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ABSTRACT 

The phonological structure of human languages is intricate, yet highly 
constrained. Through a combination of connectionist modeling and 
linguistic analysis, we are attempting to develop a computational basis 
for the nature of phonology. We present a connectionist architecture 
that performs multiple simultaneous insertion, deletion, and mutation 
operations on sequences of phonemes, and introduce a novel additional 
primitive, clustering. Clustering provides an interesting alternative to 
both iterative and relaxation accounts of assimilation processes such as 
vowel harmony. Our resulting model is efficient because it processes 
utterances entirely in parallel using only feed-forward circuitry. 

Phonological phenomena can be quite complex, but human phonological behavior is 
also highly constrained. Many operations that are easily learned by a perceptron-like 
sequence mapping network are excluded from real languages. For example, as Pinker 
and Prince (1988) point out in their critique of the Rumelhart and McClelland (1986) 
verb learning model, human languages never reverse the sequence of segments in a 
word, but this is an easy mapping for a network to learn. On the other hand, we note that 
some phonological processes that are relatively common in human languages, such as 
vowel harmony, appear difficult for a sequence-mapping architecture to learn. Why are 
only certain types of sequence operations found in human languages, and not others? We 
suggest that this is a reflection of the limitations of an underlying, genetically-determined, 
specialized computing architecture. We are searching for this architecture. 

1 INTRODUCTION 
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Our work was initially inspired by George Lakoff's theory of cognitive phonology 
(Lakoff, 1988, 1989), which is in turn a development of the ideas of John Goldsmith 
(to appear). Lakoff proposes a three-level representation scheme. The M (morpho-
phonemic) level represents the underlying form of an utterance, the P (phonemic) level 
is an intermediate form, and the F (phonetic) level is the derived surface form. 
Lakoff uses a combination of inter-level mapping rules and intra-level well-formedness 
conditions to specify the relationships between P- and F-level representations and the 
M-level input. In a connectionist implementation, the computations performed by the 
mapping rules are straightforward, but we find the well-formedness conditions troubling. 
Goldsmith's proposal was that phonology is a goal-directed constraint satisfaction sys
tem that operates via parallel relaxation. He cites Smolensky's harmony theory1 Lakoff 
has adopted this appeal to harmony theory in his description of how well-formedness 
conditions could work. 
In our model, we further develop the Goldmsith and Lakoff mapping scheme, but we reject 
harmony-based well-formedness conditions for several reasons. First, harmony theory 
involves simulated annealing search. The timing constraints of real nervous systems rule 
out simulated annealing. Second, it is not clear how to construct an energy function for 
a connectionist network that performs complex discrete phonological operations. Finally 
there is our desire to explain why certain types of processes occur in human languages 
and others do not Harmony theory alone is too unconstrained for this purpose. 

We have implemented a model called M^P (for "Many Maps'9 Model of Phonology) that 
allows us to account for virtually all of the phenomena in (Lakoff, 1989) using a tightly-
constrained, purely-feedforward computing scheme. In the next section we describe the 
mapping matrix architecture that is the heart of M^P. Next we give an example of an 
iterative process, Yawelmani vowel harmony,2, which Lakoff models with a P-level well-
formedness condition. Such a condition would have to be implemented by relaxation 
search for a "minimum energy state" in the P-levei representation, which we wish to 
avoid. Finally we present our alternative approach to vowel harmony, using a novel 
clustering mechanism that eliminates the need for relaxation. 

2 THE MAPPING MATRIX ARCHITECTURE 
Figure 1 is an overview of our "many maps" model. M-P constructions compute how 
to go from the M-level representation of an utterance to the P-level representation. The 
derivation is described as a set of explicit changes to the M-level string. M-P construc
tions read the segments in the M-level buffer and write the changes, phrased as mutation, 
deletion, and insertion requests, into slots of a buffer called P-deriv. The M-level and 
P-deriv buffers are then read by the M-P mapping matrix, which produces the P-level 
representation as its output The process is repeated at the next level, with P-F con
structions writing changes into an F-deriv buffer, and a P-F map deriving an F-level 

1 Smolensky's "harmony theory" should not be confused with the linguistic phenomenon of "vowel harmony." 
2Yiwelmani is t dialect of Yokuts, an American Indian language from California. Our Yawelmani data is 

drawn from Kenstowicz and Kisseberth (1979), as is LakofTs. 
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Figure 1: Overview of the "many maps" model. 

representation. A final step called "canonicalization" cleans up the representations of the 
individual segments. 

Figure 2 shows the effect of an M-P construction that breaks up CCC consonant clusters 
by inserting a vowel after the first consonant, producing CiCC. The input in this case 
is the Yawelmani word /?ugnhin/ "drinks", and the desired insertion is indicated in P-
deriv. The mapping matrix derives the P-level representation right-justified in the buffer, 
with no segment gaps or collisions. It can do this even when mudipie simultaneous 
insertions and deletions are being performed. But it cannot perform arbitrary sequence 
manipulations, such as reversing all the segments of an utterance. Further details of the 
matrix architecture are given in (Touretzky, 1989) and (Wheeler and Touretzky, 1989). 

