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1 Introduction 

Scheme is a latently typed language [R3RS]. This means that unlike statically typed languages such 
as ML or Pascal, types are associated only with run-time values, not with variables. A variable can 
potentially be bound to values of any type, and type tests can be performed at run time to determine 
the execution path through a program. This gives the programmer an extremely powerful form of 
polymorphism without requiring a verbose system of type declarations. 

This power and convenience is not without cost, however. Since run-time behavior can determine 
which values are bound to a given variable, precisely determining the type of a given reference to a 
variable is undecidable at compile time. For example, consider the following fragment of Scheme 
code: 

( l e t ( ( x ( i f ( o r a c l e ) 3 ' t h r e e ) ) ) 
(f x)) 

The reference to x in the subexpression (f x) could have any one of the types integer, symbol, 
integer+symbol, or bottom, depending on whether the oracle always returns true, always returns 
false, sometimes returns both, or never returns at all, respectively. Of course, determining the 
oracle's behavior at compile time is, in general, undecidable. 

We can appeal to data-flow analysis techniques to recover a conservative approximation of the 
type information implicit in a program's structure. However, Scheme is a difficult language to 
flow analyse: its higher-order procedures and first-class continuations render the construction of a 
control-flow graph at compile time very difficult. The problem of conservatively approximating, 
at compile time, the types of the values associated with the references to variables in a Scheme 
program thus involves data-flow analysis in the presence of higher-order functions. 

In this paper, I present an algorithm for flow analysis that can correctly recover a useful amount 
of type information from Scheme programs, even in the presence of higher-order functions and 
c a l l / c c . This algorithm performs a kind of type inference. Since the term "type inference" is 
commonly used to refer to the recovery of static type assignments for variables, I will instead refer 
to the type analysis performed by this algorithm as type recovery: the recovery of type information 
from the control and environment structure of a program. 

1.1 Sources of Type Information 

Type information in Scheme programs can be statically recovered from three sources: conditional 
branches, applications of primitive operations, and user declarations. 

1.1.1 Conditional Branches 

Consider a simple version of the Scheme e q u a l ? predicate: 
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2 Scheme Type Recovery 

( d e f i n e ( e q u a l ? a b ) 
(cond ( (number? a) 

(and (number? b ) (= a b ) ) ) 
( ( p a i r ? a) 

(and ( p a i r ? b ) 
( e q u a l ? ( c a r a ) ( c a r b ) ) 
( e q u a l ? ( c d r a) ( c d r b ) ) ) ) 

( e l s e (eq? a b ) ) ) ) 

There are three arms in the cond form. References to a down the first ami are guaranteed to 
have type number. Furthermore, in the numeric comparison fonn, (= a b ) , an assumption can be 
made that b is also a number, since the AND guarantees that control reaches the comparison only if 
(number? b) is true. Similarly, we can infer that references to a in the second arm of the cond 
have the pair type and, less usefully, that references to a in the third arm of the cond do not have 
either type pair or number. It is important to realise from this example that Scheme type recovery 
assigns types not to variables, but to variable references. The references to a in the different arms 
of the cond all have different types. 

Type recovery of this sort can be helpful to a Scheme compiler. If the compiler can determine 
that the (= a b ) form is guaranteed to compare only numbers, it can compile the comparison 
without a run-time type check, gaining speed without sacrificing safety. Similarly, determining that 
the ( c a r a ) , ( c a r b ) , ( c d r a ) , and ( c d r b) forms are all guaranteed to operate on pairs allows 
the compiler to safely compile the c a r and c d r applications without run-time type checks. 

1.1.2 Primop Application 

An obvious source of type information is the application of primitive operations (called "primops") 
such as + and cons . Clearly the result of (cons a b) is a pair. In addition, we can recover 
information about the type of subsequent references to primop arguments. For example, after the 
primop application ( c d r p ) , references to p along the same control path can be assumed to have 
the pair type. {Note Recovering Primops} 

As a simple example, consider the following Scheme expression: 

( l e t * ( ( a ( c d r b ) ) 
(q ( c h a r - > i n t e g e r ( v e c t o r - r e f a i ) ) ) ) 

. . . ( c a r b) . . . ( • q 2 ) ) 

References to b occurring after the ( c d r b) form are guaranteed to have the pair type — otherwise, 
the cd r application would have rendered the effect of the computation to be undefined. Hence, the 
subsequent ( c a r b) application does not need to do a type check. Similarly, after evaluating the 
second clause of the l e t * , references to a have type vector and references to i and q are small 
integers, because v e c t o r - r e f requires an integer index, and c h a r - > i n t e g e r generates an integer 
result. Hence the compiler can omit all type checks in the object code for (+ q 2 ) , and simply 
open code the addition. 
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1.1.3 User Declarations 

Type inference can also pick up information from judiciously placed declarations inserted by the 
programmer. There are essentially two types of user declarations, one requesting a run-time type 
check to enforce the verity of the declaration, and one simply asserting a type at compile time, in 
effect telling the compiler, 'Trust me. This quantity will always have this type. Assume it; don't 
check for it." 

The first kind of declaration is just T's e n f o r c e procedure [T], which can be defined as: 
( d e f i n e ( e n f o r c e p r e d v a l ) ( i f ( p r e d v a l ) v a l ( e r r o r ) ) ) 

En fo rce simply forces a run-time type check at a point the user believes might be beneficial to the 
compile-time analysis, halting the program if the check is violated. For example, 

( b l o c k ( e n f o r c e number? x) ...forms...) 
allows the compiler to assume that references to x in the forms following the e n f o r c e have the 
number type. En fo rce allows execution to proceed into the body of 

( l e t ( ( y ( e n f o r c e i n t e g e r ? ( foo 3 ) ) ) ) body) 
only if ( foo 3) returns an integer. Clearly, enforce-based type recovery is simply conditional-
branch based type recovery. 

The "trust me" sort of user declaration is expressed in Scheme via the p r o c l a i m procedure, 
which asserts that its second argument has the type specified by its first argument. For example, 
( p r o c l a i m symbol? y) tells the compiler to believe that y has type symbol. Like e n f o r c e , 
p r o c l a i m can also be viewed as a kind of conditional expression: 

( d e f i n e ( p r o c l a i m p r e d v a l ) ( i f ( p r e d v a l ) v a l ( $ ) ) ) 
where ($) denotes a computation with undefined effect. Since an undefined effect means that 
"anything goes," the compiler is permitted to elide the conditional expression altogether and simply 
take note of the programmer's assertion that v a l has the declared type. Incorrect assertions will still 
result in undefined effects. 

1.2 Type Recovery from Mult iple Sources 

All three sources of type information — conditional branches, primop applications, and user dec
larations — can be used together in recovering type information from programs, thereby enabling 
many optimizations. Consider the d e l q procedure of Figure 1. Because ans is only bound to the 
constant ' ( ) , itself, and the result of a cons application, it must always be a list. So all references to 
ans are completely typeable at compile time. Because of the conditional type test ( p a i r ? r e s t ) , 
c a r and c d r are guaranteed to be applied to legitimate pair values. Thus compile-time type recovery 
can guarantee the full type safety of d e l q with no extra run-time type checks. 

For a numerical example, consider the factorial procedure in Figure 1. Note the use of an 
explicit run-time type check, ( e n f o r c e i n t e g e r ? n ) , to force the subsequent reference to n to 
be of integer type. With the help of this user declaration, the analysis can determine that m is 
always bound to an integer, and therefore, that ans must also be bound to an integer. Thus, the 
factorial function written with generic arithmetic operators can have guaranteed type safety for the 
primop applications and also specialise the generic arithmetic operations to integer operations, at 
the expense of a single run-time type check per f a c t call. 

Section 1: I ntroduction 
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( d e f i n e ( d e l q e l t l i s ) 
( l e t r e c ( ( l p (A ( a n s r e s t ) 

( i f ( p a i r ? r e s t ) 
( l e t ( ( h e a d ( c a r r e s t ) ) ) 

( l p ( i f ( eq? head e l t ) ans 
(cons head a n s ) ) 

( c d r r e s t ) ) ) 
( r e v e r s e ! a n s ) ) ) ) ) 

( l p ' ( ) l i s ) ) ) 

( d e f i n e ( f a c t n) 
( l e t r e c ( ( l p (A ( ans m) 

( i f (= m 0) ans 
( l p (* ans m) ( - m 1 ) ) ) ) ) ) 

( e n f o r c e i n t e g e r ? n ) 
( l p 1 n ) ) ) 

Figure 1: Scheme d e l q and factorial 

If we eliminate the e n f o r c e form, then the type recovery can do less, because f a c t could 
be called on bogus, non-integer values. However, if the equality primop (= m 0) requires its 
arguments to have the same type, we can infer that references to m after the equality test must be 
integer references, and so the multiplication and subtraction operations are guaranteed to be on 
integer values. Hence, even in the naive, declaration-free case, type-recovery analysis is able to 
pick up enough information from the code to guarantee the type safety of f a c t with only a single 
type check per iteration, as opposed to the four type checks required in the absence of any analysis. 

The implementation of the type recovery algorithm discussed in Section 6 can, in fact, recover 
enough information from the d e l q and f a c t procedures of figure 1 to completely assign precise 
types to all variable references, as discussed above. For these examples, at least, compile-time type 
analysis can provide run-time safety with no execution penalty. 

1.3 Overview of the Paper 

The remainder of this paper will describe some of the details of the type recovery algorithm. Section 2 
introduces the notion of quantity-based analysis, which underlies the type recovery algorithm. 
Section 3 briefly reviews CPS Scheme, the intermediate representation used by the analysis, and 
the non-standard abstract semantic (NSAS) interpretation approach to program analysis that is the 
general framework for the type recovery analysis. Section 4 then uses the quantity model and the 
NSAS framework to present a "perfect" (and hence uncomputable) type recovery analysis for CPS 
Scheme. Section 5 abstracts the perfect analysis to a computable, useful approximate type recovery 
analysis. Section 6 describes an implementation of the approximate type recovery algorithm. 
Section 7 is a collection of assorted discussions and speculations on Scheme type recovery. Finally, 
Section 8 discusses related work. 

