NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

cortglt, o Wil s ol

0 0 00 OO 0

Planning the Behavior of Dynamical Systems

Nicola Muscettola

CMU-RI-TR-QO-IOZ

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

April 1990

(©1990 Carnegie Mellon University

This work was sponsored in part by the National Aeronautics and Space Administration under
contract # NCC 2-531 and by the Robotics Institute, Carnegie Mellon University.

Contents

1 Introduction

2 Dynamical Systems

3 The Planning Problem

4 The Problem of Modularity

5 The HSTS Planning Framework

6 Conclusions

10

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

CARI
’ITTSB

1

List of Figures

State transition function for Spwo oo oL 4
The build(z,,) problem: (a) complete formulation on Spw; (b) modified
Fmeuild(x,,x,)(') for a change-based descriptionof BW.

N =

A simple temporal plan. (a) relevant operators; (b) temporal database. .

System components in BW. o e
Compatibilities for MOVE of TOP(block).
A simple plan in HSTS-TBDB. 1

DD Ot W
O O O 3 L

111

CARM
TTSBL

v

Abstract

Two important factors hinder our ability to address large planning problems. On
one hand, our understanding of planning is not independent from specific planning
frameworks. On the other hand, current planning frameworks lack modularity, a key
factor for “divide and conquer” approaches to large problems. This paper addresses
the formal definition of planning, points out some limitations of the current planning
frameworks, and describes a new planning framework that overcomes these limitations.
Our formal definition relies on the hypothesis that the problem solver’s model of the
world is a dynamical system. On this basis, we can clearly separate the knowledge
about how the world works from the heuristic knowledge needed to solve problems
quickly. Our definition is also independent from any particular planning representa-
tion framework. Our analysis of modularity indicates which features can support it
in a planning framework. We describe how these features are implemented in the
HSTS planning framework, a general purpose facility integrated in the HSTS schedul-
ing architecture. Its effectiveness to address complex “real world” domains has been
successfully demonstrated on the problem of building executable observation schedules
for the Hubble Space Telescope.

1 Introduction

Two important factors hinder our ability to address large planning problems. On one hand,
our understanding of planning is not independent from specific planning frameworks. On
the other hand, current planning frameworks lack modularity, a key factor for “divide and
conquer” approaches to large problems.

This paper addresses the formal definition of planning, points out some limitations of the
current planning frameworks, and describes a new planning framework that overcomes these
limitations.

So far, the main efforts to define planning have been devoted to the formal specification of
planning programs [4]. This is based on the widespread agreement that the data structures
that these programs manipulate indeed represent plans. However, it is also widely understood
that other data structures can represent plans [2]. Should we define again what planning
is in these different representations? Or should we try to give a representation-independent
definition that can be applied to several (and possibly all) representation frameworks?

Another aspect that is sometimes a source of confusion is the relationship between plan-
ning and acting. Traditionally, acting has been considered the main justification for develop-
ing plans. However, currently there is a consensus regarding the possibility of acting without
planning [3]. In the same way, we could observe that there can be planning without acting;
for example, we could imagine other outcomes of the battle of Waterloo if Napoleon had
made different decisions, or dream about how we would spend the million dollar prize of to-
morrow’s lottery extraction. The fact is that planning concerns the generation of predictions
relative to a model of the world, i.e. a representation of how the world operates. Acting, on
the other hand, concerns manipulating the real world, using sensor data to confirm or refute
expectations on what should happen, and consequently, adjusting the following actions.

The first part of the paper gives a formal definition of the planning problem, one of several
problems that a Problem Solver (PS) might address. We will assume that PS possesses an
explicit model of the temporal operation of the world and that such a model is independent of
the problems that PS can address with it. In particular, we will restrict our attention to those
PSs whose model of the world satisfies the axioms of a dynamical system [8]. Well-known
models, like systems of differential equations and automata, can be regarded as special cases
of dynamical systems. We define planning as the selection, from all the possible behaviors
of a dynamical system, of some of those that achieve given goals over a given time horizon.

