NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Development of an Integrated Mobile
Robot System at Carnegie Mellon University:
December 1989 Final Report

Steve Shafer and William Whittaker

CMU-RI-TR-90-12,

The Robotics Institute
Carmnegie Mellon University
Pittsburgh, Pennsylvania 15213

January 1990

© 1990 Carnegie Mellon University

This research was sponsored by the Defense Advanced Research Projects Agency, DoD, through
DARPA order 5682, and monitored by the U.S. Army Engineer Topographic Laboratories under
contract DACA76-86-C-0019. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or of the U.S. Government.

Contents

l. Introduction 3
Introduction and Overview 3
Accomplishments 4
Future Directions 4

Il. The CODGER Blackboard and the Driving Pipeline 5
Introduction 5
Overview of the CODGER System 7
Data Storage and Transfer 9
Geometric Representation and Reasoning 11
Global Navigation 14
Local Navigation 19
The Driving Pipeline 22
Maximizing Parallelism 23

IIl. Kinematic Path Planning for Wheeled Vehicles 32
Introduction 32
The Planning Space 33
Space Admissibility 35
The Terrain Function 51
The Planning Paradigms 53
Modeling Kinematic Constraints for Planning 56
Goal Specifications 63
Searching for the Best Trajectory 67
Path Smoothing 72
Experiments and Results 76

IV. Conclusions 97
Evolution of the CODGER Blackboard and the Driving Pipeline 97
Kinematic Path Planning for Wheeled Vehicles g8
Future Directions 99

References 100

Publications 104

Abstract

This report describes progress in development of an integrated mobile robot system at the Robotics
Institute of Carnegie Mellon University from July 1988 to December 1983. This research was sponsored
by the Defense Advanced Research Projects Agency and monitored by the U.S. Army Engineer
Topographic Laboratories under contract DACA76-86-C-0019.

In this program, we pursued a broad agenda of research in the development of mobile robot vehicles,
focused on the NAVLAB computer-controlled van. In the period covered by this report, July 1988 to
December 1989, we addressed major software issues for mobile robot vehicles:

¢ Evolution of the CODGER Blackboard and the Driving Pipeline Architecture.

+ CODGER is the blackboard system for the NAVLAB that synchronizes and passes
data among the various processing modules. The Driving Pipeline is a set of modules
that operate in parallel to implement continuous motion control, road-following, and
obstacle avoidance. In this reporting period, our extensions to CODGER and the
Driving Pipeline include adaptive adjustment of planning parameters to give desired
robot responsiveness and control parameters to ensure smooth operation.

o Kinematic Path Planning for Wheeled Vehicles.

* We developed a new method for vehicle path planning designed to handle off-road
scenarios rather than traditional "flat-world" scenarios. In the past, most path planning
algorithms have assumed that the entire world is flat, with polygonal obstacles clearly
identified. However, the terrain encountered in cross-country driving presents more
subtle problems in vehicle tilt and clearance; these interact with vehicle constraints
such as minimum turning radius. Our new path planner can explicity model and
account for such aspects of the problem, and has been optimized to work fast enough
for use on the NAVLAB driving cross-country.

This software is central to the New Generation System (NGS) for robot vision and navigation, which
combines many independent technologies to produce an integrated mobile robot system.

Acknowledgements

This research has been a team effort involving many people, including: Steve Shafer, William
Whittaker, Takeo Kanade, Tony Stentz, Chuck Thorpe, Paul Allen, Gary Baun, Mike Blackwell, Kevin
Dowling, Thad Druffel, James Frazier, Taka Fujimori, Yoshi Goto, Eric Hoffman, Ralph Hyre, Inso Kweon,
James Ladd, James Martin, Clark McDonald, Jim Moody, Henning Pangels, David Simon, Bryon Smith,
and Eddie Wyatt.

Section |
Introduction

Introduction and Overview

This report describes progress in development of an integrated mobile robot system at the Robotics
Institute of Carnegie Mellon University from July 1988 to December 1989. This research was sponsored
by the Defense Advanced Research Projects Agency and monitored by the U.S. Army Engineer
Topographic Laboratories under contract DACA76-86-C-0019.

In this program, we pursued a broad agenda of research in the development of mobile robot vehicles,
focused on the NAVLAB computer-controlled van. In the period covered by this report, July 1988 to
December 1989, we addressed major software issues for mobile robot vehicles:

» Evolution of the CODGER Blackboard and the Driving Pipeline Architecture.

« CODGER is the blackboard system for mobile robots designed to handle top-down,
-map-based navigation on roads: it uses a general map format with semantic and
geometric levels defining perceivability and navigability, and supports both globai and
local navigation.

«The Local Navigator, a set of modules that interact through CODGER, handles
parallelism and synchronization in sequencing vehicle operations. These modules
implement a control paradigm we call the Driving Pipeline, in which different modules
look at the road at different distances in front of the vehicle.

*In this reporting period, we added extensions to this architecture to automatically
select driving and scanning distances to maximize parallelism, adaptively adjust
planning parameters to give desired robot responsiveness, and adaptively adjust
control parameters for smooth operation.

« Kinematic Path Planning for Wheeled Vehicles.

* In cross-country driving, the primary problem is not the use of parallelism for fast
motion, but rather is how to find pathways that are safe to navigate without fear of
harming the vehicle or getting stuck; yet are aggressive enough to allow the vehicle to
navigate even through tight spaces.

*» To accomplish this, we developed a new method for vehicle path planning designed to
handle off-road scenarios rather than traditional "flat-world” scenarios. One aspect of
this path planner is modeling the properties of the terrain that would prevent the
vehicle from passing safely. In principle, our system can model any mathematical
constraints defined across the terrain. Currently, we model the basic terrain
restrictions of the vehicle: tilt, locomotion support, and body clearance.

«In addition, there are limitations on the possible motion of the vehicle. This is
important because most robot vehicles, including car-like robots such as the NAVLAB,
are not omnidirectional. Our new path planner accounts for this by modeling kinematic
constraints as well, such as the minimum turning radius of the vehicle.

» The path planner must be used by the vehicle very frequently to account for changes
in its position and viewing area. Unfortunately, a comprehensive path planner such as
ours can be very expensive to run. Therefore, we have invested a great deal of
attention in developing representations and algorithms that allow the path planner to
run quickly. The most important development is the use of an oct-tree in the
configuration space of the vehicle that indicates what positions and orientations are
allowed by the terrain constraints. The vehicle kinematics are pre-compiled into oct-
tree relationships that allow very fast execution of the path planner while the vehicle is
moving.

This software is central to the New Generation System (NGS) for robot vision and navigation, which
combines many independent technologies to produce an integrated mobile robot system.

Accomplishments
Our accomplishments in this reporting period include:
¢ Development of the configuration-space approach for kinematic path planning.

o Implementation of the path planner with an oct-tree representation for planning constraints.

Future Research Directions
This is the final report for the current contract, so it marks the termination of the current research
program. However, we have identified several topics that we believe are important areas for further
research in the general area of mobile robot vehicles:
¢ Development of a loosely synchronized version of the Driving Pipeline that does not require
all sensors to process data at the same rate.

¢ Optimizing the communications among a set of low-level navigation modules -- obstacle
detection, path planning, and progress monitoring -- that form a complete subsystem for
vehicle control. This would involve removing them from the general CODGER
communication structure and providing specialized communication paths.

e Incorporation of our new kinematic path planner into the NAVLAB navigation architecture.

Section li
Evolution of the CODGER Blackboard
and the Driving Pipeline Architecture

Introduction

The CODGER Blackboard System

Most sophisticated mobile robot systems are large and complex [26, 39, 51]. For this reason, such
systems are usually developed by a team of researchers, rather than an individual. Furthermore, in order
for these systems to execute in a reasonable amount of time, the computations must be parallelized to
some degree. These two characteristics pose two problems:

» What software engineering tools are needed for developing a large mobile robot system?
» What software support is needed for successfully distributing the computation across a
number of processors?

In the case of the NAVLAB and its development laboratory, the software system consists of five to ten
large sensing, planning, control, and graphics modules running on a mixture of Suns and Vaxes
interconnected via an EtherNet. Both Lisp and C are available for programming. From a software
engineering standpoint, we would like to support module development in multiple languages running on
multiple machine architectures, all tied together in a single system. Furthermore, we would like one
module programmer to be able to modify or extend one part of the system without requiring redesign or
recompilation of the rest of the system. Concerning multiprocessing support, we need a common data
format to all modules, regardless of programming language or machine type. We need a mechanism for
moving data between modules, and more importantly, synchronizing this exchange. For geometric data,
which is used by nearly every module in the system, we must guarantee that it is consistent, so that all
modules agree as to the location of the robot and all objects in its environment. A number of systems
exist for integrating various modules into a single system and coordinating their activities. Many of these
systems are grouped together under the name of blackboards[16, 41, 42]. While these systems do
permit many modules (or knowledge sources) to be integrated into a single system, traditionally
multiprocessing is not supported as modules are invoked one at a time. Furthermore, modules are
scheduled for execution according to a static priority scheme. This mechanism is too restrictive for the
NAVLAB system. As illustrated in this section, a dynamic scheme is needed that changes from one
context to another. Other systems [2, 19] do provide adequate multiprocessing support, but fall short in
supporting geometric data, which is central to robotic systems. We have developed a system named
CODGER (for COmmunications Database with GEometric Reasoning) that provides ample support for
module development and multiprocessing support. In this section we describe CODGER and illustrate
how it addresses these issues.

