return that pointer's old value. In fact, Appel has shown how

architecture-specific optimizations and virtual memory protection manipulation can be used to reduce

heap allocation to as few as two machine instructions on some architectures (e.g., Vax) [Appel 87].

Allocation in my heap cannot be quite as efficient, unfortunately, since the allocator must insert an object

header before the object and set the appropriate bit in the allocation bitmap to enable later garbage

collection. Figure 7-1 compares the cost of the allocator used in my garbage-collected heap (call this

gc-alloc) with the cost of two other storage allocators. Malloc is the allocator in the local C library

at my site. This implementation of malloc is a "power-of-two" allocator: the size of every allocated

block is a power of two, and all unused blocks of the same size are linked together in a free list. An

allocation request is rounded to the next higher power of two, and satisfied by returning the head of the

corresponding free list. Falloc represents a family of fixed-size allocators. Each object size in Figure

7-1 corresponds to an allocator built especially for that object size. Each falloc allocates a relatively

large chunk of storage, and breaks it up into blocks of the given size, linked in a free list. Requests are

satisfied from this free list until it is exhausted, and another chunk must be allocated. These tests, and all

uniprocessor tests discussed below, were performed on a Digital Equipment Corporation Micro Vax in.

? 4 . 0 0 r

^3.50 |-
o
* | 3.00
_o
< 2.50
O
O
§2.00

£ 1.50
O
£
P 1.00

0.50

0.00

• FALLOC
MALLOC

• GC-ALLOC

100 200 300 400 500 600
OBJECT SIZE (BYTES)

Figure 7-1: Comparing Various Storage Allocators

Figure 7-1 shows that for a given object size, a fixed-size allocator is always better than either malloc
or gc-alloc. A falloc should be better than malloc because it avoids the computation malloc
performs to find the appropriate free list to allocate from. Also, it allocates only as much storage as is
needed. Malloc and gc-alloc perform similarly for object sizes that are close to powers of two.
Gc-alloc shows an advantage, though, for an object size that is between powers of two, such as 76.
Here, malloc returns a 128 byte block for each request, wasting almost half of each block. Gc-alloc

29

can allocate contiguous blocks of any size, wasting no storage. Thus, for "in-between" object sizes,

malloc requires more virtual memory pages from the operating system then gc-alloc (or a f alloc
for that object size) requires, and therefore takes more time.

To see whether these differences were reflected in real programs, I compiled cf ront to use under

several different allocation/deallocation policies, and ran the resulting programs on on the same input file.

48987 objects totalling about 1.48 Mbytes were allocated during the test.

Program
1) "normal" c f ront
2) "normal" c f ront, no deletes
3) "normal" c f ront, alloc opts
4) "normal" c f ront, alloc opts, no deletes
5) "normal" c f ront, alloc opts, dense data:

6) cf ront_gc

Elapsed (sec)
18.4
18.6
14.7
15.5
14.4

(User, System) (sec)
(17.4, 0.8)
(16.5,1.9)
(14.2, 0.4)
(13.9,1.4)
(13.9, 0.4)

16.7 (16.0,0.8)

Figure 7-2: Costs of Allocation in cf ront

Each of these elapsed times is the average of five runs of the given test. Standard deviations of elapsed

and users times were all less than 2%; standard deviations of the smaller system times were less than

10%. Test 1 shows "normal" cf ront; that is, cf ront compiled to use the system malloc described

above. Test 2 shows the same program, but with all calls to delete removed. Interestingly, removing

delete ' s actually increases the running time of the program. This increase is not so surprising. By

default, C++ uses the system-provided free to implement delete. The version of free used in these

tests should be quite inexpensive, performing one memory read to determine what free list a deallocated

object should be returned to, and two writes to make that object the new head of the free l ist Most of the

cost of deallocation is in performing destructors. Comparing tests 1 and test 2 shows that eliminating

delete ' s saves 0.9 seconds of user time. However, not doing f ree ' s causes malloc to require new

blocks of memory more often. These are obtained using the sbrk kernel call, whose cost is reflected in

the 1.1 second increase in system time between tests 1 and 2.

Several classes used in cfront define hand-coded type-specific storage allocators. These are

essentially the same as the f alloc allocators shown in Figure 7-1: each class maintains a private free

list expressly for objects of that class. These were not used in tests 1 or 2, which were meant to represent

a "normal" C++ program. Test 3 shows the result of using these optimized storage allocators. As

expected, they significantly decrease allocation costs. Test 4 shows the elapsed time for a version of

cfront that uses these optimizations, but does not do any delete ' s . As in test 2, eliminating

delete ' s saves user time by not executing destructors and f ree ' s , but increases system time because

more calls to sbrk are required.

As discussed in section 6.2, my concurrent collector requires that unsure references be eliminated by

30

transforming unions into semantically equivalent struct ' s . This transformation can increase the space

requirements of the program. All the tests discussed above were run using a version of cf ront that had

already been modified to remove unsure references, so that they would be compiling the same program as

the garbage collecting tests below. Test 5 shows the performance of the " r e a l " cfront: one that uses the

original AT&T 1.2.1 source code, in which union ' s (with unsure references) are used to conserve space

and type-specific allocators are used for all important types. This compaction results in only a small

saving over test 3. Thus, increases in space utilization to eliminate unsure reference do not seem to

greatly affect running time.