Section 1: Introduction 
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2 Quantity-based Analysis 

Type recovery is an example of what I call a quantity-based analysis. Consider the Scheme 
expression 

( i f « j 0) ( - j ) j ) 

Whatever number j names, we know that it is negative in the then-arm of the i f expression, and 
non-negative in the else-arm. In short, we are associating an abstract property of j ' s value (its sign) 
with control points in the program. It is important to realize that we are tracking information about 
quantities ( j ' s value), not variables (j itself). For example, consider the following expression: 

( l e t ( ( i j ) ) ( i f « j 0) ( foo i ) ) ) 
Clearly, the test involving j determines information about the value of i since they both name the 
same quantity. In a quantity-based analysis, information is tracked for quantities, and quantities can 
be named by multiple variables. This information can then be associated with the variable references 
appearing in the program. For the purposes of keeping track of this information, we need names for 
quantities; variables can then be bound to these quantity names (which are called qnames), which 
in turn have associated abstract properties. 

In principle, calls to primops such as + or cons create new qnames since these operations involve 
the creation of new computational quantities. On the other hand, lambda binding simply involves 
the binding of a variable to an already existing qname. In practice, extra qnames often must be 
introduced since it can be difficult to determine at compile-time which qname a variable is bound 
to. Consider, for example, the following procedure: 

( d e f i n e ( foo x y) ( i f ( i n t e g e r ? x) y 3 ) ) 
It might be the case that all calls to foo are of the form ( foo a a ) , in which case x and y can refer 
to the same qname. But if the analysis cannot determine this fact at compile time, x and y must be 
allocated two distinct qnames; hence determining information about x's value will not shed light on 
y's value. 

As another example, consider the vector reference in the expression: 
( l e t ( ( y ( v e c t o r - r e f vec i ) ) ) . . . ) 

Now, y is certainly bound to an existing quantity, but it is unlikely that a compile-time analysis will 
be able to determine which one. So, a new qname must be assigned to y's binding. 

In general, then, a conservative, computable, quantity-based analysis approximates the tracking 
of information on run-time values by introducing new qnames whenever it is unable to determine to 
which existing qname a variable is bound. These extra qnames limit the precision of the analysis, 
but force the analysis to err conservatively. 

Section 2: Quantity-based Analysis 
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3 CPS and NSAS 

3 .1 CPS 

The intermediate representation used for type recovery is Continuation-Passing Style Scheme, or 
CPS Scheme. CPS Scheme is a simple variant of Scheme in which procedures do not return, side-
effects are allowed on data structures but not on variables, and all transfers of control — sequencing, 
conditional branching, loops, and subroutine call/return — are represented by procedure calls. This 
simple language is a surprisingly useful intermediate representation: variants of CPS Scheme have 
been used as the intermediate representation for several Scheme, Common Lisp and ML compilers 
[Rabbit] [ORBIT] [MLComp]. 

CPS Scheme has the following simple syntax: 

PR ::= LAM 
LAM ::= (A ( v i . . . v j c) 

CALL ::= (f ax...an) 
( l e t r e c « f r A ) . . . ) c) 

FUN ::= LAM + REF + PRIM 
ARG ::= LAM + REF + CONST 
REF ::= VAR 
VAR ::= { x , z , f o o , . . . } 

CONST ::= { 3 , f a l s e , . . . } 
PRIM ::= {+, i f . t e s t - i n t e g e r , . . . } 

A program is a single lambda expression. The l e t r e c form is used to define mutually recursive 
functions. Non-conditional primops like + and c d r take an extra continuation argument to call on 
their result: ( c d r x k) calls procedure k on the cdr of x. Conditional branches are performed 
by special conditional primops which take multiple continuations. The i f primop takes three 
arguments: ( i f x c a ) . If the first argument x is a true value, the consequent continuation c is 
called; otherwise, the alternate continuation a is called. There is also a class of t e s t primops that 
perform conditional type tests. For example, ( t e s t - i n t e g e r x c a) branches to continuation c 
if x is an integer, otherwise to continuation a. Side effects on data structures are performed with 
appropriate primops, such as s e t - c a r ! ; side effects on variables are not allowed. CPS Scheme 
does not have the troublesome c a l l / c c operator. When translating Scheme programs into their 
CPS Scheme representations, every occurrence of c a l l / c c can be replaced with its CPS definition: 

(A (f k) (f (A (v kO) (k v ) ) k ) ) 
Figure 2 shows a procedure that sums the first n integers in both standard Scheme and its CPS 
Scheme representation. It bears repeating that this extremely simple language is a practical and 
useful intermediate representation for full Scheme. In fact, the dialect presented here is essentially 
identical to the one used by the optimising Scheme compiler ORBIT. 

For purposes of program analysis, let us extend this grammar by assuming that all expressions 
in a program are tagged with labels, drawn from some suitable set LAB: 

£ ( A (x) c : ( r t : f r 2 :x k\2> r 3 : x ) ) 
Each lambda, call, constant, and variable reference in this expression is tagged with a unique label. 
Expressions in a program that are identical receive distinct labels, so the two references to x have 

[v/ € VAR, c € CALL] 
\f e FUN, ai € ARG] 
\fi e VAR, u e LAM, c e CALL] 

Section 3: CPS and NSAS 
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(A (n) ( l e t r e c ( ( l p (A ( i sum) ( i f ( z e r o ? i ) sum 
( l p ( - i 1) (+ i s u m ) ) ) ) ) ) 

( l p n 0 ) ) ) 

(A (n k) 
( l e t r e c ( ( l p (A ( i sum c) 

( t e s t - z e r o i 
(A ( ) (c sum)) 
(A ( ) 

(+ sum i (A (suml) 
( - i 1 (A ( i l ) 

( l p i l suml c ) ) ) ) ) ) ) ) ) ) 
( l p n 0 k ) ) ) 

Figure 2: Standard and CPS Scheme to sum 1 through n 

the different labels ri and r$. Labels allow us to uniquely identify different pieces of a program. 
We will suppress them when convenient. A useful syntactic function is the binder function, which 
maps a variable to the label of its binding lambda or l e t r e c construct, e.g., binder [ x ] = L 

3.2 N S A S 

Casting our problem into CPS gives us a structure to work with; we now need a technique for 
analysing that structure. The method of non-standard abstract semantics (NSAS) is an elegant 
technique for formally describing program analyses. It forms the tool we'll need to solve our type 
recovery problem as described in the previous section. Section 8 gives several standard references 
for NSAS techniques. 

Suppose we have a programming language L with a denotational semantics S, and we wish to 
determine some property X at compile time. Our first step is to develop an alternate semantics Sx 
for L that precisely expresses property X. That is, whereas semantics 5 might say the meaning of a 
program is a function "computing" the program's result value given its inputs, semantics Sx would 
say the meaning of a program is a function "computing" the property X on its corresponding inputs. 

Sx is a precise definition of the property we wish to determine, but its precision typically implies 
that it cannot be computed at compile time. It might be uncomputable; it might also depend on 
the run-time inputs. The second step, then, is to abstract Sx to a new semantics, Sx which trades 
accuracy for compile-time computability. This sort of approximation is a typical program-analysis 
tradeoff — the real answers we seek are uncomputable, so we settle for computable, conservative 
approximations to them. 

The method of abstract semantic interpretation has several benefits. Since an NSAS-based 
analysis is expressed in terms of a formal semantics, it is possible to prove important properties 
about it. In particular, we can prove that the non-standard semantics Sx correctly expresses properties 
of the standard semantics S, and that the abstract semantics Sx is computable, and safe with respect 

Section 3: CPS and NSAS 
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to S*. Further, due to its formal nature, and because of its relation to the standard semantics of a 
programming language, simply expressing an analysis in terms of abstract semantic interpretations 
helps to clarify it. 

The reader who is more comfortable with computer languages than denotational semantics 
equations should not despair. The equations presented in this paper can quite easily be regarded as 
interpreters in a functional disguise. The important point is that these "interpreters" do not compute 
a program's actual value, but some other property of the program — in our case, the types of all the 
variable references in the program. We compute this with a non-standard, abstract "interpreter" that 
abstractly executes the program, collecting information about references as it goes. 

Section 3: CPS and NSAS 
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4 Perfect Type Recovery 

Following the NSAS approach, the first step towards type recovery is to define a "perfect" analysis 
that will capture the notion of type recovery. Our perfect semantics, which we will call PTREC, 
does not have to be computable; we will concern ourselves with a computable approximation in 
Section 5. 

Perfect type recovery gives us a type cache: 
A type cache for a CPS Scheme program P is a function 6 that, for each variable 
reference r and each context b over r, returns <5(r, 6), a type of all the values to which 
r could evaluate in context b. 

(For now, we will be intentionally vague about what a "context" is; this will be made precise later.) 
Once we've computed a type cache, we can easily find the type for any variable reference r:v in our 
program: 

RefType[[r:vl = [J^(r, b) 
b 

4.1 Notat ion 

D* is used to indicate all vectors of finite length over the set D. Functions are updated with brackets: 
e [a /?, c H+ d] is the function mapping a to bt c to d, and everywhere else identical to function 
e. Vectors are written (a, p , z). The ith element of vector v is written vji. The power set of A is 
P(A). Function application is written with juxtaposition: / x. We extend a lattice's meet and join 
operations to functions into the lattice in a pointwise fashion, e.g.: f n g = Xx. (f x)D(gx) 

4.2 Basic Domains 

The PTREC semantics maps a CPS Scheme program to its type cache. Its structure, however, is very 
similar to a standard semantics for CPS Scheme. Let us first consider this basic structure without 
paying close attention to the parts of the semantics that actually track type information. 

