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Abstract 

Inferring the depth and shape of remote objects and the complete camera mo­
tion from a sequence of images is possible in principle, but is an ill-conditioned 
problem, because translation and rotation are hard to distinguish, and the size of 
the object is small with respect to its distance from the camera. We show how 
to overcome these problems by inferring shape and rotation without computing 
depth and camera translation as intermediate steps. 
On a single epipolar plane, image measurements can be represented by an F x P 
matrix, obtained by tracking P points through F frames. We show that under 
orthographic projection this matrix is of rank 2. 
Using this observation, we develop an algorithm to recover shape and camera 
rotation, based on singular value decomposition. The algorithm gives accurate 
results, and does not introduce smoothing in either shape or camera rotation. 
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Chapter 1 

Introduction 

In principle, the shape of an object can be computed from a sequence of images by 
estimating camera motion and depth, and inferring shape from the depth values. 

However, when objects are distant from the camera, relative to their size, this 
computation is ill-conditioned. First, it is difficult to distinguish rotation from 
translation with adequate precision. Second, shape is computed from the small 
differences between large depth values. 

These difficulties can be circumvented by inferring shape directly from varia­
tions in the distance between image features, without computing depth and camera 
translation as intermediate steps. 

In this paper, we show how to infer shape and camera rotation from any number 
of features and frames, and reduce the computation to decomposing a matrix of 
image measurements. 

The resulting algorithm, tested in simple situations, gives remarkably precise 
motion and shape estimates, without introducing smoothing effects into the result. 

In 1979, Ullman proposed [Ullman, 1979] to compute shape and motion 
without going through depth. His first formulation assumed an orthographic 
projection model, and hence ignored the combined effects of depth and perspective 
distortion. He justified this simplification partly on the ground of mathematical 
tractability. The important point that computing depth leads to instability if the 
scene is remote did not receive all the emphasis it deserved. 

Most of the work carrying out Ullman's proposal has concentrated on obtaining 
shape and motion with the minimal number of points and frames. These results 
are useful proofs of the existence of a solution. In this paper, we propose a 
way to incorporate any number of points and frames (greater than the minimum 
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required) into the computation of shape and motion. For simplicity, we limit our 
consideration to one epipolar plane at a time, and assume that motion occurs in 
that plane. As a consequence, our images are single scanlines. 

Our solution is based on two observations which, to our knowledge, have 
not appeared in the literature: under orthography, (1) the incidence relations 
among projection rays can be expressed as the degeneracy of the matrix of all the 
measurements; (2) the image coordinates of any two points in the epipolar plane 
trace an ellipse as the camera moves, if the coordinates are registered with respect 
to those of a third point. 

Using these observations, we developed an algorithm that computes the shape 
of remote objects and the rotation of the camera. Since we use many, closely 
spaced frames, the results are insensitive to noise, and the correspondence problem 
is simplified. 

As an illustration of the theory, we used our algorithm to recover the shape of 
a one-dollar silver coin (about 4 cm in diameter) at 3.5 meters distance from a real 
camera with a long lens. The total rotation of the camera was 30 degrees around 
the coin (and in the midplane of the coin). The error in the computed camera 
rotation is always less than one degree, and that in the shape of the coin is less than 
one percent of its diameter. These errors are mostly due to perspective effects, for 
which corrections are possible (but not made here). 

In the following, we introduce our scenario, summarize the results, and sketch 
the relations of our work with previous literature on the subject. Section 2 proves 
the two geometric observations above. Section 3 shows how to use them to decom­
pose the measurement matrix into shape and camera rotation. The experimental 
results in chapter 4 show the ability of the algorithm to deal with jerky rotations 
without smoothing its output. The conclusion (chapter 5) compares direct shape 
algorithms with algorithms which base the computation of shape on that of depth, 
and shows the former ones to be superior for remote scenes. 

The Scenario 
We assume that the camera produces an orthographic projection, rather than a 
perspective one. The world is still, and the camera moves in a plane, where it can 
freely rotate and/or translate. P features are visible in a given scanline, parallel to 
the plane of motion. Since the frames are taken frequently, it is easy to track the 
features from frame to frame. As the camera moves, it is panned so as to keep the 
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features in the field of view. 
In every frame, the image coordinate of an additional reference point is sub­

tracted from the image coordinates of the P points. After F frames, a n F x P matrix 
m of image measurements is available. This matrix is the input to the algorithm. 