Test 6 (cfront__gc) shows the performance of a version of cfront compiled so that it uses my

garbage collecting storage allocator. The initial heap size is set large enough to eliminate the need for

collection. As Figure 7-1 leads us to expect, allocation in a garbage collected heap is faster than standard

malloc/f ree allocation used in tests 1 and test 2. On the other hand, it performs somewhat worse than

the hand-optimized allocation and deallocation functions used in tests 3 ,4 , and 5.

7.2. Garbage Collection Overhead
In this section, I will investigate the performance impact of garbage collection on three test programs.

The first is cfront itself. I used my modified cfront compiler (henceforth gc_cf ront) to compile

a version of cfront that uses garbage collection. I then ran this program on a C++ input file large

enough to cause garbage collection. (Coincidentally, I use one of the source files of cfront as this input

file.) The second test case is a simulator for communications traffic in a hypercube network, courtesy of

Donald Lindsay at CMU. I will refer to this as hyper . The third test program, grobner, is from

computer algebra, courtesy of Jean-Philippe Vidal and Edmund Clarke, also at CMU. It computes the

Grobner basis of a set of polynomials. The Grobner basis allows the efficient solution of the question of

whether a new polynomial is a member of the algebraic ideal formed by original set of polynomials. This

program is distinguished by the fact that it is a parallel program that exhibits approximately linear

speedup on a multiprocessor. The cfront program comprised 17886 source lines (excluding comments,

whitespace, and preprocessor directives) in 30 files, grobner 4155 lines in 42 files, and hyper 1694

lines in 19 files.

I will first consider the cost of garbage collection independent of concurrency concerns. Figure 7-3

shows measurements of all three test programs. Each program was run with a flag set causing the

collector to inhibit concurrency; the mutator task was suspended for the duration of each collection,

exactly as in a classical stop-and-copy collector. Each test used the default initial heap size of 1 Mbyte. I

ran each test 4 times; the results shown are the averages of the best 3 of those runs.

Row 4 ("% Freed Storage") gives the average fraction of a semi-space that was freed by collection.

Row 7 ("Total GC Time") sums the elapsed times of the garbage collections. Row 8 shows the

percentage of total elapsed time during which collection was in progress. Row 9 ("Elapsed Time/GC")

gives the length of an average collection. Row 10 ("Time/Mbyte collected") divides the garbage

31

Measurement cfiront hyper grobner

1. Objects allocated (1000's) 49.0 11.3 163.3
2. Mbytes allocated 1.48 0.58 4.07
3. Final Heap Size (Mbyte) 4.0 2.0 1.0
4. Freed Storage 45% 54% 88%

5. Total Elapsed Time (sec) 23.7 61.1 43.9
6. Number of Collections 2 1 11
7. Total GC Time (sec) 8.6 6.2 4.8
8. GC as percent of ET 36% 10% 11%
9. Elapsed Time/GC (sec) 4.3 6.2 0.4
10. Time/Mbyte collected (sec) 5.7 12.5 0.9

11. Time w/o GC (sec) 18.4 56.1 43.2
12. GC Overhead 29% 9% 2%

Time (sec)

6 0 H

5 0 H

4 0 H

3 0 H

2 0 H

1 0 H

1 . 2 9

Norm GC

C f r o n t

M u t a t o r

1 . 0 9

Norm GC

Hyp^r

G C

1 . 0 2

Norm GC

Grobnar

Figure 7-3: Non-concurrent Collection on a Uniprocessor

collection time by the amount of storage collected, i.e., the size of a semi-space. For comparison, Boehm
and Weiser quote measurements of 2.4 seconds/Mbyte for their mark and sweep collector running on a
Sun 3/260 [Boehm&Weiser 88]. Row 11 ("Time w/o G C ") gives the performance of the "normal"

32

program on the given i npu t 8 Row 12 ("GC Overhead") shows the fraction by which the total running

time of the garbage collecting version (Row 5) exceeds the running time of the "normal" program. The

graphic in the figure shows the time of occurrence and duration of each garbage collection.

In the c f ront test, garbage collection is in progress for about one-third (36%) of execution time,

making the running time 29% longer than non-GC'ing c f ront . This observation is comparable with

numbers reported in the literature for Lisp programs [Ungar 84, Steele 75]. The hyper test requires only

one collection, consuming 10% of the running time. Hyper ' s single collection is dominated by the cost

of scanning a single large static array that contains pointers. The grobner example shows excellent

performance. Collection is in progress for about 11 % of the total running time of the program. Though

there are a relatively large number of collections, each is quite short. The running time of garbage-

collecting grobner is only 2% greater than the running time of the original program shown in Row 10.

Apparently, faster allocation almost balances collection overhead.

