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Abstract

A sense of vision is a prerequisite for a robot to function in an unstructured environment. However,
real-world scenes contain many interacting phenomena that lead to complex images which are difl&cult
to interpret automatically. Typical computer vision research proceeds by analyzing various effects in
isolation (e.g. shading, texture, stereo, defocus), usually on images devoid of realistic complicating
factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is
due to the dichotomy of useful representations for these phenomena. Some effects are best described
in the spatial domain, while others are more naturally expressed in frequency. In order to resolve this
dichotomy, we present the combined space/frequency representation which, for each point in an image,
shows the spatial frequencies at that point Within this common representation, we develop a set of
simple, natural theories describing phenomena such as texture, shape, aliasing and lens parameters. We
show how these theories lead to algorithms for shape from texture and for dealiasing image data. The
space/frequency representation should be a key aid in untangling the complex interaction of phenomena
in images, allowing automatic understanding of real-world scenes.
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1 Introduction

In order to function in the real world, robots need to be able to perceive what is around them through a
visual sense. Unfortunately, the world is very complex, and current approaches to machine vision have not
proven successful at dealing with this complexity. Because of this, most "real systems" for machine vision
are actually based on many very specialized assumptions about the world; on the other hand, researchers
doing theoretical work study just one simple phenomenon at a time, but cannot deal with the interactions that
are always present in realistic scenarios. These circumstances have led to very slow progress in developing
real vision systems that have generality and a sound theoretical foundation.

In this paper, we examine the area of spatial vision - all of the 2D and 3D geometric factors that combine to
result in the arrangement of features in the image. The factors of spatial vision include:

2D Texture: Patterns "painted" on a flat, smooth surface show up as patterns in the image.

3D Texture: Roughness and topography of the surface interact with lighting to produce additional patterns
in the image.

Surface Shape and Perspective: The 3D orientation of a surface causes its patterns to project in a particular
way onto the image plane.

Image Resolution: The resolution of the sensor induces sampling and aliasing in the image data, sometimes
even causing noticeable moire patterns.

Focus: The optics of the lens induces blurring in the imaging process due to defocus.

Other Factors: There are numerous other factors we shall not address further in this paper, including some
whose magnitude is much smaller than the factors listed above (e.g. diffraction), and some that involve
additional imaging parameters (e.g. shadows, motion blur).

For each of the above phenomena, there has already been substantial theoretical vision research and some-
times real systems. However, the theories invariably deal with just one or just two of the above factors; and
the real sy stems work by virtue of the highly limiting assumptions that are imbedded within the algorithms,
such as building in a specific size range of textures to be analyzed.

The real world is not so well-behaved. Real images exhibit these factors simultaneously, as we illustrate in
Figure 1. This image, synthetically generated, shows two objects with Brodatz [Bro66] textures mapped onto
their surfaces. The textures themselves would pose a difficult analysis problem even if they were viewed
firontally, as is usually presumed in research into 2D texture analysis. However, in this scene, the textures
are mapped onto 3D surfaces, one curved and one polyhedral. Thus, the size and spatial relationships among
the repetitive elements may change across an object or a surface. Because the resolution of the imaging
sensor is finite, the texture elements or their component features may even become so small that they are
blurred out of perceptibility - yet the same texture persists in that place in the real world, even though we
can't explicitly see and measure i t The texture pattens themselves are not perfectly repetitive and may
vary, and these variations should not be confused with the other sources of variation across a surface. And,
this figure doesn't even demonstrate the effects of 3D texture - we mapped the Brodatz intensity patterns
onto simulated smooth surfaces - or of defocus, which would cause the texture to blur selectively at some
places in the image.



Figure 1: Cylinder and cube with Brodatz textures

Analyzing such combinations of spatial features is far beyond the capability of current robot vision systems.
Yet, the real world presents just such interactions, not just on rare occasions, but on virtually every surface in
every image that we care to analyze. In order to build reliable, general vision systems, we need to explicitly
understand, model, and analyze each of these phenomena and their interactions.

One of the principal reasons for the slow progress in this direction is the lack of even a suitable representation
that would allow us to model all of these spatial phenomena in one framework. The use of a single framework
is critical, because if each phenomena is described in a different formalism, then their interactions become
combinatorially complex even to describe mathematically. But, if a single framework is used, then all of the
interactions can be naturally expressed within the same vocabulary.

What framework can be used? The spatial/geometry domain provides elegant descriptions of surface shape
and perspective, not-so-elegant descriptions of focus and resolution, and, as the 2D texture community has
shown, poor descriptions of 2D texture and repetition. The Fourier domain appears elegant for 2D texture,
focus, and resolution. Unfortunately, the frequency domain has great problems with 3D surface shape,
multiple surfaces in the scene, and curved surfaces or other sources of local texture variation, because the
Fourier transform mixes together frequency infonnation from all across the image without any notion of
locality. Obviously, no representation can be a general basis for spatial vision if it has no concept of locality
within the image.

What we seek is a representation for image data that provides frequency data, but does so within the context
of surfaces and other local neighborhoods of the image. There exists a class of representations that does
just this: the so-called space/frequency distributions. These have been proposed specifically for analysis
of 2D textures on flat surfaces in the past, but as shown above, that is a small part of the total problem
of spatial vision, In this papa*, we show that this same class of representations can be used as an elegant
representation for all of the phenomena described above, in 3D as well as 2D. We concentrate on a particular
spa.ee/froiiiency distribution, the image spectrogram, because it has properties that appear most desirable
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Figure 2: Figure 1 with spectrogram of center row

for general robot vision.

We show the spectrogram of the center scan-line of Figure 1 superimposed in Figure 2. The spectrogram is
a two-dimensional function of space (horizontal axis) and frequency (vertical axis). Because the underlying
patterns on the two objects are periodic, there are dark, frequency peaks in the spectrogram where the objects
occur. The large, "LT-shaped frequency peak on the left shows that the frequency of the texture pattern
projected from the cylinder appears higher near the edges than in the middle, as one would expect At the
extreme edges of the cylinder, the projected frequency is so high it cannot be adequately reproduced in the
image. This is shown in the spectrogram as the frequency peak bumping into the Nyquist frequency at the
top. On the left side of the cube, we see a slowly decreasing fundamental frequency and overtones which
are likewise decreasing. This decrease continues to the coma- of the cube, where the fundamental and
harmonics begin to increase as the side recedes into the distance. This is a sample of the kind of analysis
possible with the spectrogram.

The remainder of this papa- explores in more detail the connections between the image spectrogram and the
3D scene. Although we do not present any "real" vision algorithms, we see to present the space/frequency
representation as an important, unifying framework for future work in computer vision. Our research is in
its early stages, so our opinion of the representation remains speculative but optimistic.

