
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

The Operational
Feature Exchange Language

David Alan Bourne, Jeff Barrel,
Paul Erion, and Duane T. Williams

CMU-ra-TR-90-06^

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

March 1990

Copyright © 19% Carnegie Mellon University

The work described in these documents was supported by Air Force Contract No. F-33615-86-G5Q38, In-
telligent Machining Workstation (IMW), sponsored by the Air Force Wright Aeronautical Laboratories,
Materials Laboratoiy, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

Contents

1 Executive Summary . • 1

2 FEL Specification: Preliminary Design 5

3 FEL Interface to the Planning Expert 31

4 FEL Syntax for Communicating with a Geometric Modeler 53

5 FEL Interface for Communicating with the Holding Expert 75

6 Generic Environment for Unix-based Experts 97

7 Generic Environment for Lisp-based Experts 113

i i l ^ t f r . FA 15213-3238

Abstract

This collection of documents describes the existing Feature Exchange Language (FEL) as
it is implemented in the prototype Intelligent Machining Workstation (IMW). The origi-
nal design of FEL is described, the FEL interface to several IMW subsystems (Planning,
Modeling, and Holding) is explained in considerable detail, and the implementations
for both the Sim Unix C++ and the TT Explorer Lisp environments are explained.

Executive Summary

The Feature Exchange Language (FEL) has been designed as a language for communi-
cating messages in a distributed environment.

Design Feature-1: FEL was designed to make parsing and generation simple- The as-
sumption was that possibly many different computing platforms would require an FEL
interpreter.

Design Feature-2: It was assumed that FEL could tie together processes running on one
machine or many, and therefore FEL was designed to represent the sender, receiver(s)
and other information that could be useful in message transport

Design Feature-3: Features were chosen as the objects that should be communicated.
Each feature has a name and a set of built in parameters that go with it.

Design Feature-4: Each sentence of FEL has a verb that specifies how a message should
be interpreted by a particular receiver. There has been a strong effort to keep the num-
ber of verbs to a minimum, allowing message variations to be specified in the feature-
lists. Note: verbs are overloaded in the sense that each receiver can interpret a message
in a way most meaningful to it.

Design Feature-5: FEL was designed to represent complex message exchanges between
distributed parties. For-example, verb-tense and a dialogue name are used to open,
keep-track-of, and dose a given dialogue. In this way, it is possible to essentially pro-
cess multiple messages at once: every receiver can act as a server.

This document explains how these features were in fact implemented and then how
FEL was used in various applications:

• 3D Modeler Updates and Queries
• Planning Requests for Information
• Holding Expert Queries and Answers

We believe that this language is a good first step towards the development of a messag-
ing system that can easily integrate and coordinate software modules, especially those
found in manufacturing applications.

There is further work that we believe is necessary to have a truly useful manufacturing
language.

• Including feature definition as part of the language
• Extending work on dialogue management
• Supporting negotiation and contract management as part of an FEL implementation

1

Center for
Integrated Manufacturing Decision Systems

FEL Specification
Preliminary Design

David Alan Bourne

March, 1990

Abstract
This document is the original (preliminary) design specification for FEL (Feature

. Exchai\ge Language).

A detailed description of the original syntax of FEL sentences is given, as well as a
detailed overview of the semantics of many of the verbs and attributes of the language.
The current implementation of FEL was motivated by this document. Some of the
advanced language features described here have yet to be implemented, but all of the
basic features of the language are employed in the existing prototype of the IMW
(Intelligent Machining Workstation).

Copyright © 1990 Carnegie Mellon University

Contact:
DmM Bourne
CIMDS
Camegk Melhn University
Pittsburgh PA 15213
(412)268-8810

Carnegie Mellon University (Original) FEL Specification

1. Background Information

The Intelligent Machining Workstation includes many different subsystems, which
must communicate with each other. Each subsystem has its own features, parameters
and capabilities; so the Feature Exchange Language (FEL) specifies a simple, yet
unified, approach for exchanging this information*

At the same time, FEL must cope with part descriptions or product definitions. The
spirit of language family PDDI/GMAP/MFGMAP/FDES is to go beyond geometry
and encompass process into the part description. Since MFGMAP is meant to be our
subset of GMAP it is important to keep the same flavor to it - it must specify more than
just geometry.