Clearly, the model of the world represents only part of the knowledge that PS must
bring to bear during the problem solving process. Heuristic knowledge on the domain will
have to be applied in order to focus only on those aspects that are relevant, and therefore,
to efficiently obtain a solution. However, these heuristics, which are problem-dependent in
nature, must be clearly separated from the description of how the world operates, if we
want to build models of potential applicability to other problems. Relying on our formal
definition of planning, we will show how the lack of this separation could lead to mistaking
problem-specific representations for models of general applicability.

In Section 2 we give the axiomatic definition of dynamical system, while in Section 3 we
formalize the planning problem.

In order to represent and solve planning problems, PS needs a representation framework,
i.e., a language to describe models of the world and a data structure into which it can build
plans. While the definition of the planning problem given in the first part of the paper is
independent from the representation framework used, the second part discusses a important

1

SARI
ISBI

property that planning representation frameworks should possess in order to be applicable
to large "real world” domains: modularity. This property relates to how a representation
framework is able to support the decomposition of a model into elementary components and
the determination of the situation of each component at any instant of time. It has already
been noted that planning frameworks usually lack modularity [9]; in this paper, we will clearly
identify some features that should be present in modular representation frameworks. We then
present the HSTS planning framework and show how it supports modularity. The HSTS
planning framework is part of HSTS, an integrated planning and scheduling architecture;
its effectiveness has been successfully demonstrated on the problem of building executable
observation schedules for the Hubble Space Telescope [12].

Section 4 discusses the problem of modularity while Section 5 describes its solution in
HSTS.

Throughout the article we will refer to a class of Blocks Worlds (BW) consisting of a
table supporting a set of blocks, BLKS; the blocks can be manipulated either by a robot
arm or by a human operator. The arm can find a given block and move it from one place to
another, when it receives an appropriate command; the operator can arrange the blocks on
the table in any desired configuration.

2 Dynamical Systems

In order to justify intuitively the following discussion, we first sketch the hypothetic cognitive
process from which PS’s model of the world stems. At different points during its lifetime,
PS becomes interested in different portions of the world and in their evolution over time; we
will call each of these portions a dynamical system. PS identifies which aspects of the system
it wants to take into consideration and represents them as the state of the system. Usually
the system is not isolated from the rest of the world; PS represents its knowledge about the
exogenous influences as the input to the system. Finally, PS assumes that at any point in
time the state is a function of the past history of both input and state.

Describing the world according to input, state, and functional dependency among past
state, input and future state is not new to Al [10] and constitutes the basis of the modern
theory of control. To characterize the models of the world that result from the previous
cognitive process, we use the axiomatization from [8].

Definition 1 (Dynamical System) A dynamical system S is a composite mathemati-
cal structure:

S=<T,X,U,Q¢>

where T, the time set, is an ordered subset of the real numbers R, X is the state set,
U is the set of input values, @ = {u(.): T — U} is a set of acceptable input functions
and o is the state-transition function:

p:TxTxXxQ—= X

whose value is the state z(t) = p(t;7,z,u(.)) € X resulting at time t from the initial
state z = z(7) € X at initial time v € T under the action of the input u(.) € Q. Additional
arioms further specify the mathematical structure of Q) and ¢ (see [8]).2

1The complete axiomatization introduces also the concept of oufput as the only way an external observer
can measure the state of the system. 5

The previous definition accounts both for discrete time and continuous time descriptions
of the world, depending on how the set T is extracted from R. Moreover, it does not privilege
either input or state in the description of the how the world works; both input and state are
described as functions over the same time set T

The evolution of the system can be experienced by measuring both the input and the
state over time, i.e., by perceiving its behavior. More formally:

Definition 2 (Behavior) A pair b =< u(.),z(.) >, withu(.) € Qandz(.): T - X, is a
behavior of S if z(t) = ¢(t;7,z(7),u(.)), for each t and T over which ¢ is defined. The
behavior space B of S is the set of behaviors obtained by varying 7, z(7) and u(.) in every
possible way.