The Driving Pipeline Architecture

Outdoor navigation is a broad and rich problem. In order to devise a workable architecture, the scope
of the problem must be narrowed somewhat. Given the NAVLAB mobile robot equipped with a color
camera and an ERIM laser rangefinder, we sought to develop an architecture for driving the NAVLAB
continuously on- and off-road, using camera-based sensing for road-following and landmark recognition
and ERIM-based sensing for obstacle avoidance. We wanted the system to be flexible enough to use
map information if provided, and to construct a map if not. We wanted to be able to run the system on

e o

general purpose computers, to allow flexibility in design and ease in development. In order to meet this
last objective, we were required to remove all real-time constraints from consideration. Thus, we required
that our environment be static (i.e., no moving objects other than the robot), and that no minimum speed

be necessary.

A number of issues come to bear on the problem:

o Whether the robot starts with a map or constructs one as it moves, a map format is needed
for representing roads and other navigable passages, landmarks, obstacles, and other items
of interest that can be understood by perceptual and planning modules.

« A suitable division is needed in the architecture between global and local navigation. Global
navigation is the task of planning coarse paths for the robot based on map information and
overseeing the execution of such paths. Local navigation is the task of coordinating sensing,
planning, and control in such a way as to realize the global path incrementally, taking into
account features of the local environment too dense to represent in a global map.

« A global planning algorithm is needed to construct coarse paths based on map information,
even in the event that the map information is incomplete.

e Local sequencing of sensing, planning, and control must guarantee that the robot does not
drive into unexplored areas, thus running the risk of collision.

» The robot must take into account the fact that certain scenarios require more processing than
others, and thus the robot's speed must be adjusted to avoid degenerative start/stop motion.

« In order to make effective use of a multiprocessing environment, the entire system must be
parallelized as much as possible.

A number of mobile robot architectures have been developed for indoor and outdoor navigation. The
first complete system was Shakey [43]. Shakey was an indoor mobile robot equipped with a camera and
rangefinder that navigated around polyhedral objects on a flat floor. The Shakey architecture consisted of
a resolution-based problem solver for planning tasks and a set of primitive action routines (such as for
navigation and manipulation) to carry out these tasks. HILARE [10, 21] was an indoor robot equipped
with a camera, rangefinder, and acoustic sensors for proximity sensing. It employed a two-tiered map
representing navigation boundaries for a floor plan. The top tier represented just the topology of the fioor
plan while the bottom tier represented the topographical information using convex polygons. HILARE was
able to fill in or update topographical information as it navigated. A number of other systems used
acoustical sensors to either build a map of the robots environment [14, 15] or to navigate based on a
previously built map[11]. Other systems focused on more difficulty sensing, planning, and tracking
problems for mobile robots [25, 40, 50] out of the context of a large system. As mobile robots moved
outdoors, the increased difficuit of the environment mandated multiple sensors and modes of navigation.
The architectures increased in complexity correspondingly [39, 51]. The most advanced of the above
systems are similar in many ways. All use statistical pattern recognition or edge-tracing techniques for
following roads or typing terrain, and laser rangefinder or sonar sensors for obstacle avoidance. Many
plan routes based on a map.

There are some basic differences that set the NAVLAB system architecture [23, 46] apart from the
others. The first centers on the map. The above systems used simple maps that represented only the
boundaries separating navigable areas from unnavigable areas. The NAVLAB map represents semantic
and perceivable geometry along with the navigable geometry. This representation makes explicit the
information necessary to pian routes and sensing operations respectively. The system is able to handie
incomplete map information and still foliow a route plan. The second difference centers on the local

sequencing of operations. The above systems either use stop-and-go motion or drive at a fixed speed,
thus placing strict real-time constraints on local processing in order to move continuously. Stop-and-go
motion is undesirable because it results in a suboptimal vehicle speed. Strict real-time constraints are
difficult to abide by since processing requirements change from environment to environment. The
NAVLAB system drives continuously but is able to adjust its speed and even stop to avoid catastrophe in
the event that processing bogs down, thus precluding the need to address real-time constraints.

In this section we present an overview of the NAVLAB architecture for navigation and then focus on the
local navigation portion of the system. Most of the ideas presented here were implemented and tested in
a number of systems [22, 23, 24]. Some of the ideas pertaining to perceivable and navigable geometry in
the map and the interface to the local path planner were developed in the NGS system, but were not
implemented.

Overview of the CODGER System

Local Map Database

Local Map Builder (LMB)
LMB Interface | — ~\\“ ILMB Interface

Sensor Module 1 Navigation Module 2

IMB Interface IMB Interface

Sensor Module 2

Navigation Module 1

IMB Interface

Planning Module

Figure 1: CODGER System Structure

The computing resources for the NAVLAB consist of three to five Sun microcomputers interconnected
with an EtherNet. The CODGER system was designed to facilitate communication between system
modules for a static mapping of modules to processors in this arrangement. The basic structure of
CODGER is illustrated in Figure 1. CODGER consists of a central database, called the local map, a
program to manage the database, called the local map builder (LMB), and a library of subroutines for
communicating with the LMB, called the LMB Interface. The other boxes in the figure are user modules.
These modules run as separate programs in the system. Each module is linked with an LMB Interface,
through which the module can store and retrieve information from the database. The LMB Interface
handles all communication and synchronization with the LMB over the network.

Note that the system configuration is "star-shaped”, that is, all data passed between modules must
pass through the central database. There are several advantages to this arrangement. First, during
development of the system, the communication paths between modules are frequently changed as the

asevie (€ / token tyse

o
L] t 2 3 o L] . 7 L] v 10 11 12 13 (e 16 16 47 18 19 20 31 22 213 3¢ 2% 26 a7

Waeduies
HELM] PROT 1 MR, CLEMN 2 AP _MMER 3 COLOR VIS 4

Token -
CEDMETRIC O FRAME_CON 1 VO4_WOTIO 2 nm_vs_ 3 PRED_VIS_ 6 PRED VMIS_ 8 OCT VIS S 6 O€ET_VIS_O 7
PRED_RAN_ 8 PRED_RAN_ § PRED_RAN_ 10 DET_RAN_S 11 DET_RAN_O 12 VENICLE_P 13 OCTECT_CO 14 SURFACE_F 13

CEOMETRY 16 TECRRAIN_P 17 CROUNO_FT 18 TERRADN_P 10 INTERSECT 20 BNTERSECT 21 RO40 _SECM 22 UPRICHT 23
UPRICHT _F 26 UPRICHKT_C 23 RC4D_SECM 28 WaP_UPOAT 27

Figure 2: Interconnectivity of Typical CODGER Application

system grows and ideas are tested. A star-shaped configuration makes data re-routing easy without
requiring new communication channels. Second, data created in one module is often used by many other
modules. Figure 2 illustrates the “interconnectivity” of a typical CODGER application. In this example,
the system contains five large modules that exchange data of 28 different types (tokens). A box is
darkened in the grid if the module corresponding to the row reads and/or writes the data type
corresponding to the column. The module and data type names are listed below the grid. Note that most
of the data types are accessed by most of the modules in the system. The CODGER configuration
preciudes the need for a tull clique of communication channels. Third, the CODGER communications
scheme is very extensible in that it supports anonymity between modules. We can add a new module
that taps into a communication line via the database (for example, a graphics module that displays data in
the system), without making changes to the source or destination modules in the line. The main
disadvantage to the star-shaped arrangement is that a/f data must pass through the local map. In some
cases, a particular data type is designed to be passed between a pair of modules only. In such cases,
the additional routing leads to slower execution.

CODGER is similar to a traditional blackboard system, in that it has a central database, a database
manager, and a pool of modules that can read and write the database. Such systems are heterarchical
because the "knowledge" in the system is distributed among a number of modules (often called
knowledge sources), each of which can read or write any piece of the data in the database. Each
knowledge source (KS) has a set of preconditions, or predicates defined over the database, which must
be satisfied in order for the KS f0 execute. In a traditional blackboard, the database manager determines
which preconditions are satisfied, selects one KS from the eligible set using a fixed priority scheme,
invokes the KS as a subroutine, and repeats.

A traditional blackboard functions as a problem-solving framework. At any point in time, the database
represents the current state of the solution. The knowledge sources use techniques such as forward- or
backward-chaining to transform the database into a solution state. The database manager relies on a
priority scheme to focus the activity of the KS's on those search paths likely to lead to a solution. This
problem-solving framework is not needed for our navigation tasks, as the tasks are more algorithmic in
nature. Instead, a system is needed that can effectively distribute the computation across multiple
processors to maximize parallelism. The serialized control and execution scheme of a traditional
blackboard is unsuited for a distributed computing environment. CODGER differs from these blackboards
in a number of ways. The modules in the CODGER system run continuously and in parallel. Modules
communicate by storing and retrieving data from the database. A module is able to run as soon as its
precondition (request for data) is satisfied, regardless of the state of execution of the other modules.
Synchronization is achieved by suspending execution within a modute until the requested data appears in
the database. CODGER even offers a mechanism whereby a module can perform one computation and
be interrupted when a precondition is met to perform another. Thus, parallel processors can be
effectively utilized. Preconditions in CODGER are not compiled prior to execution but can be changed by
the modules dynamically during execution. This feature frees CODGER from a fixed control scheme,
allowing it to change dynamically in response to different computing requirements. Furthermore,
CODGER has no fixed priority scheme for activating modules. The LMB matches preconditions to the
database using a FIFO scheme. Therefore, priority scheduling is left to the modules, to be encoded in
the data itself. Overall, the system can be viewed as data-driven, where the data flow pattern can change
during execution.

The ability of the system to change its control scheme and data flow dynamically is of special
importance to the NAVLAB system. Certain modules in the system (particularly perception and planning
modules) require different amounts of time depending on the NAVLAB's environment (e.g., road following,
intersection navigation, off-road driving). By observing the behavior of these modules during execution,
the Pilot acts as a "meta-module” and adjusts parameters in the data that flows between the other
modules to maximize parallelism. This control scheme cannot be compiled into the system a priori.