One lesson to draw from this data is that the performance of a garbage collector can depend heavily on

properties of the program being collected, such as average object size, number of pointers per object, rate

at which objects become garbage, etc. Cf ront is in some ways a worst case for copying garbage

collection, because compilers construct and retain large data structures (parse trees, symbol tables, etc.)

during compilation. In the runs above, an average of 55% of the allocated storage was retained in a

collection, despite the fact that the heap size was doubled twice. Thus, collections free relatively little

storage, and copy arid scan a large amount of retained storage. A generational collector would probably

perform better on compiler-like programs, because long-lived data would be moved to a seldom-collected

generation. On the other hand, theorem provers such as the grobner example are well suited to copying

collection, because they allocate much memory for short-term calculation, but retain little storage. For

programs of this type, a full copying collection is similar in cost to a generational collection.

73 . Concurrency
Even if the overall overhead due to garbage collection is acceptable, the use of garbage collection might

still impose delays unacceptable in some applications. Interactive and real-time systems are the obvious

examples. This section examines to what extent concurrent garbage collection can minimize such delays.

There are two ways in which a user of a program using concurrent garbage collection may notice the

effects of collection. First, the collector may require the mutator to stop completely for some period of

time. For example, in the current implementation of my collector, the mutator must stop completely

while the collector scans stacks and global variables. Even if the individual delays are too short to be

8 For c f r o n t , I interpreted "normal" to exclude AT&T allocation optimizations that essentially create a f a l l o c - s t y l e
fixed-size allocator for each important class. The version of c f r o n t whose performance is shown in Row 10 uses the standard
Unix m a l l o c / f r e e routines. I felt that it was fairer to compare garbage-collecting c f r o n t with this more "off-the-shelf"
version of c f r o n t , given the amount of programming effort involved in the allocation optimizations. For the other two
programs, Row 10 shows the result of running the programs as I received them.

33

individually noticeable, the user may notice the second effect: the aggregate effect of the delays may

cause the perceived execution rate of the program to decrease. I will attempt to measure the magnitude of

both forms of interruption. I will first consider uniprocessor measurements, then multiprocessor

measurements.

Figure 7-4 shows data on the duration of garbage collector interruptions in each of the test programs.

Concurrent collection interrupts the mutator for two reasons: for root scans, that is, scanning stack(s) and

global variables, and mutator waits, times when the mutator must wait for the collector to scan and

unprotect a page the mutator needs to access. In the cf ront and grobner tests, root scans took no

Measurement cfront hyper grobner

Max Root Scan Time (sec) 0.19 4.27 0.14
Avg. Root Scan Time (sec) 0.19 4.24 0.12

Max Mutator Wait (msec) 168 22 96
Avg. Mutator Wait (msec) 41 14 27

Figure 7-4: GC Interruptions of Mutator on a Uniprocessor

more than 0.19 seconds in any collection. These are close to being acceptable interruptions even in

interactive programs. For all three programs, mutator waits are quite small, averaging less than 50 msec.

The maximum mutator wait is less than the average root scan time. The anomaly in this data is in the

hyper example, where the root scan takes more than four seconds (68% of total garbage collection

time). Thus, the mutator is blocked for most of collection time in hyper. This root scan is lengthy

because the roots include a large global data structure containing pointers into the heap. Ellis, Li, and

Appel point out that this kind of interruption could be reduced by treating global objects in the same way

as objects in the heap. Pages containing global objects could be protected from the mutator until all the

objects on the page have been scanned. The same treatment could be given to stack pages. I believe that

such optimizations are likely to produce significant improvements only if the collection is organized so

that these pages, like heap pages, can be scanned in the order the mutator wants to access them.

Given that the magnitude of the individual interruptions are small enough to approach (human)

imperceptibility, then the next question to ask is "what rate of execution will an end-user of a program

will perceive during collection?" I will refer to this rate (expressed as a fraction of the between-

allocation execution rate) as the overlap. Overlap can be expressed as

^ , Mutator work during GC
Overlap = —— — ———

Elapsed time ofGC
The elapsed time of garbage collection is easy to measure. The difficulty is in measuring the mutator

work accomplished during collection. In principle, this measurement is simple: I know the elapsed time

of the total execution, and the elapsed time of garbage collection. The difference is the time the mutator

spends between garbage collection.

34

Mutator work between GC = Elapsed time of program - Elapsed time ofGC

Given the total amount of mutator work done in the run, then

Mutator work during GC = Total mutator work - Mutator work between GC

After considering a number of alternatives, I chose to estimate total mutator work by running each

program with an initial heap size large enough to eliminate the need for collection. Figure 7-5 presents

the calculation of overlap for each of the three test cases. Each test is the average of the best three of four

runs. The active time of a collection is the time during which the mutator is not suspended, i.e., the

Measurement cfront hyper grobner

Elapsed time of program (sec) 19.8 61.7 42.7
Elapsed time of GC (sec) 5.2 7.9 7.8
Mutator work between GC (sec) 14.5 53.8 34.9

Total mutator work (sec) 16.7 55.8 39.8
Mutator work during GC (sec) 2.2 2.0 4.9

Overlap 42% 25% 63%

Active time (sec) 5.0 3.6 7.0
Adjusted overlap 44% 54% 70%

Figure 7-5: Overlap on a Uniprocessor

elapsed time of the collection minus the time taken for the root scan. The adjusted overlap divides

mutator work during GC by the active time, to obtain the perceived execution rate after the root scan is

completed. For the hyper example, where the root scan time is larger than the active time, the adjusted

overlap gives a truer picture of the perceived execution rate when concurrency is possible.