We now give a complete description of BW that satisfies the axioms of Definition 1. We
will use a STRIPS-like representation language.

We choose Tgw to be the set of natural numbers, A'. At any ¢ € N, the state of the
system zpw(t) € Xpw is a list whose elements can be any of:

1. ON(y1,y2) with y; € BLKS, y, € BLKS U {table} and y; # ya;
2. CLEAR(y:) with y; € BLKS.

To represent a situation physically possible in Spw, zpw (t) must also satisfy the following
axioms:

1. Vy; € BLKS, zpw(t) must contain one and only one ON(y,,y2) (i.e., every block must
rest on just one place);

2. Vy; € BLKS, zpw(t) cannot contain more than one ON(y,,y2) (i.e., every block can
support at most one block);

3. Vy, € BLKS, zpw(t) contains CLEAR(y,) if and only if it does not contain any
ON(y1,y2) (i-e., a block that does not support anything is clear).

Xpw also contains the special list [CRASH] that characterize a situation consequent to
the arm moving a supporting block.

The set of possible inputs, Ugw, contains MOVE(y,,y2), with y; € BLKS and y, €
BLKS U {table}, which represents a command to the robot arm, RESTORE(z), with z €
Xw B, accounting for the human operator’s intervention, and NO-OP, the lack of any external
influence on Spw.

We assume no a priori restrictions on the input; therefore Qpw is the set of all the infinite
sequences of elements from Ugw.

Finally, ¢pw is defined by the program in Figure 1.

The explicit introduction of a discrete time set does not represent a real novelty with
respect to the change-based temporization of classical STRIPS-based descriptions. We could
easily obtain it by assuming that the clock is synchronized with each non-empty input value.
Formally, this means restricting Qpw to the set of sequences formed by any combination of
indefinite length of MOVEs and RESTOREs, followed only by NO-OPs.

Spw explicitly represents the undefined state [CRASH]. The rationale behind this is
that, although we know that only one of the legal configuration of stacked blocks can result
from an “incorrect” MOVE, we have not represgnted enough information about how the world

[

zpw(t + 1) := case upw(t)
MOVE(y1,92):
if (CLEAR(y1) € zBw(t)) A (CLEAR(y2) € zBw (1))
then zpw(t) — [ON(y1,9a), CLEAR(y2)]
+ [ON(y1,¥2), CLEAR(ys)]
else [CRASH];
RESTORE(z):
z;
NO-OP:
:L'Bw(t).

Figure 1: State transition function for Spw .

operates in the model in order to determine, without any sensory input, an accurate estimate
of where the blocks will fall. However, we cannot avoid to explicitly include [CRASH] in the
dynamical system, if we want to insure the independence of the model of the world from the
problems that we can solve on it. In fact, suppose we explicitly represent only the results
of “correct” MOVEs (i.e., those moving a non-supporting block on a clear support) [7]. A
consequence of this would be the restriction of Qpw to the sequences that, once plugged in
sw, produce evolutions of the state without CRASHes; in other words, Qsw would become
a function of @pw. This could be explained easily if we assumed the existence of an actor
that, by knowing ppw and the goal of excluding CRASHes, appropriately restricts Qpw.
But in this case we would not really be modeling BW but a system whose operation is a
function of the solution of planning problems. This is clearly at odds with the requirement
of indep > of PS’s model of the world from the problem to be addressed.

naepenaent

lanning Problem

Having identified a portion of the world and represented it as a dynamical system, PS can
now address a planning problem. First of all, PS will focus its attention over a portion of the
time line over which the system evolves; it will then consider, of all the possible behaviors,
those that, during the time horizon, achieve certain goals. Achieving all the goals is the
criterion that PS uses to decide if it has a solution. Moreover, PS will also have preferences
that allow it to decide, given any two solutions, which is better. Finally, PS itself will be
operating under external constraints (e.g., an actor wanting to use its results) that might
limit the amount of time at its disposal [5].