LI Previous Work

Because local spatial frequaicy analysis is especially well-suited to investigating repetitive patterns, most
of the work similar to ours has been in image texture. There is a large set of work on texture, so much so that
at least three survey papers have been published on the topic [Har79] [Wec80] [VGDO85]. We will restrict
our comments to those efforts in which local spatial frequaicy analysis plays a dominant role* While much
of the work we review is aimed at analyzing texture, other concans the issue of image representation.



Previous work with windowed Fourier transforms in computer vision reveals some of the potential utility of
local spatial frequency analysis. Image spectrograms have been used for a variety of image analysis work,
including texture segmentation and shape from texture. In one method of statistical texture segmentation,
a small number of features is extracted from windowed Fourier transforms taken over the image. Fourier
transform methods are frequently included in comparisons of statistical texture segmentation techniques,
although they are generally outperformed by other methods [DR76]. Bajcsy andLieberman [BL76] recovered
information about the shape of textured surfaces by examining the shape and behavior of peaks in windowed
Fourier transforms over the image. Because they used non-overiapping windows, their analysis was based
on a coarse sampling in space of the spectrogram. Matsuyama et aL [MMN83] used Fourier transforms
taken over regions of uniformly distributed texture elements in order to find the two spatial vectors which
characterize the placement of the elements. The Fourier transform has also been considered for calculating
the point of best focus for an entire image by Horn [Hor68], and for a subsection by Krotkov [Kro87].
Pentland uses the Fourier transform for both shape from focus [Pen85] and shape from shading [Pen88].

All of these approaches use the Fourier transform over either the whole image or a fairly large region. The
Fourier transform, however, hides the spatial coherence of the image. Thus, although one can identify
the component frequencies of an image, their location in the image is a mystery. Large-support Fourier
transforms tend to smear the frequency peaks of signals whose frequency is changing (e.g. a periodic
pattern on a tilted plane) and confound the analysis of signals with spatially distinct subcomponents (e.g.
two adjacent textures). A solution to this problem is the space/frequency representation which shows the
frequency content of only small, local regions of the signal.

One popular space/frequency representation is the Wigner Distribution (WD), introduced by Wigner for use
in quantum mechanics. Like the spectrogram, the WD produces a function of both space and frequency
from a function of space alone. l An informative introduction to the WD can be found in a three-part series
by Claasen and Mecklenbrauker [CM80a] [CM80b] [CM80c]. Practically speaking, the WD can effectively
deal with signals whose frequency is changing, giving a clear indication of their instantaneous frequency. It
has been applied to texture segmentation by Reed and Wechsler [RW90] and to shape from texture by Jau
and Chin [JC88]. Both the spectrogram and WD are joint representations of space and spatial frequency.
Such representations are reviewed and compared by Jacobson and Wechsler [JW88]. A description of the
WD and our reasons for not using it are presented below in Section 2.2.

An early effort aimed at creating a joint representation was that of Gabor [Gab46], who proposed the use
of one-dimensional, Gaussian-modulated sinusoids as basis functions which are maximally compact in both
time (space) and frequency. Mar£elja [Mar80] found that these functions describe the response of visual
cortex cells. The theory was extended to two dimensions by Daugman [Dau85], who showed that the
two-dimensional Gabor functions can describe the cells of the visual cortex. Gabor-function filtering has
been applied to the tasks of texture segmentation by Turner [Tur86] and Bovik et aL [BCG90], and to optical
flow extraction by Heeger [Hee88]. Fogel and Sagi [FS89] found that Gabor function texture segmentation
closely paralleled human performance. Most work in image analysis of this type uses the Gabor functions
as convolution filters, but not as a form of complete image representation. The Gabor functions are a
complete, but not orthogonal* set of basis functions. Nonorthogonal basis functions complicate the process
of decomposition, although it has been achieved with a neural network by Daugman [Dau88].

Mallat [Mal89] has developed a theory for the multiresolution representation of images called an "orthogonal
wavelet representation". It is composed of a low resolution image and successively higher resolution
^difference** images which fill in the details of the previous images. The representation falls between the
space and frequency domains, and gives an idea of the predominant frequencies at every point in the image.

1 We noie thai much of title woik in space/frequency representations is piesenfed in terns of time rather than space.
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A significant difference between the wavelet and Gabor representations is that the wavelet representation
has orthogonal basis functions, making the representation easy to compute.

1.2 This Paper

Our work is distinguished from most of that above, not by the particular representation we have chosen,
but by how we propose to analyze the local spatial frequencies. Most of the work in texture analysis above
uses just a small set of frequencies, usually for segmentation. Our work demonstrates how a denser set of
frequencies at each point can be used not only for segmentation, but to chart other space-varying properties
in the scene.

In this paper we show how a joint space/frequency representation can be used to effectively examine a
variety of important phenomena in computer vision. In the next section, we examine two of the most popular
joint representations - the spectrogram and the Wigner distribution - and we compare their usefulness for
3D image understanding. In Section 3 we show how the spectrogram maintains coherence over regions
of similar texture, even if the texture is changing in frequency. Making this coherence explicit means that
the spectrogram can be used for segmentation on textures other than just those on a plane viewed frontally,
which is an implicit limitation in most texture segmentation algorithms. In Section 4 we show how 3D
object shapes affect the spectrogram. We examine in detail the spectrogram of a texture along a line and
demonstrate how we can accurately extract shape parameters in this simple case. Section 5 shows how
spatial aliasing (moire patterns) affects the spectrogram. In Section 6 we show how changes in a camera's
lens parameters (zoom, focus, and aperture) affect the spectrogram in a predictable way. The zoom analysis,
combined with the development on aliasing, leads to an algorithm for dealiasing images of simple textures.
We examine other issues in Section 7.

2 Space/Frequency Representations

Contiguous texture patterns in a scene normally do not appear as constant frequency patterns in an image,
because the underlying shape is usually not planar, Even if it were, the frequency would only appear constant
if the texture were veiwed along the plane's normal. Thus, frequency analysis of texture in nontrivial scenes
requires a method which can account for changes in frequency with position. This is beyond the ability of
conventional, large support, Fourier transforms, so other methods have been devised.

We show two examples of idealized space/frequency representations in Figures 3 and 4. Figure 3-a
shows a simple sinusoidal wave, and Figure 3-b shows the magnitude of its Fourier transform. The ideal
space/frequency representation appears in Figure 3-c, and shows that the signal's frequency u is constant
with respect to the spatial variable x. Figure 4-a shows two sinusoidal waves in which the higher-frequency
wave occupies the cento- quarter of the signal. The Fourier transform of this signal is shown in Figure 4-b.
Although it shows two pairs of frequency peaks, it does not show where in space the subsignals of corre-
sponding frequency occur. The structure of the signal is made clear in the space/frequency representation
of Figure 4-c, which shows that a relatively low-frequency component exists at the ends of the signal in
question, while a higher-frequency part occurs in the middle one quarter. This localization is the power of
the space/frequency representation.

Signals whose frequency changes with position are called nonstationary. A simple example is COS(2^M0X
2 /2).