These results are quite encouraging. Figure 7-4 shows that the individual interruptions caused by

garbage collection are quite short, except when the roots contain a large global variable. Figure 7-5

shows that performance does not degrade to unacceptable levels during a collection. Even on a

uniprocessor, where the mutator and collector tasks must share machine resources, perceived performance

of the cfront and grobner programs during collection was 42% and 63%, respectively, of their

between-collection rates. The hyper example does less well because of the long root scan, but once that

is completed, overlap is 54% for the remainder of collection.

I should stress that using concurrent collection on a uniprocessor does not decrease the overall running
time of the program. 9 Indeed, one might fear that the extra overhead of handling protection exceptions

^There is the potential of "real" overlap between mutator I/O and collection, but I did not find any evidence of this
concurrency.

35

and moving pages around in the tsjqueue might increase running time. Happily, this increase is quite

small. When concurrent and non-concurrent runs of the three programs, adjusted to perform the same

number of garbage collections, are compared, the concurrent version takes less than 3% more time than

the non-concurrent version in each ca se . 1 0

8. Multiprocessor Measurements
I next ported my collector and two of the test programs (cf ront and grobner) to an 8-processor

shared memory multiprocessor, a Digital Equipment Corporation Vax 8800. The multiprocessor tests

were intended to measure " r e a l " concurrency between the mutator and collector. Since previous tests

had determined that collections in the hyper example were dominated by scanning a global variable,

very little concurrency would be possible. Therefore, I did not port the hyper program to the 8800.

Again, the first question to ask is whether the individual interruptions are noticeable. Figure 8-1 shows

these numbers. The interruptions are generally short, though the root scan times are greater than they

were on the Micro Vax in for the same programs, despite the fact that the 8800 is the faster machine. I

will speculate on the reason for this increase later.

Measurement cfront grobner

Max Root Scan Time (sec) 0.34 0.31
Avg. Root Scan Time (sec) 0.30 0.21

Max Mutator Wait (msec) 146 48
Avg. Mutator Wait (msec) 38 18

Figure 8-1: GC Interruptions of Mutator on a Multiprocessor

Figure 8-2 shows measurements of mutator/collector overlap for cfront and grobner. The

measure of overlap calculated in Figure 7-5 is calculated here as well, and called Overlap-1. In addition,

a second calculation overlap (Overlap-2) is shown. This calculation uses a more direct measure of

Mutator WorkJ)urin%jGC\ subtract the elapsed time of the program with mutator/GC concurrency from

the elapsed time with concurrency disabled. If the amount of garbage collection work is the same in both

cases, the difference should be the mutator work accomplished in parallel with collection.

Overlap for cfront approaches 50%, while the overlap for the grobner example is less than 20%.

1 0Enabling concurrency can sometimes allow enough allocation to occur during collection to exhaust to-space. When this
occurs, the allocator doubles the heap size to satisfy the allocation request. It is possible that when the collection completes,
enough storage may have survived coUection to cause the heap size to double again. This scenario occurred for c f r o n t ; with
concurrency enabled, one collection caused the heap size to double twice, so that no further coUections were required. Thus,
concurrent collection actually took less time than non-concurrent collection for c f r o n t with a 1 Mbyte initial heap size. To
make the concurrent and non-concurrent cases comparable, I increased the initial heap size enough to prevent this scenario. The
space occupied by copied objects was the same after both concurrent and non-concurrent collections, indicating that the same
amount of work was done in this comparison.

36

Measurement cfront grobner

Elapsed_Time_of_Program (sec) 14.9 33.1
Elapsed_Time_of_GC (sec) 5.2 5.3
Mutator_Work_Between_GC (sec) 9.6 27.9

Total_Mutator_Work (sec) 11.9 28.7
Mutator_Work_During_GC (sec) 2.3 0.8

Overlap-1 43% 16%

Elapsed time, no concurrency (sec) 17.5 33.4
Decrease in elapsed time (sec) 2.6 0.3

Overlap-2 50% 6%

Figure 8-2: Mutator/Collector Overlap on a Multiprocessor

Two questions arise from these measurements. First, why isn't overlap greater on a multiprocessor than a

uniprocessor? Second, why, in the case of grobner, is it actually worse?

The first question should actually be rephrased: how does collection on a uniprocessor do so well? The

answer lies in the implementation of the collector. Whenever the main thread of the collector task scans

and unprotects a page, it makes a system call to suspend itself if any other runnable threads are waiting.

This policy has the effect of giving the mutator priority over the collector, thus enhancing overlap.

Unfortunately, giving the mutator priority also stretches out collection. Collection in cfront takes 10.5

seconds per Mbyte collected on the MicroVax HI, but only 3.5 seconds per Mbyte on the 8800. If we

correct for the difference in raw speed of the mach ines 1 1 , collection still takes 2.1 times longer per Mbyte

collected on the uniprocessor than it does on the multiprocessor. We should note also that non-zero

overlap on a multiprocessor means that the actual running time of the program is reduced.

The second question still remains: why does grobner do poorly? Recall from Figures 8-1 and 7-4

that root scans on the 8800 take longer than on the Micro Vax HI, despite the greater speed of the 8800.