This is a rather artificial situation, but it approximates well what happens with 
a camera on an airplane, with suitable control mechanisms to align the camera 
scanlines with the direction of flight, and to keep the same object within the field 
of view. The farther away the objects are with respect to their size, the better the 
assumption of orthographic projection serves as an approximation. 

The Results 
This paper shows that if the measurements are noise-free, the measurement matrix 
m is highly degenerate (its rank is 2), and can be decomposed into the product of 
three smaller matrices: an F x 2 matrix p, which encodes camera rotation, a P x 2 
matrix 7r, which encodes the positions of the world points, and a 2 x 2 diagonal 
matrix a. 

In reality, however, noise corrupts the measurements. The decomposition is 
still valid in an approximate sense, and a tells how reliable the decomposition is. 

The matrix m is factored into p, 7r, and a by singular value decomposition 
[Golub and Reinsch, 1971], which is known to be efficient and numerically well 
behaved. If more points and frames are used than prescribed by equation-counting 
arguments (which require a minimum of three points, including the reference, and 
three frames), the effects of noise can be reduced. 

The resulting shape and rotation algorithm is simple and efficient, and has 
been implemented and tested on small objects as distant as one hundred times 
their size (see chapter 4). The rotation errors are always smaller than one degree, 
and usually much smaller. The relative precision in the computed shape is of the 
order of the relative depth range, defined as the ratio between the size of the object 
along the optic rays and its distance from the camera. 

The good performance of our algorithm derives from the fact that depth is not 
used as an intermediate result. For remote objects, the inference of depth is very 
sensitive to noise in the images, so that the quality of the depth estimates obtained 
by triangulation degrades as the relative range decreases. Consequendy, the shape 
estimates worsen even faster, since the computation of shape from depth is itself 
ill-conditioned. 
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In our approach, instead, shape is related directly to the variations in the 
distances between image features from frame to frame. No triangulation is done, 
and the amount of camera translation becomes irrelevant. 

Relations with Previous Work 
Our goal is to compute camera motion and world point coordinates, relative to 
each other, from multiple frames. 

In essence, our algorithm does what photogrammetrists for more than thirty 
years have known how to do by hand and with two frames at a time [Thompson, 
1959]. Ullman proposed an automated solution to this problem eleven years ago 
[Ullman, 1979], and called it structure-from-motion. 

Most of the initial efforts in this area have been devoted to finding closed-form 
solutions with a minimal or nearly-minimal number of points and/or frames (see, 
for instance, [Longuet-Higgins, 1981]). 

In general, structure-from-motion is hard to solve. The major difficulty is the 
inherent sensitivity of the shape and motion results to noise in the image, especially 
when objects are distant. Performance degrades with reductions in the relative 
depth range. For instance, the algorithm presented in [Tsai and Huang, 1984] 
works very well for close objects, which is the intended goal of that paper, but 
the performance is likely to degrade when objects become more remote, and the 
relative depth range becomes smaller. If the images are noisy, few points and/or 
few frames give bad results, regardless of how good the math is. 

The remedy is to use many frames and many points, exploiting redundancy to 
counteract noise. If frames are closely spaced, the correspondence problem is also 
easier to solve. This has been tried, with relatively good results, for the inference 
of depth when the motion of the camera is known. See for instance [Bolles et aL, 
1987] or [Matthies etaL, 1989]. 

In [Spetsakis and Aloimonos, 1989], an interesting algorithm is presented for 
the case of unknown motion, using several frames and points and a perspective 
projection model. In spirit, our approach is akin to theirs: the projection lines of 
the same world point are a bundle (or pencil) of lines, and the resulting incidence 
relations between them allow casting the computation of shape and motion as a 
minimization problem. Our solution, however, does not recover depth or camera 
translation. We bypass this intermediate stage, and obtain a solution which is 
partial, but more reliable for remote scenes. 
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Chapter 2 

The Decomposition Principles 

In this chapter we introduce the two observations on which we base the computa­
tion of shape and motion. As we stated in the introduction, we consider only one 
scanline per frame, and assume that the camera moves in a plane parallel to the 
scanline. 

