
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Distributed Hartstone
Real-Time Benchmark Suite

Clifford W. Mercer*, Yutaka Ishikawa** and Hideyuki Tokuda*
March 13,1990

CMU-CS-90-110^

School of Computer Science*
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213 USA
cwm@cs.cmu.edu, hxt@cs.cmu.edu

Electrotechnical Laboratory**
1-1-4 Umezono, Tsukuba-shi

Ibaraki 305 JAPAN
yisikawa@ed.go.jp

Condensed version appeared in Proceedings of the 10th International
Conference on Distributed Computing Systems, May 28 - April 1,1990,

Paris, France.

Keywords: Real-Time Computing, Distributed Computing, Real-Time
Operating Systems, Real-Time Benchmark, Real-Time Schedulability,

Priority Inversion, Priority Inheritance.

This research was supported in part by the U.S. Naval Ocean Systems Center under contract number N66001-87-
C-0155, by the Office of Naval Research under contract number N00014-84-K-0734, by the Federal Systems
Division of IBM Corporation under University Agreement YA-278067, and by the SONY Corporation. The views
and conclusions contained in this document are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of NOSC, ONR, IBM, SONY, or the U.S. Government

mailto:cwm@cs.cmu.edu
mailto:hxt@cs.cmu.edu
mailto:yisikawa@ed.go.jp

Keywords: Real-Time Computing, Distributed Computing, Real-Time Operating Systems, Real-Time Benchmark,
Real-Time Schedulability, Priority Inversion, Priority Inheritance

i

T a b l e of Con ten t s
1. Introduction and Motivation
2. Requirements for a Distributed Real-Time Benchmark

2.1. Message Priority for Queueing
2.2. Preemptability of Protocol Engines
2 J . Communication Latency
2.4. Communication Bandwidth
2.5. Packet Priority for Network Contention

3. Distributed Hartstone Benchmark
3.1. DSHcl Series: Communication Latency
3.2. DSHpq Series: Priority Queueing
3 J . DSNpp Series: Preemptability of the Protocol Engine
3.4. DSHcb Series: Communication Bandwidth
3.5. DSHmc Series: Media Contention

4. ARTS DHS Performance
4.1. Basic Performance
4.2. DSHcl Series
4 3 . DSHpq Series
4.4. DSNpp Series
4 3 . DSHcb Series
4.6. DSHmc Series

5. Summary
References
L Kilo-Whetstone C Code

u n i v e r s i t y limping
CARN&air: LO# UftiV .7

PITTSBURGH, FA 15213-

11

Lis t of F i g u r e s
Figure 3-1: Five Clients with Single Server
Figure 3-2: Client Task Time Requirements
Figure 3-3: N Clients with Multiple Servers
Figure 3-4: Non-preemptable Protocol Processing
Figure 3-5: Preemptable Protocol Processing
Figure 3-6: N Clients with Single Server
Figure 4-1 : ARTS Basic Performance Statistics

1

Abstract

In our definition of the Distributed Hartstone (DHS) benchmark, we extend the Hartstone real-time benchmark
[14] to the distributed environment where communication and end-to-end scheduling become important.

Traditional performance metrics for real-time systems do not tell the whole story, so we need a benchmark to gauge
the performance for different areas of the operating system. Furthermore, we give a detailed description of the
motivation and formulation of the benchmark to enable practitioners to implement the benchmark on a wide variety
of systems. The benchmark is defined to be easily implemented on any system with basic real-time capability such
as prioritized, preemptive scheduling and a real-time dock. Also, the tests are open-ended to allow comparisons on
a wide variety of hardware.

The benchmark has been implemented on the ARTS Kernel [9], a distributed real-time testbed we have developed in
the ART Project at Carnegie Mellon University. We give the benchmark results from the ARTS Kernel for different
types of processor and communication scheduling algorithms. These results verify the usefulness of the benchmark
suite in distinguishing between performance characteristics of these algorithms.

1. I n t r o d u c t i o n a n d Mot iva t ion
Synthetic benchmark programs have become popular for the measurement and comparison of different computer

architectures and the compilers which generate code for them. The Whetstone [2] and Dhrystone [12] benchmarks
are intended to measure performance for scientific calculations and systems programming. Recently, there has been
a growing interest in defining a standard benchmark for real-time computer systems. The Rhealstone performance
metrics [4] and the Hartstone benchmark [14] are two examples of this effort The Rhealstone metrics concentrate
on fine-grained real-time measures such as context switch time and interrupt latency as well as scheduling delay due
to synchronization, and the Hartstone emphasizes total system performance.

Benchmarks provide a means to compare the performance characteristics of different computer systems, and we
can classify benchmarks by the level at which they measure the system. We consider three levels: die computer
architecture, the operating system primitives, and high-level operating system services (such as inter-process
communication). The performance at each level depends not only on the performance of the lower levels, but also
on the coordination of the lower levels in the current level. For instance, we show that even if the protocol engine
1 for a real-time protocol costs more in terms of overhead than a non-real-time protocol engine, the improved
coordination of message traffic can result in a better higher-level performance measure (such as better
schedulability) [3,10]. Different applications designers might be interested in different levels of the system. For
instance, a programmer using a workstation for scientific computing might be interested mostiy in the performance
of the architecture and of the compiler that is tuned to that architecture. The designer of a transaction system might
be interested in the architecture level and also the performance of low-level operating system primitives for the file
system. The designer of a robotics application might be interested in all three levels, particularly since effective
operating system coordination of high-level services such as communication and synchronization will be critical to
the timing correctness of the robotic system.