Data Storage and Transfer

Since the NAVLAB development environment consists of muitiple types of computers and
programming languages, it is important to have a data format that can be understood and manipulated by
all modules, regardless of the machine architecture or programming language. The fundamental unit of
data in CODGER, the token, exhibits this property. As the system evolves, so does the data format used
by the modules. CODGER isolates the impact of this restructuring, requiring only those modules directly
affected by the change to be modified. In order to effectively utilize a multiprocessing environment,
primitives must exist for routing the data and synchronizing the transfer between modules. CODGER
employs pattern-matching for routing and a blocking/interrupting scheme for synchronizing transfer. Both
the data format and transfer mechanisms are described in greater detail in this section.

Database Tokens

CODGER tokens consist of classical attribute-value pairs. Attribute names are strings and their values
can be scalars (integer, float, boolean, enumerated types, and strings), arrays (including arrays of arrays),
pointers (to other tokens), or geometric location (described in the next section). Tokens are the basic unit
of data in CODGER and can be used to represent physical objects, predictions, commands, status

10

information, etc. Modules create, write, read, and delete tokens in the global database by calling
functions in the LMB Interface. The LMB Interface takes care of transforming the data format between
different hardware architectures and programming languages.

Each token type (set of attribute names and data types) is defined in a template file. At startup time,
the LMB parses the template file to determine the format of all tokens in the system. The binding of
attribute names (strings) to fields in the token occurs in each module when it connects to the LMB.
Functions in the LMB Interface perform type checking during execution to ensure that data types are used
correctly. Since operations are dynamic, the work needed to modify the system is minimized. Attributes
can be added, deleted, or changed in a token type without requiring re-compilation of any modules except
those that use the attribute. This feature is of particular importance since typical CODGER applications
have consisted of over 100,000 lines of code.

The attributes themselves fall into three classes: internal, local, and global. Internal attributes are
automatically included in every token type and specify information such as the token's type, unique ID
number, creation time, most recent modification time, version number, and creator. These attributes are
managed by CODGER but can be examined by the user modules. Local attributes are defined by the
user modules in the template file. The scope of these attributes is restricted to the token type in which
they are declared. Global attributes are also defined by the user but can be used in a number of token
types. They are intended to have the same semantics (universal) regardless of the token type in which
they are used. The real power of global attributes is that they permit modules which understand a given
global attribute to manipulate token types that it has not been pre-programmed to handle. The module
can accomplish this task without needing to “understand” the other local attributes of the token.

Synchronization Primitives

Modules can retrieve tokens from the central database by direct address (request by ID number) or
through the use of a pattern called a specification. Specifications are boolean expressions defined across
token attribute values. If a token in the database satisfies a specification, the token is sent to the
querying module. For example:

if surface equals navigable and boundary equals
perceivable

In this example, "surface” and "boundary” are global attribute names defined in the template file. The
strings "navigable™ and "percelivable” are scalar constants from an enumerated type, and "equals” and
"and" are function names embedded in the specification language. This specification matches any tokens
(possibly representing roads, intersections, or off-road patches) over which the robot can drive and the
boundary of which it can perceive. One possible use of such a specification is for path planning. Note
that above specification matches tokens of any type, provided they have the above gliobal attributes with
the appropriate values. In this way new token types can be added to the system without needing to
modify the path planner. Routing via pattern matching is more powerful than a simple routing table
because it channels data based on semantic interpretation, rather than data format type.

1"

In addition to routing, the transfer of data between modules must be synchronized. Whenever a
module sends a specification to the LMB for matching, it also selects one of the following synchronization
modes:

e Immediate Request: As soon as the LMB receives such a request, it matches the
specification against the database. The calling module blocks execution during this time. If
one or more tokens matches, the tokens are sent to the calling module and it resumes
execution. If there is no match, one of the following actions happens at the module’s
discretion:

* Non-Blocking: The LMB responds that there are no matching tokens, and the module
resumes execution.

* Blocking: The module remains blocked until a token is deposited that matches the
specification, at which point the token is sent to the module and it resumes execution.

e Standing Request: The calling module passes the name of a function (interrupt handler)
along with the specification to the LMB Interface and resumes execution. Whenever an
incoming token matches the specification, the LMB sends the token to the calling module.
The LMB Interface in the module generates an interrupt and calls the interrupt handler
passing the token as an argument.

An immediate request facilitates synchronous communication between modules. Such requests are
typically used for modules expecting a certain type of data at a certain point in time or sequence. The
non-blocking option allows the module to take action if "expected” data is not resident in the database
(e.g., to prevent deadlocking). A standing request facilitates asynchronous communication. Such
requests are typically used for modules which function as servers but cannot afford to block, such as a
vehicle-control module which must monitor signals from the vehicle while fielding steering requests from
other modules.

Because all of the modules have access to all of the data, CODGER employs a locking scheme to
ensure that the database is consistent. Modules that wish to change tokens in the database must lock
them upon retrieval. This mechanism ensures that two modules do not modify a token in parallel. If a
module sends a specification to the LMB with a locking request, the matching tokens are not retumed
until they are unlocked. Thus, an immediate, blocking specification will block until a matching token is
unlocked. Our approach is that the database should be consistent so that it appears to be "local memory”
to the user module. Note that our locking scheme does not prevent deadlock; it is the responsibility of the
modules to avoid or detect such a condition.

Geometric Representation and Reasoning

The ability to represent, manipulate, and index geometric data is important to any navigation system.
Perception modules must be able to represent the shape and location of detected objects. Planning
modules must be able to search a map to find the best path for the robot, and control modules must be
able to field requests to sense data at a particular location and to steer the robot along a trajectory. Since
nearly every module makes use of geometry, CODGER support must be distributed. However, in order to
guarantee that the geometry used in each module is globally consistent, the support must include a
centralized component. In this section, we describe CODGER's facility for representing and indexing
geometric data and for ensuring global consistency.

AR o

12

Geometric Data and Indexing

Geometry in CODGER is a separate data type, called a location. A location consists of a basic shape
and a coordinate frame in which the shape is expressed. The primitive shapes that CODGER supports
are: points, edges, arcs, ribbons, and polygons. Although these shapes are of no higher dimension than
two, by using the appropriate coordinate frames, a three-dimensional object (such an a polyhedron) can
be constructed from a set of locations.

Because geometry is a data type in CODGER, it can be embedded in specifications for geometric
indexing. The specification language supports a number of indexing functions, including Euclidian
distance, polygonal intersection, inclusion test, and minimum bounding rectangle (MBR). Geometric
indexing is used by planning and perception modules for operations like searching a map database to find
the best sequence of road segments to a goal or for determining which map objects should be visible to
the robot. A simple example of the latter operation is shown below:

it objecttype equals mapobject and (tlocation
poly-intersect viewframe) equals true

In this example, "objecttype” is an attribute which is set to “mapobject” if the object is part of the map
database. The string “tlocation’’ is an internal attribute of type “locatiom” which holds the shape and
location of the map object. The string “viewframe" is a constant of type "/ocation” which defines (using a
polygon) the robot's field of view projected onto the ground. The function "poly-intersect” returns "“true” if
its two arguments intersect. Thus, the above specification returns all map object tokens that appear in
“viewframe". It should be noted that the geometric indexing functions supported in CODGER are two-
dimensional. Based on the navigation scenarios previously discussed, the ground around the robot can
be assumed to be approximately planer. Thus, for local planning and perception operations, two-
dimensional indexing is sufficient.

Frames and Frame Generators

As described in the previous section, geometric data consists of two parts: a shape and a coordinate
frame. In CODGER, a frame consists of a base frame and a homogeneous transformation from the base
frame to the frame itself. There are two system-defined coordinate frames: the WORLD frame affixed to
the ground, and the VEHICLE frame affixed to the robot. User modules are able to define their own
coordinate frames and to use them for expressing geometric data. The advantage of this feature is thata
module can define coordinate frames that are convenient for expressing its data. For example, a
perception module can define a coordinate frame affixed to the camera (relative to the VEHICLE) for
representing detected objects. This is certainly more convenient than expressing detected objects in a
world-based coordinate frame, especially since the robot is moving. CODGER provides a facility to allow
the user to express any piece of data in any coordinate frame known to the system. This feature is useful
for a planning module that needs to express perception data from muitiple sources or times in a single
coordinate frame for trajectory planning. When performing geometric indexing, CODGER automatically
transforms all geometric data accessed into the same coordinate frame. Because the robot moves in its
environment, the transformation between some frames varies over time. CODGER provides frame

13

generators for representing time-varying transformations. A frame generator is a function that takes a
time parameter as input and returns a homogeneous transformation as output, to be interpreted as the
transform between the frame generator’s base and object frames at the specified time. CODGER
supports one system-defined frame generator, namely the one between the WORLD and VEHICLE
coordinate frames. In order to generate transformations between the robot and its environment,
CODGER must be supplied with the sequence of arcs and vehicle speeds (called the history list)
specifying the robot's trajectory relative to the world. Frame generators can be included in location data
structures in place of a coordinate frame, provided a time parameter is provided somewhere in the chain
of frames. For example, assume that an object is sighted by a perception module at time r. The module
creates a location data object representing the object based on the camera frame at time . The camera
frame has been previously defined as fixed relative to the VEHICLE. When CODGER is called upon to
determine the distance between the object and a landmark relative to the WORLD (possibly to determine
if they are the same object), it uses the time parameter ¢ to "select” a transformation between the
VEHICLE and WORLD. Thus, CODGER is able to transform the object from the camera frame into the
WORLD frame for the distance calculation.