In this plane, we define an orthogonal system of coordinates (X, Z), with the 
X axis along the scanline in the first frame. The origin of the system is a visible 
reference point on the object, as in figure 2.1. 

The images are orthographic projections. Image points are registered by 
subtracting from their projections, x/p, the projection of the reference point, J C / Q : 

mfp = Xfp ~ xfo (2.1) 

There are P points, besides the reference point, and they are tracked through 
F frames. The registered measurements mfp can then be collected in an F x P 
matrix 

mu m\p 
m = 

rripp 

Registration is equivalent to translating every image along itself so that the 
reference point projects always to the same image location. In addition, we 
can translate every image along its projection rays so that it passes through the 
reference point. In summary, all images can be thought of as rotating around the 
reference point, as in figure 2.1. 
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From the figure, we see that the projection line of point p onto frame / is 
represented by the equation 

C/X + SfZ = rrifp , 

where Cf and Sf are the cosine and sine of the angle a/ that frame / forms with 
frame 1 (thus, a\ = 0). 

We now show two facts about the measurement matrix m . First, it is of rank 2. 
Second, given any two points p and q> the pairs (m/ p, rrifq) must be on an ellipse 
for all frames/ = 

The Rank Principle 
Without noise, the rank of the measurement matrix m is two. 

All the projection lines of point p belong to a pencil, since they must pass 
through point p itself. Therefore, for any three frames / ' , g, A, the projection line 
equations for point p, 

CfX + s/Z = rrifp 

CgX + SgZ = mgp  

СнХ + shZ = mhp , 

are linearly dependent, and the determinant 

det 
cf sf mfp 

cg sg mgp 

I ch Sh mhp J 

is equal to zero. 
Thus, if we take any three points numbered p , q, r, and any three frames 

numbered/, g, /*, we can write the incidence equations 

det 
cf sf mfp 

m 
сн sh mhp J 

= det 
cf sf mfq 

Cg Sg 17lgq 

Ch Sh nthq J 

det 
Cf sf mfr 

Cg Sg ntgr 
Ch sh mhr 

= 0 . (2.2) 
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If we now read the matrices by columns, the incidence equations mean that 
the three vectors 

" mfp TTlfr 

mgp mgq mgr 

TTlhp 

all belong to the plane spanned by the two vectors 

and Sg 

and must therefore be coplanar, so that 

det 
mfp TTlfq rrifr 
mgp mgq mgr 

TTlhp TTlhq Tïïhr J 

= 0 

Thus, any third order determinant extracted from the exact measurement matrix 
TTI = [mfp] is equal to zero: the rank of m is smaller than 3. In appendix A we 
prove that, unless all points are aligned, some 2 x 2 determinant extracted from 
the matrix m must be non-zero, so that the rank of m is exactly 2 . 1 The row space 
and the column space of m are two-dimensional. 

Geometrically, this result means that the rows of m (one row per frame), 
interpreted as points in a P-dimensional space, must lie on a plane through the 
origin, call it the frame plane. The same holds for the columns of m (one column 
per point), interpreted as points in an F-dimensional space. 

Intuitively, the rank principle says that the F x P measurements are not un­
related: they could be described in a simpler way by giving F frame angles and 
P points, if only these were known. That this degeneracy takes on the form of a 
simple rank equation (rank(/n) = 2) is due to the linear nature of the orthographic 
projection equation. 

The Ellipse Principle 
The registered image projections (mfp, mfq) of two points p and qy lie 
on an ellipse for all frames / = 1 , . . . , F. 

1 We henceforth ignore the case of all-aligned points. 
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The incidence equations (2.2) hold for any triple of projection lines relative to 
the same point. Then, the rank of the F x 3 matrix 

ci S\ m\p ' 

CF SF TTlFp 

is also two. Since this holds for any p> we conclude that the cosine and sine vectors 
c and s belong to the frame plane. Any two independent vectors mp and mq (they 
are independent if points p and q are not aligned with the reference point) span the 
frame plane, and there must be four numbers (for a given pair p and q) a^q), P^q\ 
a™, such that 

c = aWmp+pMm, 
s = a™mp+f3™mq. 