3 ITERATIVE PHENOMENA 
Several types of phonological processes operate on groups of adjacent segments, often by 
making them more similar to an immediately preceding (or following) trigger segment. 
Vowel harmony and voicing assimilation are two examples. In Yawelmani, vowel har
mony takes the following form: an [ahigh] vowel that is preceded by an [ahigh] round 
vowel becomes round and back. In the form /do:s+al/ "might report", the non-round, 
back vowel /a/ is [—high], as is the preceding round vowel /o/. Therefore the /a/ becomes 
round, yielding the surface form [do:sol]. Similarly, in /dub+hin/ "leads by the hand", the 
[+high] vowel IM is preceded by the [+high] round vowel /u/, so the N becomes round and 
back, giving [dubhun]. In /bok'+hin/ "finds", the /i/ does not undergo harmony because 
it differs in height from the preceding vowel. 
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Figure 2: Performing an insertion via the M-P mapping matrix. 

Harmony is described as an iterative process because it can apply to entire sequences of 
vowels, as in the following derivation: 

/t'ul+sit+hin/ "burns for" 
A'ul+sut+hin/ harmony on second vowel 
/t'ul+sut+hun/ harmony on third vowel 

In Yawelmani we saw an epenthesis process that inserts a high vowel N to break up 
lengthy consonant clusters. Epenthetic vowels may either undergo or block harmony. 
With the word /logw+xa/ "let's pulverize*9, epenthesis inserts an N to break up the /gwx/ 
cluster, producing /logiw+xa/. Now the /a/ is preceded by a [+high, -round] vowel, so 
harmony does not apply, whereas in /do:s+al/, which has the same sequence of underlying 
vowels, it did. This is an instance of epenthesis blocking harmony. In other environments 
the epenthetic vowel may itself undergo harmony. For example: 

/?ugn+hin/ "drinks'* 
/?uginhin/ epenthesis 
/?ugunhin/ harmony on epenthetic vowel 
/?ugunhun/ harmony on third vowel 

The standard generative phonology analysis of harmony utilizes the following rule, ap
plying after epenthesis, that is supposed to iterate through the utterance from left to right, 
changing one vowel at a time: 
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Lakoff offers an alternative account of epenthesis and harmony that eliminates iteration. 
He states epenthesis as an M-P construction: 

M: C C {C,#} 
I I I 

K [1 i [ J 
The harmony rule is stated as a P-level well-formedness condition that applies simulta
neously throughout the buffer 

P: If [+syll, +round, ahigh] Co X, 
then if X a Osyll, ahigh], then X = [+round, +back]. 

Starting with /?ugn+hin/ at M-levei, Lakoff's model would settle into a representation 
of /?ugunhun/ at P-level. We repeat again the crucial point that this representation is 
not derived by sequential application of rules; it is merely licensed by one application 
of epenthesis and two of harmony. The actual computation of the P-level representation 
would be performed by a parallel relaxation process, perhaps using simulated annealing, 
that somehow determines the sequence that best satisfies all applicable constraints at 
P-level. 

4 THE CLUSTERING MECHANISM 
Our account of vowel harmony must differ from Lakoff s because we do not wish to 
rely on relaxation in our model. Instead, we introduce special clustering circuitry to 
recognize sequences of segments that share certain properties. The clustering idea is 
meant to be analogous to perceptual grouping in vision. Sequences of adjacent visually-
similar objects are naturally perceived as a whole. A similar mechanism operating on 
phonological sequences, although unprecedented in linguistic theory, does not appear 
implausible. Crucial to our model is the principle that perceived sequences may be 
operated on as a unit This allows us to avoid iteration and give a fully-parallel account 
of vowel harmony. 

The clustering mechanism is controlled by a small number of language-specific param
eters. The rule shown below is the P-F clustering rule for Yawelmani. Cluster type 
[+syllabic] indicates that the rule looks only at vowels. (This is implemented by an 
additional mapping matrix that extracts the vowel projection of the P-level buffer. The 
clustering mechanism actually looks at the output of this matrix rather than at the P-level 
buffer directly.) The trigger of a cluster is a round vowel of a given height, and the 
elements are the subsequent adjacent vowels of matching height Application of the rule 
causes elements (but not triggers) to undergo a change; in this case, they become round 
and back. 
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Yawelmani vowel harmony — P-F mapping: 
Cluster type: [+syllabic] 
Trigger [+round, ahigh] 
Element: [ahigh] 
Change: [+round, +back] 

The following hypothetical vowel sequence illustrates the application of this clustering 
rule. Consonants are omitted for clarity: 

1 2 3 4 5 6 7 8 9 
i u i i e o o a i 

trigger. + + 
element: + + + + 

The second vowel is round, so it's a trigger. Since the third and fourth vowels match it 
in height, they become elements. The fifth vowel is [-high], so it is not included in the 
cluster. The sixth vowel triggers a new cluster because it's round; it is also [-high]. The 
seventh and eighth vowels are also [-high], so they can be elements, but the ninth vowel 
is excluded from the cluster because is [+high]. Note that vowel 7 is an element, but 
it also meets the specification for a trigger. Given a choice, our model prefers to mark 
segments as elements rather than triggers because only elements undergo the specified 
change. The distinction is moot in Yawiemani, where triggers are already round and 
back, but it matters in other languages; see (Wheeler and Touretzky, 1989) for details. 
Figures 2 and 3 together show the derivation of the Yawelmani word [?ugunhun] from 
the underlying form /?ugn+hin/. In figure 2 an M-P construction inserted a high vowel 
In figure 3 the P-F clustering circuitry has examined the P-level buffer and marked the 
triggers and elements. Segments that were marked as elements then have the change 
[•round, +back] written into their corresponding mutation slots in F-deriv. Finally, the 
P-F mapping matrix produces the sequence /?ugunhun/ as the F-level representation of 
the utterance. 