Formally, we define a planning horizon H, an interval [t,,¢;] C R, with ¢, possibly —co
and {; possibly 4co. To characterize the focusing of PS to H, we define By as the set
oblained by restricting, for each b € B, each component of b to TN H. We then define a goal
(.): 2% — {T,F} and a preference I1(.) : 2% — R. Finally we define a planning deadline
d € R* {possibly +00). ’

Definition 3 (Planning problem) Given a dynamical system S, a planni izon |

' , @ planning horizon H, a
goal T, a ;mgﬁmnw 11 and a planning deadline d, find a set P C By such that (P)=T and
[I{P) has the mazimum value among the alternative solutions considered within the deadline

d.
4

HBVV,build(z.,xl) =

[0, +o0]
Tpw,build (z,ep)(P) = [VOEP

(u(.) does not contain RESTOREs) A

(z(.) does not contain CRASHes) A

(z(0) = z,)A

(Btf >0 (:It(tf) = :L‘f) A (Vt >ty u(t) = NO-OP)] A
[Vbbe PV, € P

(eliminating all the NO-OPs from both u, (.) and

up,(.), we obtain the same sequence of MOVEs) |

HBW,build(:,,;!)(’P) = — (number of MOVEs in any b € P)

dpw,build(z,z,) = T

()

Pmeuild(:.,z,)(p) =[[Pl=1]A
[VbeP
(u(.) does not contain RESTOREs) A
(z(.) does not contain CRASHes) A
(z(0) = z,4)A
(3t; > 0z(ts) = z4) A (Vt 2> tfu(t) = NO-OP)]

(b)

Figure 2: The build(z,,z;) problem: (a) complete formulation on Spw; (b) modified
r Bw,build (=, ’x!)(.) for a change-based description of BW.

A plan is any P # 0. The planning problem has no solution if and only if the empty set
is the only one to satisfy T'.

Going back to Spw (defined in Section 2), let’s consider the problem of generating a
sequence of commands for the robot arm to build a given block configuration zj, starting
from a known initial state z, (problem build(z,,z;)). Its formulation requires the entities
in Figure 2 (a). If we modify Qpw to obtain a change-based temporization of Spw (as
described in Section 2), we can simplify ', build(z,z;) 23 shown in Figure 2 (b).

Different PSs can use different representation frameworks (e.g., STRIPS-like, temporal
interval-based, etc.) to address the same planning problem and can differ with respect to the
heuristic knowledge that they can bring to bear. Their relative performances will depend on
both these factors. Notice that the heuristic knowledge that is relevant to effectively solve a
planning problem depends on all the entities in Definition 3. For example, given build(z,,zy)
on Sgw, PS could restrict its attention to the portion of ¢pw concerning only “correct”
MOVE operations; this “heuristic” can be easily proved from the first two constraints on

5

CAR
TTSE

u(.) and z(.) in FBW,build(z.,z,)' Although it is reasonable to expect that any PS with an
adequate level of “intelligence” should realize this, this is not a necessary condition to have
a PS that solves this planning problem.

Other planning problems could be easily formulated on Spw. For example we might
want to build inputs with sequences of MOVEs that every once in a while generate a CRASH,
after which the intervention of the human operator RESTOREs the blocks configuration
immediately preceding the CRASH. We want to remark that, to solve a planning problem, PS
does not need to know how its plans are going to be used. A possible execution environment
for a plan that solves the problem just mentioned could consist of an actor that explicitly
sends the MOVE and RESTORE commands respectively to the robot arm and to the human
operator. But we could also imagine that the actor could send the MOVE commands to the
arm but would not have any way to explicitly request RESTOREs from the human operator.
This could be the case in a psychological experiment where the goal of the actor is to time
the performance of a human in recognizing and recovering from errors in a stream of actions
of another agent. The same plan will be used in both cases.