The instantaneous frequency of such a signal is defined as the derivative of the argument with respect to
the spatial variable — in this example, UQX (in cycles/unit distance). Certain frequency-based, texture
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segmentation algorithms [DR76] do not require an accurate estimate of the instantaneous frequency, only
one which is sensitive to significant differences in frequency. Thus, they can work with only a coarse
sampling in frequency. In our work, however, we are concerned with small changes in frequency, due to,
for instance, surface slope or variations in zoom. Thus, we require a high resolution, accurate estimate of
the instantaneous frequency.

We consider in this section the two primary means of calculating space/frequency representations: the
spectrogram and the Wigner distribution. A third method is to fit sinusoids to the signal over small windows;
although it is slow, it leads to high resolution estimates. Both this method and the spectrogram are based on
the assumption that the signal is locally stationary. The WD relaxes this assumption.

Our analysis in this section and the rest of this paper will be limited to one-dimensional signals. This not
only simplifies understanding the mathematics, but makes visualization of the representation much easier.
For a ID signal, the space/frequency representation is two-dimensional, while for a 2D signal (an image),
it is four-dimensional. Our example spectrograms are superimposed on 2D images. In these figures, the
spectrogram was computed from the center row of the image. We include the entire image to illustrate more
clearly the various effects we are considering.

2JL The Spectrogram

The spectrogram of a signal is a series of small-support, Fourier transforms of the signal, each centered
around a different point of the signal. For a one-dimensional signal/ (r), the spectrogram is 5/ (x. w), where
u is frequency in cycles/unit distance. Sf (x. u) is an estimate of the power of frequency u at the point*. The
continuous spectrogram of the one-dimensional function/ (x) is given by

[
J —

wt(a -

where wi(pc) is a window function with support length /.

The process by which a spectrogram is calculated is shown in Figure 5. To calculate one vertical slice of the
spectrogram for a given value of JC, say xo, the signal is first multiplied by a window offset by xo. This product
is Fouriar transformed; the magnitude is calculated from the complex values of the Fourier transform; and
the non-negative half of the magnitudes serve as Sf (xo. M), which is one column of the spectrogram. This
process is repeated for every x We only consider the non-negative half of the magnitudes since the Fourier
transform of a real signal (the only kind we have) is symmetric in magnitude. The discrete version is
computed using the discrete Fourier transform (DFT), which is discrete in both space and frequency. The
window function controls how much of the rest of the signal contributes to the spectrogram at the point x.
In tons of Wfyi) and F(w), the Fourier transforms of H>/(JC) and/ (x), the spectrogram is

Sf (x. K) = | (e-*7**Wi(u)) * F(u) f , (1)

where " *H is convolution.

The spectrogram of a two-dimensional function/ (JC*y) is a straightforward extension of the equation above,
giving a four-dimensional spectrogram, Sf (x.y* u~ v), with two spatial variables and two frequency variables.

There are ongoing questions about the best shape and size of the window wt(x). Many window shapes are
considered by Harris in [Har78]. He illustrates the compromises involved in the selection, and concludes by
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recommending the 4-sample Blackman-Harris window. We use the minimum, 4-sample Blackman-Harris
window, which for a discrete set of n points is given by
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, \ ( 2 «,\
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- l and = (0.35875.0.48829,0.14128.0.01168).

The window size / (or in the discrete case n) affects how much of the signal is included in the Fourier
transform at each point Equation 1 above shows that the effect of windowing is to convolve the Fourier
transform of the signal, F(u), with the Fourier transform of the window, Wi(u). This can be thought of as a
blurring of the signal's spectmm with Wi(u). As the width of the window decreases, the width of Wi grows,
meaning that the spectrum will be more smeared. Thus, a large window is desirable for a sharp spectrum.
However, a large window will compromise the localization ability of the spectrogram, as it will include
components of the signal which are distant from the point of interest In practice, we have found n = 63 to
be satisfactory on discrete signals of length 512 (one image scan-line). We investigate a more sophisticated
windowing technique in Section 7.1 „

22 Wigner Distribution

An alternative method of calculating a joint space/frequency representation of a signal is the Wigncr
distribution. The Wlgncr distribution has been used in the computer vision community for both textuxe
S€gmmtoticm[RW9G] ami shape from textore{JC88]. For a one-dimensional function / (x), the Wigaer
distribution is



Wf (x.u)= f f (x + o I2)f "(x-a /2)e~2'Ui' da.

In words, the way to compute Wf{x.u) is to first calculate the product/(JC + aj2)f~(x - a /2) , which is
the original signal multiplied by a conjugated version of the original signal flipped around the point JC.
This product is Fourier transformed to get the WD at JC. In practice,/ (JC) is first windowed, leading to the
pseudo-Wigner distribution (PWD) [CM80a]. The open questions pertaining to the window function for the
spectrogram also apply to the PWD.

The WD generally works best on analytic signals, i.e. signals whose Fourier transforms contain no negative
frequencies [Boa88]. It is fairly straightforward to calculate an analytic signal which corresponds to a real
signal defined by samples. Thus, our two examples will be for analytic signals.

The example to which many WD advocates point is the WD of the chirp signal/(JC) = e/2""**2/2. This
nonstationary, complex sinusoid is the analytic extension of cos(2~w£>x2/2), whose instantaneous frequency
is UQX (frequency proportional to x). The WD is

Wf (JC. U) = / ^ e?'2~u<>(x+<y/2)2/2eP>-Uo(x--o /2)2/2e-j2-uo^Q

J — CO

J-oz

= S(U - UoX).

In (x. u) space, this is a bridge which tracks at exactly the instantaneous frequency of/ (JC). For any JC, the
position of the ridge is at UoX, which is exactly what we would like to see for this signal.

Most textures are not simple sinusoids, however. They are, rather, sums of sinusoids in the sense of Fourier
series. It is desirable that the jointrepresentation show multiple frequency peaks at the constituentfrequencies
of the texture. This means that the representation should be linear - that the representation of the sum of two
sinusoids should be the sum of the representations of the two sinusoids by themselves. Unfortunately, the
WD is not linear. That is, Wf+g(x. u) ft Wf (x. u)+Wg(x, u). We show in Figure 6 the spectrogram (on the left)
and the Wigner distribution (on the right) of a sum of two sinusoids. Le t / (JC) = ̂ lzufx and g(x) = eft7™**,
both constant-frequency, complex sinusoids with frequencies Uf and ug respectively. We have

Wf(x,u) = 6(u-Uf),

Wg(x.u) = Ku~*g)-

Wf+g(x.u) = Wf (JC.u) + Wg(x.u)-t2cos[2jrjc(iy - ug)] 6 (u - ^ - ^

Thus the WD of a single, complex sinusoid is what we would expect, but the WD of a sum of sinusoids has
a cross tann. This term is a S in u at the mean frequency of the two original sinusoids, modulated in x at a
frequency which is the difference in frequencies of the two original sinusoids. The WD gives cross terms
for every pair of constituent sinusoids. The cross term of the WD is clearly visible in Figure 6.