Doing the root scan requires operating system calls to map the pages containing mutator stack(s) and

globals into the collector's address space, and to retrieve the registers of the mutator's threads. These

system calls require locking on a multiprocessor that is not required on a uniprocessor, which probably

accounts for the greater root scan time. In any case, root scanning time consumes a much larger fraction

(45%) of collection time on the 8800 than it does on the Micro Vax HI (10%). The relatively longer root

scan immediately decreases the potential overlap. In defense of the collection algorithm, concurrency is

not very important for programs like grobner, which retain little storage. The individual collections on

The ratio of machine speeds is estimated by comparing the elapsed times with a heap large enough to obviate collection; by
this measure, the Micro Vax m takes 1.4 times as long as the 8800 to execute the same code.

37

the 8800 are very short, averaging about 0.5 seconds. The performance of the collector for the grobner
case is roughly equivalent to what a generational collector would achieve. It is only when collection lasts

for significant time periods, as with cf ront, that concurrency is really necessary.

The final test I performed measured the performance of grobner when it used multiple threads.

Figure 8-3 shows the results of this experiment. The numbers given are the elapsed times of the different

experiments using different numbers of worker threads. Norm-grobner is the original grobner
program, not using garbage collection. Grobner is the garbage-collecting version of grobner that we

have been discussing. The overlaps shown are determined using the same calculation used in Figure 7-5.

•grobner grobner grobner grobner
_ 12 4 1
- 0 2 11

31.0 29.0 29.7 33.2
LOO 0.94 0.96 1.07

1.3 5.3
- - 44% 20%

17.3 17.8 18.9 23.4
1.00 J.03 1.09 135

_ 1.3 6.3
- - 15% 12%

10.6 12.9 14.1 18.8
LOO 122 133 1.77

_ 1.7 7.1
_ 29% 17%

Program no:
Initial heap size (Mbyte)
of collections

1-worker time (sec)
Relative
Collection time (sec)
Overlap

2-worker time (sec)
Relative
Collection time (sec)
Overlap

4-worker time (sec)
Relative
Collection time (sec)
Overlap

Figure 8-3: Collector Performance for a Multi-threaded Program

The first point to draw from this data is found by comparing the first and second columns. If no

collections are performed, grobner using the garbage-collecting allocator exhibits speedups similar, but

not quite as good, as the original version of the program. The difference may be explained by the use of

spin-locks in the default multi-threaded allocator versus a full mutual exclusion locks in the garbage-

collecting allocator, but this hypothesis must be verified. Section 10.2 suggests another possible method

of avoiding allocation contention. The second point, unfortunately, is that speedup decreases when

collections are performed. The low level of overlap in the grobner example means that collection costs

remain essentially fixed while mutator parallelism decreases overall mutator elapsed time. Thus,

collection takes a larger fraction of total running time as more worker threads are added. A multi­

threaded collector might be able to reverse this trend; section 10.2 discusses this possibility.

One final optimistic note: one of the assumptions behind concurrent collection is that a program will
tend to have a "working set" of pages that it will cause to be scanned first, and that once those pages are
scanned, mutator waits will be rare. Figure 8-4 shows that this assumption is borne out by my data. The
percentages show the fraction of mutator waits that begin in the first and second halves, respectively, of

38

the active time of the collection. At least two-thirds of mutator waits begin in the first half of active time.

These measurements would seem to imply that perceived performance would approach between-

collection performance in long-running collections.

Program First Half Second Half

cfront, uniprocessor
cfront, multiprocessor

66%
76%

34%
24%

grobner, uniprocessor
grobner, multiprocessor

87%
68%

13%
32%

Distribution of Mutator Waits in GC

First half Second half

Figure 8-4: Distribution of Mutator Waits

9. Remaining Problems
My compiler/collector system will preserve the semantics of the most C++ programs. However, there

are some classes of programs that will fail. These fall into two basic categories.

9.1. Pointers as Values
If a program converts a pointer to a non-pointer value, my system may fail. If a program converts a

object pointer into an integer value, destroys the original pointer, stores that integer value in an integer
field in a heap object, and has no other references to the object pointer to, then that object may not be

39

collected. The program may fail if it converts the integer value back to a pointer and attempts to

dereference the pointer. This " loophole" is perhaps not so serious: converting pointers to integers and

vice-versa is non-portable at best, and most compilers will at least give a warning when such conversions

are done. Such conversions are not a problem for collectors that are conservative everywhere, such as

Boehm and Weiser's collector or Caplinger's collector.

A more insidious class of error can occur in programs that are portable. Many C++ programs rely on an

assumption that the address of an object will not change during the lifetime of the program. Consider a

program containing a hash table, where the objects in the table are hashed on their address. A garbage

collection will completely destroy the invariants of this hash table. To be used in a system using copying

garbage collection, such a hash table would be rewritten to use some intrinsic address-independent

property of the member objects as a hash key. Alternatively, objects such as this hash table could register

a "reorganize" procedure with the garbage collector, and the collector could call this procedure at the

end of collection for all registered objects that survived the collection. In either case, the program will

have to be changed to work properly. The compiler can at least detect all such cases by issuing warnings

whenever it encounters any pointer operation other than dereferencing. Again, this problem does not

occur in mark-and-sweep collectors such as Boehm and Weiser's or Caplinger's, where objects are not

moved.