By squaring and adding these two vector equations component by component, 
we obtain the following F equations 

[{aWHci^ = 1 , 

for p and q fixed and / = 1 , . . . , F. These equations say that all pairs (/n/p, m/q) 
lie on the same ellipse, centered at the origin. We can draw P(P — l ) /2 ellipses, 
one for every pair of points p and q. 

Intuitively, this can be understood by the following thought experiment: if 
the camera were to rotate at uniform angular velocity, the projection of each 
point would be a sinusoidal function of time. If two such sinusoids represent the 
orthogonal coordinates of a point moving on a plane, the point traces an ellipse. 
In fact, this is how Lissajous figures are drawn on an oscilloscope. Let us now 
remove the condition of constant camera rotation. The phase relation between 
the two sinusoids is preserved, because the two coordinates of each point on the 
ellipse refer to the same camera frame. Therefore, we obtain the same ellipse, but 
sampled at irregular intervals. 

c s mD 



Chapter 3 

The Algorithm: Dealing with Noise 

When images are noisy, the measurement matrix m will not be exactly of rank 2. 
However, the rank principle can be extended to the case of noisy measurements. 
We do this by using the concept of Singular Value Decomposition (SVD) [Golub 
and Reinsch, 1971] to introduce the notion of approximate rank. The ellipse 
principle is also readily extended, by replacing interpolation (the points are on the 
ellipse) with fitting (the points are near an ellipse). 

In this chapter, we examine these extensions, and show how to use the ex­
tended principles to compute shape and motion from a matrix of noisy image 
measurements. 

Assuming1 that F >P,m can be decomposed [Golub and Reinsch, 1971] into 
a n F x P matrix p, a diagonal P x P matrix <r, and a P x P matrix 7r, such that 

m = pan7 (3.1) 
pTp = 7T T7T = 7T7T T = / 

0"1 > • • • > <*P 

where / is the P x P identity matrix, and the singular values o\,..., <jp are the 
diagonal entries of cr. This is called the Singular Value Decomposition (SVD) of 
the matrix m. 

We can now restate the rank principle for noisy measurements. 
The first two singular values of the noisy measurement matrix m are 
much greater than the others: 

<Y\, °2 > ^3 • (3.2) 
1This assumption is not crucial: if F < P, everything can be repeated for the transpose of M. 
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Golub and Reinsch [Golub and Reinsch, 1971] give an efficient and well 
behaved algorithm to compute the decomposition. Consider now the matrix 
p which is obtained by setting to zero all the singular values after cr2 in the 
decomposition (3.1): 

where the first two columns of p are denoted by p \ and pi* and the first two columns 
of 7r are denoted by n\ and ?T2. It can be shown [Forsythe et al., 1977] that the 
2-norm of the (matrix) difference between m and p is smaller than 0-3. Hence, the 
value of (T3 can serve to assess the quality of the approximation m « p . If equation 
(3.2) holds, we can expect p to be a clean version of m, after removing noise in 
the least square error sense. 

The two vectors p \ and P2 are a basis for the frame plane, that is, for the column 
space of p . Then, we can apply the ellipse principle to these vectors, rather than to 
two columns p p and p q of the measurement matrix; the P(P — l ) /2 ellipses found 
in the previous chapter, one for every pair of points p and qy are now replaced by 
one ellipse, whose coefficients account for all of the measurements through the 
vectors p \ and p 2 : 

(a2

c + a2

s)p2

x + ( # + ft)p}2 + 2(acpc + asps)pnPf2 » 1 . (3.4) 

The reason for the approximate equality is that the two vectors p \ and P2 are 
a basis only for the best estimate of the frame plane, not for the true frame plane. 
Therefore, if we require the two vectors c and s to lie on the estimated measurement 
plane, the normalization conditions cj + sj = 1 will hold only approximately. 