Requirements for both product definition and control information have two major
parts: a command and many parameters. The parameters can be collected together to
describe the objects that we wish to manipulate — these objects are called feature lists.
Each of these feature lists describes a collection of attributes and values that constitute a
feature definition; in some cases, it is more convenient to think of the feature lists as de-
scribing objects or nouns.

2L The Feature Exchange Language (FEL)

Since we have unified the goal of these two languages into one way of describing and
exchanging features of parts and processes, we have decided to rename it the "Feature
Exchange Language." The top-level syntax of this language is described as:

Sentience::* T <Verb> <Feature_Lists> T I T T

Feature_Iists::= <FeatureJList> <FeatureJLists> I
<Attrib> <Feature_lists> i nil

The language syntax specifies that any command can have any number of feature lists.
This allows verbs to be written such that they can take any number of objects (i.e., fea-
ture lists) as arguments. It is also possible to add additional feature lists that could
describe where the message is sent, and notes that might be useful for debugging and
user displays.

3. The FEL Verb Breakdown

In FEL there are five different types of each verb. These verb styles denote state transi-
tions in a dialogue between two subsystems. The state transition tables for these dia-
logues are discussed in a later section.

(1) Present — Command to go to new state
(2) Active - In-process of going to new slate

Carnegie Mellon University (Original) FEL Specification

(3) Past — Have reached new state
(4) Not_Past — Have not and will not reach the desired state
(5) Stop__Active - Terminate an active state

These verbs define transitions in a simple state network. The "imperative verbs" are
equivalent to the "present verbs" and the "declarative" verbs are split into "active" and
"past" verbs. The Interrogative" verbs are still covered by the "present verbs" by
choosing verbs that request information.

There are also two control oriented verbs (Not_Past and Stop_Active). In any type of
error situation it is necessary to communicate that an action has not been accomplished.
On the other hand, it may be necessary to abort an ongoing action, because of some
external influences or new information. This will be discussed further in the section on
communication states.

The result is that each communication has a beginning, an optional middle and an end.
For example, one interchange of verbs could be:

Message Out from Source: ~> Make
Message Received at Source: Making <~
Message Received at Source. Made <~

The lexical analyzer can be responsible for marking the tokens as present, active or past.
This scheme will work fine for most verbs, but may cause some confusion for irregular *
verbs, such as, "isM, ''being", and "was." There are two solutions to this problem. We can
introduce a special characters, such as,"!", "<","-". In this case, "is!", "is<" and "is=M. Or
simply, we could choose built-in verbs with reasonable conjugations.

Verbs::= <Present> I <Active> I <Past> I <Not_Past> 1 <Stop_Active>

Recommendation: There are advantages to using English verbs and conjugations,
because they can be readily paraphrased into full English sentences for the human
interface.

A design goal for FEL is to make its verbs and verb-types orthogonal. That is, every
verb should be able to' be put into every form. TMs shmid be true no matter what verb
classification scheme is chosen.

Carnegie Mellon University (Original) EEL Specification

4. Built-in Verbs

In general, the verbs are meant to describe actions on feature lists as well as methods
and states of negotiation- Fortunately, very few verbs will go a long way, because most
of the final actions depend on the contents of the feature lists. What follows is a nearly
complete list of verbs that will be needed for the IMW.

Negotiation Verbs: Defined Example
Offer ! Offering I Offered lNot_Offered !

StopJDffering pp. 24-25

Accept I Accepting I Accepted I Not_Accepted
Cancel I Canceling I Canceled I NotjCanoeled

Database Verbs:
Define I Defining I Defined I Not_Defined pp. 21-23
Update 1 Updating I Updating I NotJLJpdated
Delete I Deleting I Deleted I Not_Deleted p. 27
Get I Getting I Got INot_Gotten p. 26

Machining Verbs:
Make I Making I Monitoring I Made I Monitored I pp. 26-27

Not_Made I Not_Monitored I
Stop_Monitoring I Stop_Making

Inspect I Inspecting I Inspected I Notjnspected I
Stopjnspecting

Camegie Mellon University (Original) FEL Specification

5, Verb Definitions

Offer This message verb is a command to fill in suggested values in a feature list For
example, if the planner wishes to ask the cutting expert for suggested speeds and feeds
then the planner could use this verb.