A final class of pointer error occurs when a programmer temporarily loses access to an object. This

situation could occur, for example, if the only reference to an array is used to traverse the array in a loop,

so that it points past the end of the array at the termination of the loop. The example below illustrates this

case.

Foo* foo_arr_j?tr « new Foo[10];
for (int i - 0; i < 10; i++) {

do_something (foo++) ;
}
// Collection occurs now; no pointer to the array exists.
foo_arr_ptr -= 10;

While the use of an incremented pointer to traverse an array is a common idiom in C and C++, it is
probably rare that the pointer used for traversal is the only pointer to an array. Most programs using this
idiom retain a pointer to the head of the array, so that the traversal pointer can be re-initialized for
subsequent loops. If a pointer to the head remains, the array will survive collection. Optimizing
compilers will sometime do transformations that will create code similar to the example above, but here
also it is likely that a separate reference to the head of the array will exist. Traversal pointers will usually
be allocated on the stack or in a register, if a stack- or register-allocated traversal pointer points outside
the bounds of the array at the start of collection, the worst that can happen is the traversal pointer points
into some garbage object that will therefore be retained unnecessarily by the collection. The hope,
therefore, is that programs of this kind are rare. Perhaps compile-time analysis could detect such
programs. Note that this problem is shared with all C/C++ collectors we have considered.

40

9.2. Destructors with Side Effects
C++ allows users to specify destructors to be invoked whenever an object is deallocated via the

delete operation. Destructors often simply take care of deallocating other objects, and have no other
side effects. In this case, my system preserves semantics by simply eliminating delete's and
destructors. Garbage collection takes care of eventually performing *'deallocation." Sometimes,
however, destructors do have side effects. For example, a class might have a static (global) integer
member that indicates the number of objects of that class currently present in the system. The constructor
of the class would increment this integer, and the destructor would decrement it. By eliminating
delete's, my system would change the semantics of the program.

One possible answer to this problem would be to reinstate delete's, and perform all side effects of
destructors except for deallocation. However, the logic behind this proposal is somewhat specious. The
main reason for using garbage collection is to free the programmer of the burden and the danger of
deciding when storage can be deallocated. The side effects of a destructor can be just as dangerous as
deallocation if performed at the wrong time, a program still carries the same burden and danger if it
invokes destructors with side effects. It is hard to see why one would use garbage collection if one still
had to decide when deallocation could be performed safely.

A more reasonable proposal would be to reinterpret the semantics of C++ so that destructor invocation
occurs at some unspecified time after the object becomes inaccessible. The compiler could analyze the
program to determine which classes have destructors with side effects, and have the allocator function
maintain a list of the addresses of all objects of these types that survived the last collection or have been
allocated since. After a collection, the collector could go through this list, invoking destructors on all
objects that did not survive the collection. 1 2 This proposal also has some difficulties. Note that
destructors may potentially be executed concurrently with the mutator. If a destructor and another part of
the program both access a data structure, their access might have to be synchronized. Such potential
conflict would be difficult to detect at compile time, and would almost certainly require programmer
intervention to correct. Another difficulty is that programs that rely on current C++ semantics may break
under the reinterpreted semantics. In particular, the order of invocation of destructors is not necessarily
preserved by the proposed mechanism. Programs written to rely on this order would not be guaranteed to
work. It would be difficult to detect such programs at compile time.

Probably the most sensible solution to this problem would be to allow the user to specify on a per-class
basis (perhaps using a # p r a g m a) those classes that should and should not use garbage collection.
Garbage-collected classes would be required to have no destructors.

The collector could determine what destructor to invoke by having the compiler automatically make destructors with side
effects virtual, requiring that a virtual destructor is always the first function in the virtual function table of a class.

41

10. Conclusions and Future Work

10.1. Summary
Though garbage collection is almost always associated with "high-level" languages such as Lisp,

Prolog, and Smalltalk, there is no conceptual reason why garbage collection cannot be used with

languages such as C and C++. Indeed, collectors such as [Boehm&Weiser 88], [Caplinger 88], [Bartlett

88], [Bartlett 89], and the current work indicate that a full range of garbage collection algorithms are

adaptable to these languages.

Automatic storage management always makes correct programming simpler; objections to its use are

usually based on fears of performance degradation. Two kinds of overhead are relevant. For some

programs (e.g., compilers), the overall running time is all that matters. For these programs, the total

excess time taken by garbage collection should be minimized. Other programs, particularly interactive

programs, have real-time constraints. Users are likely to be annoyed if garbage collection interrupts the

program for more than a fraction of a second.

The performance measurements in this paper indicate that total garbage collection overhead can be

surprisingly small, even for C and C++ programs. When I compared programs using standard Unix

explicit storage management (i.e., m a l l o c / f ree) 1 3 with their garbage collecting counterparts, I found

that total running time increased by less than 30% in all cases, and for one program was almost negligible.