The analysis that follows in this papa* depends on accurately finding the frequency peaks in the joint
representation. Noise in some of the images complicates this task. The cross tams introduced by the WD
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Figure 6: Spectrogram and Wigner distribution of two summed sinusoids
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would make it even more difficult to distinguish the true frequency peaks. It is for this reason that we have
chosen not to use the Wigner distribution.

The WD is just one member of a more general family of joint representations. Others [CW89][ZAM90],
may be able to deal with nonstationarities as well as the WD while still suppressing cross terms. However,
there does not exist a definitive method for calculating the space/frequency distribution.

3 Two-Dimensional Texture Segmentation With the Spectrogram

It is often the case that regions in an image can be grouped by their similarities in texture. In segmenting a road
image, for example, it may be that the only common feature that the grassy areas share is texture, because the
intensity and color of the grass in the image may be very different from shadowed to nonshadowed regions.
By two-dimensional texture segmentation we mean segmentation on images with textures whose frequency
does not change appreciably over the image. The textures must be viewed frontally; this is how almost all
texture segmentation algorithms are tested.

The spectrogram of a structured texture shows that the spectrogram gives a clear, easily interpretable
representation of the texture and a good idea of the texture's boundaries. In Figures 7 and 8 we present two
pairs of textures along with the spectrograms of the rows indicated by the lines across the middle of the
images. The smaller, left plate in Figure 7 has a sinusoidal intensity pattern, while the larger plate visible
on the right has a square wave pattern. The left half of the spectrogram shows one peak in frequency which
is constant with respect to position, as we expect from a sinusoidal intensity pattern. The right half of the
spectrogram shows the fundamental frequency of the square wave pattern as the dark line near the bottom of
the spectrogram along with fainter overtones at evenly spaced intervals above. The frequency of the square
wave's first harmonic happens to be about equal to the frequency of the sinusoid on the left The sharp
transition between the two textures produces a short region in the spectrogram where nearly all frequencies
are present The light, vertical bars on the right half of the spectrogram are due to the interaction of the
simulated pixels with the periodic pattern.

Figure 8 shows the same two plates with Brodatz textures superimposed. The complexity of the Brodatz
images makes the spectrograms messier, but the representation is still easy to interpret The white band
at the bottom of the spectrogram has been zeroed to eliininate low frequency intensity variations due to
lighting. We see that the scan line of the canvas texture on the left is close to sinusoidal since it has only one
significant frequency component The screen texture on the right has a lower fundamental frequency than
the canvas as well as some overtones.

There have been many efforts aimed at 2D texture segmentation using windowed Fourier transforms, for
instance [Gra73] and [Kir76]. These algorithms usually proceed by picking some set of features from Fourier
space and then clustering using traditional pattern recognition techniques. The method has been compared to
others both empirically [WDR76][DR76] and theoretically [CH80]. While the Fourier features performed
adequately, they were outperf onned by other statistical texture measures.

The advantages of Fourier texture measures over other statistical texture measures come from the variety of
textures it can manage and the ease with which it can be extended to textures which are viewed obliquely.
For structural textures, the Fourier transform approach requires no feature detection. Windowed Fourier
transforms can be used for purely statistical textures, because Fourier transforms can bring out statistical
coherence. In all textures, the spectra remain coherent ova* changes in shape, which means that the
method can be smoothly extended to non-frontally viewed textures. In addition, the spectrogram is a
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Figure 7: Two plates with sinusoidal and square wave gratings

Figure 8: Two plates with Brodatz textures
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powerful framework for analyzing many other scene phenomena and can be used to extract intrinsic scene
characteristics. These intrinsic parameters provide another, more reliable basis for segmentation.

4 Three-Dimensional Shape and the Spectrogram

Texture is an important indication of 3D shape, and the connection has been studied extensively in computer
vision. However, past efforts at exploiting this connection have been based on either the detection of explicit
features or the computation of local statistics. The features and statistics are normally conceived in an ad
hoc manner for the specific task of shape extraction. The spectrogram is a more natural choice for this kind
of analysis, because the projected, local spatial frequencies on a textured surface change with the surface's
depth and orientation, and because it is simple to account for other phenomena besides shape such as aliasing,
defocus, and lens parameters.

In Figure 9 we show a plate receding into the distance with a sinusoidal intensity pattern superimposed.
The spectrogram of the center scan line shows that the projected frequency increases as the plate recedes.
This scene illustrates the effect of a vanishing line. Both the plane (from which the plate is taken) and the
spectrogram asymptotically approach a line. The plane's asymptote is its vanishing line in the image. The
corresponding frequency rises to infinity as it nears the vanishing line, as shown in the sketch of the ideal
spectrogram. Before the plate reaches this point, the frequency has so grown that the actual spectrogram
shows aliasing (see Section 5), which is the "fuzz" just to the left of the asymptote. The ideal spectrogram
has no upper bound on frequency.

Figure 10 shows two plates meeting at a convex corner, each with a sinusoidal intensity pattern. The
spectrogram shows how the projected pattern increases in frequency as the plates recede.

In Figures 11 and 12 we show the plates of Figures 7 and 8 rotated around a vertical axis. Both the
fundamental frequencies and the overtones show the same effects of the change in orientation. In the
following discussion, we describe how to quantitatively extract shape information from the spectrograms of
textured surfaces by calculating the effect of depth and orientation on the spatial frequencies of the texture
pattern.

4.1 Mathematical Formulation

The coordinate system and other quantities are defined as in Figure 13. The pinhole of a pinhole camera
is placed at the origin of the right-handed (xsD-ysD^3D) coordinate system, looking along the -Z^D axis.
Objects are projected onto the image whose axes are (x. y). The pinhole-to-sensor distance is d, meaning that
point (*3£>. ysB. Z^D) will be projected onto the image plane at the point (x. y) = ( r ^ - 5f^) under perspective.
There is a surface in front of the camera whose depth is given by the function C(X$D . J^D). Superimposed on
the surface is an intensity pattern given by g(s* t)9 where (s-1) are coordinates of a coordinate system on the
surface. We will ignore the 730, J, and t coordinates, in effect confining our attention to the XSO-ZSD plane

= 0) and a ID image plane in x.

plane, a linen —p. 2 Wewill
suppose that this line 1ms a periodic pattern g(s) superimposed on i t We will find the perspective projection
of this pattern onto the image plane, and thai calculate the instantaneous frequency of the projection so we

2In terms of tnudiliocud Aape-frooi-iextoxe notation (c / . [WitSlJ), the till angle here is always zero because we axe woiking in
only two dimensions, while $ u like the slant angle except that the slant angle cannot be negative and tf can be.
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ideal spectrogram
(sketch)

Figure 9: Hate with sinusoid receding to vanishing point
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Figure 10: Two plates with sinusoids forming a convex corner