5 DISCUSSION 
We could not justify the extra circuitry required for clustering if it were suitable only 
for Yawelmani vowel harmony. The same mechanism handles a variety of other iterative 
phenomena, including Slovak and Gidabal vowel shortening, Icelandic umlaut, and Rus
sian voicing assimilation. The full mechanism has some additional parameters beyond 
those covered in the discussion of Yawelmani. For example, clustering may proceed from 
right-to-left (as is the case in Russian) instead of from left-to-right Also, clusters may 
be of either bounded or unbounded length. Bounded clusters are required for alternation 
processes, such as Gidabal shortening. They cover exactly two segments: a trigger and 
one element We are making a deliberate analogy here with metrical phonology (stress 
systems), where unbounded feet may be of arbitrary length, but bounded feet always 
contain exactly two syllables. No language has strictly trisyllabic feet We predict a sim
ilar constraint will hold for iterative phenomena when they are reformulated in parallel 
clustering terms, i.e., no language requires bounded-length clusters with more than one 
element 
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Figure 3: Clustering applied to Yawelmani vowel harmony. 
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Our model makes many other predictions of constraints on human phonology, based 
on limitations of the highly-structured "many maps'* architecture. We are attempting to 
verify these predictions, and also to extend the model to additional aspects of phonological 
behavior, such as syllabification and stress. 
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Abstract 
M^P, our "many maps" model of phonology, raises a number of questions 

about the nature of linguistic explanations and the ways in which connectionist 
models can contribute to the advancement of phonological theory. In this paper 
we attempt to answer some of the questions we and others have raised as a result of 
this work. We consider four sources of possible phonological constraints, and argue 
that artidilatory and intelligibility constraints are insufficient to fully account for 
human phonological behavior. Computational constraints such as those suggested 
by our connectionist model may provide a solution. 

1. Introduction 

For a variety of reasons, we view phonology as an attractive starting point for cognitive 
scientists seeking to understand language. The domain, sequences of phonemes, is 
purely symbolic. The operations are familiar: chiefly insertion, deletion, and mutation 
of elements. The structures involved are quasi-linear. (Some theories employ limited-
depth trees to represent syllables or feature hierarchies, but phonology does not admit 
self-similar embedded structures or objects of unbounded depth of the sort required 
by syntax.) True phonological processes are highly regular they do not suffer from 
the plethora of special cases that complicates syntax and morphology. Even in those 
processes that are morphologically conditioned (and thus not purely phonological), such 
as the English /k/—>/s/ rule that derives "electricity" from "electric" plus "-ity," the 
phoneme transformation itself is regular. Complexity comes only from the attachment 
of a morphological condition to the rule's environment. 

Phonology is a unique language component for yet another reason: it is an au
tonomous process, not intertwined with higher levels in the way that syntax and seman
tics mutually interact. We acknowledge the existence of morphophonemic processes, 
but even here, influence flows in only one direction: morphological conditioning of 
phonological rules. Phonological processes do not interact with morphology. Auton
omy is perhaps the most compelling reason why we see phonology as an approachable 
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domain for connectionist modeling. It is a domain where one may hope to achieve deci
sive and convincing results about human capabilities by pursuing a computation-driven 
approach. 

Our goal in developing M^P, our "Many Maps" Model of Phonology, is not to merely 
imitate human behavior or to implement a pre-existing theory. Rather, it is to investigate 
the ways in which adopting a particular model of computation—and its accompanying 
biologically-inspired constraints—can direct the development of linguistic theories, and 
even provide motivations for constraints on linguistic processes. 

2. Overview of the Model 

M^P began as an attempt to implement George Lakoff s theory of cognitive phonology 
(Lakoff, 1988; Lakoff, 1989) in connectionist hardware. An early, incomplete version 
was described in (Touretzky, 1989). The current version is described in (Wheeler 
& Touretzky, 1989; Touretzky & Wheeler, 1989; Touretzky & Wheeler, in press). 
This version differs substantially from Lakoff s proposal—a reflection of the theoretical 
progress made as the model has matured. 

M-Level 
Input 

mut 
P-Deriv: del 

ins 

-low 
1 _ 

_ i 

P-Level 
M-P Mapping 

Matrix 

Figure 1: Example of the model's M-P map. 

We cannot fully describe the details of the model here, but Figure 1 gives the flavor 
of our approach. This figure shows how an M (morpho-phonemic) level representation 
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of an example utterance, /akg/, is mapped to a P (phonemic) level representation, /egi/. 
In this artificial example the derivation involves three changes to the string: a mutation, 
a deletion, and an insertion. The changes are described in a "change buffer" called 

• P-deriv. The M-level and P-deriv buffers both feed into an M-P mapping matrix whose 
job is to derive the phonemic representation, right-justified in the P-level output buffer, 
in one parallel step. The mapping matrix assures that there are no gaps or collisions in 
the output caused by multiple simultaneous insertions and deletions. 

How do changes get written into the change buffer? One way is via M-P construc
tions (the counterpart of "rules" in traditional generative phonology) which examine 
the M-level representation and insert changes into P-deriv. Our model also contains a 
clustering mechanism that makes it possible to recognize clusters of adjacent segments 
sharing some property. Clustering provides an alternative to the traditional iterative 
accounts of phenomena such as vowel harmony, or voicing assimilation in consonant 
clusters, reminiscent of autosegmental representations. The M-level cluster modules 
are implemented using additional maps; cluster constructions read the states of these 
modules and write their changes into P-deriv, just as the M-P constructions do. 