4 The Problem of Modularity

We now turn our attention to the representation frameworks used in planning, and to a prop-
erty of theirs that is highly desirable: modularity. A representation framework is modular
if its representation language adequately supports descriptions of systems as collections of
interacting components, and its plan data structure allows the determination of the situa-
tion of each component at any instant of time. Modularity is one of the keys to “divide and
conquer” approaches to modeling and solving planning problems in complex “real world”
application domains [12].

In this section we will show that current planning representation frameworks are not
modular; consequently, we will identify which structuring features need to be added. Modu-
larization primitives have been introduced in activity based planning frameworks [9]. Instead,
our discussion will focus on explicit representations of both state and input, given that in a
dynamical system both input and state have equal weight.

We examine the modularity of an interval-based STRIPS representation framework [2].
To conduct our analysis, we consider a restricted BW domain with only two blocks, a and
b, and a robot arm, arm; we concentrate on the representation of a simple plan to stack
a on b. The relevant operators are given in Figure 3 (a). An operator specifies the facts
that have to hold on the state when the operator is applied, and their temporal relations
with the action designator; for example, when the first operator is applied, the time interval
during which ON(y,,table) holds must overlap that over which MOVE(y,,y2) occurs. A
database completely describing the resulting behavior is depicted in Figure 3 (b). Notice
that a MOVE accounts for the whole control sequence executed by arm. With reference to
Figure 3 (b), we can identify three distinct phases during MOVE(a, b); the identification of
a and approach to it, in #; <t < t,, the grasping of a, moving to b and ungrasping of a, in
ta <t < t3, and the moving away from a, in t; <t < 4.

To evaluate the modularity of this representation framework, first we need to decide what
constitutes a primitive system component. A reasonable initial hypothesis is to use domain
objects, i.e. the objects designated by constants in ground facts. Aside from requiring the
introduction of an identifier for the robot arm in at least one predicate (for example in MOVE
and NO-OP), not all domain objects are systgm components. Otherwise, if the description

MOVE (y1, y2)

ON (y1, table), OVERLAPS NO-OP
CLEAR o, OVER[4 PS MOVE (y1, y2), MEETS
on v g MOVE (y3, ys), MET-BY
ON (y1, y2), OVERLAPPED , ¥4),
CLEAR (y1), OVERLAPPED
(a)
1 MOVE (a, b) 1
! 1
NO-OP NO-OP
i l———
CLEAR (a) 1 : CLEAR (a)
ON(a, table) 1
! L ON (a, b)
1
CLEAR (b) H
1
ON (b ,table)
v * L] 14 oo »
u -1 B % neé
(b)

Figure 3: A simple temporal plan. (a) relevant operators; (b) temporal database.

=

of our domain required predicates like COLOR(a,red) or HEIGHT (b, 3), we would have to
consider red and 3 as components of the system. Therefore, we need to declare explicitly
which domain objects are system components and which are not.

We can now ask how easy it is to obtain the situation of all the system components
at any time ¢t. A simple method would be to take all the ground facts that hold in the
database at time ¢ and distribute them to the system components that appear as their
arguments. So, in the example of Figure 3 (b), before ¢; the situation of a is given by
CLEAR(a) and ON(a, table), while ON(a,b) and ON(b,table) account for the situation of
b after t4. However the interpretation of MOVE(a,b) is not as straightforward. In fact, while
it reasonably represents the situation of arm between ¢; and ¢4, it directly says something
about the situation of a only between t, and t; while it never says anything about the
situation of b. Otherwise, we would have to assume that the state of an inert object in
the physical world changes just as a consequence of an agent taking it into consideration.
Therefore, the meaning of a ground fact can change over time with respect to the different
system components: we need additional indexing features in the language to resolve this
ambiguity.