There is a basic domain, Bas, which consists of the integers and a special false value. (I will 
follow traditional Lisp practice in assuming no special boolean type; anything not false is a true 
value.) The domain of CPS Scheme procedures, Proc, has three parts: a primop is represented by its 
syntactic identifier (prim € PRIM), while a lambda closure is represented by a lambda/environment 
pair ((^, e) € LAM x BEnv). The special token stop is the top-level continuation: in the standard 
semantics, calling stop on a value v halts the program with result v. The value domain D consists of 
the basic values and CPS Scheme procedures. The answer set TCache is the set of type caches.{Note 
No Bottom} 

Bas = Z + {false} 
Proc = (LAM x BEnv) + PRIM + {stop} 

D = Proc + Bas 
TCache = (REF x CN) -+ Type 

Section 4: Perfect Type Recovery 
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Several items are conspicuously absent from these sets. This "toy" dialect omits i/o and a store, 
features that would be found in a full CPS Scheme semantics. It only provides three basic types 
of value: integers, false, and procedures. The run-time error checking has been left out of the 
semantics. These omissions are made to simplify the presentation. Extending the analysis to a more 
complete dialect of CPS Scheme is straightforward once the basic technique is understood. For 
example, the implementation described in Section 6 handles all of these missing features. 

4.3 Environments and Procedures 

The PTREC semantics factors the environment into two parts: the variable environment (ye € 
VEnv), which is a global structure, and the lexical contour environment (e 6 BEnv). A contour 
environment e maps syntactic binding constructs — lambda and l e t r e c expressions — to contours 
or dynamic frames. Each time a lambda is called, a new contour is allocated for its bound variables. 
Contours are taken from the set CN (the integers will suffice). A variable paired with a contour is a 
variable binding (v, b)t taken from VB. The variable environment ve, in turn, maps these variable 
bindings to actual values. The contour part of the variable binding pair (v, b) is what allows multiple 
bindings of the same identifier to coexist peacefully in the single variable environment. 

CN Contours 
VB = V A R x C N 

BEnv = LAB — C N 

VEnv = VB — D 

Lexical scoping semantics requires us to close a lambda expression with the contour environment 
that is present when the lambda is evaluated. We can see both the closure of lambda expressions 
and the lookup of variables in the Av function below. Av is the function that evaluates arguments in 
procedure calls, given the lexical contour environment e and the global variable environment ve. 

Av : ARG U FUN -+ BEnv -+ VEnv D 

AvUX ( v i . . . v n ) c)Jeve = (I(A ( v i . . . v r t ) c ) J , e) 
Av Iv]] eve = ve(v, ebinderv) 

Av Iprim] eve - prim 
Av M e ve = K k 

Av closes lambdas over the contour environment e. Variable references are looked up in a two step 
process. First, the contour environment is indexed with the variable's binding lambda or l e t r e c 
expression binder v to find which contour this reference occurs in. The contour and the variable 
are then used to index into the variable environment ve, giving the actual value. Since primops are 
denoted by their syntactic identifiers, Av maps these to themselves. Constants are handled by some 
appropriate meaning function /C. 

New contours are created when procedures are called. Procedure calls are handled by the C and 
T functions. 

C : CALL -> BEnv -* VEnv -> QEnv -* TTab -> TCache 

Section 4: Perfect Type Recovery 
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C takes five arguments: a call expression, the lexical contourenvironment e, the variable environment 
ve, and two others used for type recovery (we will return to these last two arguments in the next 
subsection). C uses the Av function to determine the values for the procedure being ca l l ed / ' and the 
arguments being passed to it. The argument values are collected into a single argument vector av. 
CPS Scheme procedures are represented by either lambda/environment pairs or by primop identifier 
names; the semantic function T converts this denotation of procedure / 7 to a functional value. The 
resulting function provides the contribution made to the final type cache by the execution of the 
program from the entry to p rocedure / ' forward. 

The secondary, functional representation of CPS Scheme procedures is produced by the T 
function: 

T: Proc D* (Quant + Type)* -+ VEnv -+ QEnv -+ TTab -+ TCache 

F(V:Vi ( v i . . . v j c ) J , c) = 
Xav qvveqer. C c €* ve' qe" r ' 

A CPS Scheme lambda procedure is represented by a function that takes five arguments: an argument 
vector av, the variable environment ve, and three others concerned with type recovery. Upon entry 
to this function, a new binding contour b is allocated for the lambda's scope. The function nb is 
responsible for allocating the new binding contour, it is essentially a gensym, returning a unique 
value each time it is called {Note Gensym}. The lexical contour environment e is updated to map 
the current procedure's label I to this new contour. The mappings [(v,-, b) av[i] are added to the 
variable environment, recording the binding of Vs parameters to the arguments passed in av {Note 
Run-time Errors}. We update the type-tracking values qe and r , and call C to evaluate the lambda's 
internal call expression c in the new environment. 

To fully specify T, we must also give the functional representation for each primop and the 
terminal stop continuation. We will return to this after considering the mechanics of type-tracking. 
We also need to specify how C handles call forms that are l e t r e c expressions instead of simple 
procedure calls. This case is simple: C just allocates a new contour b for its scope, closes the 

where b = nb 
= 6 [/ ~ b] 

ve1 = ve [(v4-, b) 
qe1 = qe [(v,-, b) 

av[i) 
qv[i] Vi 3 qv[i e Quant (*) 

Section 4: Perfect Type Recovery 



12 Scheme Type Recovery 

defined procedures in the new contour environment e! (thus providing the necessary circularity), and 
evaluates the l e t r e c ' s interior call form c in the new environment {Note Non-circular l e t r e c } . 

C | [ £ ( l e t r e c (< / i / i ) . . . ) c)]eveqer = Ccdve'qe'r* 
where b = nb 

c* = €[l^b) 
ve1 = ve [(fi, b) — Av U e! ve ] 
qe' = qe [(ft, b)~(fh b)} 
r' = T [(fh b) typelproc] 

4.4 Quanti t ies and Types 

The semantics presented so far could easily be for a standard interpretation of CPS Scheme. We can 
now turn to the details of tracking type information through the PTREC interpretation. This will 
involve the quantity analysis model discussed in Section 2. The general type recovery strategy is 
straightforward: 

• Whenever a new computational quantity is created, it is given a unique qname. Over the 
lifetime of a given quantity, it will be bound to a series of variables as it is passed around the 
program. As a quantity (from D) is bound to variables, we also bind its qname (from Quant) 
with these variables. 

• As execution proceeds through the program, we keep track of all currently known information 
about quantities. This takes the form of a type table r that maps qnames to type information. 
Program structure that determines type information about a quantity enters the information 
into the type table, passing it forward. 

• When a variable reference is evaluated, we determine the qname it is bound to, and index into 
the type table to discover what is known at that point in the computation about the named 
quantity. This tells us what we know about the variable reference in the current context. This 
information is entered into the answer type cache. 

This amounts to instrumenting our standard semantics to track the knowledge determined by run
time type tests, recording relevant snapshots of this knowledge in the answer type cache as execution 
proceeds through the program. 

The first representational decision is how to choose qnames. A simple choice is to name a 
quantity by the first variable binding (v, b) to which it is bound. Thus, the qname for the cons cell 
created by 

(cons 1 2 (A (x) . . . ) ) 
is { M , 6), where b is the contour created upon entering cons ' s continuation. When future variable 
bindings are made to this cons cell, the binding will be to the qname ( M , b). Thus, our qname set 
Quant is just the set of variable bindings VB: 

Quant = VB 

Having chosen our qnames, the rest of the type-tracking machinery falls into place. A quantity 
environment (qe € QEnv) is a mapping from variable bindings to qnames. The qname analog 
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of the variable environment ve, the quantity environment is a global structure that is augmented 
monotonically over the course of program execution. A type table ( r € TTab) is a mapping from 
qnames to types. Our types are drawn from some standard type lattice; for this example, we use the 
obvious lattice over the three basic types: procedure, false, and integer. 

We may now consider the workings of the type-tracking machinery in the T and C functions. 
Looking at T, we see that our function linkage requires three additional arguments to be passed 
to a procedure: the quantity vector qv, the quantity environment qe, and the current type table r . 
The quantity environment and type table are as discussed above. The quantity vector gives quantity 
information about the arguments passed to the procedure. Each element of qv is either a qname or 
a type. If it is a qname, it names the quantity being passed to the procedure as its corresponding 
argument. However, if a computational quantity has been created by the procedure's caller, then it 
has yet to be named — quantities are named by the first variable binding to which they are bound, 
so it is the duty of the current procedure to assign a qname to the new quantity as it binds it. In 
this case, the corresponding element of the quantity vector gives the initial type infonnation known 
about the new quantity. Consider the cons example given above. The cons primop creates a new 
quantity — a cons cell — and calls the continuation (A (x) . . . ) on it. Since the cons cell is a 
brand new quantity, it has not yet been given a qname; the continuation binding it to x will name 
it. So instead of passing the continuation a qname for the cell, the cons primop passes the type 
type/pair in qv, giving the quantity's initial type information. 

We can see this information being used in the T equation. The line marked with (*) binds 
qnames from the quantity vector to their new bindings (v,-, b). The lines marked with (**) handle 
new quantities which do not yet have qnames. A new quantity must be assigned its qname, which 
for the ith argument is just its variable binding (v,-, b). We record the initial type information 
(qv[i € TVpe) known about the new quantity in the type table r ' . The new quantity environment 
qe" and type table r ' are passed forward to the C function. 

C receives as type arguments the current quantity environment qe, and the current type table r . 
Before jumping off to the called procedure, C must perform three type-related tasks: 

• Record in the final answer cache the type of each variable reference in the call. Each variable 
reference e^ai is evaluated to a qname by the auxiliary function Aq, the qname analog to the 
Ay function. The qname is used to index into the type table r , giving the type information 
currently known about the quantity bound to variable a;. Call this type t. We record in the 
type cache that the variable reference a evaluated to a value of type t in context e binder ei. 
This is the contribution 6 that C makes to the final answer for the current call. 

• Compute the quantity vector qv to be passed to the called procedure / . If ai is a variable 
reference, its corresponding element in qv is the qname it is bound to in the current context; 
this is computed by the Aq auxiliary. On the other hand, if the argument ai is a constant or 
a lambda, then it is considered a new, as-yet-unnamed quantity. The auxiliary At determines 
its type; the called procedure will be responsible for assigning this value a qname. 