Most recently we have added a syllabifier to our model. Many insertion and deletion 
phenomena can be explained by the requirement that utterances be organized into well-
formed syllables. Our syllabifier provides additional input into the mapping matrix, so 
that, for example, unsyllabified M-level segments will not appear at P-level, in effect 
causing the segment to be deleted. 

The P-level representation is then fed through a second, very similar bit of mapping 
hardware called the the P-F map (not shown in Figure 1) to derive the F-level (phonetic) 
representation of the utterance. This P-F mapping is controlled by P-F constructions 
plus the special constructions associated with P-level clustering modules. 

Our model is not capable of arbitrary string transformations. Its behavior is tightly 
constrained by a combination of factors: the mapping matrix can only perform inser
tions, deletions, and mutations of segments; there are only two levels of derivation, 
M-P and P-F; the clustering modules are highly specialized, and just powerful enough 
to model actual phonological phenomena such as vowel harmony; the syllabification 
mechanism is equally specialized. The key question that remains is: what is the rela
tionship between the constraints on the model's behavior and the constraints that human 
beings appear to observe? 

3« Sources of Phonological Constraints 

In trying to account for the nature of of human phonological behavior, we find there 
are four sources of potential constraints. We consider them in turn. 
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3.1. Articulation 

The first source of constraints is articulatory convenience: some sounds are simply 
easier to make than others. For example, affricates (the ch sound in "church") are 
relatively rare—English being an exception—while alvelar fricatives such as Isl occur 
in many languages. Likewise, the basic vowels /a,i,u/ occur almost universally, while 
U, A and D are less common. Another example is consonant clusters. Many languages 
severely limit the ways in which consonants may adjoin; some have a strict CV structure 
in which consonants are always separated by vowels. (We note that insertion rules are 
frequently motivated by a syllabifier's desire to break up "unpronounceable" consonant 
clusters.) In contrast, English permits a variety of tri-consonantal clusters, such as /spl/ 
("splash") and /skr/ ("scrap"). Many languages permit even more complex clusters. 

Articulatory constraints are only weak constraints, because sequences that speakers of 
one language find unpronounceable may sound natural to other communities. However, 
it is still possible to objectively classify certain sounds or sound sequences as more 
marked than others, based on articulatory effort. If one looks at a wide spectrum of 
languages, the more marked sequences appear less frequently. 

3.2. Computability 

The second source of potential constraints on phonology is computability. Computa
tional constraints reflect fundamental limitations imposed by the wiring of the brain's 
language production areas. These are the hard, universal constraints we are attempting 
to capture in M^P. By its very nature, the model is unable to perform certain types 
of string transformations, such as reversing the order of phonemes in an utterance, or 
permuting the first and last consonant of a word. The model therefore predicts that no 
human language could possibly do these things. 

We see a close relationship between our approach to phonology and the notion of 
parameters in (Chomsky, 1988). Chomsky suggests that languages can be characterized 
by particular sets of parameter values. The number of these parameters, their meanings, 
and their range of legal values is the province of Universal Grammar. The job of 
the language learner is to determine the particular parameter settings in use in his or 
her linguistic environment. This proposal has been put into practice by Dresher and 
Kaye (1990), who describe a mechanism for learning a language's metrical structure 
from examples. (The Dresher and Kaye model was first brought to our attention by 
Eric Nyberg, who suggests an alternative approach to the parameter setting problem in 
(Nyberg, 1989).) 

The notion of a genetically-determined language machine configured by parameter 
values is certainly in harmony with our M^P model. However, language universals can 
presumably be captured by more than one parameter scheme (and more than one ma
chine architecture), just as there are several distinctive feature systems that adequately 
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characterize phonemes. Chomsky leaves open the questions of where parameter sys
tems come from and how to choose among them when evaluating theories of universal 
grammar. Our work provides a way to compare alternative parameter systems by look
ing at the underlying machine architecture each assumes. Criteria include, for example, 
circuit complexity, circuit depth, and degree of parallelism. 

33 . Intelligibility 

Geoffrey Hinton (personal communication) has suggested a third source of phonological 
constraints: intelligibility. The hearer must be able to decode the speech signal. This 
limits the types of transformations speakers may make. Certain types of phonological 
transformations might simply be too difficult for the hearer to invert to arrive back at 
the correct underlying form. 

There is a tension between the intelligibility and computability constraints. Both can 
account for the fact that speakers don't invert the phoneme order of entire words. But the 
intelligibility constraint does not seem powerful enough to explain all the peculiarities 
of human phonology. For example, switching the first and last consonant of a word 
wouldn't seem to interfere too much with intelligibility. Also, neutralization processes 
such as vowel reduction in English or devoicing of word final stops in German actually 

% work against intelligibility in favor of articulatory convenience. Therefore, intelligibility 
seems too weak a constraint to fully account for the structure of phonology. 