The remaining steps needed to complete the solution are the following: 

• find the coefficients a2 = 0% + a], b2 = 0* + and d = ac/3c + as/3s of the 
ellipse by solving the following overconstrained F x 3 system of equations 
in the least square error sense: 

" Pu P12 2pnpi2 ' 

Pll P22 1p2\P22 

. PF\ PF2 lpF\PF2 M 

• find aC9 p C 9 as, (3S9 from a2, b2

y d by imposing the additional constraint that 

a* 
b2 

d 

11 



a\ = 0 (the first frame is chosen as the X axis). This yields 

_d + ftr _ ld(d + 2rb2) + b4r*  
a c ~ f3c ^ V a2 + 2dr + b2r* 

where r = pn/pn (ratio of the first components of p2 and pi); 

• compute 

c = a c pi + (3cp2 s = a^pi + 0sp2 . (3.5) 

These are the two vectors on the frame plane which best satisfy the normal­
ization conditions + = 1; 

• find two vectors d and d that satisfy the normalization equations exactly, 
and that are as close as possible to c and s. Here, the correct metric is the 
Euclidean metric in the space of the measurements rrifP: we want to move 
from c to d and from s to S* while perturbing the values of the measurements 
as little as possible. As shown in appendix B, this is equivalent to changing 
the vectors p \ and p2 into two new vectors p \ and pf

2 so as to minimize 
Z /=i [^i (pf i—Pf i) 2 +^2(/>/2~/ )/2) 2]»subject to the normalization constraints. 
This is a simple Lagrange minimization problem. Its solution yields the 
cosines and sines of the frame angles a/ , that is, the camera rotation; 

• compute the coordinates Xp and Zp of every object point p by finding the 
least square error intersection of all its projection lines. This is done in 
appendix G 

These steps have been implemented in a computer program, which was tested 
several image sequences. The next chapter describes an illustrative experiment. 
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Chapter 4 

An Experiment 

The purpose of the experiment described in this chapter is to illustrate the rank 
an ellipse principles, demonstrate the good quality of the results, and quantify the 
influence of perspective effects on the accuracy of the motion estimates. 

The key parameter is the relative depth range, which we defined as the ratio 
of the object size along the projection rays and the distance between camera and 
object. The relative errors in the computed shape are of the same order as the 
relative depth range, and modeling inaccuracies that are small with respect to it 
can be ignored. 

We put a one-dollar coin (about 4 cm in diameter) approximately 3.5 meters 
away from a Sony CCD camera with a 300 mm Tokina lens. Thus, the relative 
depth range was 4/350 « 0.011. Figure 4.1 shows the setup. 

The camera was moved in the plane of the coin, so that only the edge of the coin 
was visible in every frame. The motion was roughly circular around a point in the 
vicinity of the coin. Only the rotation component was controlled with an accurate 
positioning mechanism, so that a precise reference was available for performance 
evaluation. 

The edge of the coin was approximately aligned with the image scanlines, 
thus yielding easy-to-track image features (the thin vertical notches on the coin 
edge). The first 101 frames were taken in steps of 0.1 degrees between consecutive 
frames; after that, the velocity was doubled to 0.2 degrees per frame, and 100 more 
frames were taken; thus, the overall rotation was 30 degrees. The 201 scanlines 
are stacked together in figure 4.2, top to bottom. This figure is what is called an 
epipolar plane in [Bolles et al., 1987], 

The image was filtered with a thirteen-tap finite impulse response approxima-
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tion to a Laplacian of a Gaussian, and the zero crossings of the result (figure 4.3) 
were used as features in the experiment (104 crossings were found). 

The rank principle is illustrated graphically by the similarity of figures 4.4 and 
4.5. Figure 4.4 shows the crossing of figure 4.3 after registration (equation (2.1)). 
To obtain figure 4.5, we decomposed the matrix m representing the registered 
crossings, set to zero all the singular values except the first two, and reconstructed 
the measurement matrix from the first two columns of the SVD factors (equation 
(3.3)). The rank principle says that the only differences between figure 4.4 and 
figure 4.5, under orthography, are due to noise. 

The singular values are plotted in figure 4.6; without noise, and if the projection 
were exactly orthographic, only the first two values would be different from zero. 
The third value ((73) reflects essentially the effect of perspective. 

Figure 4.7 illustrates the ellipse principle. It shows the points (p/i, p/2) from 
the left factor of the singular value decomposition of the measurement matrix m, 
and the best fit ellipse, as defined by equation (3.4). 