TVpe 

QEnv 

TTab 

{typelproc, typelint, type/false^ J-, T } 

VB -» Quant 

Quant —• Type 
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• Finally, note that C can do a bit of type recovery. Iff does not evaluate to a procedure, 
the computation becomes undefined at this call. We may thus assume that / 's quantity is a 
procedure in following code. We record this information in the outgoing type table r ' : if/ is 
a variable reference, we find the qname it is bound to, and intersect type/proc with the type 
information recorded for the qname in r. If/ is not a variable reference, it isn't necessary to 
do this. (Note that in the l e t r e c case, C performs similar type recovery, recording that the 
new quantities bound by the l e t r e c all have type type/proc. This is all the type manipulation 
C does for the l e t r e c case.) 

Aq Iv] e qe = qe (v, e binder v ) 

AtUX ( v i . . . v „ ) c ) ] = type/proc 
At M = typelint (numeral n) 

At [ f a l s e j = type/false 

Most of the type information is recovered by the semantic functions for primops, retrieved by 
T. As representative examples, I will show the definitions of + and t e s t - i n t e g e r . 

T [ • ] = A (a, b, c) (qa, qb, qc) ve qe r. (T c) (a + b) (ts) ve qe r" 
where ta = QT qar 

tb= QT qbr 
ts = infer*{to, tb) 
T1 = Tu qa (ta n typelint) r 
T" = Tu qb (tb n typelint) r ' 

The + primop takes three arguments: two values to be added, a and bf and a continuation c. 
Hence the argument vector and quantity vector have three components each. The primop assigns ta 
and tb to be the types that execution has constrained a and b to have. These types are computed by 
the auxiliary function QT:(Quant + Type) —•(Quant -»Type) —• Type. 

QT qr = rq QT tr = f 

QT maps an element from a quantity vector to type information. If the element is a qname q> then 
QT looks up its associated type information in the type table r. If the element is a type t (because 
the corresponding quantity is a new, unnamed one), then t is the initial type information for the 
quantity, and so QT simply returns t. Having retrieved the type information for its arguments a and 
ft, + can then compute the type ts of its result sum. This is handled by the auxiliary function infer*, 
whose details are not presented. Infer* is a straightforward type computation: if both arguments are 
known to be integers, then the result is known to be an integer. If our language includes other types 
of numbers, infer+ can do the related inferences. For example, it might infer that the result of adding 
a floating point number to another number is a floating point number. However infer+ computes its 
answer, ts must be a subtype of the number type, since if control proceeds past the addition, + is 
guaranteed to produce a number. Further, + can make inferences about subsequent references to its 
arguments: they must be numbers (else the computation becomes undefined at the addition). The 
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auxiliary function Tu updates the incoming type table with this inference; the result type table T" is 
passed forwards to the continuation. 

Tvntr -I T <7€Type 
lUqtr - j r[q^t] q € Q u a n t 

Tu takes three arguments: an element q from a quantity vector (i.e., a qname or type), a type t, and 
a type table r . If q is a qname, the type table is updated to map qy-+ t. Otherwise, the type table is 
returned unchanged (the corresponding quantity is ephemeral, being unnamed by a qname; there is 
no utility in recording type information about it, as no further code can reference it). With the aid 
of Tu, + constrains its arguments a and b to have the number type by intersecting the incoming type 
information ta and tb with type!number and updating the outgoing type table r " to reflect this{Note 
Recovering Continuations}. The sum a + b, its initial type information ts, and the new type table r " 
are passed forward to the continuation, thus continuing the computation. As mentioned earlier, we 
omit the case of halting the computation if there is an error in the argument values, e.g., a or b are 
not numbers {Note Run-time Errors}. 

m -n \ i \ I v f (Tc)() ()veqert x€Z T [ t e s t - m t e g e r j = A(x, c, a) (qx, qc, qa) ve qe r. j ^ q ) ( ) { ) ^ ^ ^ 

where tx = QT qxr 
Tf = Tu qx (tx - typelint) r 
r, = Tu qx (tx n typelint) r 

The primop t e s t - i n t e g e r performs a conditional branch based on a type test. It takes as arguments 
some value x, and two continuations c and a. If x is an integer, control is passed to c, otherwise 
control is passed to a. T e s t - i n t e g e r uses QT to look up tx, the type information recorded in the 
current type table r for x's qname qx. There are two outgoing type tables computed, one which 
assumes the test succeeds (rt), and one which assumes the test fails (Tf). If the test succeeds, then 
qx's type table entry is updated by Tu to constrain it to have the integer type. Similarly, if the test 
fails, qx has the integer type subtracted from its known type. The appropriate type table is passed 
forwards to the continuation selected by t e s t - i n t e g e r , producing the answer type cache. 

Finally, we come to the definition of the terminal stop continuation, retrieved by T. Calling the 
stop continuation halts the program; no more variables are referenced. So the semantic function for 
stop just returns the bottom type cache ± : 

T \stop\ = A (v) qv ve qe r. JL 

The bottom type cache is the one that returns the bottom type for any reference: ±TCache = Ax. JLiype. 
Note that in most cases, the bottom type cache returned by calling stop is not the final type cache 
for the entire program execution. Each call executed in the course of the program execution will 
add its contribution to the final type cache. This contribution is the expression 6 in the C equation 
for simple call expressions on page 11. 

Having defined all the PTREC type tracking machinery, we can invoke it to compute the type 
cache 6 for a program by simply closing the top-level lambda £ in the empty environment, and 
passing it the terminal stop continuation as its single argument: 

S = (T (I, 1 ) ) (stop) (type/proc) J. J. JL 
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5 Approximate Type Recovery 

5.1 Initial Approximat ions 

Having defined our perfect type recovery semantics, we can consider the problem of abstracting it 
to a computable approximation, while preserving some notion of correctness and as much precision 
as possible. 

Conditional branches cannot, in general, be determined at compile time. So our abstract semantics 
must compute the type caches for both continuations of a conditional and union the results together. 
Note that this frees the semantics up from any dependence on the basic values Bas, since they are 
not actually tested by the semantics. Hence they can be dropped in the approximate semantics. 

In addition, the infinite number of contours that a lambda can be closed over must be folded 
down to a finite set. The standard abstractions discussed in [CFASem] can be employed here: we 
can replace our variable environment with one that maps variable bindings to sets of procedures; 
and replace the contour allocation function nb with a function on lexical features of the program — 
e.g., the contour allocated on entry to lambda \l\ (A ( v i . . . v n ) c) ] can be the label £ of the lambda 
(what I call the "Oth-order procedural approximation"). This allows multiple bindings of the same 
variable to be mapped together, allowing for a finite environment structure, which in turn gives a 
computable approximate semantics. 

See [CFASem] for a detailed treatment of these abstractions. Both [CFASem] and [CFlow] 
discuss more precise alternatives to Oth-order approximation. 

5.2 Problems with the Abstraction 

It turns out that this standard set of approximations breaks the correctness of our semantics. The 
reason is that by folding together multiple bindings of the same variable, information can leak across 
quantity boundaries. For example, consider the following puzzle: 

( l e t ( ( f (A (g x) ( i f ( i n t e g e r ? x) (g) 
(A ( ) x ) ) ) ) ) 

(f (f n i l 3 . 7 ) 2 ) ) 

Suppose that the procedural abstraction used by our analysis identifies together the contours created 
by the two calls to f. Consider the second execution of the f procedure: the variable x is tested 
to see if its value (2) is an integer. It is, so we jump to the value of g, which is simply (A ( ) x ) . 
Now, we have established that x is bound to an integer, so we can record that this reference to x is 
an integer reference — which is an error, since g = (A ( ) x ) i s closed over a different contour, 
binding x to a non-integer, 3.7. We tested one binding of x and referred to a different binding of 
x. Our analysis got confused because we had identified these two bindings together, so that the 
information gathered at the test was erroneously applied at the reference. 

This is a deep problem of the approximation. Quantity-based analyses depend upon keeping 
separate the information associated with different quantities; computable procedural approximations 
depend upon folding multiple environments together, confounding the separation required by a 
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quantity-based analysis. I refer to this problem as the "environment problem" because it arises from 
our inability to precisely track environment information. 

Only certain data-flow analyses are affected by the environment problem. The key property 
determining this is the direction in which the iterative analysis moves through the approximation 
lattice. In control-flow analysis, or useless-variable elimination [CFlow], the analysis starts with an 
overly-precise value and incrementally weakens it until it converges; all motion in the approximate 
lattice is in the direction of more approximate values. So, identifying two contours together simply 
causes further approximation, which is safe. 

In the case of type recovery, however, our analysis moves in both directions along the type lattice 
as the analysis proceeds, and this is the source of the environment problem. When two different 
calls to a procedure, each passing arguments of different types, bind a variable in the same abstract 
contour, the types are joined together—moving through the type lattice in the direction of increasing 
approximation. However, passing through a conditional test or a primop application causes type 
information to be narrowed down - moving in the direction of increasing precision. Unfortunately, 
while it is legitimate to narrow down a variable's type in a single perfect contour, it is not legitimate 
to narrow down its type in the corresponding abstract contour — other bindings that are identified 
together in the same abstract contour are not constrained by the type test or primop application. This 
is the heart of the problem with the above puzzle. 

In general, then, the simple abstraction techniques of [CFASem] yield correct, conservative, safe 
analyses only when the analysis moves through its answer lattice only in the direction of increasing 
approximation. 

5 3 Control F low Analysis 

Before proceeding to a solution for the environment problem, we must define a necessary analysis 
tool, the call context cache provided by control flow analysis: 

A call context cache (cc cache) for a CPS Scheme program P is a function 7 that, for 
every call site c in P and every environment e over c gives 7 (c, e) , a conservative 
superset of the procedures called from c in environment e during the execution of P. 

This is a straightforward computation using the non-standard abstract semantic interpretation ap
proach discussed above. Note that a cc cache is essentially a trace of program execution to some 
level of approximation — later we will exploit this property to "restart execution" at some arbitrary 
point in the computation. The cc cache is an approximation in two ways. First, the set it returns for 
a given call context is not required to be tight — it is only guaranteed to be a superset. Second, the 
environment structure e that is the second component of a call context (c, e) and a closure (/, e) is 
a finite abstraction of the fully detailed environment structure. 