On the other hand, the computational constraints we have been proposing could 
turn out to be too powerful. People are remarkably flexible; it would be difficult 
to conclusively demonstrate that they are fundamentally incapable of certain types of 
phonological behavior. One objection frequently raised in response to M-̂ P's compu
tational constraints is Pig latin, a language game in which, for example, "games are 
fun" becomes "ames-gay are-way un-fay." This involves the sort of movement op
eration which our theory predicts is phonologically impossible. However, we doubt 
that competent Pig latin speakers are employing their natural phonological machinery 
to accomplish this task. Unlike a real language, Pig latin requires the speaker to first 
produce the correct English surface form of each word, and then transform it by one of 
two simple rules depending on whether the word begins with a vowel. The automaticity 
of Pig latin speech (after sufficient practice) does not imply that Pig latin rules have 
become part of the speaker's phonology. Many automatic processes, such as syntax, or 
the ability to play the piano, are non-phonological. What counts as "phonology" in our 
view are those processes that occur naturally in human languages and can be acquired 
automatically and unconsciously by children in a suitable linguistic environment. In 
contrast, Pig latin speakers must acquire a conscious representation of the rules of the 
game before they can speak it correctly; 
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3.4. History 

A fourth source of potential phonological constraints, suggested to us by Prahlad Gupta 
(personal communication), is history. There is no way to know if the 5000 or so 
languages that have developed during the course of human history fully exercise our 
linguistic abilities. We must be careful to avoid turning historical accidents into universal 
principles. Just because a particular process has never occurred historically, this does 
not imply a fortiori that it is constrained from occurring some time in the future. Thus, 
one would be wise not to formulate overly-specific constraints based solely on historical 
evidence. The computational approach is helpful by providing additional motivation for 
certain types of constraints, but grey areas do remain. For example, to the best of our 
knowledge, no human language utilizes a quality-sensitive stress rule, such as "stress 
the penultimate high vowel in the word." This could be a legitimate computational 
constraint, but it might also be a historical artifact 

4. Relationship to Neuroscience 

What is known to date about the neural basis of language comes largely from clinical 
studies (and subsequent autopsies) of stroke and head injury patients. Recently, some 
interesting new results have been obtained with radioactive imaging techniques that map 
metabolic activity throughout the brain during performance of language-related tasks. 
Along with the autopsy data, this is another valuable source of clues about how cognitive 
functions are distributed across different cortical regions. However, at this time there 
is still no detailed theory of how linguistic information is physically represented and 
processed in the brain. 

M^P should not be taken literally as a biological model. We don't expect to find such 
clean representations and regular wiring structures in real brain tissue. Furthermore, our 
model does not yet account for developmental processes, speech errors, or the various 
types of aphasias people exhibit. 

We do not wish to suggest, though, that our model is completely divorced from 
the neural level, the way Chomsky's theories are divorced from actual computation. 
We are making strong claims about the functional nature of the brain's language areas. 
Specifically, we predict that certain types of phonological processes are impossible, 
because they are incompatible with the M^P architecture. Even if the wiring of our 
model differs significantly from real neural circuitry, as we know it must, we assert that 
at the functional level the two systems may be equivalent. 

Our work can be usefully contrasted with backpropagation-based approaches to 
phonology, such as the Rumelhart and McClelland (1986) verb learning model, or the 
more recent work using sequential recurrent nets by Gasser and Lee (1989). These mod
els can in principle learn any input-output mapping, so they are unable to impose hard 
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constraints on phonological operations the way M**P does. In fact, they don't appear 
to offer any explanation for the extremely regular and symbolic nature of phonology. 
At best, they may correctly mimic human phonological behavior. Often, though, their 
behavior is not completely correct after training. 

Since rules have no independent existence in a backprop-based model other than as 
facets of a monolithic input-output mapping, each combination of rule interactions must 
be learned as a separate case. There is no mechanism requiring the individual rules 
to interact systematically. Backprop-based systems without internal structure, if they 
are powerful enough to model real human phonology, can just as easily learn many 
nonphonological behaviors. Unlike the Rumelhart and McClelland model, Gasser and 
Lee's sequential network cannot easily learn reversals and long-range metatheses, but 
this limitation also hinders it from modeling any process that examines segments from 
right to left, such as regressive feature spreading or assignment of stress to penultimate 
syllables, both of which are common in human languages. 

Even if a more sophisticated backprop-based model could be constructed whose 
generalization behavior were completely correct, an important question would remain. 
Is the brain fundamentally incapable of certain types of phonological operations, as 
M^P predicts, or is its phonological machinery as unrestricted as the backprop models, 
merely adapting itself in response to linguistic inputs? This is, of course, an instance 
of the classic rationalism vs. empiricism controversy. We are content to toil in the 
rationalist camp, enhancing our model and predicting constraints that linguists may 
seek to verify or refute. Some day, neurolinguistics may provide the decisive answer 
to the rationalist/empiricist debate. If so, we are confident that such progress will have 
been made possible, at least in part, by the work of connectionist modelers in both 
camps. 
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Rule Representations in a Connectionist Chunker 
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ABSTRACT 

We present two connectionist architectures for chunking of symbolic 
rewrite rales. One uses backpropagation learning, the other competitive 
learning. Although they were developed for chunking the same sorts 
of rales, the two differ in their representational abilities and learning 
behaviors. 

1 INTRODUCTION 
Chunking is a process for generating, from a sequence of if-then rules, a more complex 
rule that accomplishes the same task in a single step. It has been used to explain incre
mental human performance improvement in a wide variety of cognitive, perceptual, and 
motor tasks (Newell, 1987). The SOAR production system (Laird, Newell, & Rosen-
bloom, 1987) is a classical AI computer program that implements a "unified theory of 
cognition" based on chunking. 