In spite of perspective effects and unmodeled small variations in depth, the 
quality of both shape and motion results is remarkably good. Figure 4.8 shows 
the computed and the true rotation. The error is always smaller than one degree, 
and almost everywhere much smaller than that. The algorithm assumes no motion 
models, and does no smoothing. As a result, the sharp change in rotational velocity 
is preserved in the motion output. 

Figure 4.9 shows the shape results, and the best circular fit to them. The 
accuracy of shape is of the order of the relative depth range (1 percent), even if 
variations in depth during the motion of the camera were of the order of the coin 
size. 

To get an idea of how perspective effects influence the accuracy of the results, 
we tested our algorithm on a sequence of simulated, noise-free images similar 
to those of our coin experiment. A circular object with 10 features is placed at 
various depths from the camera. For each depth, a pinhole camera moves and 
rotates by 30 degrees in 30 steps. Figure 4.10 plots the relative error in the 
total computed rotation as a function of the relative depth range. While algorithms 
based on depth give worse motion estimates as objects are moved farther away, our 
algorithm improves (for a constant total rotation angle), because it approximates 
orthography better and better. 
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motion 

Figure 4.1: The setup in our experiment. Measures are in centimeters. 
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Figure 4.2: The input to the algorithm; each scanline is a new frame, and represents 
the edge of a one-dollar coin seen from a new angle. In [Bolles et al, 1987], a 
figure like this is called an epipolar plane. We use it to recover shape and rotation, 
instead of depth given known motion. 

Figure 4.3: The zero crossings from figure 4.2. 
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Figure 4.4: The zero crossings of figure 4.3 after registration. See equation 2.1. 

Figure 4.5: Registered zero crossings reconstructed after suppressing all but the 
first two singular values of the measurement matrix. 
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Figure 4.6: Singular values of the measurement matrix. 
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Figure 4.7: The ellipse which best fits the columns of the p matrix (dots are the 
actual values of (/>/i, />/2)). 
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Figure 4.8: Computed (solid) versus true (dashed) camera rotation. 

Figure 4.9: Computed shape (dots) of a one-dollar coin, with the best fit circle. 
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Figure 4.10: The motion error due to perspective distortion decreases when the 
relative depth range becomes smaller. These results were obtained by simulating 
noise-free images of a circular object with 10 features, and a pin-hole camera 
rotating by 30 degrees in 30 frames. 
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Chapter 5 

Conclusion: Depth versus Shape 
Algorithms 

The algorithm presented in this paper infers the shape of remote objects and the 
rotation of the camera. It is a shape algorithm. It does not compute either depth 
or camera translation. 

Algorithms such as the ones described in [Tsai and Huang, 1984], [Heel, 1989], 
[Spetsakis and Aloimonos, 1989], on the other hand, represent depth explicitly, 
and compute it from the image sequence. They are depth algorithms. 

Depth algorithms give a more complete answer. They compute all components 
of motion, up to a scale factor, and the depth information they supply allows, in 
principle, computing shape as well. 

However, depth algorithms do not work if objects are very distant from the 
camera with respect to their size. When the relative depth range is very small, 
as for instance in aerial cartography and reconnaissance, the values of depth are 
poorly constrained by the image sequence, and it is hard to distinguish rotation 
from translation. 

In these situations, the completeness of depth algorithms is not only useless, 
but harmful. A shape algorithm gives a more stable and accurate answer, because 
it computes shape and camera rotation directly from image deformations. It does 
not use depth as an intermediate result, and it need not distinguish translation from 
rotation. 

The results of this paper can be extended along four independent directions: 
accuracy, threedimensionality, completeness, and efficiency. 

Accuracy can be increased by correcting for perspective effects. Once a good 
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shape estimate has been computed, the solution can be perturbed with a steepest 
descent search to account for the slight divergence of projection rays in each frame. 
Furthermore, if relative changes in depth are large with respect to the relative depth 
range, looming effects must be estimated and accounted for. 

The algorithm can be extended to three dimensions. For obvious reasons of 
applicability, this is the direction we have chosen to pursue first in our future 
research. 

Completeness: if a motion model is available, depth and translation can be 
estimated independently. Shape and rotation, computed by our algorithm, would 
be inputs to a separate depth and translation algorithm, possibly together with ex­
ternal motion information. Shape and depth are often several orders of magnitude 
apart. We have shown that they should be estimated separately, not that depth 
cannot be estimated. 