The reader wishing a detailed account of control flow analysis should refer to [CFASem]. 
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5.4 Perfect Contours 

Our central problem is that we are identifying together different contours over the same variable. 
We are forced to this measure by our desire to reduce an infinite number of contours down to a 
finite, computable set. The central trick to solving this problem is to reduce the infinite set of 
contours down to a finite set, one of which corresponds to a single contour in the perfect semantics. 
Flow analysis then tracks this perfect contour, whose bindings will never be identified with any 
other contours over the same variable scope. Information associated with quantities bound in this 
perfect contour cannot be confounded. The other approximate contours are used only to provide the 
approximate control flow information for tracing through the program's execution. We still have 
only a finite number of contours — the finite number of approximate contours plus the one perfect 
contour— so our analysis is still computable. 

For example, suppose we know that procedurep = (l£: (A (x y) . . . ) J, e) is called from call 
context ( [c : ( f 3 f a l s e ) ] , c 7). We can do a partial type recovery for references to x and y. We 
perform a function call to /?, creating a new perfect contour b. The variables we are tracking are 
bound in this contour, with variable bindings { M , b) and ( [ y ] , b). We create new qnames for 
the arguments passed on this call to p , which are just the new perfect variable bindings ( [x] , b) 
and ([yl, b). Our initial type table r = [ ( [x ] , b) *-+ typelint, ( ly] , b) type/false] is constructed 
from what is known about the types of the arguments in c (this may be trivially known, if the 
arguments are constants, or taken from a previous iteration of this algorithm, if the arguments are 
variables). 

We may now run our interpretation forwards, tracking the quantities bound in the perfect closure. 
Whenever we encounter a variable reference to x or y, if the reference occurs in the perfect contour b, 
then we can with certainty consult the current type table r to obtain the type of the reference. Other 
contours over x and y won't confuse the analysis. Note that we are only tracking type information 
associated with the variables x and y, for a single call to £. In order to completely type analyse the 
program, we must repeat our analysis for each lambda for each call to the lambda. This brings us to 
the Reflow semantics. 

5.5 T h e Reflow Semant ics 

The abstract domains and functionalities of the Reflow semantics are given in Figure 3. The 
abstract domains are very similar to the perfect domains of the PTREC semantics, and shovvtfie 
approximations discussed in Subsection 5.1: basic values have been dropped, the contour set CN is 
finite, and elements of D are sets of abstract procedures, not single values. 

The idea of the Reflow semantics is to track only one closure's variables at a time. This is done 
by the Reflow function: 

Reflow: CC -* VEnv -+ Type* -> TCache 

For example, Reflow(l(f a b ) J , a) ve (typelint, type/proc) restarts the program at the call (f a b ) , 
in the context given by the (approximate) contour environment e and variable environment ve, 
assuming a has type typelint and b has type type/proc. Reflow runs the program forward, tracking 
only the variables bound by the initial call to f, returning a type cache giving information about 
references to these variables. This is done by allocating a single, perfect contour for the initial 
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Proc - (LAM x BEnv) + PRIM + {stop} 
D = P(Proc) 

TCache (REF x CN) —• Type 

CC = CALL x BEnv 

CN LAB U {{perfect, I) \ I 6 LAB} 

VB = VAR x CN 

BEnv L A B - + C N 

VEnv = V B - + D 

Quant VB 

TTab - Quant —• Type 

C : CALL -> BEnv -+ VEnv -> TTab -+ TCache 
^ : Proc ->D* (Quant x )* -> VEnv -»TTab -+ TCache 
Tp : Proc D* Type* VEnv TCache 

Figure 3: Abstract Domains and Functionalities 

procedure called from (f a b ) , and tracking the variables bound in this contour through an abstract 
execution of the program. 

The initial type vector given to Reflow comes from an auxiliary function, TVInit. 

TVInit takes a call context and a type cache, and returns the types of all the arguments in the call. 
If the argument is a variable reference, the type cache is consulted; if the argument is a constant, 
lambda, or primop, the auxiliary function At gives the appropriate type. 

If we wish to restart our program at an arbitrary call context (c, e) with Reflow, we require the 
variable environment ve that pertained at this point of call. This is easy to handle: we always use the 
final variable environment that was present at the end of the control-flow analysis of Subsection 5.3. 
Since the variable environment is only augmented monotonically during the course of executing a 
program, the terminal environment is a superset of all intermediate variable environments. So, our 
initial control-flow analysis computes two items critical for the Reflow analysis: the call cache 7 
and terminal variable environment ve^i-

Given TVInit and Reflow, we can construct a series of approximate type caches, converging to 
a fixed point. The initial type cache 60 is the most precise; at each iteration, we redo the reflow 
analysis assuming type cache computing a weaker type cache <5i+i. The limit S is the final result. 

TVInit: CC -+ TCache Type* 
TVInit(l(f ax...ann,€)6 =(tx...tn) 
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Av Iprim] eve = {prim} 
Ay Ikl eve = 0 

(b = e binder v) 

ptoa {perfect, b) = b 

perfect? {perfect, b) = frwe perfect? b - false 

Figure 4: Abstract Auxiliary Functions 

The recomputation of each successive type cache is straightforward: for every call context {c, e) 
in the domain of call cache 7 (that is, every call context recorded by the control-flow analysis of 
Subsection 5.3), we use the old type cache to compute the types of the arguments in the call, then 
reflow from the call, tracking the variables bound by the call's procedure, assuming the new type 
information. The returned type caches are joined together, yielding the new type cache. So the new 
type cache is the one we get by assuming the type assignments of the old type cache. A fixed point 
is a legitimate type assignment. Since all of our abstract domains are of finite size, and our type 
lattice has finite height, the least fixed point is computable. 

£0 = A (r, b). ± 
6i+\ = Si U | J Reflow (c, e) ve^i ( TVInit {c, e) Si) 

(c,c)€ Dom^i 

6 = | J « . 

Before we get to the machinery of the Reflow function itself, let us define a few useful auxiliary 
functions and concepts (Figure 4). Because the Reflow semantics has a single perfect contour 
coexisting with the approximate contours, we need a few utility functions for manipulating the 
two different kinds of contour. The approximate contours are simply the labels of all the syntactic 
binding constructs (lambdas and l e t r e c ' s ) : in the Oth-order approximation, the contour allocated 
when entering lambda [ £ ( A (vi . . . v„ ) c ) ] is just £9 so all contours over a single lambda are 
identified together. For every approximate contour /, we want to have a corresponding perfect 
contour (perfect, /) . These perfect contours are pairs marked with the token perfect. The predicate 
perfect? distinguishes perfect contours from approximate ones. The function ptoa strips off the 
perfect token, mapping a perfect contour to its approximate counterpart. The Ay function evaluates 
call arguments, and is the straightforward abstraction of its counterpart in the PTREC semantics. 
The Aq function is a little more subtle. Since we only track variables bound in perfect contours 
in the Reflow semantics, Aq only returns quantities for these bindings; approximate bindings are 
mapped to an undefined value, represented with _L. 

AvU-XX ( v i . . . v n ) c)\eve ={(/,*)} 
Ay [v] eve - ve(v, ebinderv) 

Aivle = i < V ' & ) P"feci?b 

^ i v j c ^ ± otherwise 
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Now we are in a position to examine the machinery that triggers off a single wave of perfect 
contour type tracking: the Reflow function, and its auxiliary Tp function. 

Reflow (lc:(f a\.. .an)l, e) ve tv = | J (Tpff)avtvve 

where F = Avf e ve 
av[i = Av ai e ve 

Reflow simply reruns the interpretation from each possible procedure that could be called from call 
context (c, c). Each procedure is functionalised with the "perfect" functionaliser Tp, who arranges 
for the call to the procedure to be a perfect one. The type caches resulting from each call are joined 
together into the result cache. 

Tp(l£:(\ ( v i . . . v „ ) c ) ] , e) = Xavtvve. Cc^ve'r 
where b = {perfect, t) 

r = [(vh b) ~ tv[i] 

ve1 = ve U [(V|, b) ov|i] 

The perfect functionalisation of a procedure produced by Tp is called only once, at the beginning 
of the reflow. A new contour is allocated, whose value is marked with the special perfect token 
to designate it the one and only perfect contour in a given execution thread. The incoming values 
are bound in the outgoing variable environment ve1 under the perfect contour. The incoming type 
information is used to create the initial type table r passed forwards to track the values bound under 
the perfect contour. The rest of the computation is handed off to the C procedure. C is similar to 
C with the exception that it only records the type information of references that are bound in the 
perfect contour. 

Tp must also be defined over primops. Primops do not have variables to be type-recovered, 
so instead primops pass the buck to their continuations. The + primop uses its initial-type vector 
(ta, tb, tc) to compute the initial-type vector (ts) for its continuation. The * primop then employs Tp 

to perform type recovery on the variable bound by its continuation. The t e s t - i n t e g e r primop is 
even simpler. Since its continuations do not bind variables, there is nothing to track, so the function 
just immediately returns the bottom type cache. 

M = A (a, b, c) (ta, tb, tc) ve. \J (F/) (0) (ts) ve 
c'ec 

where ts = infer* (ta, tb) 

Tp fl/test-integer] = A (x, c, a) (tx, tc, ta) ve. JL 

Once the initial call to Tp has triggered a wave of type recovery for a particular lambda's variables, 
the actual tracking of type information through the rest of the program execution is handled by the 
T and C functions. Most of the action happens in the C function. 
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CHe0:f ex:a\...en:an)]eveT =6U |jj (Ff')avqvveTf j 

where F = * 4 V / € ve 
bi = e binder ai (Vai € REF) 
6 0 = € binder/ (if / 6 REF) 
avi i = .4 V at- c 
<7vi/ = ai e 
& = ptoabi) »—• 7* (Vfc/ 3 perfect?bi) 

, _ J r n [(/", bo) typelproc] perfect? bo 
" | r otherwise 

As C evaluates its arguments, it checks to see if any are variables whose types are being tracked. A 
variable a; is being tracked if it is closed in a perfect contour, that is, if perfect? bi is true, where 
bi = e bindera^ If an argument is being tracked, we look up its current type r (a,-, bi), and record 
this in C's contribution 6 to the type cache (recording the reference under the perfect contour bfs 
abstraction ptoa bi). The rest of C's stucture is similar to the perfect variant of Section 4. An 
outgoing type table r ' is constructed, reflecting that / must be of type typelproc (Again, note that 
this fact is only recorded in r ' if/ is a variable currently being tracked). 