Current benchmark test programs are typically geared toward a particular class of applications such as scientific
computing or systems programming. For example, the Whetstone [2] benchmark is a program which is meant to be
representative of applications in scientific computing. The Dhrystone [12,13] benchmark was subsequently defined
to address the need for measuring the performance of systems programs which use records and pointers more than
floating point calculations. Each of these benchmarks contain a mix of statements which are meant to represent the
average application program. These benchmarks provide a good way of measuring the performance of the computer
architecture and the'compiler.

However, the performance of the operating system level is more difficult to quantify. Typical measures of
operating system performance include the context-switch time, average throughput for tasks and messages, and
average latency for tasks and messages. In real-time operating systems, the issue is further complicated. Additional

"Protocol engine" refers here to the software module responsible for implementing the network protocols.

2

characteristics such as interrupt latency, worst case execution time for system primitives, and the scheduling delay
due to resource contention and communication synchronization become important Real-time systems depend on
the operating system to support the predictability of the application and the schedulability of the system. Certain
operating system constructs promote predictability, and we would like to be able to quantify these features of the
system. The Rhealstone [4] standard lists several measures of operating system performance which are traditionally
important for commercial, uniprocessor real-time operating systems. The Rhealstone measures include context-
switch time, preemption time, interrupt latency, maximum scheduling delay due to synchronization, deadlock
breaking time, and datagram throughput

The Hartstone benchmark [14], developed as a joint effort between die ART Project and the Software Engineering
Institute at CMU, is a further attempt to gauge the performance of real-time operating systems (or Ada runtimes)
which must schedule harmonic and non-harmonic periodic activities and aperiodic activities. Also, the ability of the
system to handle priority inversion [10] among synchronizing tasks is measured by the Hartstone suite. The
synthetic workload for Hartstone is based on the Whetstone benchmark, so the architecture level performance is
automatically taken into account Also, since real-time systems tend to be more computationally oriented, the use of
the Whetstone is appropriate.

None of these benchmarks, however, addresses the distributed real-time environment In fact, many real-time
applications are so computationally demanding that no single CPU will suffice, and we must connect multiple
CPU's to handle the intense workload. Also, some applications require physically distributed processing, and so the
ability of a system to perform in a distributed environment becomes very important The Distributed Hartstone is an
extension of the Hartstone work for the distributed real-time computing environment We define real-time task sets
which are designed to stress specific areas of the operating system such as communication latency, communication
bandwidth, prioritized message handling at the transport level as well as the media access level, and preemptability
of the communication processing. These characteristics are critically important to the performance and especially
predictability of the real-time system. The performance of real-time systems is often measured only in terms of the
time for various low-level operations. We contend that these measurements do not adequately describe the system.
The performance of the real-time processor scheduling and communication network scheduling and the coordination
between these scheduling domains largely determines how well the system can perform. And since more
sophisticated scheduling algorithms may require more overhead for low-level operations, a system which offers
better schedulability for its applications and thus better overall performance may not have the best times for
low-level operations. A system which is leaner and faster in terms of low-level operations may not be capable of
scheduling a task set to meet all of its deadlines. So we would like to factor all of these attributes into our overall
measure of the system.

In Section 2 we discuss the areas of the system which are particularly important for distributed, real-time
computing. In Section 3, we define several task sets which are intended to stress each of the areas identified in
Section 2. And in Section 4, we give the performance of the ARTS Kernel on the Distributed Hartstone benchmark.
In Section 5 we summarize our work.

2 . Requirements for a Distributed Real-Time Benchmark
The objective of a real-time benchmark suite is to evaluate the performance of the system as a whole. The timing

characteristics of primitive operations in the operating system are important but so are the timing characteristics of
the operations which depend on various subsystems working in harmony. With our Distributed Hartstone.
benchmark, we define task sets which attempt to stress areas of the system that we have identified as being critical
for the predictable execution of real-time tasks. For instance, the coordination between scheduling in the processor
domain and scheduling in the communication domain is critical in a distributed real-time operating system [10], and
we concentrate on this area in several of our benchmark tests. In Section 4, we show that the Distributed Hartstone
achieves these objectives by comparing the performance of different processor and communication scheduling
algorithms using the ARTS Kernel.

3

2.1. Message Priority for Queueing
It is important to carry priority information with messages so that the processor scheduler of the receiving host

can properly schedule the activity [10, 9, 11], We would like to control the scheduling of the message traffic at each
level of the protocol stack [5], and some sort of priority information is necessary. Also, the queueing of the
messages between layers of the communication subsystem depends on priority information to avoid priority
inversion [11]. Traditional time-sharing systems use FIFO queues to promote fairness and avoid starvation, but in
real-time systems, service should be provided based on the time constraints of the activity2. A high frequency
activity cannot afford to wait for arbitrarily many lower frequency or non-real-time activities to conclude their
message activity, so the system must facilitate the timely delivery of such high frequency message traffic by
promoting the high priority message to the head of the priority queue. This is an important area of the system to
stress with a benchmark task set.

2.2. Preemptability of Protocol Engines
Preemptability is a key issue in analyzing the schedulability of a communicating or synchronizing real-time task

set Many real-time scheduling algorithms depend upon the preemptability of the task set, and the number and size
of the critical regions must be kept to a minimum; otherwise the predictability of the task set is severely limited. We
consider preemptability to be a multi-valued measure of the number and size of the critical regions in a computation
rather than a binary feature. We have identified the communication protocol engines as an area where the
computation can be quite time consuming and where the latency of high priority activities may be adversely affected
if the protocol computation is not preemptable. If a low priority message is being handled by a protocol engine and
a high priority message comes into the system, we are concerned about how long it will take >to switch the protocol
processing resources from the low priority message to the higher priority message. A real-time benchmark should
be able to differentiate between systems with varying degrees of protocol engine preemptability.