Geometric Consistency and Affixment Groups

) Object sighting

(l Object sighting

Y O
Map landmark

¥ History list

History list O
°

C Object sighting
e Object sighting

o]
Map landmark

Map landmark

O

Tree root x

Figure 3: Tree of Coordinate Frames in CODGER

Provided that each frame in the system has only one base frame, the set of frames forms a tree, as
illustrated in Figure 3. In this figure, the nodes are coordinate frames and the arcs are transformations
between the frames. In this example, the central "spine” of arcs is the robot’s history list. Arcs emanating
from this spine are object sightings from the robot. The remaining arcs are landmarks in the map.
Because of the tree structure, there exists a single and unique path between any two coordinate frames
in the system. In some cases, it is desirable to have a coordinate frame with more than one base frame

14

and transformation. Such a case arises when an object is sighted multiple times or when a sighted object
is identified as a landmark in the map. In such cases, the tree becomes a graph, and more than one path
exists between pairs of frames. Unless all measurements are perfect, the paths will yield different
transformations, and the graph is globally inconsistent. If we have a model for the discrepancy, the
transformations can be adjusted to make the graph consistent[13, 48]. CODGER retains the tree
structure (and thus global consistency) by discarding all but the most recent base frame for each
coordinate frame. In general this strategy works well because the most recent measurements reflect the
best estimate of a frame’s transformation (e.g., the robot is closer to the object).

When an object’s position is recorded relative to some frame at time ¢, @ mechanism is needed for
specifying how the transformation should be handled at times other than . For example, assume an
object is sighted from the robot at time ¢ with transformation T. If we can determine that the object is
moving relative to the WORLD, at time ¢ the transformation will be T". However, if the object is not
moving relative to the VEHICLE, the transformation at time ¢" will still be T. In order to disambiguate these
cases, in addition to a time value the user can specify an affixment object when defining a coordinate
frame. An affixment object is a coordinate frame such that the transformation to this frame from the new
frame is constant over all time. Coordinate frames which are “tied” to the same affixment object are
called an affixment group. If no affixment object is specified in a frame definition, then the transformation
is assumed to be valid only at the given time.

Global Navigation

The task of global navigation assumes at least a minimum of information is known about the robot's
environment a priori in order 1o plan a coarse path. The balance between that which is known a priori and
that which is discovered as the robot moves determines the perceptual and planning strategies employed
by the robot during navigation. At one extreme the robot may start with no map information. The robot's
goal may be simply a distant point specified in a world-based coordinate frame. In this map-building
mode, the robot itself searches for a path to the goal, using its sensors to discover the search space as it
moves. A map can be constructed consisting of the perceptual data attached to the trajectory history of
the robot for the various paths explored.

At the other extreme, the robot operates with a complete map of the environment. In this
map-navigation mode, the robot is able to search its map database before navigating to determine the
best route to the goal. While navigating the robot uses its sensors to repeatedly register its position with
the pre-planned route. Of course, most realistic navigation scenarios fall in between the extremes.
Navigation thus consists of a combination of exploration and registration as the robot moves.

Regardless of the mode employed, a map is needed for representing objects in the environment. The
map developed for the NAVLAB is described in this section. We did not focus on research in global
navigation algorithms for the NAVLAB. The algorithms we designed were guided by fairly general
principles, although the particular implementations were ad hoc. In this section we discuss the principles
employed and refer to related work in this area.

15

Map for Navigation

Whether the map is used as a database for navigation or a repository for sensor data, a representation
scheme is needed for storing salient information for future extraction. There are two fundamental types of
data any map for navigation needs to represent:

» navigable geometry: regions which are definitely navigable, definitely unnavigable, or
possibly navigable. The navigable geometry in the map forms the core data from which a
coarse, global path can be planned.

e perceivable geometry: regions which can be detected by one or more sensors onboard the
robot. The perceivable geometry instructs the robot how to recognize landmarks and thus
how to register its position relative to the map.

SEMANTIC LEVEL ROAD~1 —™ IN‘I‘ERSFCTION—I ROAD-3
ROAD-2
- p/-N P/=N P/-N P/-N P/-N <~
T P
/N —p/N “B/N -B/N
-P/N
< N
G-FEATURE LEVEL I B/-N P/=N| =B/N p/-N °/-N 7
p/-x| PN lp/-n
N4 NV
S
R E [~ E G E G E R
PRIMITIVE GEOMETRY E £ = £ v
Y ‘\
LEVEL E G E A
E
P « Perceivable \/ A\ 4 R = Ribbon
-P = Not perceivable G = Polygon
N « Navigable E « Edge
-N « Unnavigable A = Arc

Figure 4: Three-tiered Map Representation Scheme

Using the above data types, we have designed a three-tiered map representation for on- and off-road
navigation. The basic structure is illustrated in Figure 4. The top level represents objects with semantic
significance to navigation. For example, objects such roads, intersections, trees, and landmarks are
represented at this level. An intersection has semantic importance to navigation because it is a potential
switching point from one road to the next. Objects at the semantic level are comprised of a number of
geometric features, represented at the middle level. A geometric feature is an object subpart of uniform
geometry that is tagged with a navigability label or perceivability label or both. For example, an

16

intersection is composed of a kernel polygon, describing the core of the intersection into which all of the
connecting roads feed, and polygons defining a portion of the connecting road segments (see Figure 4).
At the geometric feature level, all of these polygons are labelled as "navigable™. The geometric feature
polygons are further decomposed into geometric feature edges that bound the polygons. Those edges
defining the connection between the kernel and the road segments are labelled as "navigable" and
"unperceivable” while those defining the boundary between the intersection and the surrounding off-road
regions are labelled as “unnavigable" and “perceivable™ (assuming there is a perceivable material
difference between the two). Each geometric feature at the middle level points to a single object in the
bottom level. The bottom level specifies the exact geometry (if known) for the middle level. The basic
geometric primitives at this level are "polygon”, “ribbon”, “edge”, "arc", and "point". The semantic level
can provide geometric information about an object that is redundant with the data at the bottom level;
however, it is generally in the form of attributes such as "length®, "width", "size®, or "area" which
summarize geometric information for purposes of planning a coarse path.

The main advantage of this representation scheme is that data of different modalities are factored out
into separate levels. A global planning algorithm can examine data at the semantic level alone to plan a
coarse path to the goal, without concerning itself with the specifics of exactly how the robot should drive
through navigable subparts or position itself to see perceivable subparts. Likewise, a local planning
algorithm can reason about exactly those issues the global planner does not, without concerning itself
with what type of object it is driving across or attempting to perceive.

The token construct of CODGER was used to represent the map. Separate token types were used to
represent the semantic objects, geometric features, and geometric objects at the three levels. Traits such
as "navigability” and “perceivability” along with pointers defining the “subpart” hierarchy were represented
using global attributes. The advantage of this scheme is that new types of semantic objects which
exhibited these globally-understood properties could be added to the system without modifying many of
the existing modules. For example, a path planning module could fetch a new type of object called
“stairs”, examine its "navigability”, and decide whether or not to drive across it without ever needing to
understand its other attributes.

Route Planning and Navigation

Route planning is the task of using the map to select a coarse path and monitoring its execution by a
local navigator. In the event that the map is complete, the entire route can be planned before the robot
begins moving. In this case, the robot uses its sensors to register its position relative to the route as it
navigates. If the map is incomplete, the robot uses heuristics to attempt to determine the best route o
the goal. As the robot navigates along the route, it uses its sensors to fill in the missing information. As
the map becomes more complete, the robot may decide that another route is better than the current one,
and backtrack to a previous decision point. Backtracking can result from extreme conditions such as a
road completely obstructed by unmapped obstacles or by cost considerations, such as a road that takes
an expected turn away from the goal. In the latter case, the robot decides that the expected cost of
reaching the goal along the current road exceeds the cost of backtracking to and embarking upon another
route. Note that with an incomplete map, the robot itself performs some of the searching for the goal.
The primary difference between a robot search of the world and a computer search of the map database
is that the robot incurs a cost for backtracking. This cost must be included in the search itself. Ko
[33] illustrates how As (heuristic search) can be modified to include the backtracking costs efficiently.

Because our navigation scenarios were not difficult on a global level, we developed a simpie route

17

Human assigning mission

|

CAPTAIN

MAP NAVIGATOR

/

PILOT PERCEPTION

~ 7

HEIM

!

Sensors and motors

Figure 5: Module Structure for the NAVLAB System

planner and navigator that used a fairty-complete symbolic map to drive the NAVLAB and Terregator over
a network of sidewalks and park roads. The map objects consisted of intersections, roads, and
landmarks like trees. The map was complete topologically but not topographically, that is, the
interconnectivity of the road network was specified completely, but the lengths of the various roads were
not specified exactly (parameter intervals were used). Our global navigation system is described briefly
here. The local navigation system, which was the focus of our research, is described in greater detail in
later sections. Figure 5 illustrates the structure of our system. At the top level is the Captain, which
receives a mission from the user. A mission is a sequence of goals specified by map symbols for the
robot to visit. Goals are passed one by one to the Map Navigator, which searches the map database to
find the best route to the goal. The Map Navigator decomposes a route into a number of route segments,
or subroutes of uniform navigation. For example, the Map Navigator may find the following route to the
goal:

1. Drive along Road 1 to Intersection 1.

2. Turn right at Intersection 1 onto Road 2.
3. Drive along Road 2 to Intersection 2.

4. Turn left at Intersection 2 and Stop.

Each road and intersection in this example forms a separate route segment, since navigation and sensing
strategies differ on roads and intersections. The route segments are passed one by one to the Pilot, or
local navigator. The Pilot examines the map to locate navigable and perceivable components of the route

18

segment and coordinates the use of Perception and the Helm to oversee execution of the route segment.
Each module in the hierarchy reports success or failure to the module above it. A report of success
notifies the parent module that the robot is ready to execute the next segment of the plan, while failure
indicates that another route segment must be chosen.

The advantage of this system structure is that there is a clean separation between navigation at the
global and local levels. Global navigation need only to be concerned with the selection of coarse paths to
the goal, taking into consideration only semantic constraints (such as the requirement to drive on roads
and stay off grass) and approximate geometric data. Local navigation, on the other hand, need only to be
concerned about coordinating sensors and driving the robot to realize the plan.