Note also that since multiple contours are identified together in the abstract semantics, values 
in the approximate domain are sets of abstract procedures. Because of this, the call must branch 
to each of the possible procedures / 7 the function expression/ could evaluate to. The result type 
caches are then all joined together. 

The function returned by T constructs approximate contours when called. Because multiple 
environments are identified together by ^ ' s functionalised value, it cannot track type information 
for the variables bound by its procedure. Hence T has a fairly simple definition when applied to a 
closure, just augmenting the environment structure and passing the closure's body c off to C. Note 
that the environment is updated by unioning a parameter's value set av[i to the set already bound 
under the abstract contour. 

T(U'XX ( v i . . . v „ ) c ) J , e) =\avqvver. CcSve'r 
where b = / (Oth order proc. approx.) 

e7 = e [I ~ b] 
ve' = ve U [(V|, b) *-+ av[i) 

F's definition for the terminal stop continuation is, again, trivial, ignoring its argument v and 
returning the bottom type cache: 

T IstopJ = A (v) qv ve r . ± 

^ ' s behavior on primops is more interesting. If the argument x being passed to t e s t - i n t e g e r 
is being tracked (i.e., qx is a quantity, not bottom), then we intersect type/int with <7*'s incoming 
type, passing the result type table rt to the true continuation, and we subtract type/int from qx's 
type in r/ the table passed to the false continuation. In other words, we do the type recovery of the 
PTREC semantics, but only for the values being tracked. 

Section 5: Approximate Type Recovery 



Scheme Type Recovery 23 

. ^ t e s t - i n t e g e r ] = A (x, c, a) {qx, qc, qa) ver. l\J {Tc') ( ) ( ) w r , ) u [ | J (fd) {) <) ve 

where rf = \ T ^ x " ( r * x ~ OiP«/i^)] qxjL 
\ T otherwise 

r, = I T ^qx ^ (TV*™ typelint)] qxj± 
I r otherwise 

The + primop is similar. If the arguments a and ft are being tracked, then we update the type 
table passed forwards, otherwise we simply pass along the incoming type table r unchanged. Since 
the continuations d are functionalised with the approximate functionaliser, T, the quantity vector is 
(J_) — we will not be tracking the variables bound by the call to c7. 

T M = A (a, ft, c) {qa, qb, qc) ve r. | J (Tc') (0) (_L) ve r" 
c'£c 

where t [qa *-+ (type/number n r qa)] qa^ JL 

{ r1 [qb ^ (type!number n r ; ^ft)] qb ^ ± 
r1 otherwise 

To finish off the Reflow semantics, we must take care of l e t r e c . Abstracting C's definition 
for l e t r e c is simple. Evaluating the l e t r e c ' s bound expressions only involves closing lambdas, 
not referencing variables. So the l e t r e c will not "touch" any of the variables we are currently 
tracking. Hence the l e t r e c does not make any local contribution to the answer type cache, but 
simply augments the variable environment ve with the procedure bindings and recursively evaluates 
the inner call c. 

C [ £ ( l e t r e c ((fx / i ) . . . ) c)Jever ^Cc^ve'r 
where ft = I 

€* = e [I ~ ft] 

ve* = ve U 

One detail of l e t r e c that we have neglected is tracking the types of the variables bound by 
l e t r e c . There are several ways to handle this. We could add a case to the Reflow function to 
handle reflowing from l e t r e c expressions, creating a perfect contour for the l e t r e c ' s binding. 
This is a fairly complex and expensive way to handle a simple case. Because l e t r e c is syntactically 
restricted to binding only lambda procedures to its variables, we can statically analyse this case, and 
simply assign in advance the procedure type to all references to all l e t r e c variables. The simplest 
place to insert this static assignment is in the initial type cache So used in the Reflow iteration: 

c x / i r , Lv I type/proc binderv G CALL ( l e t r e c ) 
*o = A ( [ r v l , b i n d e r v € L A M ( l a m b d a ) 

This performs the type analysis of the l e t r e c variables in one step, leaving the rest of the Reflow 
semantics free to concentrate on the variables bound by lambdas. 
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6 Implementation 

I have a prototype implementation of the type recovery algorithm written in Scheme. It analyzes 
Scheme programs that have been converted into CPS Scheme by the front end of the ORBIT 

compiler [ORBIT]. The type-recovery code is about 900 lines of heavily commented Scheme; the 
control-flow analysis code is about 450 lines. 

The implemented semantics features a store (allowing side-effects) and a type lattice that includes 
the symbol, pair, false, procedure, fixnum, bignum, flonum, vector, list, integer, and number types. 
Procedures are approximated using the first-order procedural abstraction (1CFA) of [CFASem]. In 
addition, CPS-level continuations are syntactically marked by the front-end CPS converter, this 
information is used to partition the procedure domain. This partition appears to greatly reduce the 
size of the sets propagated through the analysis, improving both the speed and precision of the 
analysis. 

The implementation is for the most part a straightforward transcription of the approximate type 
recovery semantics. The variable environment, store, quantity environment, and result type cache 
are all kept as global data structures that are monotonically augmented as the analysis progresses. 

The recursive semantic equations are realised as a terminating Scheme program by memoising the 
recursive C applications; when the Scheme C procedure is applied to a memoised set of arguments, 
it returns without making further contributions to the answer type cache. This is the "memoised 
pending analysis" technique discussed in [Fixpoints]. 

Little effort has been made overall to optimize the implementation. Still, the current analyzer 
runs acceptably well for small test cases; response time has been sufficiently quick in the T interpreter 
that I have not felt the need to compile it. At this point in my experimentation, there is no reason to 
believe that efficiency of the analysis will be an overriding issue in practical application of the type 
recovery algorithm. 

The allure of type recovery, of course, is type-safe Scheme implementations with little run-time 
overhead. It remains to be seen whether there is enough recoverable type information in typical 
code to allow extensive optimisation. The algorithm has not been tested extensively on a large body 
of real code. However, early results are encouraging. As an example of the algorithm's power, it 
is able to completely recover the types of all variable references in the d e l q and f a c t procedures 
given in Section 1. 
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7 Discussion and Speculation 

This section is a collection of small discussions and speculations on various aspects of Scheme type 
recovery. 

7.1 Side Effects and External Procedures 

The PTREC and Reflow semantics in this paper are toy semantics in that side-effects and external 
procedures have been explicitly left out to simplify the already excessively unwieldy equations. 
Restoring them is not difficult. We can adopt a simple model of side-effects where all procedural 
values placed into the store can be retrieved by any operator that accesses the store. These procedures 
are called "escaped procedures." We can also introduce the idea of unknown external procedures 
by introducing a special "external procedure" and a special "external call." Any value passed to the 
external procedure escapes; all escaped procedures can be called from the external call. 

This model of side-effects and external procedures is discussed in detail in [CFlow]. More 
precise models, of course, are possible [RefCount]. 

The implementation discussed in Section 6 uses this simple model of side-effects and external 
procedures. The store is represented as a single set of escaped procedures. Because the store is only 
monotonically augmented during the course of the analysis, it is represented as a global variable 
that is an implicit argument to the C function. Because of the monotonic property of the store, 
the memoised pending analysis actually memoises a last-modified timestamp for the store, which 
greatly increases the efficiency of the memoising. This trick is also used for the global variable 
environment ve. 

7.2 Safe and Unsafe Primops 

A given implementation of Scheme chooses whether to provide "safe" primops, which are defined 
to cause a graceful error halt when applied to illegal values, or "dangerous" primops, which simply 
cause undefined effects when applied to illegal values. For example, most Scheme compilers 
efficiently open-code car as a single machine operation. Without compile-time type recovery to 
guarantee the type of the argument to a car application, this fast implementation is dangerous. 

Type recovery can accept either safe or dangerous primops, or a combination of both{Note 
Recovering Primops}. In both cases, the primop semantics allows flow-analysis based type-recovery. 
However, while it is possible to recover types given dangerous primops, the analysis is of limited 
value. The information provided by type recovery has two basic uses: 

• Eliminating run-time error checks from safe primop applications. 

• Specialising generic primops based on their argument types (e.g., converting a generic arith
metic operation to an integer operation). 

In a dangerous implementation, the first of these uses does not apply. As we shall see below, 
specialising generic arithmetic is of limited utility as well. 
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7.3 Limits of the Type System 

From the optimising compiler's point of view, the biggest piece of bad news in the Scheme type 
system is the presence of arbitrary-precision integers, or "bignums." Scheme's bignums, an elegant 
convenience from the programmer's perspective, radically interfere with the ability of type recovery 
to assign small integer "fixnum" types to variable references. The unfortunate fact is that two's 
complement fixnums are not closed under any of the common arithmetic operations. Clearly adding, 
subtracting, and multiplying two fixnums can overflow into a bignum. Less obvious is that simple 
negation can overflow: the most negative fixnum overflows when negated. Because of this, not 
even fixnum division is safe: dividing the most negative fixnum by - 1 negates it, causing overflow 
into bignums. Thus, the basic fixnum arithmetic operations cannot be safely implemented with 
their corresponding simple machine operations. This means that most integer quantities cannot be 
inferred to be fixnums. So, even though type recovery can guarantee that all the generic arithmetic 
operations in Figure 1 's factorial function are integer operations, this does not buy us a great deal. 

Not being able to efficiently implement safe arithmetic operations on fixnums is terrible news 
for loops, because many loops iterate over integers, particularly array-processing loops. Taking five 
instructions just to increment a loop counter can drastically affect the execution time of a tight inner 
loop. 