2 J . Communication Latency
The end-to-end communication latency is an important characteristic of the distributed system, and so we should

be able to distinguish between different systems in this area. This issue involves not only the latency due to the
communication media but also time required for the other communication layers and the contention for resources
including processor cycles. The analysis of real-time systems depends on the predictability of the underlying
operating system. We must be able to bound the execution time, protocol handling, and scheduling delay for each
task. A good system should be able to schedule activities including protocol processing and media access in a way
that provides the smallest bounded communication latency to the highest priority tasks, and the benchmark should
measure how well a system is able to coordinate these requirements over the entire task set

2.4. Communication Bandwidth
Another important system attribute related to the communication performance is the bandwidth of the network.

This is related to communication latency, but here we are interested in how much message traffic the
communication system can handle instead of long it takes for a message to travel through the network. We include
in this area the raw network bandwidth as well as the software processing needed to drive the network. As the
network media become faster, the bottleneck for communication is increasingly in the operating system software
and software protocol processing, and we need to measure how much overhead this processing consumes in the
system.

2.5. Packet Priority for Network Contention
Using prioritized packets in a real-time network should allow for proper scheduling of the communication traffic.

A real-time communication system should avoid priority inversion at the media access level, and frame level priority
is one method which has been used to do this. Unfortunately, some systems do not use such sophisticated

2Note that if all real-time deadlines are met, then there is no deadlock or starvation

4

communication media, and the implementations of other networks with sophisticated designs sometimes artificially
limit the performance of the contention algorithms [11]. The TI TMS380 chipset for the 802.5 token ring, for
instance, reduces the number of frame priority levels from eight to four. This lack of priority granularity at the
media access level exacerbates the problem of mapping from the processor priority levels to the frame-level
priorities [7]. Also, this implementation uses FIFO queueing in the hardware, and these two factors affect the ability
of the operating system to provide a prioritized message service. The benchmark should be able to detect these
types of differences in the contention algorithms for the network media.

3 . Distributed Hartstone Benchmark
Based on the requirements above which specify various areas of the system that a distributed real-time benchmark

must stress, we have developed a series of task sets in the style of the Hartstone benchmark [14]. Each task set
addresses a particular feature important for real-time operating systems. Most of the task sets for the distributed
benchmark require two host machines, but one test has the number of host machines as a variable parameter. We
will discuss the requirements for this particular test in more detail in Section 3.5. The distributed system should
have a communication network with some end-to-end protocol available at the user level. The system should also
have a real-time clock to verify the timing constraints for the task sets are met We use the kilo-Whetstone (KWS)
as a unit of computation derived from the popular Whetstone benchmark. A kilo-Whetstone is one thousandth of the
one million cycle Whetstone benchmark. For more information on the kilo-Whetstone including the C code, see
Appendix I. The Whetstone provides an appropriate synthetic load for real-time applications which tend to rely
heavily on floating point computation.

We also designed our benchmark tests to be open-ended, as in the Hartstone suite. In each task set, we hold all
factors constant except for one parameter which we vary. This parameter is typically a server execution time or the
number of tasks of a particular category (such as low frequency tasks or high frequency tasks). These values can be
increased almost indefinitely (within the resource requirements for new tasks in the case where the variable is
number of tasks), so no matter how well a particular system performs, eventually, the breaking point at which
deadlines are first missed should be reached yielding a Distributed Hartstone performance measure.

The task sets that we define to comprise the benchmark specify only the timing requirements for the task set and
the unit of workload. This degree of generality enables implementation of the task sets on a wide variety of systems.
The benchmark does not rely on features of any particular language or operating system. We have chosen timing
constraints and the synthetic workload to be representative of the current requirements of typical real-time systems
running on current microprocessor technology such as the Motorola MC68030 and the Intel i386 3.

In our specification of some task sets, we have indicated the priorities that might be assigned to the tasks in a rate
monotonic framework [6], but if the scheduling algorithm under test is based on a dynamic priority scheme like the
earliest deadline first policy or the least slack time first policy, this static priority assignment should be ignored. The
priorities are given to make the intention of the task set transparent; they serve to focus attention on the potential
problem each task set addresses. The particular priorities shown are relative priorities with no special significance
in the choice of the numbers except that smaller numbers are higher priorities. Many real-time operating systems
use a preemptive, prioritized scheduling model, so our priority assignment will enhance the consistency of the
performance measurement among these types of systems. Of course, one of the primary objectives of research in
real-time operating systems is to learn how to structure the contention for resources and how to manage this
contention, so if a system is able to determine a better (given the individual system) assignment of priorities which
enables the system to achieve high performance, then we take the results of these tests as the Distributed Hartstone
values for die system. We do not intend to handicap a system by requiring the use of the current priority
assignment; the timing constraints of the task set are the important attributes of the benchmark. In the following
sections, we give the specifications for the task sets for each Distributed Hartstone series.

*The open-endedness of the benchmark suite should facilitate the benchmarking of machines with differing raw performance characteristics.

5

3.1. DSHcl Series: Communication Latency
The DSHcl Series is a (D)istributed, Synchronized, and (H)armonic task set which tests the communication

latency of the system. The base task set is patterned after the periodic, harmonic task set in the original Hartstone
benchmark. However, the task set contains an additional remote server, and each of the tasks xv x 5 sends a
request to the server before consuming its own computation time. The server is non-preemptable, so a high
frequency message may have to wait for the service of a lower frequency message to complete.