Our implementation of the algorithm uses an efficient singular value decompo­
sition routine. However, it treats a whole batch of frames at once. An incremental 
implementation would be more desirable. The feasibility of this is being investi­
gated. 
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Appendix A 

The Minors of the Measurement 
Matrix 

In this appendix, we relate the three determinants 

A<g> = det 
m2i m22 

A™ = det mu m\2 
m<$i myi 

= det m2i m22 
m^i myi 

to intrinsic geometric parameters which describe the relative position of the three 
world points, and to the angles between frames. 

It immediately follows from this interpretation that a necessary and sufficient 
condition for the three determinants above to be different from zero is that no 
two object points be coincident, no three points be aligned, and no two frames 
coincide. 

Let dp and iP be the magnitude and phase of the vector which joins the reference 
point with object point number p: 

7 , = arctan2(Zp,Xp) 

(see figure A. 1). 
Here arctari2 is the two-argument inverse tangent function, which differs from 

the one-argument function in that it returns the angle in the appropriate quadrant, 
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and has no singularities 

arctan2Cy,x) = { 

[ arctan(y/;t) if x> 0 
sign(y)[7r - arctan(|y/jc|)] if x < 0 
0 ifx = y = 0 

{ sign(y)?r/2 if x = 0, y = 0 

Furthermore, let V>/j be the angle between frame / and frame g, measured 
counterclockwise from/ to g (figure A.l). 

Then, if rrifp is the projection of point P onto frame / (after registration), we 
have 

Aff = dtt MFP  MFQ 

mgp mgq 

= dpdq sin j p q sin tpfg 

Proof 
We introduce the angles UFP between frame/ and the line from the origin to 

point P; the determinant A ^ is easily expressed in terms of these angles: 

A™ = det dp COS UJfp d q COS Lüf q 

dp COS Ugp d q COS U g q 

= dpdq(COS UJfp COS Cügq — COS UJf q COS 0JGP) 

= ^-[cosiuj/p + u>^) + cos(u>//? - w w ) 

- COS(üJfq + u;^) - COS(c^/(7 - UJgp) . 

If we now observe that 

Ufq = UFP+JPQ 

"FP = *l>FG+VGP=*l>FG+»GI-'rM 

we can write 

^ / P + ^ S « = "FQ+UGP^ZUFP-tPfg+LPQ 

UFP-UGQ = FYG-LPQ 

UFQ - UGP = 1PFg+7pq, 

so that 

4 f ? = ^ [ c o s ( V y ^ - 7/>?) - cos(Vy* + 7 W ) ] = dpdq siayM sin , 

as promised. 
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frame f 

frame 1 

* reference point 
Figure A.l: The angles defined in appendix A. 
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Appendix B 

The Normalization Equations for a 
Noisy Measurement Matrix 

On page 12, we computed the cosines c/ and sines s/ of the frame angles a/ in 
two steps. 

We first found those values of Cf and Sf that lie on the frame plane, and that 
best satisfy the normalization conditions cj +stf = 1. We then perturbed c/ and Sf 
into new values df and Sf that satisfy the normalization equations exactly, and that 
are as close as possible to c/ and Sf. 

We identified the correct metric for measuring the amount of this perturbation 
as the Euclidean metric in the space of the original, registered image measurements 
m / p . 

In this appendix, we show that solving this problem is equivalent to changing 
the the first two columns p \ and p 2 of the left factor of the singular value decom­
position of the measurement matrix m into two new vectors p \ and p'2 so as to 
minimize the sum 

F 

/=1 

subject to the normalization constraints 

(c})2 + ( 4 ) 2 = l 

for/ = 1,. . . ,F. 
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From the definition of the clean measurement matrix p (equation 3.3), we see 
that if we change pf 1 and/or /9/2, we alter only one row of x: in fact, the / -th row 
of that equation is 

Xfi ... XfP ] = pf\<J\<f>\ + pf2<72<f>2 

or, in matrix notation, 

Pf\ Pf2 <T ] 
4>\ 
<f>l 

This is intuitive: the coefficients p/i and pf% regard only the measurements 
in frame number/, so it stands to reason that changing these coefficients affects 
only measurements in frame / . 