SOAR's version of chunking is a symbolic process that examines the working memory 
trace of rules contributing to the chunk. In this paper we present two connectionist 
rule-following architectures that generate chunks a different way: they use incremental 
learning procedures to infer the environment in which the chunk should fire. The first 
connectionist architecture uses backpropagation learning, and has been described pre
viously in (Touretzky, 1989a). The second architecture uses competitive learning. It 
exhibits more robust behavior than the previous one, at the cost of some limitations on 
the types of rules it can learn. 

The knowledge to be chunked consists of context-sensitive rewrite rules on strings. For 
example, given the two rules 
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Rl: D —• B / _ E "change D to B when followed by E" 
R2: A — C / . B "change A to C when followed by B" 

the model would go through the following derivation: ADE —• (Rule Rl) ABE —* (Rule 
R2) CBE. Rule Rl's firing is what enables rule R2 to fire. The model detects this and 
formulates a chunked rule (R1-R2) that can accomplish the same task in a single step: 

R1-R2: AD — CB / _ E 
Once this chunk becomes active, the derivation will be handled in a single step, this way: 
ADE —• (Chunk R1-R2) CBE. The chunk can also contribute to the formation of larger 
chunks. 

2 CHUNKING VIA BACKPROPAGATION 
Our first experiment, a three-layer backpropagation chunker, is shown in Figure 1. The 
input layer is a string buffer into which symbols are shifted one at a time, from the right 
The output layer is a "change buffer" that describes changes to be made to the string. 
The changes supported are deletion of a segment, mutation of a segment, and insertion 
of a new segment Combinations of these changes are also permitted. 
Rules are implemented by hidden layer units that read the input buffer and write changes 
(via their a connections) into the change buffer. Then separate circuitry, not shown in 
the figure, applies the specified changes to the input string to update the state of the input 
buffer. The details of this string manipulation circuitry are given in (Touretzky, 1989b; 
Touretzky & Wheeler, 1990). 
We will now go through the ADE derivation in detail. The model starts with an empty 
input buffer and two rules: Rl and R2.1 After shifting the symbol A into the input buffer, 
no rule fires—the change buffer is all zeros. After shifting in the D, the input buffer 
contains AD, and again no rule fires. After shifting in the E the input buffer contains 
ADE, and rule Rl fires, writing a request in the change buffer to mutate input segment 2 
(counting from the right edge of the buffer) to a B. The input buffer and change buffer 
states are saved in temporary buffers, and the string manipulation circuitry derives a new 
input buffer state, ABE. This now causes rule R2 to fire.2 It writes a request into the 
change buffer to mutate segment 3 to a C. Since it was Rl*s firing that triggered R2, 
the conditions exist for chunk formation. The model combines Rl's requested change 
with that of R2, placing the result in the "chunked change buffer" shown on the right in 
Figure 1. Backpropagation is used to teach the hidden layer that when it sees the input 
buffer pattern that triggered Rl (ADE in this case) it should produce via its (3 connections 
the combined change pattern shown in the chunked change buffer. 
The model's training is "self-supervised:" its own- behavior (its history of rule firings) 
is the source of the chunks it acquires. It is therefore important that the chunking 

1The initial rule set is installed by an external teacher using backpropagation. 
2Note that Rl applies to positions 1 and 2 of the buffer (counting from the right edge), while R2 applies to 

positions 2 and 3. Rules are represented in a position-independent manner, allowing them to apply anywhere 
in the buffer that their environment is satisfied. The mechanism for achieving this is explained in (Touretzky, 
1989a). 
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Change Buffer: 
cur: [ change seg. 3 to "C" ] 

prev: [ change Seg. 2 to "B" ] 

Chunked Change: 

[ change seg. 2 to "B" and 
change seg. 3 to "C" ] 

next: C B E 

cur: A B E 

prev: A D E 

Figure 1: Architecture of the backpropagation chunker. 

process not introduce any behavioral errors during the intermediate stages of learning, 
since no external teacher is present to force the model back on track should its rule 
representations become corrupted. The original rules are represented in the a connections 
and the chunked rules are trained using the ¡3 connections, but the two rule sets share the 
same hidden units and input connections, so interference can indeed occur. The model 
must actively preserve its a rules by continuous rehearsal: after each input presentation, 
backpropagation learning on a contrast-enhanced version of the a change pattern is used 
to counteract any interference caused by training on the ¡3 patterns. Eventually, when the 
/3 weights have been learned correctly, they can replace the a weights. 

The parameters of the model were adjusted so that the initial rules had a distributed 
representation in the hidden layer, i.e., several units were responsible for implementing 
each rule. Analysis of the hidden layer representations after chunking revealed that the 
model had split off some of the Rl units to represent the R1-R2 chunk; the remainder 
were used to maintain the original Rl rule. 

The primary flaw of this model is fragility. Constant rehearsal of the original rule set, and 
low learning rates, are required to prevent the a rules from being corrupted before the ¡3 
rules have been completely learned. Furthermore, it is difficult to form long rule chains, 
because each chunk further splits up the hidden unit population. Repeated splitting and 
retraining of hidden units proved difficult, but the model did manage to learn an R1-R2-
R3 chunk that supersedes the R1-R2 chunk, so that ADE mutates directly to CFE. The 
third rule was: 

R3: B —• F / C _ E "change B to F when between C and E'1 
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Input String Buffer 

Input Change Pattern 
(Training Only) 

Figure 2: Architecture of the competitive learning chunker. 