There are a few approaches to this problem: 

• Range analysis 
Range analysis is a data-flow analysis technique that bounds the values of numeric variables 
[Range]. For example, range analysis can tell us that in the body of the following C loop, the 
value of i must always lie in the range [0,10): 

f o r ( i = 9 ; i>=0; i — ) p r i n t f (»7.d " , a [ i ] ) ; 
Range analysis can probably be applied to most integer loop counters. Consider the s t r i ndex 
procedure below: 

( d e f i n e ( s t r i n d e x c s t r ) 
( l e t ( ( l e n ( s t r i n g - l e n g t h s t r ) ) ) 

( l e t r e c ( ( l p ( lambda ( i ) 
(cond ((>= i l e n ) - 1 ) ; l o s e 

( ( c h a r - c ( s t r i n g - r e f s t r i ) ) i ) ; win 
( e l s e ( l o o p (+ i 1 ) ) ) ) ) ) ) ; l o o p 

( l p 0 ) ) ) ) 

Type recovery can guarantee that l e n , being the result of the s t r i n g - l e n g t h primop, is 
a fixnum. Range analysis can show that i is bounded by 0 and a fixnum; this is enough 
information to guarantee that i is a fixnum. Range analysis is useful in its own right as well 
— i n this example, it allows us to safely open code the character access ( s t r i n g - r e f s t r i ) 
with no bounds check. 

• Abstract Safe Useage Pat terns 
The poor man's alternative to range analysis is to take the useage patterns that are guaranteed 
to be fixnum specific, and package them up for the user as syntactic or procedural abstractions. 
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These abstractions can be carefully decorated with p r o c l a i m declarations to force fixnum 
arithmetic. For example, a loop macro which has a ( f o r c i n - s t r i n g s t r ) clause can 
safely declare the string's index variable as a fixnum. This approach can certainly pick up 
string and array index variables. 

• Disable Bignums 
Another cheap alternative to range analysis is to live dangerously and provide a compiler 
switch or declaration which allows the compiler to forget about bignums and assume all 
integers are fixnums. Throwing out bignums allows simple type recovery to proceed famously, 
and programs can be successfully optimised (successfully, that is, until some hapless user's 
program overflows a fixnum...). 

• Hardware support 
Special tag-checking hardware, such as is provided on the SPARC, Spur and Lisp Machine 
architectures [SPARC][Spur][LispM], or fine-grained parallelism, such as is provided by 
VLIW architectures [Bulldog] [Fisher], allow fixnum arithmetic to be performed in parallel 
with the bignum/fixnum tag checking. In this case, the limitations of simple type recovery are 
ameliorated by hardware assistance. {Note VLIW} 

7.4 Declarat ions 

The dangerous p r o c l a i m declaration is problematic. A purist who wants to provide a guaranteed 
safe Scheme implementation might wish to ban p r o c l a i m on the grounds that it allows the user 
to write dangerous code. A multithreaded, single address-space PC implementation of Scheme, 
for example, might rely on run-time safety to prevent threads from damaging each other's data. 
Including p r o c l a i m would allow the compilation of code that could silently trash the system, or 
access and modify another thread's data. 

On the other hand, safe declarations like e n f o r c e have limits. Some useful datatypes cannot be 
checked at run time. For example, while it is possible to test at run time if a datum is a procedure, 
it is not possible, in general, to test at run time if a datum is a procedure that maps floating-point 
numbers to floating-point numbers. Allowing the user to make such a declaration can speed up some 
critical inner loops. Consider the floating-point numeric integrator below: 

( d e f i n e ( i n t e g f xO x l n) 
( e n f o r c e fixnum? n) ( e n f o r c e p r o c e d u r e ? f ) 
( e n f o r c e f lonum? xO) ( e n f o r c e f lonum? x l ) 
( l e t ( ( d e l t a ( / ( - x l xO) n ) ) ) 

(do ( ( i n ( - i 1 ) ) 
(x xO ( • x d e l t a ) ) 
(sum 0.0 (+ sum (f x ) ) ) ) 

( (= i 0) (* sum d e l t a ) ) ) ) ) 

In some cases, analysis might be able to find all applications of the integrator, and thus discover that 
f is always bound to a floating-point function. However, if the integrator is a top level procedure in 
an open system, we can't guarantee at compile time that f is a floating-point function, and we can't 
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enforce it at run time. This means that the sum operation must check the return value of f each time 
through the loop to ensure it is a legitimate floating-point value. 

While the p r o c l a i m declaration does allow the user to write dangerous code, it is at least 
a reasonably principled loophole. P r o c l a i m red-flags dangerous assumptions. If the user can 
be guaranteed that only code marked with p r o c l a i m declarations can behave in undefined ways, 
debugging broken programs becomes much easier. 

Finally, it might be worth considering a third declaration, p r o b a b l y , ( p r o b a b l y f lonum? x) 
is a hint to the compiler that x is most likely a floating-point value, but could in fact be any 
type. Having a p r o b a b l y declaration can allow trace-scheduling compilers to pick good traces or 
optimistically open-code common cases. 

7.5 Test Hoist ing 

Having one branch of a conditional test be the undefined effect $ or e r r o r primop opens up 
interesting code motion possibilities. Let us call tests with an ( e r r o r ) arm "error tests," and tests 
with a ($) arm "$-tests." These tests can be hoisted to earlier points in the code that are guaranteed 
to lead to the test. For example, 

( b l o c k ( p r i n t ( • x 3 ) ) 
( i f ( f ixnum? x) (g x) ( $ ) ) ) 

is semantically identical to 

( i f ( f ixnum? x) ( b l o c k ( p r i n t (+ x 3 ) ) (g x ) ) 
( $ ) ) 

because the undefined effect operator can be defined to have any effect at all, including the effect 
of ( p r i n t (+ x 3 ) ) . This can be useful, because hoisting type tests increases their coverage. In 
the example above, hoisting the f ixnum? test allows the compiler to assume that x is a fixnum in 
the ( • x 3) code. Further, error and $-tests can be hoisted above code splits if the test is applied 
in both arms. For example, the type tests in 

( i f (> x 0) 
( i f ( p a i r ? y) ( b a r ) ( $ ) ) 
( i f ( p a i r ? y) (baz ) ( $ ) ) ) 

can be hoisted to a single type test: 

( i f ( p a i r ? y) 
( i f (> x 0) ( b a r ) ( b a z ) ) 
( $ ) ) 

Real savings accrue if loop invariant type tests get hoisted out of loops. For example, in a naive, 
declaration-free dot-product subroutine, 
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( d e f i n e ( d o t - p r o d v w l e n ) 
(do ( ( i ( - l e n 1) ( - i 1 ) ) 

(sum 0 . 0 (+ sum (* ( v e c t o r - r e f v i ) ( v e c t o r - r e f w i ) ) ) ) ) 
( « i 0) sum)) ) 

each time through the inner loop we must check that v and w have type vector. Since v and w are 
loop invariants, we could hoist the run-time type checks out of the loop, which would speed it up 
considerably. (In this particular example, we would have to duplicate the termination test ( < i 0 ) , 
so that loop invariant code pulled out of the loop would only execute if the loop was guaranteed at 
least one iteration. This is a standard optimising compiler technique.) 

Hoisting error tests requires us to broaden our semantics to allow for early detection of run-time 
errors. If execution from a particular control point is guaranteed to lead to a subsequent error test, 
it must be allowed to perform the error test at the control point instead. 

In the general case, error and $-test hoisting is a variant of very-busy expression analysis 
[Dragon]. Note that hoisting $-tests gives a similar effect to the backwards type inferencing of 
[Kaplan]. Finding algorithms to perform this hoisting is an open research problem. 

7.6 Other Appl icat ions 

The general Reflow approach to solving quantity-based analyses presented in this paper can be 
applied to other data-flow problems in higher-order languages. The range analysis discussed in 
subsection 7.3 is a possible candidate for this type of analysis. Copy propagation in Scheme is also 
amenable to a Reflow-based solution. 

A final example very similar to type recovery is future analysis. Some parallel dialects of Scheme 
[Mul-T] provide futures, a mechanism for introducing parallelism into a program. When the form 
( f u t u r e <exp>) is evaluated, a task is spawned to evaluate the expression <exp>. The f u t u r e 
form itself immediately returns a special value, called a future. This future can be passed around the 
program, and stored into and retrieved from data structures until its actual value is finally required 
by a "strict" operator such as + or ca r . If the future's task has completed before the value is needed, 
the strict operation proceeds without delay; if not, the strict operator must wait for the future's task 
to run to completion and return a value. 

Futures have a heavy implementation expense on stock hardware, because all strict operators 
must check their operands. Future checking can add a 100% overhead to the serial run time of an 
algorithm on stock hardware. 

"Future analysis" is simply realising that references to a variable that happen after the variable 
is used as an argument to a strict operator can assume the value is a non-future, because the strict 
operator has forced the value to resolve itself. Thus, in the lambda 

(A (x) ( p r i n t ( c a r x ) ) . . . (f ( c d r x ) ) . . . ) 
the ( c d r x) operation can be compiled without future checking. Clearly, this is identical to the 
type-recovery analysis presented in this paper, and the same techniques apply. 
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8 Related Work 

The method of non-standard abstract semantic interpretations has been applied to a variety of program 
analyses [Cousot] [Pleban] [RefCount] [Harrison] [CFASem], A useful collection is [Abramsky]. 
The semantic basis for Scheme control-flow analysis, first discussed in [CFASem] and then in [Diss], 
also forms the basis for the type recovery semantics described here. 

Steenkiste's dissertation [Steenkiste] gives some idea of the potential gains type recovery can 
provide. For his thesis, Steenkiste ported the PSL Lisp compiler to the Stanford MIPS-X processor. 
He implemented two backends for the compiler. The "careful" backend did full run-time type 
checking on all primitive operations, including c a r ' s , cd r ' s , vector references, and arithmetic 
operations. The "reckless" backend did no run-time type checking at all. Steenkiste compiled 
about 11,500 lines of Lisp code with the two backends, and compared the run times of the resulting 
executables. Full type checking added about 25% to the execution time of the program. 