Before

) e car v

Figure 6: Map-Building for the NAVLAB on Park Roads

Wza& for a run on park roads is illustrated in Figure 6. The top diagram shows the topological map
, to the system before the run. The bottom diagram shows the updated map, complete with

tomg:wlmai information. The trapezoidal polygons are the sensor viewframes for each camera image
digitized, and the "dots" are trees detected by the range sensor.

19

Local Navigation

The division between the global and local navigation in the system is based on two principles. First,
successful navigation depends heavily on features of the robot's environment that are too small or
numerous to be stored in a global map. An obstacle on the edge of the road is one such example.
Because they are not known a priori, they cannot come into play at the global planning level. They must
be sensed and dealt with as needed as the robot drives. Second, characteristics of the robot such as
kinematic constraints impact the robot's trajectory on a small scale (e.g., a few meters at a time), but have
little overall effect on a coarse path planned at the global level.

Once a global path has been planned, it is the job of the Pilot to carry out each part of the plan or to
report failure. To the global level, the Pilot appears as a black box. The input parameters consist of a
recognizable goal, such as a landmark or a point in space relative to the starting location, and bounds on
where the robot is allowed to move (route segment), based on semantic geometry such as a road. The
output consists of either successful attainment of the goal or failure. To the Helm, the output of the Pilot
is a series of robot trajectories and points for image digitization.

MAP NAVIGATOR

PILOT
J DRIVING MONITOR \

\l/ PERCEPTION
ENVIRONMENT MODELLER V

N

LOCAL PATH PLANNER

HELM

Figure 7: Local Operations on each Driving Unit

Before the robot can be moved forward safely, the environment must be sensed to determine its form if
it is unknown or to determine the robot's position relative to it if the environment has been mapped a

20

priori. The area in front of the robot must be scanned for obstacles, and a trajectory must be planned to
avoid the obstacles and to position the robot for the next sensing operation. These operations are carried
out sequentially on a given patch of ground in front of the robot (called a driving unif) by the modules
depicted in Figure 7. A route segment is traversed by driving across a series of driving units. For
purposes of clarity, we assume that the robot is motionless while it senses and plans. Furthermore, we
assume that driving units are of a fixed size and are non-overlapping. All of these assumptions are
relaxed in the next two sections. The operations carried out at the local level are explained below via a
description of each module.

The Driving Monitor

It is the job of the Driving Monitor to generate a prediction for the Perception module. The input to the
module is the route segment within which the robot is to drive, a recognizable goal at the end of the route
segment, and the position of the robot with respect to the route segment. The Driving Monitor retrieves
the current description of the route segment from the map, examines the uncertainty in the geometry
(polygon or ribbon) corresponding to the perceivable features (g-feature level in the map) to determine
what portion will appear in the next image if any. All perceivable portions of the route segment that could
appear in the next image are stored into a prediction token for Perception. Each object is assigned a
number 1o be interpreted as the probability that the object will be found in the image. If the probability is
high (near "1"), bounds are included on the positions of the edges to guide Perception.

Consider as an example the case of a road where the curvature is bounded between -0.01 and 0.01
meters~!.and the length is known to be between 40 and 60 meters. Assume that the road is terminated
by an intersection. The Driving Monitor can use the bounds on the curvature to determine bounds on the
appearance of the road edges in the next image. Likewise, if the robot has travelled 40 meters, the
Driving Monitor predicts the appearance of the intersection, initially with a low probability that increases
until the intersection is found.

The resultant prediction is sent to Perception. Perception uses the prediction to decide which
recognition routines to invoke, and how to bound the search for these objects in the image. A requestis
also made to Perception to scan the driving unit for obstacles with the rangefinder.

The Environment Modeler

The Environment Modeler receives the results from Perception and updates the position of the vehicle
relative to the map if there is no uncertainty in the map (complete-map mode) or updates the map objects
such as the route segment if uncertainty exists (map-building mode). In the above example, if Perception
reports that a road has been found in the image, the result can be used to remove the uncertainty in the
curvature of the road for that driving unit. Thus, a better estimate of the shape of the road can be
constructed incrementally by piecing driving units together. If the intersection is found, the road is
terminated and the uncertainty in the length is eliminated.

The Local Path Planner

It is the goal of the local path planner to plan a trajectory to the next sensing point. The input fo the
planner is a planning space definition and a goal space. The planning space definition determines the
area in which the robot is permitted to move in its attempt to reach the goal. Restrictions on the
movement of the robot are of two types: semantic and kinematic. Semantic restrictions are determined by
the navigable/unnavigable geometry of the route segment (at the semantic level in the map). For
example, in road-following scenarios, we would like to restrict the robot to motion on the road, even

21

though the robot might be able to drive off the road. Kinematic restrictions are those pertaining to what
the robot can do. For example, the robot cannot drive up stairs or over large objects. The planning
space is defined by the union of a set of polygons, such that each polygon has one of the following labels:
navigable, unnavigable, terrain-scan, and unknown. The labels "navigable" and "unnavigable™” mean that
due to semantic reasons (or kinematic reasons known a priori) the robot can or cannot respectively drive
on the polygon. The label "terrain-scan” means that the polygon was scanned by a laser rangefinder and
includes elevation data. The path planner is to evaluate the polygon for navigability as it plans based on
kinematic considerations. Finally, the label "unknown" means that nothing is known (currently) about the
navigability of the polygon. In the event that polygons overlap, the following precedence is enforced in
the overlapping region:

unnavigable > terrain—scan > navigable > unknown

O

@

Unnavigable Navigable Unnavigable

Terraln scan Terrain scan Terrain scan

Q

T

Viewframe for vision
and range sensors

Figure 8: Precedence for Planning Space Boundaries

For example, consider a road-following scenario with obstacle avoidance. Figure 8 illustrates the
"driving unit” after it has been recognized by the vision system and scanned by the laser rangefinder.
From the vision processing, the road polygon is extracted and labelled as "navigable®. The two polygons
flanking the road are labelled as "unnavigable®. The entire area scanned by the rangefinder is
represented as a single polygon and is labelled as “terrain-scan™. Note that there are three regions
formed by intersecting polygons. The road area is labelled both "navigable” and “terrain-scan”; therefore,

A
wro

£

22

"terrain-scan" has precedence. Thus, the local path planner is permitted to plan a trajectory anywhere on
the road provided it is admissible kinematically (e.g., doesn't contact any obstacles or tip the robot), as
determined from the terrain scan. The regions flanking the road also have two labels: "unnavigable® and
"terrain-scan”. The label "unnavigable* has precedence. Thus, the planner is not permitted to plan a path
off-road even if kinematically possible from the terrain scan.

In addition to the planning space definition, a goal space must be selected before a trajectory can be
planned by local path planner. The goal space is chosen to be the set of positions or configurations from
which the robot is able to set the next image (road extension or landmark). By choosing a goal space
instead of just a goal point, the local path planner has mare freedom in selecting a trajectory.

Once the planning space has been defined and the goal space has been set, the local path planner
plans a trajectory to the goal taking kinematic constraints into consideration. If the planner fails due to
unsatisfiable kinematic constraints, the local path planner reports failure, and the global path must be
altered or some other constraints (€.g., semantic) must be relaxed. The details of the local path planner
are explored in greater detail in the next section.

The Helm

Once a trajectory has been planned by the local path planner, the trajectory is delivered to the Helm for
execution. The Helm accelerates the robot from a stopped position to a preset speed (unless already
moving at that speed), and then decelerates the robot near the end such that the robot stops at the end of
the trajectory (unless a new trajectory is available).

The Driving Pipeline

All of the above operations must be performed on a given driving unit before the robot is permitted to
drive across it. One strategy for coordinating the operations is for the robot to remain motionless while
each operation is performed sequentially. Only when all operations have finished is the robot permitted to
drive. Such stop-and-go sequencing formed the basic control strategy for a number of mobile robots
[21, 40, 43, 50]. The primary disadvantage of such a strategy is overall system speed. If T, , is the total
time needed to perform all of the local operations (including driving the robot), and D is the length of the
driving unit (the distance from the robot to the far boundary of the sensor’s field of view), then the net
velocity of the robotis V = TD-. The inefficiency of this strategy is especially apparent in a muitiprocessing

fot
environment. Since the operations are performed serially, there is no benefit to having more than one

processor. Furthermore, when the robot is actually moving, no processors are in use. This execution
pattern is illustrated in Figure 9. In this figure, the “bars” indicate the time during which a local operation
is executing for the driving unit numbered above it.

We have devised a control strategy, known as the driving pipeline, for parallelizing the computation for
implementation on a multiprocessor, thus increasing the speed of the system. Although local operations
on any given driving unit must be performed serially, at any given point in time we can perform operations
on different driving units in parallel. The pipeline is configured by running each operation on a different
module, interconnected via the CODGER database. As each driving unit is created, it is deposited in the
blackboard with a parameter set to indicate which operation should be performed on it next. Each local
operation module matches driving units with the parameter set to its identification value. After the module

23

Prediction |— I
1 2
Perception I e ——— —
1 2
Modeling — —
1 2
ical planning — —

4

nicle control I 1

Figure 9: Execution Pattern in Stop-and-Go Mode

processes the driving unit, it advances the parameter and redeposits it. In this fashion driving units move
sequentially from one operation to the next via the database. This process is illustrated in Figure 10.
Note that at any point in time, the system processes the driving units in parallel. Since one of the
operations in the pipeline is the actual driving of the robot, under ideal conditions (defined beiow), the
robot moves continuously. Unlike other systems with parallelized control [39, 51], there are no rigid time
constraints under which a stage (operation) of the pipeline must finish processing. If a stage bogs down
on a driving unit, the succeeding stages stop and wait for the driving unit to "appear” in the database. In
extreme cases, the robot will actually come to a stop and wait for the processing to finish. This feature is
important for two reasons. First, different environments require different amounts of processing. For
example, the perception module requires more time to recognize an intersection than a road, and the
planning module requires more time to find a trajectory through a cluttered environment than through a
flat, open road. Second, general purpose computers can be used to implement all of the local operations,
since no real-time constraints are imposed on the modules.