Figure 3-1: Five Clients with Single Server

Figure 3-1 shows the structure of the DSHcl Series task set Communication invocations are illustrated by the
arrows. The table specifies the timing requirements of the task set

DSHcl Series Task Set
Task Workload Period

*i l.KWS 80 ms
'h 1 KWS 160 ms
"h 2KWS 320 ms
*4 2 KWS 640 ms

8 KWS 1280 ms
ŜERVER (remote) variable N/A

We vary the computation time of the server to gradually squeeze the tasks until the size of the server combined
with the time the request message is in transit causes deadlines to be missed. Figure 3-2 shows how an increase in
the server execution time will, for a large enough execution time, cause the client to miss the deadline by increasing
the delay associated with the contention for server time among the clients (called SS in the figure). If the scheduling
is handled properly (by using priority inheritance in the communication and processor scheduling domains, for
instance), a high frequency task will have SS < (1+N) * ST where N is the number of high frequency tasks which
may have service requests pending and ST is the Service Time. In the case of the above task set, N = 1 since we
have only one high frequency task. This means that the Scheduling Delay, SD, in SS at most one Service Time.
The worst case is that some low frequency task acquires the server and then a high frequency task requests the
service but has to wait for the low frequency task to finish (up to ST) and then the task must wait for service for
itself (another ST).

6

<4 Period • < ^
C S S c L

w w a —

time

n ^
C s s C L -J ^

time
Deadline

C: Communication,
SS: Service Time + Scheduling Deiay
L: Local Computation

Figure 3-2: Client Task Time Requirements

3.2. DSHpq Series: Priority Queueing
The DSHpq Series task set is a (D)istributed, (S)ynchronized, and (H)armonic task set designed to test for priority

queueing of communication packets. As in the previous series, the base task set is patterned after the periodic,
harmonic task set in the original Hartstone benchmark. The task set contains an additional non-preemptable remote
server, and each of the tasks x v x 5 sends a request to the server before consuming its own computation time. We
vary the computation time of the server to ascertain the value where the size of the critical region (non-preemptable
service) causes deadlines to be missed.

The DSHpq Series is quite similar to the DSHcl Series except for the difference in granularity4. This reflects the
fact that both tests are testing for the same sort of effect on different levels of operating system services. The DSHcl
Series tests for fine grain differences in response time (from the client tasks' point of view) due to the difference in
communication latency. The DSHpq Series tests for coarse grain differences in the response time due to ineffective
queueing disciplines and poor scheduling on the remote host

In Figure 3-1, we illustrate the task set and the communication paths

DSHpq Series Task Set

Task Woridoad Period

xx
*2

*3

*4

*5
"̂ SERVER (r e m o t e)

1KWS
1KWS
2KWS
2KWS
8KWS
variable _

160 ms
320 ms
640 ms
1280 ms
2560ms
N/A

4The fine-grained DSHcl uses shorter periods for the tasks and milliseconds to measure the server workload. The coarse-grained DSHpq uses
longer periods for the tasks and kilo-Whetstones to measure server workload.

7

33. DSNpp Series: Preemptability of the Protocol Engine
The DSNpp Series task set is a (Distributed, (S)ynchronized, and (N)on-harmonic task set designed to test the

degree of preemptability of the protocol engines. The base task set is patterned after the periodic, non-harmonic task
set in the Hartstone benchmark. The task set contains two remote servers; the high priority server can preempt the
low priority server. We construct a task set composed of one high priority (high frequency) task and a variable
number of low priority (low frequency) tasks. Task xx sends a request to the high priority server at the beginning of
its period, and each of the tasks x2> x

n

 a request to the low priority server at the beginning of its period
before consuming its own computation time. The intention here load up the protocol engines with low priority work
and then try to send a high priority message through. We vary the number of low priority tasks to determine how
the preemptability of the low priority protocol processing affects the service of the high priority task. If the system
is not careful about minimizing priority inversion at the protocol level (e. g., by increasing preemptability), then the
high priority task will miss its deadline. If the system is careful about this, then even if we increase the number of
low priority tasks, the high priority message will still be delivered, and the high priority task will meet its deadline.
But eventually, if the number of low priority tasks is very large, even a system which is careful about this may begin
to miss deadlines; at least the interrupt handler will execute for each low priority message, so small amount of
priority inversion is unavoidable and may cause the high priority processing to be delayed.

We note that even if the protocol engine which is designed for increased preemptability incurs additional
overhead, the overall schedulability of the communication system may be better than a more streamlined, less
sophisticated system [3].

HI SERVER

'LO SERVER!

Real-Time OS

Figure 3-3: N Clients with Multiple Servers

Figure 3-3 shows the structure of the DSNpp Series task set Communication invocations are illustrated by the
arrows. The table gives the timing constraints of the task set

8

DSNpp Series Task Set

Task Workload Period Priority

h 1KWS 50 ms 0
h

1 KWS 5120 ms 1

X. 1 KWS 5120 ms 1
n

SERVER (r e m o t e)
1 KWS N/A 0

SERVER (r c m o t e) OKWS N/A 1

Rate monotonic priorities are assigned to make the
intention of the task set clear.

The addition of more low frequency tasks into this task set serves to increase the on the load on the protocol
engine at the server's host Then the challenge for the system is to be able to obtain service from the server for a
high frequency task so that the high frequency task as well as the lower frequency tasks can meet their deadlines.
The degree of preemptability of the communication software determines the ability of the system to avoid priority
inversion at the level of the protocol engine. Figure 3-4 illustrates the timing of a task set running on a system
which does the protocol processing at the "software interrupt" priority level In this case, the hardware interrupt
from the network device initiates a software interrupt to continue processing the packet according to the appropriate
protocol. This processing is done before making the processor available to user level tasks, and thus the protocol
processing is not preemptable, since the high priority user level tasks cannot preempt the protocol engine. The
effect is that low frequency message consume processor cycles which may cause high frequency tasks to miss
deadlines; this is shown in the figure.