3 CHUNKING VIA COMPETITIVE LEARNING 
Our second chunker, shown in Figure 2, minimizes interference between rules by using 
competitive learning to assign each rule a dedicated unit As in the previous case, the 
model is taught its initial rules by showing it input buffer states and desired change buffer 
states. Chunks are then formed by running strings through the input buffer and watching 
for pain of rules that fire sequentially. The model recruits new units for the chunks 
and teaches them to produce the new change buffer patterns (formed by composing the 
changes of the two original rules) in appropriate environments. 
A number of technical problems had to be resolved in order to make this scheme work. 
First, we want to assign a separate unit to each rule, but not to each training example; 
otherwise the model will use too many units and not generalize well. Second, the 
encoding for letters we chose (see Table I) is based on a Cartesian product, and so input 
patterns are highly overlapping and close together in Hamming space. This makes the 
job of the competitive learning algorithm more difficult Third, there must be some way 
for chunks to take priority over the component rules from which they were formed, so. 
that an input sequence like ADE fires the chunk R1-R2 rather than the original rule Rl. 
As we trace through the operation of the chunker we will describe our solutions to these 
problems. 
Rule units in the competitive layer are in one of three states: inactive (waiting to be 
recruited), plastic (currently undergoing learning), and active (weights finalized; ready to 
compete and fire.) They also contain a simple integrator (a counter) that is used to move 
them from the plastic to the active state. Initially all units are inactive and the counter 

- 2 0 -



cremented. When the counter reaches a suitable value (cuirentiy 25), the unit switches 
from the plastic to the active state. It is now ready to compete with other units for the 
right to fire; its weights will not change further. 

We now consider the formation of the model's first chunk. Assume that rules Rl and 
R2 have been acquired successfully. The model is trained by running random strings 
through the input buffer and looking for sequences of rule firings. Suppose the model is 
presented with the input string BFDADE. Rl fires, producing BFDABE; this then causes 
R2 to fire, producing BFDCBE. The model proceeds to form a chunk. The combined 
change pattern specifies that the penultimate segment should be mutated to "B," and the 
antepenultimate to "C." Since no plastic rule unit's change pattern weights match this 
change, a fresh unit is allocated and its change buffer weights are set to reproduce this 
pattern. The unit's input weights are set to detect the pattern BFDADE. 

After several more examples of the R1-R2 firing sequence, the competitive learning 
algorithm will discover that the first three input buffer positions can hold anything at all, 
but the last three always hold ADE. Hence the weight vector will be concentrated on the 
last three positions. When its counter reaches a value of 25, the rule unit will switch to 
the active state. 

Now consider the next time an input ending in ADE is presented. The network is in 
performance mode now, so there is nothing in the input change buffer, the model is 
looking only at the input string buffer. The Rl unit will be fully satisfied by the input; 
its normalized weight vector concentrates on just the last two positions, "DE," which 
match exactly. The R1-R2 unit will also be fully satisfied; its normalized weight vector 
looks for the sequence ADE. The latter unit is the one we want to win the competition. 
We achieve this by scaling the activation function of competitive units by an additional 
factor the degree of distributedness of the weight vector. Units that distribute their input 
weight over a larger number of connections likely represent complex chunks, and should 
therefore have their activation boosted over rules with narrowly focused input vectors. 

Once the unit encoding the R1-R2 chunk enters the active state, its more distributed jnput 
weights assure that it will always win over the Rl unit for an input like ADE. The Rl 
unit may still be useful to keep around, though, to handle a case like FDE -+ FBE that 
does not trigger R2. 

Sometimes a new chunk is learned that covers the same length input as the old, e.g., 
chunk R1-R2-R3 that maps ADE CFE looks at exactiy the same input positions as 
chunk R1-R2. We therefore introduce one additional term into the activation function. 
As part of the learning process, active units that contribute to the formation of a new 
chunk are given a permanent, very small inhibitory bias. This ensures that R1-R2 will 
always lose the competition to R1-R2-R3 once that chunk goes from plastic to active, 
even though their weights are distributed to an equal degree. 

Another special case that needs to be handled is when the competitive algorithm wrongly 
splits a rule between two plastic units in the same pool, e.g., one unit might be assigned 
the cases {AJ3,C}ADE, and the other the cases {DJE,F}ADE. (In other words, one unit 
looks for the bit pattern lOxxx in the first position, and the other unit looks for Olxxx.) 
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Table 1: Input code for both chunking models. 