Maximizing Parallelism

T,
In theory, the use of the driving pipeline can increase the net velocity of the robot by a factor of Tm
3

where T, is the stage time of the pipeline (time of the longest stage). This increase assumes, of course,
that enough processors are available to run all of the stages in parallel. Figure 11 illustrates pipelined
execution. Note that at any point in time the stages process different driving units in parallel.

In practice, however, there are tradeoffs involved in maximizing parallelism. For example, in order to

26

or equal to Dp; otherwise, "gaps"” appear in the spatial sequence. It is assumed that the processing time,
T, for each module is constant regardless of the size of the driving unit, D, that it processes. This
assumption is valid if the resolution of the operation is scaled to the size of the driving unit. The
remainder of this section describes how the adjustment of the above parameters affects parallelism of the
computation and performance of the robot on a per module basis.

Perception

Since Perception is one of the first operations performed on a driving unit, the offset distance, SP, must
be relatively large. Let V be the velocity of the robot and T, , be the sum of the stage times from
Perception through Local Path Planning (T, =T,+T,+T). In order to maximize parallelism in
processing and minimize changes in robot velocity, all local operations on Perception’s driving unit should
finish immediately before the robot drives onto it, thatis, §, = VT,,,. Substituting the maximum velocity of
the robot (Equation 1) into this equation, we have:

S5 =7 Tout @)

If Sy is set to be less than the above equation, parallelism is maximized but the robot degenerates to
stop-and-go motion. If .S‘P is set to be greater, the robot moves continuously, but the processors are
inefficiently utilized. Figure 11 illustrates the case where Sy is set according to Equation 2.

Note that the selection of the parameter D; affects the Perception module. The greater the value of D,
the greater the value of SP and Dp (since Dp must be greater than or equal to D,). Thus, in order to
facilitate a higher vehicle speed, the robot’s sensor must be aimed farther in front of the robot and must
cover a larger area. At longer range, fewer pixels define the driving unit, thus reducing both the accuracy
and reliability of the sensor reading. Furthermore, in situations requiring much maneuvering, such as
turning corners, the SP must be reduced to allow the robot to see the area at close range. In such cases,
the robot’s speed must be reduced correspondingly.

The Driving Monitor and Environment Modeler

Although the Driving Monitor and the Environment Modeler are separate modules in the system, there
are dependencies in their functions. The Driving Monitor creates predictions for Perception based on the
map. The Environment Modeler changes either the map itself (in map-building mode) or the robot’s
position relative to the map (in map-navigation mode). In the pipeline configuration illustrated in Figure
11, the Driving Monitor creates predictions in the i-th cycle from the map updated in the (i-1)-th cycle. In
map-navigation mode, this discrepancy means that the positions of predicted objects lag one update
behind the current cycle. In map-building mode, the discrepancy is more severe. Objects seen in the i-th
cycle will not be predicted again in the (i + 1)-st cycle. If the effects of this discrepancy are intolerable (as
was the case on sharp turns where the straight-line approximation breaks down), the execution of the
Driving Monitor on the (i+1)-st driving unit can be delayed until the Environment Modeler completes
execution of the i-th driving unit. This synchronization pattern is illustrated in Figure 13. Note that since
the Driving Monitor, Perception, and the Environment Modeler are serialized, they effectively become a
single stage in the pipe. In this arrangement, if the sum of their processing times T, + T,+T, exceeds

27

2 3
3 4 5
Prediction — — —
2 3 4 5
Perception —————0m o ! { I i |
2 3 4
Modeling i — —
2 3 A
Local planning —— | ——i e |
1 2 3

Jehicle control

It 1L
W L]

S

Figure 13: Synchronization of Driving Monitor and Environment Modeler

the current stage time, T,, of the pipeline, the offset distance for Perception, Sp, will increase (see
Equation 2).
The Local Path Planner

In the Local Path Planner, pipelined execution leads to less responsiveness in the robot. In the stop-
and-go case, the Local Path Planner plans a path from the robot's current position to the distal end of
Perception’s field of view. The size of the planning space, D,, is sp +D,. Although only the first D; of the
path is actually executed, the remainder of the path influences this first section, particularly in the
presence of obstacles. In the pipelined case, the robot continues to move after digitizing an image as
Perception, the Environment Modeler, and the Local Path Planner process the new driving unit. Thus,
the size of the planning space is reduced by the distance travelled:

Dy=5,+D,- VT, 3

s

It the maximum velocity is chosen, V’T:;' then the above equation reduces to D,sD’. For a given
dmo‘eceofsp‘andbp.mesize of the planning space can be increased by choosing a V less than the
maximum. The extremes are shown in Figure 14. In this example, for clarity S’ is chosen to be
approximately two viewframes in length (ZDP). the average times for Perception and Local Path Planning

28

Plan Plan Plan

Figure 14: The Effects of Pipelining on Robot Responsiveness

areequai(r =T), andmeomﬂpmoessmg times are near zero. In the first configuration, the velocity V
sssetmmemax:mum In parallel, the robot drives through the first driving unit, plans through the second,
and processes sensor data in the third. The size of the planning space is one driving unit. In this
example, the robot plans around the first obstacle, but unwittingly positions itself in front of the second.
On the next local cycle, it will be unable to plan around the second obstacie and will be forced to back up.
ﬂwsmManmMmspomwemﬁsmmm In the second configuration, the velocity V is set

zero (stop-and-go mode). While motionless, the robot senses the third driving unit and plans through
dmg mmesmmmm Because the planning space is three driving units in length, the
robot has enough room to maneuver around both obstacles.

The size of the planning space needed depends on the expected environment. Let R, . be the
minimum turning radius of the robot, and W be the width of the robot's body. meFsaweﬁsm
maximum size (width) of an obstacle that the robot can avoid without backtracking is given by:

29

Dl

Rmin

Figure 15: Maximum Obstacle the Robot can Negotiate Without Backtracking

Ovitn = 2 Ry~ Ry + 5% = D) | @

if D, <R, +; and O, = = otherwise. In addition to reducing the maximum-sized obstacle around

which the robot can maneuver without backtracking, a smaller D, also leads to slightly longer trajectories,
since the robot cannot "see” far enough in front of it to take straight-line trajectories around obstacles. Of
course, this loss could be recovered by moving Perception’s field of view farther in front of the robot, but
only at the expense of the tradeoffs previously discussed.

The Helm

The advantage of pipelining within the Helm is that if the parameters are set properly, the robot will
move continuously. As given in Equation 1, the ideal velocity for the robot is the driving interval divided
by the stage time of the pipe. Unfortunately, this equation assumes that the stage time of the pipe never
exceeds T,. If it does, the robot must stop instantaneously to avoid "overdriving™ the current trajectory.
Since this requirement cannot be met with a real robot, the Helm drives the robot at a velocity V” less than
V, such that robot has room to decelerate to a stop in the event that the stage time exceeds T,.

Let D, be the distance the robot travels at the constant velocity, V7, for T, time:

30

Dl = V'T: 5)

If the pipeline fails to deliver the next driving unit to the Helm at this point in time, the Helm decelerates
the robot to a stop within a distance D,. Since the robot must never overdrive its driving unit, we have:

D,=D;=D; +D, (6)

Let A be the maximum deceleration constant of the robot. Since the robot must decelerate from velocity
Vv’ to zero within a distance of D,, we have:

V2
Dz = 7A m
Substituting Equations 5 and 7 into 6, solving for V* and discarding the meaningless root gives us:
2D;
V'=—AT,+A¢T3+—A— ®

From the above equation, the difference between V and V’ is determined primarily by A. If the magnitude
of A is large, then the robot can stop quickly and V" is approximately equal to V. The net effect of running
the robot at velocity V’ rather than V is that on average the pipeline will be idle while the robot traverses
the distance D,, so parallelism is traded off for a guarantee that the robot will always stop in time.

Figure 16 illustrates execution data for a real run. In this run, the Driving Monitor predicted roads
and/or intersections for Perception, which used a color camera to match the templates. The Local Path
Planner positioned the robot for the next camera picture while keeping the robot on the road, and the
Environment Modeler registered the position of the vehicle with a topographical map. In this
configuration, the Environment Modeler lagged behind the Driving Monitor and Perception. While this

31

Map Navigator
[¥ &
H H H
Driving Monitor
20 21 22 23 24 25 26 27
H H H H B | l I
Perception
18 1s 20 21 22 23 24 25 26 27
It JL J1] 1 S I — 1 Jd L — b —
LX) L3 L3 S L g i1 1R i d i 1 R4 i
Local Path Planner
17 18 19 20 21 22 23 24 25 26 27
1 H H H — l | H H H H
Helm
17 18 19 20 21 22 23 24 25 26 27
L 1 1 1 1 1) & 1 L) & 1
4 1 L L4 1 L3 i L} i i
-l l | S S S | ! 1.1 1.1 l | S B S & ! 1.1 1 1 l) B S S | l 1 1 1 1 l) S 1 1 1 1.1 Time

X 10 sec

Figure 16: Real Pipeline Execution for Park Run

configuration increased paralielism and thus the robot's speed, the system was less stable since
predictions for Perception were less accurate.