Then, a change eT = (ei, e2) in (pfï, pf2) results in a change 

77T = (77i,...,77/>) = eT<r 

in JcJ, = (if i , . . . , X/p). The squared norm of 77 is 

<t>\ 
<t>l 

IMI 2 = nTr, = eTa Hi 
fi [ <f*l <f>2 ] T 2 

<re = e a e , 

where a (and therefore a2) is diagonal. Notice that the simplicity of the result 
follows from the orthonormal nature of the matrix <j> (equation 3.1). 

Thus, 

where 

= VeTe , 

e = ere = <j\e\ + (J2^2 
As a consequence, we can almost use a Euclidean metric in the space of the points 
(p/i, /9/2), except that the two coordinates must be scaled by v\ and 0*2. 

The problem of computing (pfX, p'f2) from (/>/i, /9/2) is now easily stated: find 
the point (/9/ 2, pf2) such that the norm of the vector 

[ - Pfl) <Tl(pf2 ~ Pf2) ] 
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is minimized, subject to the normalization constraint 

(c})2 + ( ^ ) 2 = l . 

We can rewrite this constraint in terms of the vectors p\ and p'2 by noticing that 

d = acp\ + 0CP2 

/ = asp[ + psp'i 

(B.l) 
(B.2) 

(compare with equation 3.5). 
If we introduce the matrix 

A = 
a, ft 

the normalization constraints become 

[ Pfl Pf2 ATA ' P'n' = 1 

The solution to this constrained minimization problem is a simple application 
of the technique of Lagrange multipliers. The Euler equation is 

- P) + A A r V = 0 , 

where for brevity we let p = (p/i, pfi)T> and similarly for p\ This yields 

p' = {<j + \ATArx<rp . (B.3) 

By replacing this result into the constraint equation (p'Y^Ap = 1, we obtain a 
fourth order equation in the Lagrange multiplier A: 

pT(r(a + \ATA)-lATA(a + \ATA)~lap = 1 , 

whose solutions determine the candidates for A. To find p\ replace the solutions 
in turn into equation B.3, and check which one yields the smaller norm for the 
difference vector. 
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Appendix C 

The Intersection of the Projection 
Lines 

The last step in the computation of shape is to compute the coordinates Xp and 
Zp of the object points. For a given point p, this can be done by intersecting the 
projection lines of the point. 

Since there are F projection lines for each point, the solution is overconstrained. 
In this appendix, we show that the minimization problem solved in appendix B 
in order to enforce the normalization equations yields also the solution to our 
intersection problem. The point coordinates Xp and Zp can then be computed 
directly from the perturbed vectors p\ and p2 found in appendix B (equation B.3). 

The frame angles a/ were determined from a set of noisy measurements; 
therefore, we cannot expect the F projection lines of point p> 

CfX + SfZ = m/p for / = 1 , . . . ,F , 

to intersect exactly at one point. This does not even hold for the estimated 
projection lines 

CfX + SfZ = pfp for / = 1 , . . . ,F , 

since, although the clean measurement matrix p is of rank two, the sines and 
cosines were computed from the modified versions p\ and p'2 of p\ and p2. 

However, if we now let 

p = Cr\p'i7rJ + <72P27r2 (C- 1) 
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(compare with equation 3.3), the F lines 

CfX + sfZ = fifp for / = 1,.. . ,F (C.2) 

do all intersect at one point. 
In fact, on one hand, entry (f ,p) of equation C.l is 

hp = vip/i^pi + vipfiKpi • (C3) 

On the other hand, if we replace the expressions for cy and 5/ given by B.2 
into the projection line equations C.2 we obtain 

frp = {*X + a&Pfx+{№ + ,3&p'f2 for / = 1 , . . . , F . (C.4) 

These F lines intersect if there is a point (X, Z) which satisfies all the F equations 
simultaneously. By comparing equation C.4 with equation C.3, we see that such 
a point exists if there is a solution to the system 

acX + otsZ = o-\7Tpi 

(3CX + /3SZ = Cr27T>2 , 

or, in matrix notation 
" X ' 

= a 
z 

We already know that the matrix 

A = 

is non singular, so that the desired solution is 

GLc ocs 

'X,' 
= A~lcr 

[Zpl . ^P2 . 
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