3 ^ 4

Protocol IJ-

HI Server ff-

LO Server

-a

-a

Machine Bourn

/h

/h

/h
WKM Protocol Processing
B H Service Time
mm Local Computation Time

Blocking Time

t Missed Deadline

Figure 3-4: Non-preemptable Protocol Processing

¥
¥
-//
-//
-//

In Figure 3-5, we have the same task set, but the underlying system will allow more preemptability in the protocol

9

engine. For instance, the protocol processing of a low frequency task can be scheduled with the user level tasks at
the appropriate priority. Then if the server inherits the priority of the message, the server servicing a high frequency
message will compete with the protocol engine servicing a low frequency message, and the server will get the
processor cycles. If a high frequency message is received, then the protocol processing for the low frequency
message can be preempted in favor of the new message. By increasing the level of preemptability of the protocol
engines and using priority inheritance in the server, we can maintain better schedulability. The figure shows that the
protocol processing is deferred until the high priority server activity is finished.

Protocol

HI Server fl-

LO Server Jj£-

/ w n g g p n

3 4
s /

V
¥

Machine Boun

//-

//-
fi­

zz-

Protocol Processing
Service Time
Local Computation Time
Blocking Time

¥
¥
¥
¥
¥

Figure 3-5: Preemptable Protocol Processing

3.4. DSHcb Series: Communication Bandwidth
The DSHcb Series task set is a (D)istributed, Synchronized, and (H)armonic task set which tests the

communication bandwidth. The base task set is patterned after the periodic, harmonic task set in the Hartstone
benchmark. This task set contains a remote server that consumes no computation time; the server echoes the request
back immediately as the result Tasks xv xn send requests to the server at the beginning of their periods and they
consume no computation time. We increase the number of high priority tasks, which increases the load on the
communication subsystem, until the first deadline is missed.

Figure 3-6 shows the structure of the DSHcb Series task set. Communication invocations are illustrated by the
arrows. The timing constraints of the task set are shown in the table.

10

x SERVER

Real-Tin* OS

Figure 3-6: N Clients with Single Server

DSHcb Series Task Set

Task Woddoad Period Priority

OKWS
OKWS

80 ms
80 ms

0
0

V 4
V 3

SERVER (R E M O T E)

OKWS
OKWS
OKWS
OKWS
OKWS
OKWS

80 ms
160 ms
320 ms
640 ms
1280 ms
N/A

0
1
2
3
4
N/A

Rate monotonic priorities are assigned to make the
intention of the task set clear.

3-5- DSHmc Series: Media Contention
The DSHmc Series task set is a (D)istributed, Synchronized, and (H)armonic task set intended to stress the

media contention algorithms. The task set consists of many low priority tasks which request service from a remote
server and a single high priority task which also requires the service. We make the service time zero so that the
preemptability of the server does not become an issue in this series. It is important that the low priority tasks be on
different machines so that the network can be loaded more effectively5. The stress point of this task set is the high
priority message. If the media contention algorithm is not effective in preventing priority inversion at high levels of
network utilization, then the high priority message will not be handled in time and the high priority task will miss its
deadline. We find the level of network utilization at which this occurs by loading the network more and more with
low priority messages from the low priority tasks.

Figure 3-6 shows the structure of the DSHmc Series task set Communication invocations are illustrated by the
arrows.

5 Alternatively, a host could be used to generate a synthetic network load of low priority messages.

11

DSHmc Series Task Set

Task Workload Period Priority
OKWS 80 ms 0
OKWS 1280 ms 1
OKWS 1280 ms 1

OKWS 1280 ms 1
^SERVER OKWS N/A N/A

Rate monotonic priorities are assigned to make the
intention of the task set clear.

4. ARTS DHS Performance
We now give the benchmark results from a distributed, real-time operating system. ARTS is a distributed,

real-time operating system testbed developed as part of the ART Project at Carnegie Mellon University. The testbed
is for verification and evaluation of research in distributed, real-time technologies, and we currently have the system
running on the SUN3, the SONY NEWS workstation, and the FORCE CPU-30 single card computer. We have
several results from the ARTS implementation of the Distributed Hartstone benchmark (on the SUN3) which at once
demonstrate the usefulness of the benchmark and verify the real-time capability of the ARTS Kernel.

The ART testbed we used for these results consists of a collection of SUN3 workstations connected by Ethernet
and token ring networks.. We use the Ethernet for booting the kernel and the token ring to investigate real-time
communication issues. Section 4.1 gives some measurements for message passing using different protocols on each
of these media.

We first give the performance results for some primitive operations on ARTS to provide some background, and
then we give the results of the Distributed Hartstone benchmark. To denote the result of a Hartstone test, we give an
abbreviation of the name of the particular task set (such as DSHcl) followed by a number which indicates the highest
value of the variable parameter for that task set achieved without missing any deadlines. For example, DSHcl-35
indicates that the DSHcl task line did not miss deadlines for values of the execution time of the server up to 35 units
but when the server execution time was 36 units, the task set began missing deadlines. The type of unit used
depends on the particular task set The value could be synthetic workload units, units of time or number of clients.

Note that the DSHcl Series results from ARTS are measured in milliseconds. This is because a single kilo-
Whetstone takes 4.2 ms to execute on a SUN3, but we require more resolution to differentiate between the two
communication media we test in DSHcL Therefore, we switch to a 1 ms workload in order to get the additional
resolution on the result Also, the DSNmc Series was not yet verified due to limitations in the physical testbed, but
we are currentiy working to upgrade the testbed to allow us to run the DSNmc Series.