32

Section 1l
Kinematic Path Planning
for Wheeled Vehicles

Introduction

Representing the Local Environment

The local environment of a mobile robot is that portion of the world in which the robot acts between
sensing operations. Within each cycle of the driving pipeline, the Local Path Planner determines bounds
on this environment based on semantic information such as edges of roads and intersections and
periphery information such as the bounds on the sensor viewframes. The local environment is a
combination of coarse, map-based information and information acquired from sensors that is too dense to
be represented in @ map. The robot must represent the environment and its relationship to the
environment in such a way that it can determine safe and permissible areas in which to move toward its
goal. A number of issues come to bear on the problem:

¢ A large number of parameters are needed to represent the robot's size and shape, its
relationship to its environment, and the environment itself. Attempting to work with the
complete set renders the planning task intractable. Instead, a smaller set must be selected
that is manageable enough to plan with yet still guarantees safe passage of the robot.

* A mobile robot is generally not permitted to drive everywhere within its local environment.
Certain positions will bring it into contact with physical objects, such as trees. Other positions
will render the robot inoperable, such as on a sloped surface that would cause the robot to
tip. Such positions are considered inadmissible. The robot must be able to identify these
inadmissible positions in order to avoid them.

« In order for a robot to safely move through its environment, it must pass through a continuum
of positions. Testing positions point by point is prohibitively expensive. Instead, large areas
of the environment must be tested for admissibility in a single computation.

Existing systems address one or more of the above issues but make simplifying assumptions about the
remainder. The robot's local environment is often simplified by modeling it as a field of polygonal
obstacles arranged on a flat surface. The robot’s shape is often modeled as a circle. We have
developed a representation scheme for the robot and its environment that addresses all of these issues.
In this section we describe this scheme. We begin by describing the space for representing state
information about the robot and its environment. From there we define admissibility and how to compute
it. Finally, we describe efficient techniques for calculating the admissibility for a set of robot positions in a
single operation. There is, however, an issue that we do not address. We have assumed a static world
throughout, i.e. the planner assumes that obstacles in the environment cannot move. As described in an
earlier section, this assumption enables us to remove all real-time considerations from the system.

Local Path Planning

Global planning is the task of generating a coarse path based on a priori map information. Typically,
an exact path cannot be planned because the map information is not complete. Sensors must be used to
fill in the missing information as the robot moves through the environment. Local planning is the task of
generating a trajectory for the robot through the sensed environment without violating the bounds of the
global plan. Since sensor information is acquired incrementally, the global plan is realized through a
series of such "locally planned™ trajectories.

33

A number of issues come to bear on the problem at the local level:

o Bobots are typically not omnidirectional. For example, a car-like robot cannot translate
sideways. The robot must plan trajectories that it can execute, that is, it must take kinematic
constraints into consideration.

* It is desirable for a mobile robot to navigate smoothly. Planned trajectories should not
needlessly subject the robot to excessive wear and tear. Furthermore, jerky trajectories may
cause instability and should be avoided.

¢ In addition to planning a trajectory for the purpose of travelling to some destination, the
mobile robot may need to position itself in such a way as to keep a particular landmark
visible, or to guarantee that all ground area to be traversed has been scanned by the
sensors, that is, other geometric constraints may come to bear on the trajectory of the robot.

Existing systems address one or more of the above issues but make simplifying assumptions about the
remainder. Typically, the robot is assumed to be omnidirectional. Smoothing is usually not addressed:;
neither are other geometric constraints such as positioning for sensing.

We have developed a planning algorithm that addresses all of these issues. In this section we
describe the algorithm. We begin by describing a technique that handles kinematic techniques by fitting
trajectories into bounded, admissible space. We then show how this technique can be combined with a
standard search algorithm to plan paths. Planning for sensing is considered next, followed by path
smoothing. Finally, there is an issue that our planner does not address. Since the robot's environment is
assumed to be static, it can move as slowly as need be, so that dynamic constraints such as maximum
velocity and acceleration can be ignored.

The Planning Space

The Configuration Space

Generally a large number of parameters are needed to describe a robot, its environment, and the
robot’s relationship to its environment. For example, parameters are needed to specify the physical
dimensions of objects such as trees and rocks in the environment. Others are needed to specify the size
and shape of the robot itself, and to specify the position and orientation of the robot relative to its
environment as a function of time.

The parameters can be divided into two classes: those that cannot be controlied and those that can.
Examples of the former include the physical parameters specifying the robot's shape, assuming we co not
intend to plan beyond a crash, and those parameters specifying large, immovable objects, such as trees.
An example of the latter is the position of the center of mass of the robot relative to the world. For those
parameters that can be controlled, we can select a subset of independent parameters from which the
remaining dependent parameters can be computed. For example, the position of a camera on the robot
relative to the world changes as the robot is commanded to drive forward. However, the new values can
be computed from the position and orientation of the center of the robot along with the fixed, size and
shape parameters of the robot.

The entire state of the robot and its environment can be represented completely by this independent
set of controllable parameters or degrees of freedom. A particular instantiation of these parameters (an
N-tuple) is a configuration, and the collection of all possible configurations is the configuration space

34

(36, 38].

Factoring Out Parameters

The set of parameters needed to describe the robot and its environment can be quite large. Attempting
to model all of these parameters in the planning process could render the task intractable. To reduce the
complexity, we can select a subset of parameters, but we do so at a cost.

Assume we need N parameters to completely specify the robot and its environment. Assume we havé
a predicate P that returns trueif a given N-tuple, or configuration, is safe and false otherwise. If we select
a subset M, then there are Q = N - M parameters we are not modeling. There are two types of mistakes
we can make: First, we can assume a value of true for P for an N-tuple that is false. Second, we can
assume a value of false for an N-tuple that is true. The first mistake is far more serious. Misclassifying an

unsafe configuration as safe could jeopardize the robot. The second mistake could cause the robot 10
avoid areas that are actually safe. Since it reduces the amount of space the robot perceives as safe, the
robot's ability to maneuver could be hindered. Since we are not modeling the entire N-tuple, we cannot
eliminate both types of mistakes, but we can eliminate one at the expense of guaranteeing the other. We
choose to eliminate the first mistake, thereby causing the robot to err on the conservative side, i.e.
ensuring safety at the expense of some maneuverability. |n order to avoid returning true for an N-tuple
when P is false, we return true only when it is impossible for P to be false. For a given M-tuple, we retum
true only if P returns true for all configurations defined by the M-tuple crossed with the space of possiblé
Q-tuples.

Consider the following example. For the purpose of collision detection, mobile robots which navigate
on flat surfaces are often modeled by vertical cylinders which bound the shape entirely. The test fu

collision reports the same result at a given position (x,y) on the surface regardless of the orientation of th
robot, 8. The parameter 8 has been factored out of the planning problem. Note that the test errs on the
conservative side, that is, it always reports a collision when one would occur; however, it also reports
collision for some values of 8 that are clear.

The NAVLAB Configuration Space

The environment in which the NAVLAB navigates is modeled as unstructured three-dimensiond
terrain. For each point (x,y) in the local environment, the robot is able to sense the maximum elevation,
or z-value. Generally, the world is assumed to be rigid, that is, a z-value will not change (decrease) unde
the weight of the robot.

The NAVLAB is approximately box-shaped. For the purpose of collision detection, we need only teg
the intersection of the terrain (z-values) with the robot's shape. Since the terrain model stores only
maximum elevation values, using a lower bound on the height (z) of the robot at any point (x,y
guarantees that the collision test never reports "clear” when there is actually a collision. The shape
approximated by projecting all faces into the plane of the bottom, or undercarriage, of the robot (s
Figure 17). This permits us to factor out all of the parameters describing the robot's exact shape, gy
replace them with a small set of parameters specifying a polygon in three-space.

For a robot such as the NAVLAB, there are a number of parameters that specify its relationship to th
world. The NAVLAB is a rigid, unarticulated robot; therefore, its configuration in three-space can b

35

L J

é‘ Width of extended undercarriage 9

Figure 17: The Shape Approximation for the NAVLAB

represented by six parameters, three in position (x,y,z) and three in orientation (o, B, 8). Since the robot is
mobile, it has velocity and acceleration parameters as well. The steering angle parameter determines the
arc along which the robot is currently travelling.

Not all of these parameters are independent. Since the NAVLAB is constrained by gravity to rest on
the terrain, the composition of the terrain with two translational parameters (x,y) and the heading
completely determines the roll and pitch angles (a,B) as well as the elevation z of the robot. Wﬁ
that the maximum acceleration and velocity of the robot are small enough that they do not restrict the
class of trajectories the robot can execute or the types of terrain over which the robot can drive. For
example, we need not worry about tight turns that would result in the robot tipping at a high vwocimy
Therefore, these dynamic parameters can be factored out of the configuration space. Since the steering
angle can be set to any admissible value at any configuration in the space, it also can be factored oaut.
The only remaining independent parameters are (x,y,8). These parameters comprise the robot’s
configuration space. ‘

Space Admissibility

Admissibility Defined
Given that the robot has some configuration space in which to pian, planning is the task of s

path through this space from a starting configuration to a goal configuration. In order to acoor

the robot must move through a continuum of conﬁguram {M-tuples). @m&m@y mt ﬂi co

are safe. A configuration is considered to be inadmissible i foliowing conditions hoids

36

i i ing i ktrack. For example
1. It incapacitates the robot, rendering it unable to prqceed or bac . _ ,
posmog?rg the robot on a steep hill might cause it to tip over on its side, thereby

incapacitating it.

2. It physically alters the robot or environment in an undesirable way. For example, a
conﬁguraﬁoiw may cause damage to the robot through physical contact with an object in the
environment.