Finally we could ask if the description of the situation of a system component could not
be further decomposed. We could draw a comparison with the way we describe systems in
physics; for example, in order to give the behavior of a thermo-electro-mechanical system,
we are required to give a continuous function over time for each of the properties of interest
of each component of the system (e.g., the position of a body, the temperature of a mass of
gas, the electric voltage imposed on a resistance). In our BW example, we could be easily
convinced that this decomposition in properties is possible. In fact, we can describe the
input with the only property “task being executed by arm”, and the state of each block
with the situation of both its top and its bottom.

5 The HSTS Planning Framework

In the previous section, we have identified the following requirements for a representation
language that supports a modular description of dynamical systems:

1. explicit declaration of the system components and of their dynamical properties;

2. separate description of the characteristic of each value for each property to which it is
associated.

The HSTS planning framework, described below, satisfies the previous requirements. The
framework consists of a Domain Description Language (HSTS-DDL), to specify the structure
of dynamical systems, and a Temporal Behavior Data Base (HSTS-TBDB), in which it is
possible to build plans. For a detailed description of the HSTS planning framework, see [11].

In HSTS-DDL, each system component is represented as a frame; the dynamical proper-
ties of the component are slots in the frame. For example, Figure 4 shows the prototypical
system components for BW.

To specify the system in Section 4, we need one instance of robot-arm and two instances
of block.

Each property can have one and only one value at any instant of time. HSTS-DDL
requires the specification of the space of all the possible values that each property can assume.
In HSTS-DDL, a value is a tuple; therefore, éor each property the space of possible values

{{ robot-arm {{ human-operator {{ block

TASK: }} TASK: }} TOP:
BOTTOM: }}

Figure 4: System components in BW.,
< TOP (y1), MOVE (y1, y2) >

< TOP (y1), CLEAR (y1) >, MEETS

< TASK (robot-arm), MOVE (y1, y2) >, CONTAINS
< BOTTOM (y1), MOVE (y1, y2) >, EQUALS

< TOP (y1), CLEAR (y1) >, MET-BY

Figure 5: Compatibilities for MOVE of TOP(block).

is a set of relations. In BW, for example, the property TOP(y;), where y; is an instance
of block, can be CLEAR(y1), ON(y1,y2), MOVE(y1,y2), where y; is either an instance of
block or the special symbol table. Notice that, although table is a domain object, it is not
considered a system component in our description.

HSTS-DDL requires one to specify a value descriptor for each pair < p,v >, where pisa
property and v is a value. The value descriptor specifies two distinct pieces of information:
1) duration; 2) compatibility specification.

The duration of a value is the temporal distance between its start event and its end event.
Temporal distances are specified as intervals [d,D] (D > d > 0) where d is a lower bound
to the distance and D is an upper bound.

The compatibility specification consists of sets of compatibilities, not necessarily disjoint.
Each compatibility is a temporal constraint between a property/value pair < p’,v' > and
< p,v >. The temporal constraints used in HSTS-DDL are equivalent to the temporal
relations in [1] but allow also the specification of temporal distances among the extremes of
the intervals [6] . The meaning of a compatibility specification for < p,v > is the following:
for each behavior b of the system, if the value v appears in b on the property p over an
interval of time, then there is a compatibility set in the compatibility specification such that
all the compatibilities in the set are satisfied in b.

For example, our specification of BW in HSTS-DDL will contain compatibility specifi-
cations relative to the two pairs:

< TASK(robot-arm), MOVE(y,, y2) >
< TASK(robot-arm),NO-OP >

These compatibility specifications will contain compatibility sets corresponding to those
in Figure 3 (). The definition of BW will also contain the compatibility set in Figure 5.

We observe that HSTS-DDL homogeneously treats both input and state properties, in
the sense that all values of all properties must have a value descriptor. This satisfies the
requirement of equal weight for input and state.