One possible future trend in computer architecture is towards multiprocessor workstations. If the cost

of adding an extra processor to a machine approaches the cost of the processor chip, adding such chips

will become an attractive method of increasing performance. If such machines become common, then

concurrent garbage collection will become a very attractive technique. On a multiprocessor, concurrent

collection reduces total collection overhead, by overlapping mutator and collector activity. Collection

overhead was decreased by almost 50% in some cases. Concurrent collection also decreases the

maximum interruption observed by the mutator to consistently less than a half a second on the

architectures tested, on uniprocessors as well as multiprocessors.

A final argument in favor of the use of garbage collection is that easy software reuse may almost be

impossible without it. Stroustrup is considering extending C++ by adding parameterized classes
[Stroustrup 88]. These will allow programmers to design, for example, container classes such as Set ' s

without explicitly specifying the member type of the set. Different Set types can be made by

instantiating Set<T> with different type values for T . This kind of construct presents a problem for

explicit storage management: what should be done in the destructor of Set<T>? If T is a pointer type,

then the destructor will have to decide somehow whether or not to delete the objects pointed to. But

the implementation of Set has no way of knowing whether other pointers to those objects exist or not.

1 3 Again, I explicitly eliminated hand-coded optimized allocators in the c f r o n t program to perform this comparison.

42

Garbage collection alleviates such worries, allowing such general-purpose classes to written more easily

and cleanly.

10.2. Future Work
Generational collection (see section 6) is the main alternative to concurrent collection for reducing

collection overhead and interruption. As others have pointed out, it might be interesting to attempt to

combine concurrent and generational techniques. Such a collector could guarantee interactive

performance for collections of the larger old area as well as the small new area. Also, such a

"combination" collector could use a larger new area than is usually used in generational collectors,

because the mutator is allowed to resume before a new area collection completes. Finally, one of the

difficulties in implementing a generational collector is the need to keep track of pointers from the old area

into the new area. Some systems require mutator cooperation, adding every new old-area-to-new-area

pointer to a list at the time of its creation. This cooperation can impose a substantial overhead on the

mutator. Another alternative is to use a memory protection like the one used for concurrent collection to

inspect every changed old area pointer. Shaw describes such a system [Shaw 88]; every old area page is

write-protected after a collection, and a mutator write causes the page to be marked as possibly containing

pointers to the new-are and unprotected. Alternatively, in a concurrent collector, old-area-to-new-area

pointers might be found lazily. In this scheme, collection of the new area proceeds as in concurrent

copying collection. After objects pointed to by the roots and globals have been copied to the to-space of

the new area, all of the heap, including the old area, is protected from the mutator. The mutator is then

allowed to resume, and the collector proceeds to scan and unprotect pages. All old area pages are added

to the list of pages to be scanned; however, the collector only looks for pointers into the new area when it

scans an old area page. Such pointers are likely to be rare, so scanning such pages should be fast

Attempted mutator access to protected old area pages could cause the collector to scan them sooner, just

as with to-space pages in non-generational concurrent collection.

Another interesting avenue for future work is introducing parallelism into the collector. Currently,
mutator allocation is a potential bottleneck, since each allocation occurs in a critical section. The mutual
exclusion requirement also adds non-trivial locking overhead to allocation. Both Halstead [Halstead
84] and Ellis, Li and Appel suggest a possible remedy: having multiple allocation points, so that each
mutator thread is allocating new objects on a different point in the heap. Synchronization would only be
required when an allocation required a new page. Such a scheme would not be difficult to implement; the
allocation point mechanism already exists to allow mutator and collector allocation to occur in parallel. A
possible problem with this plan is that it could lead to a fragmented heap, in which it is difficult to
allocate large multi-page objects.

A more interesting form of parallelism would be the introduction of multiple scanning threads into the
collector. Adding this kind of parallelism might appear simple. The collector maintains a queue of pages
to be scanned; except in the case of pages containing objects crossing page boundaries, the order in which
the pages are scanned is largely irrelevant. Thus, each scanning thread could pick the next page off the

43

head of this queue. The problem arises when these threads follow pointers into old-space. If two parallel

scanning threads encounter pointers to the same uncopied old-space object at the same time, they could

conceivably both copy that object to different to-space locations. Thus, these threads must somehow

synchronize access to old-space objects. Ellis, Li, and Appel suggest associating a mutual exclusion lock

with each page of old-space, and require that scanning threads obtain this lock before reading or

modifying old-space forwarding pointers. Halstead suggests using a lock bit in each object and pointer.

A possibly faster method would be to use architecture-dependent atomic instructions, such as test-and-set,

to insert forwarding pointers. Parallel collection seems to me to be a very exciting area for future

research.

11. Acknowledgments
I would like to thank many colleagues at CMU for suggestions and advice, especially Eric Cooper and

Doug Tygar. Special thanks to Mike Young, David Black, Richard Draves, and Mike Jones for help with

Mach issues. I would like to especially thank Joel Bartlett of DEC WRL for helpful correspondence and

conversation, and for thinking of mostly -copying collection in the first place. I would also like to thank

Kai Li and Andrew Appel for taking the time to read my thesis proposal, and John Ellis for agreeing to be

on my thesis committee. Special thanks to my thesis advisor, Jeannette Wing, for giving this document

the type of careful critical comment that one is rarely privileged to hear. Finally, extra special thanks to

my wife, Ann Marie, for taking on some extra home duties to allow me to spend some extra hours on this

work.