We assume that the above conditions for defining admissibility for a robot can be expressed as a set ¢
N constraint inequalities of the following form:

L‘(Pppz.py) < K! (admuble) (9

£,y Py ePy) > K, (inadmissible)

where 1, is a constraint function, the P parameters are the configuration space parameters, and X;; is som
threshoid constant. A configuration is classified as admissible only if f; is greater than X; for all .
otherwise, the configuration is classified as inadmissible. The remainder of this section define:
admissibility for the NAVLAB and describes the means for representing admissible space within th
NAVLAB Inadmissibility

A car-like robot such as the NAVLAB propels itself by exerting a force on the ground through it
wheels. The wheels must therefore remain in contact with the ground in such as way as to maintain thi
capability. Furthermore, as with most mobile robots, planning must ensure that the body of the robot itse
does not come in contact with objects in its environment. Similar considerations were modeled in
system developed at the Hughes Corporation [12]. We begin by developing a model for the NAVLAE
We then proceed 1o derive consiraint equations that capture the above considerations for our model. |
will be shown that each constraint can be expressed as one or more constraint inequalities of the forr
described in Equation 9.

The NAVLAB is a complex robot. The shape is approximately box-like, but it includes a large numbe
of smail features. The ability 1o move forward depends on a large number of factors, including the engin
speciications, the kinematic and dynamic effects of the suspension, and the friction between the wheel
and the ground. in order 10 renciér our admigsibility calculations tractable, we have adopted the followin
simpified model (see Figure 18). As explained previously, the robot's body can be modeled by
projection of ail of its faces nto the plane of the undercarriage, dubbed the extended undercarriage. Fe
the NAVLAB, the extended undercarriage s rectanguilar. We model the NAVLAB's suspension by .
spring Detween the undercarmage and whee! at each wheel position. Thus, the model consists of
geomelry of the rectangle, the spring Constants at each wheel, and the terrain elevation values at the fou
wheel positions. We gefine the 'ollowing parameters: Let W and L be the left-to-right and front-to-bac
cistances respectively between the wheels. Number the wheels 1 10 4 beginning with the right fror

37

N
N
(X2,Y2,2°2) 4 N (X71,¥71,271)
o
o™
(X"3,Y"3,23) (X"4,Y74,2"4)
W -
\ /

Figure 18: Model for the NAVLAB

wheel and proceeding counterclockwise as viewed from above. Let X; and S; be the spring constant and
resting lengths respectively for the i-th wheel. Let W, be the weight of the robot. Define a right-handed
coordinate system affixed to the world with x and y in the ground plane and positive z the elevation.
Likewise, define a right-handed coordinate system with ¥ and y’ in the ground plane, positive z” the
elevation, the origin of the system at the projection of the robot's center of mass into the ground plane,
and positive) aligned with the heading of the robot. Let z; and z’; be the terrain elevation and
undercarriage elevation respectively at the i-th wheel. Let (x’,y") be the ground plane coordinates of the
i-th wheel! position.

When the robot is placed on the terrain, the undercarriage assumes a position in space given by the
following plane equation:

38

where T, is the cross-ilt, or robot tilt per unit length from the right side to the left side of the robot, T, is
the long-tilt, or front to back tilt, and Z. is the elevation of the robot's center of mass. In order to
determine the three coefficients in Equation 10, we need to examine the model dynamics. Since the
model remains motionless once it is placed on the terrain, the forces on and the torques about the center
of mass must sum to zero, as given by the following equations:

4

=1

4
Y Kig;-7;+5)x;=0 (12)
=1

4
Y K(z;-2;+5)y;=0 ' (13)
=1

Without a loss of generality, we assume that the spring constants X; and resting lengths S; are equal for
each wheel. For notational simplicity, we drop the subscripts on K and S. Furthermore, we assume that
the robot's center of mass is in the center of the undercarriage rectangle. Thus, if we place the robot on
level ground, the undercarriage will come to rest parallel to the ground, at a distance H above it. By
setting H equal to z’; - z; for all i in Equation 11, we get:

H=8-— (14)

Using Equation 14 and the above simplifications, we can rewrite Equations 11, 12, and 13 as:

39

4

Z(z‘-—z'l-)+4H=0 5]

=1

4
z (-7 +85x;=0
=1

4
z (Zi- Z,i+ S)y" = O
=1

For a given placement of the robot on the terrain, we have a total of seven unknowns: z', z°,, 2’5, 2, T,

L -w L

. . . w ’ ’
T,, and Z.. The four wheel points on the undercarriage plane are given by (?'i'zl)' (T'E'ZZ)’

('—2‘2.-7".:'3), and (%‘—21‘- 2'y). These four points substituted into Equation 10 gives us four equations. The

remaining three are provided by Equations 15. Thus, the coefficients for the plane equation 10 are:

(24429 — (2+24)
Te= 1 ozwa% a6)

(Zl+22) - (23+Z4)
L= 2L

(zy+ 29+ 23+ 2y
ZC= 4 + H

On rough terrain, it is possible for the robot to encounter terrain sloped enough to cause tipping. Let
Z,, be the vertical distance from the wheel axles to the robot’s center of mass on levei ground. The
robot will tip when the deviation from horizontal exceeds the point where the plane defined by the center
of mass and the two wheels with lowest elevation is vertical. The maximum angular deviation from
horizontal permitted without tipping in the long and cross directions is given by:

2Zcy
¢, = arctan(; 7

) an

:t ;
il
o
j
i

40

bc= arctan(——w—)

T, and T are the sines of the angles of the body’s deviation from the horizontal in the long and cross
directions respectively. Let T, and T;, be the sines of ¢. and ¢, respectively. A configuration is
classified as admissible only if both of the following constraints hold:

IT,| < Ty (18)

ITol < Ty

In addition to tipping, rough terrain can give rise to situations where the wheels cannot deliver power to
the ground, usually resulting in wheel slippage. Slippage can occur due to a number of reasons, the two
most important being a low effective coefficient of friction between the wheels and the ground and
situations where an active wheel must climb the terrain (e.g., out of a ditch or up a grade).

We assume that the coefficient of kinetic friction is bounded on the low end by u,, and that the
maximum difference in elevation in the vicinity of a given active wheel is given by Az. The most
pathological situation given these parameters is illustrated in Figure 19. In this situation the wheel
supports the robot at the high corner of the "step”, where the frictional support is minimal. If the weight of
the robot on this wheel exceeds the frictional force, the robot will slip and thus, will be unable to climb the
step. In this figure, r is the radius of the wheel, and ¢ is the angle between the gravity vector and the
tangent line to the wheel at the step’s corner. The force at this point in the direction of ¢ due to friction is
given by:

Fry =1, F,sin(9) (19)

where F_ is the force on the wheel due to the robot's weight. The force needed to support the robot's
weight at the corner along the direction of ¢ is given by:

F,o=F,cos(®) 0)

|

Az

\

Figure 19: Conditions for Wheel Support

W F, sin($) 2 F,cos(e)

From Figure 19, we have:

Therefore, in order prevent slippage, Ff’ o Must be greater than or equal to F,q O

42

sin (¢) = — 22

r

\JZAzrw— AZ?
cos (¢) = —————

Substituting Equations 22 into Equation 21 gives:

> — (23)

Squaring the above equation, solving the quadratic form, and discarding the meaningless root gives:

r
Az <7, - —= 24

*luiq»-l

The intuition behind Equation 24 is that any “steps” in the terrain must be less than the radius of the
wheel. Exactly how much less is determined by the effective coefficient of friction. The smaller the
coefficient of friction, the smaller the step that can be negotiated. In the extreme case with no friction

(i.e., u, = 0), no difference in terrain elevation can be tolerated, (i.e. Az =0).

Attempting to measure p, and substituting the result into Equation 24 is inappropriate. The interaction
between a real robot on real terrain involves much more than just the coefficient of friction. Factors such
as elasticity of the tires and terrain, soil characteristics, air pressure in the tires, side-wall support
contribute as well [3, 4]. Rather, it is important to note that the constraint can be formulated as a
maximum step size (Z), the actual value of which can be determined experimentally using a real robot on
real terrain. Taking all four wheels together (both active and passive), the resultant constraint is a
function of Z , for each wheel along with the long- and cross-tilt of the body. The analytic form is quite
complex and stretches the usefulness of our simple model. Alternatively, we propose an empirical
approach where thresholds are experimentally determined for the active and passive wheels
parameterized by the tilt values. For our tests, we assumed no significant tilt and imposed maximum
thresholds on each wheel separately of the form:

43

Az £ Z 25)

As described above, the robot's body is modeled by a projection of all of its faces into the plane of the
undercarriage. We need only check the intersection of this extended polygon with the terrain for body

collisions. The plane of the undercarriage 2z’ is given by Equation 10. The body clearance constraint can
be written as follows:

Vixy) € S, f(xy) < 2(x'.y) (26)

S is the set of coordinates (x,y) in world coordinates that fall beneath the extended rectangle. The
coordinates (x’,y") are the corresponding coordinates in the robot frame. The function f, is the terrain
function, that is, it specifies the terrain elevation for a given xy-coordinate point. The above constraint
states that for a given configuration to be admissible, all portions of the terrain that fall beneath the robot
must be lower than the plane of the undercarriage.

The attitude, support, and clearance constraints given by Equations 18, 25, and 26 are illustrated in
Figure 20.

The Constraint Solution Space

As the robot moves from a starting configuration to a goal configuration, it passes through a continuum
of configurations. This continuum must be tested for admissibility. In the Hughes system [12], candidate
trajectories are approximated by a sequence of configuration points, and each configuration point is
individually tested for admissibility. In order to minimize the chance that a trajectory passes through an
inadmissible configuration, the sequence must be closely-spaced. Let ¢, be the spacing between
adjacent configuration points in each dimension (assumed equal for the sake of simplicity). If each
dimension of the planning space is of size p,, then the number of divisions along each dimension is

p

d,:E’-. Since the number of degrees of freedom for the NAVLAB is 3, the maximum number of
3

configurations that must be tested to find a path (worst case) is:

o) @n

T R

Tc N
TL
Tilt Constraint
A VO
Support Constraint Body Clearance Constraint

Figure 20: Admissibility Tests for the NAVLAB

Since a large number of tests must be performed, the number of candidate trajectories considered
must be necessarily restricted. If the robot could classify a large su