Accept This message verb agrees on negotiated values passed between two systems.
It has the effect of signing a contract between the two systems after an offer has been
made. Eventually, we may impose sanctions on systems that wish to break contracts.

CanceL- This message verb is the only way to break a contract that has been negotiated
between two subsystems. If it is issued, then it is assumed that the system breaking the
contract is subject to the sanctions of the contract.

Define: This message verb allows one subsystem to pass a feature list to another sys-
tem, because it is known a priori that the information is needed. For example, this mes-
sage type would be used to distribute part model information.

Update This message verb allows one subsystem to update remote copies of a feature
list. This can be used only if the remote copies of the feature list belong to the source of
this message, otherwise there is a violation of data security.

Delete: This message verb allows one system* to delete another system's feature list
This verb cannot be used to delete pending contracts, though once contracts have been
completed, then this verb can be used.

Get This message verb allows one system to get a feature list from another system-
Ownership of the feature list remains with the source of the information.

Make: This message verb commands the system to carry out actions that will make the
defined features in the external world. In other words, iWs verb would command the
system to machine a part, rather than manipulating internal information.

Inspect This message verb commands the system to carry out actions that would in-
spect the external world, In other words, after a part is machined, this verb could be
used to inspect the final result

Carnegie Mellon University (Original) FEL Specification

6. Representing Parameters as Feature Lists

The primary problem area for both MFGMAP and SML was how to represent many,
many complex parameters. SML chose a representation known as Working Elements
based on work done at NBS. This scheme is essentially named structures, which can be
nested into hierarchies. We represent these hierarchies by explicitly naming the nodes
of the hierarchy and then list branches of the hierarchy as its parts with "Has JParts."

Example Feature List:

(Name
(Type
(Length
(Radius
(Has Parts

PL_Cylinder)
Cylinder)
5 inches)
3 inches)
(CX_Holel CX_Hole2 CX_Hole3)))

This example shows how the planner might describe a cylinder with three subparts as a
feature list. Also nested feature lists do not need to define a proper hierarchy. For
example, MFGMAP applications make it necessary to represent loops for edges and
faces.

To make parsing as simple as possible, all special symbols have been removed and the
syntax is essentially equivalent to association lists in OSP. However, the basic structure
is identical to NBS-type work elements.

One problem with these feature lists is that all the different attributes have to be
understood by each subsystem and yet they remain ad hoc. Therefore, as an area of
development, we need to further systematize the attributes and consider computational
devices for dynamically introducing new attributes.

Carnegie Mellon University (Original) FEL Specification

7o Feature List Syntax

A partial syntax description of a feature list is:

Featurejist:= T <AttribJist> T

Attrib_Iist::= T <Attrib> <Value> T <AttribJist> 1 nil

Attrib::= <Alphabetic+_> I <Alphabetic+_> <Alphanumeric+_>

Value::= <Attrib> I <Integer> I <Floating Point> I <Dimensions> I
I <Rates> 1 <String> I <Iist>

Dimensions::= <Ihteger> <Units> I
<Floating Point> <Units>

Units::= "cm" ! "mm" ! "inches" I "mils" I "sec11 1 "min"
"radians" I "degrees" I nil

Rates::= <Integer><Rate_Units> 1
<MoatingJPoint> <Rate_Units>

RateJJnits::= rtrpm" ! "rps" 1 "ipstf I '1pm" ! nil

Value2::= <Attrib> 1 <Integer> I <Hoating Point> 1 <Dimensions> 1
I <Rates> I <String>

L <Value2> 1 <VaIue2>

Iisfc:« T <Val_Iist> rf)ff

Syntax N o ^ : In titiis syntax, the "Name" attribute is required and internal lists are
forced to be flat, that is, attribute values cannot be lists of lists. This later limitation is to
avoid the temptation to hide feature lists inside other feature lists. Tins syntax assumes
that the lexical analyzer uses any amount of whiiespace as separators — any number of
spaces, tabs, Hne feeds or carriage returns* Some syntactic distinctions could be
sknplfied/ e.g., rates and dimensions, but these extra syntactic categories should
amplify semantic interpretation.