44

References

[Accetta et al. 86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.
Mach: a new kernel foundation for UNIX development.
In Proceedings ofSummer Usenix. July, 1986.

[Appel 87] Appel, Andrew W.
Garbage collection can be faster than stack allocation.
Information Processing Letters 24(4):275-279,1987.

[Appel 89] Appel, Andrew W.
Runtime Tags Aren't Necessary.
Lisp and Symbolic Computation 2:153-162,, 1989.

[Baker 78] Baker, H. G.
List processing in real time on a serial computer.
Communications of the ACM 21 (4):280-294, April, 1978.

[Bartlett 88] Bartlett, Joel F.
Compacting Garbage Collection with Ambiguous Roots.
Technical Report 88/2, DEC Western Research Laboratory, February, 1988.

[Bartlett 89] Bartlett, Joel F.
Mostly-Copying Collection Picks Up Generations and C+ + .
Technical Report TN-12, DEC Western Research Laboratory, October, 1989.

[Boehm&Weiser 88]
Boehm, Hans-Juergen and Weiser, Mark.
Garbage Collection in an Uncooperative Environment
Software Practice and Experience 18(9):807-820, September, 1988.

[Britton 75] Britton, D. F.
Heap Storage Management for the Programming Language Pascal.
Master's thesis, University of Arizona, 1975.

[Caplinger 88] Caplinger, Michael.
A Memory Allocator with Garbage Collection for C.
In USENIX Winter Conference, pages 323-3. USENIX, USENIX, 1988.

[Cohen 81] Cohen, Jacques.
Garbage Collection of Linked Data Structures.
Computing Surveys 13(3):342-367, September, 1981.

[Cox 86] Cox, Bradley J.
Object Oriented Programming: An Evolutionary Approach.
Addison-Wesley, Reading, MA, 1986.

[Dijkstra et al. 75] Dijkstra, E. W.; Lamport, L.; Martin, A. J.; Schölten, C. S.; and Steffens, E. F. M.
On-the-Fly Garbage Collection: An Exercise in Cooperation.
E. W. Dijkstra Note EWD496.
June, 1975

[Ellis et al. 88] Ellis, John R.; Li, Kai; and Appel, Andrew W.
Real-time Concurrent Collection on Stock Multiprocessors.
Technical Report 25, DEC Systems Research Center, February, 1988.

45

[Halstead 84] Halstead, Robert H.
Implementation of Multilisp: Lisp on a Multiprocessor.
In 1984 ACM Symposium on LISP and Functional Programming, pages 9-17. ACM,

ACM, New York, 1984.

[Knuth 73] Knuth, Donald.
The Art of Computer Programming, vol. I: Fundamental Algorithms.
Addison Wesley, Reading, Mass., 1973.

[Kung&Song 77] Kung, H. T., and Song, S.
An Efficient Parallel Garbage Collector and its Correctness Proof.
Technical Report, Carnegie-Mellon University, September, 1977.

[North&Reppy 87]

[Rovner 85]

[Shaw 88]

[Steele 75]

[Steenkiste 90]

[Stroustrup 86]

[Stroustrup 88]

North, S. C. and Reppy, J. H.
Concurrent Garbage Collection on Stock Hardware.
LNCS. Volume HAFunctioncu Programming Languages and Computer Architecture.
Springer-Verlag, Berlin, Germany, 1987, pages 113-133.

Rovner, Paul.
On Adding Garbage Collection and Runtime Types to a Strongly-Type, Statically-

Checked, Concurrent Language.
Technical Report 84-7, Xerox Palo Alto Research Center, July, 1985.

Shaw, Robert A.
Empirical Analysis of a Lisp System.

Technical Report CSL-TR-88-351, Stanford University, February, 1988.

Steele, G. L. Jr.
Multiprocessing Compactifying Garbage Collection.
CACM 18(9):495-508, September, 1975.
Steenkiste, Peter A.
The implementation of tags and run-time checking.

In Peter Lee (editor),. Volume . Number : ???, chapter 10, pages ???. ???, ???, 1990.

B. Stroustrup.
The С++ Programming Language.
Addison-Wesley, Reading, Massachusetts, 1986.
Stroustrup, Bjarne.
Parameterized Types for С++.
In Proceedings of the 1988 USENIX С++ Conference, pages 1-18. USENIX

Association, USENIX Association, Berkeley, CA 94710,1988.
[Thacker&Stewart 87]

Thacker, Charles P. and Stewart, Lawrence, C.
Firefly: A Multiprocessor Workstation.
In Proceedings of the Second International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 164-172. ACM, 1987.

[Ungar 84] Ungar, David.
Generation Scavenging: a Non-Disruptive High Performance Storage Reclamation

Algorithm.
SIGPLAN Notices 19(5):157-167, May, 1984.

[Ungar&Jackson 88]
Ungar, David and Jackson, Frank.
Tenuring Policies for Generation-Based Storage Reclamation.
SIGPLANNotices 23(11):1-17, November, 1988.