4.1. Basic Performance
The basic performance of the ARTS Kernel was measured by using SUN3/140s. Since the SUN3's timer chip

(i.e. Intersil ICM7170) can provide up to 10 msec granularity, all measurements were done by repeating the same
target actions over 10,000 times for each test

We are tuning the system towards high predictability and schedulability, but the current measurements of the base
time of the basic system functions are shown in Figure 4-1.

Null System Call:

Real-Time Thread Context Switching:*

0.04 ms

12

0.22 ms
0.22 ms

single address space
among mapped objects

Instantiation and Destruction of an Object:**
Thread Creation/Kill
Lightweight Object Creation/Kill
Object Creation/Kill

Objea Invocation:***
Invocation, same address space
Invocation, another address space

Remote invocation, RTP/EE
Remote invocation, RTP/TR
Remote invocation, VMTP/EE
Remote invocation, VMTP/TR

* The SUN3 has eight hardware address spaces and we give the context switch time for threads which reside in the same address
space and for threads which are in different objects in different address spaces.
** Object creation entails the allocation of resources such as memory regions for the object image. Thread creation results in a
new thread of control in a previously instantiated object. DS indicates the data segment size in Kbytes.
*** Invocation times are the round trip message passing times between objects. We differentiate between invocation between
objects in the same address space, objects in different hardware address spaces, and objects on different network hosts. RTP is
the ARTS Real-time Transport Protocol and VMTP is the Versatile Message Transaction Protocol [1]. IE indicates Intel Ethernet
and TR denotes Token Ring. In the remote invocation case, MS indicates the message size in bytes.

Figure 4-1: ARTS Basic Performance Statistics

0.64 ms
4.24+.40*DS ms
7.98+.40*DS ms

1.13+0.00062*MS ms
1.41+0.00062*MS ms

8.97+0.0031*MS ms
10.24+0.010*MS ms
9.12+0.0047*MS ms
11.31+0.012*MS ms

4.2. DSHcl Series
The DSHcl Series measures the communication latency of the target system. The service time for each task is

increased until deadlines are missed, so that means that the higher the result of the test in terms of service time, the
lower the communication latency.

In the ARTS Kernel, we have two communication media with different latency as illustrated in Section 4.1. The
Ethernet latency is lower than the token ring latency, so we would expect the result from the DSHcl Series to be
higher for the Ethernet (in a dedicated environment) than the token ring (also in a dedicated environment). In fact
this is true; we find that with the Ethernet, we can go as high as DSHci-35 whereas the token ring can only go to
DSHcl-34. The numbers 34 and 35 indicate the largest amount of server time (in ms) that the task could withstand
without missing any deadlines for the token ring and Ethernet, respectively. We measure the server time in
milliseconds in this case to provide a finer granularity than measuring computation time in kilo-Whetstones (KWS)
which require 4 2 ms on a SUN3. This result verifies the ability of the DSHcl task set to differentiate between the
performance of systems using network media with different performance characteristics.

43. DSHpq Series
The DSHpq Series is similar to the DSHcl Series in that it is intended to detect differences in the response time of

the communication subsystem. However, the DSHpq Series is measures the response time with a larger grain than
the DSHcl. The DSHpq Series is better tuned to differences in message priority handling and communication
scheduling. Again, differences in performance are measured in terms of different remote service times (measured in
KWS).

In the ARTS Kernel, we have the capability to send service requests at any particular priority from any task. So
we can assign message priorities according to the task priorities assigned by the rate monotonic scheduling policy,
or we can assign the same priority to all messages to get a FIFO queueing discipline for the message handling. With
prioritized messages, the ARTS Kernel achieves DSHpq-18, but if the messages_are not prioritized, the result is

13

DSHpq-13. This means that with prioritized messages, the server time could be set to 18 KWS, but without
priorities on the messages, the limit on the server time was 13 KWS. This verifies that the benchmark task set can
detect differences in performance of two different systems, one which uses priority information from network
packets vs. a system which just does FIFO processing of network packets.

4.4. DSNpp Series
The DSNpp Series tests for preemptability in the protocol processing of the communication subsystem. We have

a high priority task which periodically requests service time from a remote high priority server. We also have a
number of low priority tasks which request time from a remote low priority server. We vary the number of low
priority tasks, and a difference in the number of tasks for two communication scheduling algorithms indicates a
difference in the preemptability of the protocol processing. If a particular algorithm allows the low priority protocol
processing to preempt the high priority server, then the low priority tasks in this task set will be able to affect the
timing characteristics of the high priority task. However, if the protocol processing of the low priority message is
preempted in favor of the high priority service, then the number of low priority tasks will have little or no effect on
the high priority task.

In the ARTS Kernel, we have two implementations of our protocol processing engine. One implementation uses
a software interrupt mechanism which runs at a higher priority than any user tasks. The other implementation uses
several prioritized worker threads to increase preemptability for messages with different priorities. The worker
thread implementation is 10% slower than the software interrupt version, but it provides increased preemptability
which is more important for real-time computing. The software interrupt version performed at the DSNpp-13 level.
The result of this Series using the worker thread implementation is at least DSNpp-20, but due to a physical memory
limitation, 20 is the largest number of threads we were able to test with. This test verifies that the DSNpp Series can
detect distinguish between different degrees of preemptability in the network software.