Clearly, the code produced by a careful backend optimised with type-recovery analysis will 
run somewhere between the two extremes measured by Steenkiste. This indicates that the payoff 
of compile-time optimisation is bounded by the 25% that Steenkiste measured. Steenkiste's data, 
however, must be taken only as a rough indicator. In Lisp systems, the tiny details of processor 
architecture, compiler technology, data representations and program application all interact in strong 
ways to affect final measurements. Some examples of the particulars affecting his measurements are: 
his Lisp system used high bits for type tags; the MIPS-X did not allow c a r and c d r operations to use 
aligned-address exceptions to detect type errors; his 25% measurement did not include time spent 
in the type dispatch of generic arithmetic operations; his generic arithmetic was tuned for the small 
integer case; none of his benchmarks were floating-point intensive applications; his measurements 
assumed interprocedural register allocation, a powerful compiler technology still not yet in common 
practice in Lisp and Scheme implementations; and Lisp requires procedural data to be called with 
the f u n c a l l primop, so simple calls can be checked at link time to ensure they are to legitimate 
procedures. 

These particulars of language, hardware, implementation, and program can bias Steenkiste's 
25% in both directions (Steenkiste is careful to discuss most of these issues himself). However, 
even taken as a rough measurement, Steenkiste's data do indicate that unoptimised type-checking 
is a significant component of program execution time, and that there is room for compile-time 
optimisation to provide real speed-up. 

The idea of type recovery for Scheme is not new. Vegdahl and Pleban [Screme] discuss the 
possibility of "tracking" types through conditionals, although this was never pursued. The ORBIT 

compiler [ORBIT] is able to track the information determined by conditional branches, thus elimi
nating redundant tests. ORBIT, however, can only recover this information over trees of conditional 
tests; more complex control and environment structures, such as loops, recursions, and joins block 
the analysis. 

Curtis discusses a framework for performing static type inference in a Scheme variant [Curtis], 
along the lines of that done for statically typed polymorphic languages such as ML [ML] or 
LEAP [Leap]. However, his work assumes that most "reasonable" Scheme programs use variables 
in a way that is consistent with a static typing discipline. In essence, Curtis' technique types variables, 
whereas the type recovery presented in this paper types variable references, an important distinction 
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for Scheme. Note that without introducing type-conditional primitives that bind variables, and 
(perhaps automatically) rewriting Scheme code to employ these primitives, this approach cannot 
recover the information determined by conditional branches on type tests, an important source of 
type information. 

[Tenenbaum] and [Kaplan] are typical examples of applying data-flow analysis to recover type 
information from latently-typed languages. The technique is also covered in chapter 10 of [Dragon]. 
These approaches, based on classical data-flow analysis techniques, differ from the technique in this 
paper in several ways: 

• First, they focus on side-effects as the principle way values are associated with variables. In 
Scheme, variable binding is the predominant mechanism for associating values with variables, 
so the Scheme type recovery analysis must focus on variable binding. 

• Second, they assume a fixed control-flow graph. Because of Scheme's first-class procedures, 
control-flow structure is not lexically apparent at compile time. The use of a CPS-based 
internal representation only makes this problem worse, since all transfers of control, including 
sequencing, branching, and loops are represented with procedure calls. The analysis in this 
paper handles procedure calls correctly. 

• Third, they assume a single, flat environment. Scheme forces one to consider multiple bindings 
of the same variable. The reflow semantics of Section 5 correctly handles this complexity. 

• Finally, they are not semantically based. The type recovery analysis in this paper is based 
on the method of non-standard abstract semantic interpretations. This establishes a formal 
connection between the analysis and the base language semantics. Grounding the analysis 
in denotational semantics allows the possibility of proving various useful properties of the 
analysis, although such proofs are beyond the scope of this paper. 

These differences are all connected by the centrality of lambda in Scheme. The prevalence of lambda 
is what causes the high frequency of variable binding. Lambda allows the construction of procedural 
data, which in turn prevent the straightforward construction of a compile-time control-flow graph. 
Lambda allows closures to be constructed, which in turn provide for multiple extant bindings of the 
same variable. And, of course, the mathematical simplicity and power of lambda makes it much 
easier to construct semantically-based program analyses. 

In the lambda operator, all three fundamental program structures — data, control, and environ
ment — meet and intertwine. Thus, any analysis technique for Scheme must be prepared to face the 
three facets of lambda. In essence, the analysis in this paper is the application of classical data-flow 
type-recovery analysis in the presence of lambda. 
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Notes 

{Note Gensym} 
The semantic function rib is, as presented, not a properly defined function, since it has hidden internal 
state. This is simple to remedy by providing an extra argument to all the main semantic functions 
that contains the entire set of contours currently allocated. This argument can be presented to nb, 
allowing it to choose some unused contour b not in this set. The new contour b is added to this set 
of allocated contours, which can then be passed forwards along the computational path to prevent b 
from ever being reallocated. 

This addition to the semantics is trivial, and is omitted to simplify the presentation. In the 
intuitive model of a semantics as a functional interpreter in disguise, just think of nb as the Lisp 
gensym procedure, guaranteed to return a new value each time you call it. 

{Note No Bottom} 
One of the pleasant features of CPS Scheme is the scarcity of bottom values. Most of the semantic 
structures are unordered sets instead of CPOs. For example, the set D does not require a bottom value 
because all the expressions that can appear in a procedure call — constants, variable references, 
primops, and lambdas — are guaranteed to terminate when evaluated. In other words, the Av 

function of subsection 4.3 never produces a bottom value. In the standard semantics, bottom can 
only show up as the final value for the entire program, never at an intermediate computation. For 
this reason, the disjoint union constructor + is taken to be a set constructor, not a domain constructor 
— it does not introduce a new bottom value. A careful treatment of the semantics of CPS Scheme 
at this level is beyond the scope of this paper, for further details, see [CFASem] or [Diss]. 

{Note Non-circular l e t r e c } 
It is an interesting curiosity that the definition of l e t r e c presented here does not involve a recursive 
construction. Lambdas are closed over contour environments but not the variable environment, 
which is a global structure. So the actual evaluation of the l e t r e c ' s lambdas, Av /, e7 ve = (/;, e 7), 
is completely independent of the ve argument. The variable environment is not used because no 
variables are looked up in the evaluation of a lambda. We can close the lambdas over the new 
contour environment without actually having the new contour's values in hand. This artifact of 
the factored semantics is considered in more detail in [CFASem]. 

{Note Recovering Continuations} 
The reader may have noticed that the + primop is missing an opportunity to recover some available 
type information: it is not recovering type information about its continuation. For example, in 
code executed after the call to +'s continuation, we could assume that the quantity called has type 
typelproc. This information is not recovered because it isn't necessary. Since CPS Scheme is an 
intermediate representation for full Scheme, the user cannot write CPS-level continuations. All the 
continuations, variables bound to continuations, and calls to continuations found in the CPS Scheme 
program are introduced by the CPS converter. It is easy for the converter to mark these forms as 
it introduces them. So the types of continuation variables can be inferred statically, and there's no 
point in tracking them in our type recovery semantics. 
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{Note Recovering Primops} 
In recovering information about the arguments to primops, we are essentially using information 
from "hidden conditional tests" inside the primop. The semantics of a (dangerous) CPS c a r primop 
is: 

( d e f i n e ( c a r p c o n t ) 
( i f ( p a i r ? p) ( c o n t ('/.car p ) ) 

( $ ) ) ) 

where the subprimitive operation '/.car is only defined over cons cells, and ($) is the "undefined 
effect" primop. Computation proceeds through the continuation con t only in the then arm of the type 
test, so we may assume that p 's value is a cons cell while executing the continuation. Recovering the 
type information implied by c a r reduces to recovering type information from conditional branches. 

Of course, the compiler does not need to emit code for a conditional test if one arm is ( $ ) . It 
can simply take the undefined effect to be whatever happens when the code compiled for the other 
arm is executed. This reduces the entire c a r application to the machine operation '/.car. 

A safe implementation of Scheme is one that guarantees to halt the computation as soon as a 
type constraint is violated. This means, for example, replacing the ($) form in the else arm of the 
c a r definition with a call to the run-time error handler: 

( d e f i n e ( c a r p c o n t ) 
( i f ( p a i r ? p) ( c o n t ( ' / ca r p ) ) 

( e r r o r ) ) ) 

Of course, type information recovered about the arguments to a particular application of c a r may 
allow the conditional test to be determined at compile time, again allowing the compiler to fold out 
the conditional test and error call, still preserving type-safety without the run-time overhead of the 
type check. 

{Note Run-time Errors} 
One detail glossed over in the functional definition of closures and other parts of the PTREC 
semantics is the handling of run-time errors, e.g., applying a two-argument procedure to three 
values, dividing by zero, or applying + to a non-number. This is simple to remedy: run-time errors 
are defined to terminate the program immediately and return the current type cache. The extra 
machinery to handle these error cases has been left out of this paper to simplify the presentation; 
restoring it is a straightforward task. 

{Note VLIW} 
VLIW's could be ideal target machines for languages that require run-time typechecking. For 
example, when compiling the code for a safe c a r application, the compiler can pick the trace 
through the type test that assumes the c a r ' s argument is a legitimate pair. This will almost always 
be correct, the sort of frequency skew that allows trace scheduling to pay off in VLIW's. The actual 
type check operation can percolate down in the main trace to a convenient point where ALU and 
branch resources are available; the error handling code is off the main trace. 
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Common cases for generic arithmetic operations are similarly amenable to trace picking. The 
compiler can compile a main fixnum trace (or flonum trace, as the common case may be), handling 
less frequent cases off-trace. The overhead for bignum, rational, and complex arithmetic ops will 
dominate the off-trace time in any event, whereas the lightweight fixnum or flonum case will be 
inlined. 

The VLIW trace-scheduling approach to run-time type safety has an interesting comparison 
to the automatic tag checking performed by Lisp Machines. Essentially, we have taken the tag-
checking ALU and branch/trap logic, promoted it to general-purpose status, and exposed it to the 
compiler. These hardware resources can now be used for non-typechecking purposes when they 
would otherwise lay idle, providing opportunities for increased fine-grained parallelism. 

The Lisp Machine approach is the smart hardware/fast compiler approach; the VLIW approach 
is the other way 'round. 
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