We should not be surprised to find more than one property with the same value at the
same time. This is analogous to what happens in continuous descriptions of the behavior
of physical systems. There the same real number can describe different things at the same
time, i.e., the value of different physical propgrties in different measuring units.

{{arm

TASK: NO-OP MOVE (a,b) . _NOOP
! T

{{a

TOP: CLEAR (a) | MOVE (a, b) | CLEAR (a)

BOTTOM: — 2N (2. table) 4 MOVE(@.b) 4 ON@.b) .
{{b'rop; CLEAR (b) 1 ON (a, b)

BOTTOM: ON (b ,table) n

nume -

Figure 6: A simple plan in HSTS-TBDB.

The HSTS-TBDB is a constraint-based temporal database that extends the time maps
approach [6]. At any point in time, HSTS-TBDB can only represent a set of behaviors of
a dynamical system specified in HSTS-DDL. The constraints allow one to leave partially
unspecified both the values and the time of occurrence of their start and end events on
different segments of the time line. A planner working on HSTS-TBDB can post and refine
constraints derived both from the value compatibilities and from the additional conditions
added by the planning problem. As an example, Figure 6 depicts the representation in
HSTS-TBDB of the same behavior of Figure 3 (b).

Further details on the HSTS planning frameworks can be found in [11].

6 Conclusions

This paper addresses the definition of the planning problem and the representational tech-
niques that we need to solve it.

Our definition of the problem clarifies its mathematical structure and is independent
from the representation frameworks over which we can implement planners. Moreover, our
approach helps to clearly distinguish the knowledge about how the world works from the
heuristic knowledge about how to solve problems quickly.

The HSTS framework is a general purpose facility consisting of HSTS-DDL, a description
language to specify dynamical models of the world, and HSTS-TBDB, a constraint-based
temporal database in which plans can be built by incremental refinements. The HSTS
planning framework solves the problem of modularity, one of the keys to addressing large
“real world” applications. The demonstration of the effectiveness of the HSTS approach is
an implemented scheduling architecture that has been successfully applied to the generation
of executable observation schedules for the Hubble Space Telescope.

Acknowledgments

The author would like to thank Stephen Smith for his helpful comments. Thanks also to
Roberto Bisiani, Amedeo Cesta, Daniela D’Aloisi, Robert Frederking and Carlo Tomasi for
having read earlier drafts of this paper.

10

References

[1] J. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832-843, 1983.

[2] J.F Allen and J.A. Koomen. Planning using a temporal world model. In Proceedings of
the 8th IJCAI pages 741-747, William Kaufmann, 1983.

[3] R.A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, RA-2(1):14-23, 1986.

[4] D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-377, 1987.

[5) T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceedings of
AAAI 88, pages 49-54, Morgan Kaufmann, 1988.

[6] T.L. Dean and D.V. McDermott. Temporal data base management. Artificial Intelli-
gence, 32:1-55, 1987.

[7] M.R. Genesereth and N.J. Nilsson. Logical Foundations of Artificial Intelligence. Mor-
gan Kaufmann, 1987.

[8] R.E. Kalman, P.L. Falb, and M.A. Arbib. Topics in Mathematical System Theory.
McGraw-Hill, 1969.

[9] A.L. Lansky. Localized event-based reasoning for multiagent domains. Computational
Intelligence, 4(1):319-340, 1988.

[10] J. McCarthy and P. Hayes. Some phylosophical problems from the standpoint of artificial
intelligence. in Machine Intelligence 4, B. Meltzer and D. Michie (editors), pages 463-
502. Edinburgh University Press, 1969.

[11] N. Muscettola. The HSTS Planning Framework. Technical Report (in preparation),
The Robotics Institute, Carnegie Mellon University, 1990.

[12] N. Muscettola, S.F. Smith, G. Amiri, and D. Pathak. Generating Space Telescope
Observation Schedules. Technical Report CMU-RI-TR-89-28, The Robotics Institute,
Carnegie Mellon University, 1989.

11