4.5. DSHcb Series
The DSHcb Series tests the communication bandwidth by trying to maximize the number of message generated

by the task set without spending any CPU time on additional computations such as workload for the periodic tasks
or service time. We have several periodic tasks which send messages to a remote server and we increase the number
of high priority tasks in the system. In this way, we push the utilization of the communication subsystem up without
bringing preemptability or priority inversion handling into play, the competing tasks are mostly high priority tasks.

In ARTS, we find that by using the dedicated Ethernet at 10 Mbit/sec we can achieve DSHcb-17. We using a
token ring at 4 Mbit/sec, we only get DSHcb-4. This reflects the difference in speed of the two networks and the
difference in the performance of the hardware interface to the host computer and the device driver software.

4.6. DSHmc Series
Limitations in the current ARTS testbed prohibit us from loading the network enough to differentiate between

communication media in terms of the priority inversion at the media access level. We are currendy working on the
solution to this problem. However, simulations have shown that the proper use of priorities in the media access
level can promote predictable communication and substantially improve system response time [8].

5. Summary
We have described the Distributed Hartstone benchmark, an extension of the uniprocessor Hartstone benchmark

for the distributed real-time environment. We attempt to improve on previous real-time benchmarks which
concentrate only on issues such as context switch time, interrupt latency, and scheduling delay from
synchronization. These issues are important in real-time systems, but a benchmark for the distributed real-time
environment must also treat communication related issues such as the effective coordination between the processor
scheduling domain and the communication scheduling domain. Also, we would like to evaluate operating system
structures which should support the predictability and schedulability analysis for the system. Our Distributed

14

Hartstone measures system performance in the critical areas of communication latency and bandwidth, protocol
preemptability, and priority queueing at the protocol and media access levels.

Future work includes the identification and evaluation of additional operating system structures which are critical
for predictable real-time systems and the definition of task sets to stress these areas. Also, the performance of other
types of systems such as pipe-lined systems should be examined to determine the types of tests that would be
appropriate.

Acknowledgements
We would like to thank Dr. Nelson Weiderman and our reviewers for their useful comments on this paper and the

members of the ART Project at CMU for their implementation effort

References
[1] Cheriton, D. R.

VMTP: Versatile Message Transaction Protocol.
Technical Report, Computer Science Department, Stanford University, January, 1987.

[2] Cumow, R J. and Wichmann, B. A.
A Synthetic Benchmark.
Computer Journal 19(l):48-49, January, 1976.

[3] Ishikawa, Y., Tokuda, H. and Mercer, C. W.
Priority Inversion in Network Protocol Module.
Proceedings of1989 National Conference of the Japan Society for Software Science and Technology ,

October, 1989.
[4] Kar, R. P. and Porter, K.

Rhealstone - A Real-Time Benchmarking Proposal
Dr. Dobbs Journal 14(2):14-24, February, 1989.

[5] LeIarm,G.
Issues in Real-Time Local Area Networks.
Proceedings of Pacific Computer Communications Symposium, October, 1985.

[6] Liu, C. L. and Lay land J. W.
Scheduling Algorithms for Multiprogramming in a Hard Real Time Environment
/AGV 20 (1):46-61,1973.

[7] Sha, L., Lehoczky, J. P. and Rajkumar, R.
Solutions for Some Practical Problems in Prioritized Scheduling.
In IEEE Real-Time Systems Symposium. December, 1986.

[8] Strosnider, J.K. and Marchok, T. and Lehoczky, J.
Advanced Real-lime Scheduling Using the IEEE 802.5 Token Ring.
Proceedings of the 9th Real-Time Systems Symposium, Dec., 1988.

[9] Tokuda, H. and Mercer, C. W.
ARTS: A Distributed Real-Tune Kernel.
ACM Operating Systems Review 23(3), July, 1989.

[10] Tokuda, H., Mercer, C. W., Ishikawa, Y. and Marchok, T. E.
Priority Inversions in Real-Time Communication.
In Proceedings of 10th IEEE Real-Time Systems Symposium. December, 1989.

[11] Tokuda, H. and Mercer, C. W. and Marchok, T. E.
Towards Predictable Real-Time Communication.
In Proceedings of Sixth IEEE Workshop on Real-Time Operating Systems and Software. May, 1989.

15

[12] Weicker, R. P.
Dhrystone: A Synthetic Systems Programming Benchmark.
Communications of the ACM 27(10): 1013-1030, October, 1984.

[13] Weicker, R. P.
Dhrystone Benchmark: Rationale for Version 2 and Measurement Rules.
SIGPLAN Notices 23(8):49-62, August, 1988.

[14] Weiderman, N.
Hartstone: Synthetic Benchmark Requirements for Hard Real-Time Applications.
Technical Report CMU/SEI-89-TR-23 (ESD-89-TR-31), Software Engineering Institute, Carnegie Mellon

University, June, 1989.

16

I. Kilo-Whetstone C Code
/*
* Whetstone benchmark in C. This program is a translation of the
* original Algol version in "A Synthetic Benchmark" by H.J. Curnow
* and B.A. Wichman in Computer Journal, Vol 19 #1, February 1976.
*
* Used to test compiler optimization and floating point performance.
*
* Compile by: cc -0 -s -o whet whet.c
* or: cc -0 -DPOUT -s —o whet whet.c
* if output is desired.
*
* The counter values (module weights) have been adjusted from the one
* million instruction range to the one thousand range. Unfortunately,
* some of the counts go to zero.
*
* In this stage of development, ARTS kernel does not support trig

. * functions, so this part of the test was also omitted. We are
* currently working to add these functions in the ARTS library.
*/