Figure 11: Two rotated plates with sinusoidal and square wave gratings
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Figure 12: Two rotated plates with Brodatz textures
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surface c(x3D,y3D)i

Figure 13: Geometry of ID image fonnation through pinhole
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can apply the spectrogram. We will find that the instantaneous frequency is a function of the orientation
of the line, meaning that the spectrogram can be use to determine this parameter. Points on this line are
parameterized by s, where s = 0 occurs at the intersection of the line and its perpendicular to the origin.
Given an s, we have

(*3D-Z$D) = (—P sin6 + s cos 0, -pcos 9 - s sin9)

which projects to

x = a :——.

p cos v + s sm a

Solving for s, we have have the position along the line for a given x on the image plane:

-dp sin 9 - xp cos 9
Suppose that the line has superimposed on it a periodic reflectance pattern given by g(s) = cos(2~uis), such
that the frequency of the pattern along the line is H/. If the pattern is projected onto the image plane, we can
write the equation of the projected pattern by replacing the s in COS(2~K/S) with the equivalent value of s
given in tenns of x in Equation 3. Thus, the projected pattern on the image plane will be given by

f * dsm9+xcos9]
= cos [ - Z * « \

The instantaneous frequency, u(x)f of COS[2TUIS(X)] is defined in the signal processing literature to be the
derivative of the argument with respect to JC, which is

U(X) =

The peak frequency in the spectrogram of the projected cosine will occur at approximately this frequency.
In a compute* vision application, the known quantities in Equation 4 are d (the pinhole-to-sensor distance),
x (the pixel position), and u(x) (the instantaneous frequency from the spectrogram). The unknowns are
ui (the frequency of the patten along the line), and p and 9 (the parameters of the line). Since ui and p
occur as a product in Equation 4, they cannot be distinguished from each other. This is a manifestation of a
familiar effect a small object (high frequency) at a small distance is indistinguishable from a large object
(low frequency) at a large distance. Thus, we treat the product mp as a single unknown. With 9 as the other
unknown, we can solve Equation 4 for 9 and uip if we have two or more measurements of (x. «(x)). The
result is a space/frequency formulation of the slmpe-from-texture paradigm.

42 Extracting Shape front the Spectrogram

To demonstrate the use of Equation 4, we will determine parameters of the two plates in Figure 11 based cm
the spectrogram of the center row. We simplify the spectrogram to u(x), the dominant frequency, determined

18



/•'•A

y\
1

oo.o n

50.0-

po.o-

50.0-

bo.o-

100.0-

50.0-

suDpixei spe
spectrogram

— — actual instan

ctrogram peak
peak

Ltaneous frequency

1
14
1

1 ) 1 1

-03 -0.2 -0.1 -0.0 0.1 0.2

Figure 14: Peak frequencies from spectrogram of Figure 11

03
x

by finding the maximum value in each column of the spectrogram. These values are shown in Figure 14 as
the dotted, stairstep-like line. The stairstep effect is due to the limited resolution of the DFT, which is in
tum due to the limited size of the window used to calculate the spectrogram. This low resolutionmeans that
many adjacent points will appear to have equal instantaneous frequencies. If the instantaneous frequency
of two adjacent points is equal, it implies that the surface is perpendicular to the line of sight, which is
usually not the case. Thus, we calculate a "subpixel" value of the instantaneous frequency which gives bettor
resolution than the raw DFT. We calculate the subpixel estimate by fitting a quadratic to the peak value and
its two vertical neighbors and then finding the maximum of the quadratic. This is done for each column
in the spectrogram. The higher resolution estimate is shown as the solid line in Figure 14. As a point of
reference, we show the actual instantaneous frequencies (calculated from Equation 4) as the dash-dot line
in the same figure. The estimate based on the spectrogram seems to consistently underestimate the actual
frequency, and we are currently investigating the reason.

Each pair of (x. u(x)) values from the high-resolution spectrogram estimates can be used to calculate a value
of (M//>. #). In order to reduce the efforts of the wavering in the instantaneous frequencies, we calculate each
(uip. ff) using five pairs of (x. u(x)y$ placed symmetrically around the point of interest. We then segment
the regions by Mstograming the («//>. ff)% manually picking the peaks, and classifying each («//>• (?) pair by
finding which peak it is closest to.
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Figuie 15: Segmentation of center row of rotated, patterned plates

The resulting segmentation is shown in Figure 15. The bar across the middle of the image indicates the
regions, and we show the dominant instantaneous frequencies below. This segmentation works not only
in spite of the changing frequencies across similar regions, but because of the changing frequencies as
dictated by the mathematical projection of a single 3D plane onto a 2D image. In contrast to traditional
region-grouping methods, note that this segmentation is based on reasoning about the uniformity of intrinsic
properties of the scene, not merely the uniformity of a property in the image. In this sense, it is based on the
"model coherence" approach developed for color image segmentation [SKKN90].

With the regions segmented, we calculate the best fit (uip. ff) from Equation 4 based on the region's (x- M(X))'S

using a gradient descrat, minimization routine. The results are shown in Table L We know the actual values
of the parameters from the graphics routine used to generate the images. In this example the enors are quite
small.

We performed the same analysis for the textured plates in Figure 12. The results of the segmentation are
shown in Figure 16. TMssegnioatadcwiisnotasgoodasfortheoth«'^tofplat^. Much of the error ocean
near the boundaries of the plates where the Fourier transform window ooa
or some of both. The other mkekssified areas occur in regions whore the instantaneous frequency value has
unusual dips or wiggles. Possible solutions to' this problem are using a spectral estimator which accounts fa*
noise, or averaging the dominant frequencies from the spectrograms of neighboring points. Also, usiag a
variable-sized window as described in Section 7.1 may help alleviate the problem. The performance Igww
in Table 1 are based on a manual (perfect) segmentation of the instantaneous frequencies for the rotated*
textured plates of Figure 12. The Hue parameters were calculated with the same gradient descent method
used for the plates in Figure 11.

2G



Figure 16: Segmentation of center row of rotated, textured plates

actual
calculated

error

From Figure 11
Periodic Pattern

semi-automatic segmentation
Left Plate

Ulf>

17725
172.92
-2.4%

e
50.00°
49.75°
-0.25°

Right Plate
Ulp

40.00
39.31
-2.4%

0
-60.00°
-59-72°

0.28°

From Figure 12
Brodatz Textures

manual segmentation
Left Plate

uip
152.1

141.37
-7.1%

0
50.00°
50.82°
0.82°

Right Plate
Ulp

47.0
48.27
2.7%

0
-60.00°
-58.85°

1.15°

Table 1: Actual and calculated line parameters
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43 Other Shapes

This method could be extended to other shapes in two different ways. Above we presented a method in which
the instantaneous frequencies are fit to a known class of shapes (lines) in order to derive the parameters
of the shape. The parameters were those which best fit Equation 4, which describes the instantaneous
frequencies on a line. Other equations could be derived which relate instantaneous frequencies to any
parameterized shape. Given some a priori knowledge of the shapes in the scene, the spectrogram peaks
(as well as overtones) could be used to instantiate the shapes' parameters. Alternatively, a program could
calculate local surface normals by using the instantaneous frequencies from a small neighborhood along
with an equation which relates frequency and surface normal.