A 1 0 1 0 0 
B 1 0 0 1 0 
C 1 0 0 0 1 
D 0 1 1 0 0 
E 0 1 0 1 0 
F 0 1 0 0 1 

is zero. As in any competitive learning scheme, the rule units' input weights are kept 
normalized to unit vectors (Rumelhart & Zipser, 1986). 
When the teacher presents a novel instance, we must determine if there is already some 
partially-trained rule unit whose weights should be shaped by this instance. Due to our 
choice of input code, it is not possible to reliably assign training instances to rule units 
based solely on the input pattern, because "similar" inputs (close in Hamming space) 
may invoke entirely different rules. Our solution is to use the desired change pattern as 
the primary index for selecting a pool of plastic rule units; the input buffer pattern is 
then used as a secondary cue to select the most strongly activated unit from this pool. 
Let's consider what happens with the training example DE —• BE. The desired change 
pattern "mutate segment 2 to a B" is fed to the competitive layer, and the network looks 
for plastic rule units whose change patterns exactly match the desired pattern.3 If no such 
unit is found, one is allocated from the inactive pool, its status is changed to "plastic," 
its input buffer weights are set to match the pattern in the input buffer, and its change 
pattern input and and change pattern output weights are set according to the desired 
change pattern. 
Otherwise, if a pool of suitable plastic units already exists, the input pattern DE is 
presented to the competitive layer and the selected plsatic units compete to see which 
most closely matches the input The winning unit's input buffer weights are then adjusted 
by competitive learning to move the weight vector slightly closer to this input buffer 
vector. The unit's counter is also bumped. 
Several presentations are normally required before a rule unit's input weights settle into 
their correct values, since the unit must determine from experience which input bit values 
are significant and which should be ignored. For example, rule SI in Table 2 (the asterisk 
indicates a wildcard) can be learned from the training instances ACF and ADF, since as 
Table 1 shows, the letters C and D in the second segment have no bits in common. 
Therefore the learning algorithm will concentrate virtually all of the weight vector's 
magnitude in the connections that specify "A" as the first segment and "F" as the third. 
Each time a rule unit's weights are adjusted by competitive learning, its counter is in-

3The units' thresholds are raised so that they can only become active if their weight vectors match the input 
change buffer vector exactly. 
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This is bad because it allows the weights of each unit to be more distributed than they need 
to be. To correct the problem, whenever a plastic unit wins a competition our algorithm 
makes sure that the nearest runner up is considerably less active than the winner. If its 
activation is too high, the runner up is killed. This causes the survivor to readjust its 
weights to describe the rule correctly, i.e., it will look for the input pattern ADE. If the 
runner up was killed incorrectly (meaning it is really needed for some other rule), it will 
be resurrected in response to future examples. 
Finally, active units have a decay mechanism that is kept in check by the unit's firing 
occasionally. If a unit does not fire for a long time (200 input presentations), its weights 
decay to zero and it returns to the inactive state. This way, units representing chunks that 
have been superseded will eventually be recycled. 

4 DISCUSSION 
Each of the two learning architectures has unique advantages. The backpropagation 
learner can in principle learn arbitrarily complex rules, such as replacing a letter with 
its successor, or reversing a subset of the input string. Its use of a distributed rule 
representation allows knowledge of rule Rl to participate in the "forming of the R1-R2 
chunk. However, this representation is also subject to interference effects, and as is often 
the case with backprop, learning is slow. 

The competitive architecture learns very quickly. It can form a greater number of chunks, 
and can handle longer rule chains, since it avoids inteference by assigning a dedicated 
unit to each new rule it learns. 

Both learners are sensitive to changes in the distribution of input strings; new chunks 
can form any time they are needed. Chunks that are no longer useful in the backprop 
model will eventually fade away due to non-rehearsal; the hidden units that implement 
these chunks will be recruited for other tasks. The competitive chunker uses a separate 
decay mechanism to recycle chunks that have been superseded. 

This work shows that connectionist techniques can yield novel and interesting solutions 
to symbol processing problems. Our models are based on a sequence manipulation ar
chitecture that uses a symbolic description of the changes to be made (via the change 
buffer), but the precise environments in which rules apply are never explicitly repre
sented. Instead they are induced by the learning algorithm from examples of the models' 
own behavior. Such self-supervised learning may play an important role in cognitive 
development Our work shows that it is possible to correctly chunk knowledge even 
when one cannot predict the precise environment in which the chunks should apply. 
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Table 2: Initial rule set for the competitive learning chunker. 

SI: A*F — B*F 
S2: BD — BF 
S3: {D,E,F}*E - {A,B,C}*A 
S4: {B,E}B — CB 
S5: {A,D}C - {C,F}C 

Table 3: Chunks formed by the competitive learning chunker. 

Chunk (Component Rules) 
EA*F — CB*F (S1.S4) 
ABD —• CBF (S1.S2.S4) 
AADF —* CBFF (S1.S2.S1.S4) 
BE*E — CB*A (S3.S4) . 
DEB — FEB (S4.S5) 

References 

Laird, J. £., Newell, A., and Rosenbloom, R S. (1987) Soar An architecture for general 
intelligence. Artificial Intelligence 33(l):l-64. 
Newell, A. (1987) The 1987 William James Lectures: Unified Theories of Cognition. 
Given at Harvard University. 
Rumelhart, D £., and Zipser, D. (1986) Feature discovery by competitive learning. In D. 
E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Processing: Explorations 
in the Microstructure of Cognition. Cambridge, MA: MTT Press. 
Touretzky, D. S. (1989a) Chunking in a connectionist network. Proceedings of the 
Eleventh Annual Conference of the Cognitive Science Society, pp. 1-8. Hillsdale, NJ: 
Erlbaum. 
Touretzky, D. S. (1989b) Towards a connectionist phonology: the "many maps" ap
proach to sequence manipulation. Proceedings of the Eleventh Annual Conference of the 
Cognitive Science Society, pp. 188-195. Hillsdale, NJ: Erlbaum. 
Touretzky, D. S., and Wheeler, D. W. (1990) A computational basis for phonology. In D. 
S. Touretzky (ed.), Advances in Neural Information Processing Systems 2. San Mateo, 
CA: Morgan Kaufmann. 

- 24 -