#define ITERATIONS 10 /* 1 Million Whetstone instructions */

#include <math.h>

double xl, x2, x3, x4, x, y, z, t, tl, t2;
double el [4];
int i, j, k, 1, nl, n2, n3, n4, n6, n7, n8, n9, nlO, nil;

kwhets(nkwhets)
int nkwhets;
{

int kwhetcount; /* loop counter */

/* initialize constants V
t - 0.499975;
tl - 0.50025;
t2 - 2.0;

/*
* set values of module weights
* (measured in kilo-whets: some go to zero)
*/

nl m 0 • ITERATIONS / 1000;
n2 m 12 * ITERATIONS' 7 1000;
n3 m 14 * ITERATIONS / 1000;
n4 m 345 • ITERATIONS / 1000;
n6 m 210 • ITERATIONS / 1000;
n7 m 32 * ITERATIONS / 1000;
n8 m 899 • ITERATIONS / 1000;
n9 m 616 * ITERATIONS / 1000;
nlO m 0 * ITERATIONS / 1000;
nil m 93 ITERATIONS / 1000;

for (kwhetcount - 0; kwhetcount < nkwhets; kwhetcount++) {

/* MODULE 1: simple identifiers */
xl - 1.0;
x2 « x3 - x4 - -1.0;
for(i - 1; i <- nl; i +- 1) {

xl - (xl + x2 + x3 - x4) * t;
x2 - (xl + x2 - x3 - x4) * t;
x3 - (xl - x2 + x3 + x4) * t;
x4 - (-xl + x2 + x3 + x4) * t;

}
#ifdef POUT

pout(nl, nl, nl, xl, x2, x3, x 4) ;
#endif

/* MODULE 2: array elements */
el[0] - 1.0;
el[l] - el[2] - el[3] - -1.0;

for (i - 1 ; i <- n2; i +-1) {
el[01 - (el[0] + el[l] + el[2] - el[3]) * t;

17

el[l] - (el [0] + - «1[2] + el[3J ; * t;
el[2] - (el[0] - el[l] + el[2] + el[3]) * t;
el[3] - <-el[0] + el[l] + el[2] + el[3]) * t;

#ifdef POUT
pout(n2, n3, n2, al[0], el[l], el[2], el[3]);

#endif

/* MODULE 3: array as parameter */
for (i - 1; i <- n3; i +« 1)

pa(el) ;
#ifdef POUT

pout(n3, n2, n2, el[0], el[l], el[2], el[3]);
•endif

/* MODULE 4: conditional jumps */
J - i;
for (i - 1; i <» n4; i +« 1) {

if (j — 1)

else

if (j > 2)
j - 0;

else
j - i;

if (j < 1)
j - i;

else
j - 0;

}

•ifdef POUT
pout(n4, j, j, xl, x2, x3, x4) ;

•endif

/• MODULE 5: omitted */

/* MODULE 6: integer arithmetic */
j - i;
k - 2;
1 - 3;
for (i - 1; i <- n6; i +- 1) {

j - j * (k - j) * (1 -k) ;
k - 1 * k - (1 - j) * k;
1 - (1 - k) * (k + j) ;

el [1 - 2] - j + k + 1; /* C arrays are zero based */
el[k - 2] - j * k * 1;

}
#ifdef POUT

pout(n6, j, k, el[0], el[l], el[2], el [3]);
#endif

•ifdef SIN_OKAY
/* MODULE 7: trig, functions */
x - y - 0.5;
f o r d - 1; i <- n7; i +-1) {

x - t * atan(t2*sin(x)*cos(x)/(cos(x+y)+cos(x-y)-1.0));
y - t * atan(t2*sin(y)*cos(y)/(cos(x+y)+cos(x-y)-1.0));

}

•ifdef POUT
pout(n7, j, k, x, x, y, y) ;

•endif
•endif SINJDKAY

/* MODULE 8: procedure calls */
x - y - z - 1.0;
for (i - 1; i <- n8; i +-1)

p3(x, y, &z);
•ifdef POUT

pout(n8, j, k, x, y, z, z) ;
•endif

/* MODULE9: array references */

1 - 3;
el[0] - 1.0;
el[1] » 2.0;
el[2] - 3.0;
forii - 1; i <- n&; i +« 1)

pO() ;
#ifdef POUT

pout(n9, j, k, el[0], el[l], el[2], el[3])
#endif

/* MODULE10: integer arithmetic */
j - 2;
k - 3;
for(i - 1; i < - nlO; i +-1)

j - j + k;
1c - j + k;
j - * - j;
k - k - j - j;

}

#ifdef POUT
pout(nlO, j, k, xl, x2, x3, x 4) ;

#endif

/* MODULE11: standard functions */
x - 0.75;
f o r d - 1; i < - nil; i +-1)

x - sqrt(exp{ log(x) / tl)) ;
#ifdef POUT

pout(nil, j, k, x, x, x, x) ;
#endif

}

}

pa (e)
double e[4];
{

register int j;

j - 0;
lab:

•10] - (e(0] + e[l] + e(2] - e[3]) * t;
•{1] - («[0] +• e(l] - e[2] + e{3]) * t;
•[2] - (e(0] - e[l] + «[2] + e[3]) * t;
«{3] - (-e{0] + e[l] + e{2] + e[3J) / t2; '
j +- 1;
if (j < 6)

goto lab;

p3(x, y, z)
double x, y, *z;
{

x - t * (x + y) ;
y - t * (x + y) ;
*z - (x + y) /t2;

p0()
{

al[j] - •ltk];
el[k] - el[l];
el[l] -

#ifdef POUT
pout(n, j, k, xl, x2, x3, x4)
int n, j, k;
double xl, x2, x3, x4;
{

printf("%6d%6d%6d %5 e %5 e %5 e %5 e\n"
n, j, k, xl, x2, x3, x4);

}
#endif