Although this method and results are meant to be only illustrative, they show the power of the spectrogram
for reasoning about the effects of 3D shape in images. The spectrogram is a simple, natural method of
quantifying the relationship between texture and shape, and it requires no feature detection except for
finding frequency peaks.

5 Aliasing

Aliasing occurs when a signal is sampled at a rate less than twice its maximum frequency, causing lower-
frequency artifacts to appear in the sampled signal. This phenomenon can often be seen on television in
images of periodic patterns like striped clothes, automobile grills, or tall buildings. In two dimensional
imaging, these artifacts are called moire patterns* and they can lead to insidious problems in machine vision,
e.g. stereo matching errors [Mat89](p< 117). This is because the patterns cannot be detected in single
images without detailed a priori knowledge of the scene, meaning that in most situations there is no hope of
recovering the true signal.

The DFT of such a signal does not give a true indication of the original signal's frequency content. The DFT
can only show frequencies up to and including the Nyquist frequency (one half of the sampling frequency).
Frequencies higher than the Nyquist frequency are "aliased down" into Iowa: frequencies of the DFT.

This is illustrated in Figure 17, which shows a plate with a sinusoidal intensity pattern rotated to the right.
Beginning at the left of the plate, the spectrogram shows that the instantaneous frequency is rising as the plate
recedes into the distance. At a little less than halfway across the spectrogram, the peak frequency has risen
to the top of the spectrogram, which corresponds to the Nyquist frequency. Although the actual frequency
on the image plane continues to rise, it appears to decrease after the Nyquist rate has been exceeded* to this
region of the image, moire patterns begin to appear as lower-frequency variations causal by t ic beating of
the signal frequency against the sampling frequency. There is another wbouncew on the spectrogram after the
apparent peak frequency has fallen to zero. This bouncing would continue if the plate w o t longer. If the
signal had overtone frequencies, these will bounce also, although not at the same places as the ftmdmmcntil
or other overtones. This is shown in Figure 18, which is a plate whose intensity pattern is the sum of two
sinusoids. Below we examine the mathematics of the bouncing frequencies and show how the spectrognm
provides an elegant basis for analyzing these artifacts.
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image shows
true pattern

moire patterns after second
after first bounce bounce

Figure 17: Plate with sinusoid showing aliasing

Figure 18: Plate with sum of two sinusoids showing aliasing
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5-1 Bouncing Frequencies

In this section we discuss the mathematics of aliasing and how it produces bouncing in the spectrogram. We
will demonstrate the effect using a simple cosine wave, although the ideas are generally applicable. The
effect is most easily visualized in the Fourier domain, so we will develop the equations in the spatial and
spatial frequency domains in parallel.

Suppose the original, continuous signal is a cosine of frequency uo cycles per unit distance.

Its Fourier transform is two delta functions placed symmetrically around the frequency origin.

Sampling at a frequency of us is modeled as multiplication by a series of b 's spaced at intervals of 1 /us. The
sampled signal,/,, is

f;
6(x - - )

U

The corresponding operation in the Fourier domain is convolution with the Fourier transform of the space-
domain <̂ 's.

2

X

£•—3G

• x .

las — -x*

Ku - ius)

-uo- ms)

F$(uX the Fourier domain version of the sampled cosine wave, is illustrated in Figure 19-a. It consists of the
Fourier transform of the cosine repeated at intervals of u$, the sampling frequency. These repeated Fourier
transforms are called spectral orders. Spectral order os £ {... - 2. - 1 „ 0- L 2 . . .} is centered at frequency

In order to recover an estimate of the original signal from the samples, the Fourier domain representation
is multiplied by a rectangle function to extract one repetition of the repeated transforms. (It is also scaled
by ^ to recover the original amplitude.) The rectangle function, also shown in Figure 19-a, is cut off at
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the positive and negative Nyquist frequencies. This corresponds to interpolation with a sine function in the
spatial domain. Thus, the reconstructed signal becomes

fr(x) = fs(x) * sinc(M^)
oo

X

co$(2~u0i/us)sinc [us(x - i/us)] ,

where sinc(x) = sm<^x).

In the Fourier domain,

-rect(-)F,(u)

1 /ll
-rect —
2 W

where

is a rectangle with support length b.

As shown in the top graph of Figure 19, if \uo\ < -£, the original cosine can be recovered exactly. We
illustrate in both Figure 19 and 20 what happens as the frequency of the original signal rises past the Nyquist
frequency. Figures 19a-d show Hside views" of the situation for various, increasing values of uo from the
top down. The horizontal arrows indicate which direction the £'s will move with increasing uo. Figure 20
shows a "top view" as uo increases linearly from left to right The spectrogram has been shaded. The four
vertical cuts in this figure correspond to the four situations shown in Figure 19.

In Figure 19-b, the cosine's frequency has exceeded the Nyquist rate, and 6's from neighboring spectral
orders have moved into the the interpolation rectangle. We show how the various <$*s correspond with the
dashed lines drawn from graph to graph. The apparent effect of a rise in uo is a bounce in frequency, which
is more apparent in Figure 20. Just as the outgoing £'s leave the interpolation rectangle, incoming 6's enter,
moving toward the frequency origin. These two incoming 6's continue past each other, producing another
bounce in apparent frequency, as shown in Figure 19-c. When these £'s leave, they are replaced by two
more, as in Figure 19-d, and the process continues on and on. This process causes the apparent bouncing in
the spectrogram illustrated in Figure 20.

In Table 2 we illustrate with equations what is happening in each of the four subfigures of Figure 19. We
label each situation with oS9 the spectral order which contributes the f* in the positive half of the interpolation
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spectrogram
(shaded)

Figure 20: Aliasing causing bouncing, uo is increasing from left to right
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(a)

(b)
(c)
(d)

Mo

0 < Mo < Us/2

us/2 < Up < us

us <u0 < 3us/2
3M5/2 <uo < 2us

\

(ps - \)US <UO< OSUS

-0sUs < Uo < (-0s + 7[)Us

Os

0
+1
-1
+2

Os >

Os <

0
0

frequency domain reconstruction

1

l
2

£(M + Us "

b(u - us -
| [<^(M+2M5 -

\ b(u + 0jM5 -

| [<KM - ^ M 5 •

vuo) + t
-Up) + <

f Mo) + <

" Mo) + <

- Up) + <

f Mo) + <

(U - Mo)]

''(M — Us + Mo)]

HM + M 5 - MO)]

*(*-2U, + IO]

KM - ^ M 5 + uo)}
Ku + OsUs-Uo))

space domain reconstructioc
COS[27TMo*]

COS[2TT(M5 - uo)x]

same as above
COS[2TT(2M5 - Mo)jc]

COS[2^"(^M5 - UO)X]

same as above

Table 2: Analytic expressions of Figure 19

window in frequency space. In (a), os = 0, and the cosine's frequency is below the Nyquist frequency, so
the reconstruction is true to the original signal. In (b) the reconstruction is based on one b from each of
the two closest neighboring spectral orders, and os = +1. The reconstructed signal is COS[2~(M5 - uo)x].
Since u0 < us in this case, an increase in uo (the original signal's frequency) will cause a decrease in the
frequency of the reconstructed signal. In (c) no new b's are introduced, but the two b's pass each other.
Thus, in (c) os = - 1 . The reconstructed signal is cos[2;r(-Ms + uo)x\, which is the same as case (b) (because
cos(—t) = cos(O). However, in (c) uo > us, so an increase in uo causes an increase in the frequency of the
reconstructed signal. The transition from (c) to (d) is like the transition from (a) to (b), thus the frequency of
the reconstructed signal decreases again with increasing uo. In general, the frequency of the reconstructed
cosine is given by

u =
osus - otherwise. (5)

where os is the spectral order contributing a 6 to the positive half of the interpolation function, us is the
sampling frequency, and

5*2 Unfolding the Spectrogram

Of course, it would be better to have BO aliasing in the spectrogram. We could then get an accurate idea of
the true signal at every point We can think of the spectrogram as a distorted, windowed version of an ideal,
space/frequency representation - the ideal spectrogram. Hie ideal spectrogram's frequency axis extends
from zero to infinity, and it does not suffer from aliasing. We can see from the analysis in the previous
subsection that the actual spectrogram of a simple sinusoid whose frequency is changing is a folded version
of the ideal spectrogram. This is illustrated in Figure 21. The folds occur at positive, integer multiples of the
Nyquist frequency, us/2. In the ideal spectrogram, the frequency peak continues to grow with the frequency
of 'the underlying signal, while in the actual spectrogram aliasing causes the apparent frequency to bounce
between zero and the Nyquist frequency.
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Figure 21: Folding the ideal spectrogram to show aliasing

Figure 22: Unfolded version of spectrogram in Figure 17

In Figure 22 we show an unfolded version of the spectrogram in Figure 17. The unfolded spectrogram gives
a true indication of the signal's frequency, even beyond the Nyquist limit Unfolding the spectrogram of a
signal with overtones, like that in Figure 18, would not be as simple. Multiple peaks in the same column
may come from different folds of the ideal spectrogram. The key is to determine which fold a given peak
came from. In the next section, we propose an algorithm for this based on computer-controlled zooming of
the lens.

6 Lens Parameters and the Spectrogram

Much research in "active vision" concerns the control of the three lens parameters: zoom, focus, and aperture.
We show in this section how these parameters affect the spectrogram, which in turn provides new insights
into how they affect the image. This point of view leads to algorithms which let us deduce intrinsic scene
parameters by purposefully altering the lens settings.
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Figure 23: Effect of zooming on imaged signal

6.1 Zoom

6.1.1 Mow Zoom Affects the Spectrogram

In equifocal camera lenses (such as most one-touch zoom leases) a change in zoom can be modeled as
simply a change in magnification. We can imagine the situation in Figure 23-a whore the section of the
signal which falls on the center window of the spectrogram extends from Y t 0 5 • ̂ e ^ ^ arbitrarily call the
magnification here one, and we will say that the entire portion of the signal seen by the camera is of length L.
Both / and L are measured on the image plane. If there are n pixels in the spectrogram window, the sampling
frequency is ^ pixels par unit distance, making the Nyquistfrequency ^ . Since the spectrogram extends
in frequency from zero to the Nyquist frequency, the spectrogram resulting from this signal will cover the
region indicated by the short, wide box in Figure 24.

If the magnification M is changed, a larger or smaller portion of the original signal will be contained by
each window. In Figure 23-b we have indicated the effect of an increase in magnification, showing how a
smaller part of the signal is now imaged. The section of the signal which falls on the central window BOW
extends from g j to g j , and the entire signal seen by the camera covers gg to gg. The magnified window
is spread out over the same number of pixels as before, so the Nyquist frequency is now M^1) pixels per
unit distance*

The spectrogram after the magmfication change is shown in Figure 24, For an increase in magnification, the
spectrogram covers more in frequency but less in space. The wareaff of the spectrogram (actually a unitless
quantity, w spatial dynamic range") is ^ ~ i and is independent of the magnification. Thus for changes in
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spectrogram of
original image
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Figure 24: Effect of zooming on spectrogram dimensions

zoom, there is a direct tradeoff between coverage in space and spatial frequency. These arguments also
apply to the four-dimensional hypervolume of the spectrogram of a two-dimensional signal.

6.1.2 Dealiasing With Zoom Changes

A slight change in zoom can be used to find the true, unaliased frequency of a sinusoid, because aliased
frequencies from different spectral orders respond differently to changes in magnification. Since image
textures can be decomposed into simple sinusoids, we could use two images taken at slightly different zoom
settings to deaHas texture images.

Suppose as above that we have a 1-D image of a cosine of frequency uo cycles/pixel sampled at a rate of us

cycles/pixel. The cosine may be sampled above or below the Nyquist rate. Referring to Figure 20, we can
see there will be only one spectral order contributing a 6 to the spectrogram (because the spectrogram only
shows positive frequencies up to us/2). The apparent frequency of the unmagnified (Af = 1) signal, it}, is
given by Equation 5, i.e.

(6)
osus - sgn(05)M<> otherwise.

If the lens is zoomed slightly such that the magnification is changed to M, the sampling frequency (measured
in cycles/pixel of the unmagnified image) will be Mus cycles/pixel, where us is the sampling frequency on
the unmagnified image. The apparent frequency of the cosine will then be

1 osMus — sgn(Oj)«o otherwise.

We can eliminate uo from Equations 6 and 7 by subtracting. Solving this difference for os gives

(7)

os = us(M -
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Figure 26: Dealiasing with magnification change
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Figure 27: Geometry of ID image formation through thin lens
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the lens, U. d ^ z, the point will be spread into a blur circle. Using geometric optics, the radius of the blur
circle is given by

1 1 1
H

b d

ad

A point can be out of focus by having the image plane in front of or behind the point of best focus. The
equation above applies to both cases. r(z3#) goes to zero when \ + z^j = \> which is a restatement of
the Gaussian Lens Law above. In the one-dimensional imaging case illustrated here, the shape of the blur
"circle" is actually a rectangle of width 2r(z3£>). Thus, the point spread function of the ID camera system is

i r x I
h(x.z3D) = ——-rect .

2r(z3x>) L2r(z3/))J

where we have normalized so the area under the rectO is one. 3 The corresponding transfer function, if, is
the Fourier transform of h:

H(u.z3D) = sine [2ur(z3D)].

In order to calculate the effect of h(x. Z3D) on the spectrogram, we suppose there exists a function/ (JC) which
is an unblurred, pinhole projection of the scene. The new image,/*(x), taking into account the point spread
function, is a convolution of the unblurred image with h. Thus,

where the z3n is the one corresponding to C on the image plane. This equation holds for changes in the
camera's aperture. It does not apply for change in the focus distance d, because this causes a change in
magnification as well as a change in the point spread function.

The point spread function h is not space-invariant, because it depends on the depth of the surface. This
means that its effect cannot be described accurately by multiplication in the frequency domain. If h were
space-invariant, e.g. due to integrating over the surface of the pixels, then the effect on the spectrogram
would be simple to describe: each windowed Fourier transfonn would be multiplied by the Fourier transform
of the point spread function. This is also approximately true for the space-variant point spread function if
the surface depth varies slowly and/or the window used for the spectrogram is small. Then we have

Sfk(x.u) a

where zip is a representative depth value for the region centered at x9 and F(u) is the Fourier transform of the
unblurred image. Each windowed Fourier transform has associated with it its own transfer function which
depends on the approximate depth of the region within the window.

3This psf ignores thzee optical effects. One Is diffraction, whose magnitude is much smaller than defocus effects in typical TV
images. The second is the fact that points which are occluded in the pinhole image can actually be seen by pans of the lens in an
image with a finite aperture. The third is that, by normalizing fee aiea of the psf to one, we are ignoring the most obvious effect of
a change in aperture: a change in the overall brightness of the image.
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This is the approximation used for most depth from focus and depth from defocus algorithms in computer
vision. Following Krotkov's [Kro87] depth from focus algorithm, the spectrogram can be used as a criterion
function to calculate the point of best focus over several images taken at different focus settings. The setting
closest to perfect focus is the one which gives the most high frequency energy in the spectrogram at that
point Knowing this setting along with a precalibrated table of focus distances, the depth to all points in the
scene can be calculated. Pentland [Pen85] uses a spectrogram, essentially, to calculate depth from defocus
based on only two focus settings. He uses the two spectrograms to calculate directly the depth to each scene
point by calculating the width of the psf .

Formulating the effects of the psf in terms of the spectrogram is a natural way to reason about the space-
variant nature of the transfer function. For example, it reveals how precisely each point can be focused.
Points in the scene with no high frequencies will never show high frequencies no matter how well they are
focused, meaning that a focusing criterion function based on frequency would not be sensitive to such points.
Another issue is the separation of the space-invariant part of the psf (due to, say, pixel averaging and the
camera electronics) from the space variant part. It may be that the space-invariant psf is so large that depth
effects are insignificant

7 Other Issues

7JL Variable Window Size

A constant window size for the spectrogram means that the Fourier transforms cover a different number of
wavelengths of each constituent frequency. That is, a window size / over a signal of frequency u covers lu
wavelengths or periods of the signal. In detecting repetitions at different frequencies, it makes intuitive sense
that the detector window should cover a predetermined number of wavelengths rather than a predetermined
length or area. This intuition is based on the feeling that a texture pattern is one comprised of some
minimum number of similar elements rather than some Tni-nimum sized region. The conventionally defined
spectrogram uses a constant window size, which means that for higher frequency signals, more wavelengths
of the signal will be included in the window than for lower frequency signals. Thus the localization (spatial
resolution) of the constant-window spectrogram is effectively reduced at higher frequencies, because the
window is spread out over more wavelengths.

We propose adding another dimension to the spectrogram which indicates the window size /. We define the
3D spectrogram given by

which covers all possible (positive) window sizes.

The 3D spectrogram is a great deal of data which is highly redundant The constant-window spectrogram,
S/(x. *), is a slice of 5/(x. u.l) with / = constant The problem with a constant / is that, as we mentioned
above* the number of wavelengths included in the window varies with frequency. A more reasonable slice
through the 3D spectrogram is to have / x 1 /ic, which means that the window width will shrink with
decreasing wavelength. This toads to make the spectrogram scale-invariant, in that the detector window will
cover a constant number of elements of a given wavelength independent of their spacing frequency. We call
this the variable-window spectrogram.
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Figure 28: Constant window (top) vs. variable window (bottom) spectrogram
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Figure 29: Intensity profile to be matched

We show an example of the the variable-window spectrogram in the bottom half of Figure 28, which can be
compared to the traditional, constant-window spectrogram in the top half of the same figure. The variable-
window spectrogram has window size / = 10/u. One notable aspect of the variable-window spectrogram
is the large spreading of the higher frequencies. This is due to the familiar effect in Fourier analysis of a
smaller spatial domain window giving more spread in the frequency domain. Thus, the variable-window
spectrogram provides greater spatial resolution at a cost of frequency resolution. The spreading of the
high frequencies leads us to a conjecture that a nonlinear sampling in frequency may be appropriate for the
variable-window spectrogram. In the case of / oc 1 /w, the frequency sampling interval should get larger as
the frequency increases.

The 3D Gabor energy spectrum (c/. [JW88]) of a ID signal is just the 3D spectrogram with a Gaussian
window. Gabor functions are Gaussian modulated sinusoids and are maximally compact in both space and
frequency. Since Gaussians have infinite support, the window length / in the 3D spectrogram is replaced by a,
the standard deviation of the Gaussian window. Although Gabor functions have proven popular in computer
vision applications, we have chosen not to use the Gabor energy spectrum because other, finite-support
windows give better resolution in the frequency domain.

7.2 Repetition and Image Matching

Image matching is important for 3D stereo and motion sequence analysis. In these tasks, matches are found
by sfaiftmg one image to match the other, the amount of shift needed at each point reveals the 3D structure of
the scaie. If a portion of the image is uniform with no features, thai matching is impossible; if features are
present, a match can be obtained. In the ideal case of a step intensity edge, a match can be made with infinite
precision. Usually, heuristic measures of potential precision are used, such as finding "feature points". But
here, as in other spatial vision tasks, the spectrogram is useful to quantify this effect. The match precision
available at any point in the image is limited by the highest spatial frequaicy present at that point This is
illustrated hx Figure 29: a narrow bump or step edge can be matched with greater precision than the shallow,
broad bump in the signal. This is refiected in the higher spatial frequaicy content for the more precise
features, as shown in Figure 30, The figure shows an image whose scanlines are all identical to the intensity
profile shown in Figure 29. On top is the variable-window spectrogram of one scanline, which shows that
the step edge and narrow bump have higher spatial frequencies than the broad bump, and would tho*efore
give hif̂ ber precision matches. This spectrogram has window size I = 5/M.

The spectrogram also provides insight about another aspect of image matching: False matches. One of the
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Figure 30: Spectrogram and repeatogram for image matching
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