Tliere are many examples of this syntax in later sections of the document

10

Carnegie Mellon University (Original) FEL Specification

8. Built-in Feature List Types

Simple Machined Features
RinrW
BKnd_Hole
Thru_Hole
Hole_Chamfer
Thread
Slot
ThrujSot
Rectangular_Thru_Slot
Rotational-Groove
Pocket
ThruJPocket
RectangularJPocket (?)
Chamfer
Channel
Shoulder
Squaring_Block (?)
Plane
Angle (?)
Thru_Angle
Convex_Angle
Edge_Round
Wedge
Face

Miscellaneous
Part
Surface
Cutting_Operation
Holding_c5peration
Sensing^Operation
Manager_Operation
Message

Defined
J

V

V

V
1

»

1

11

Carnegie Mellon University

(Original) FELSpecification

9. Feature List Definitions

Each built-in feature list has its own set of predefined attributes. Some of the
predefined values must have a particular kind of value. Some of these value types are
considered obvious, e.g., <lhteger> and others are defined above as part of the feature
list syntax. The definitions that have been predefined follow:
/ /XT(Name

(Type
(Radius
(Depth
OLVector
(D_ Vector
(Has_Parts
(fcjPart
(Name
(Type
(Width
(Depth
(Length
(P.Vector
(W_Vector
(D_Vector
(L.Vector
(Has_Parts
QsJPart

(Name
(Type
(Length
(X_Angle
OCAngle
(Intersection
(P.Vector
(WVector
(D.Vector
(L.Vector
(HasJParts
Os.Pait

<Attrib>)
Thru_Hole)
<Dimensions>)
<Dimensions>)

<VaIue>)
<VaIue>))

<Attrib>)
Thru_Slot)
<Dimensions>)
<Dimensions>)
<Dimensions>)

<Value>)))

<Attrib>)
Wedge)
<Dimensions>
<Dimensions>
<Dimensions>

ions>))

<Valoe>)
<VaIue>)))

<Dmieiisions> <Dfmen$ions>))
<Dimermons> <Diiiiensions>))

12

Carnegie Mellon University (Original) EEL Specification

(Name
(Type
(Width
(Height
(Length
(PJVector
(W_ Vector
(D Vector
(L_Vector
(Has Parts
(Is.Part

(Name
(Type
(Radius
(Class
(Has Parts
(Is_Part

(Name
(Type
(Material
(Units
(Source
(Surfaces

(Presentation
(Has_Parts

(Name
(Type
(Class
??Tolerance
(Has Parts
(Is.Part

(Name
(Type
(Units
(NC_Name
(NC_Frame
(Safe Zone
(Tools
(Speed
(Feed

<Attrib>)
Block)
<Dimensions>)
<Dimensions>)
<Dimensions>)
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
(<Dimensions> <Dimensions> <Dimensions>))
<Value>)
<Value>)))

<Attrib>)
Edge_Round)
<Dimensions>)
"Convex" 1 "Concave")
<Value>)
<Value>))

<Attrib>)
Part)
<Materials>)
<Units>
<Batch_Codes>)
(<S_Type> <S_Type> <S_Type> <S_Type> <S_Type>
<S Typo)
(<Side> <Side> <Side>))
<Value>))

<Attrib>)
Surface)
"Sawed" 1 "Rolled" 1 "Machined")

<Value>)
<Value>))

<Attrib>)
CtittingJDperation)
<Rate_Units>)
<Attrib>)
<Value>) ; We might want to make this a separate element
<Value>)
<Value>)
<Rates>)
<Rates>))

13

Carnegie Mellon University
(Original) FEL Specification

(Name
(Type
(Concerns
(Warnings
(Errors

<Attrib>)
SensingJDperation)
<Value>)
<Value>)
<Value>))

(Name
(Type
(Fixtures
(Cutter^Paths
(Forces

<Attrib>)
HoldingJDperation)
<Value>)
<Value>)
<Value>))

(Name
(Type
(Models
(ActiveJElement
(Concerns

<Attrib>)
ManagerJDperation)
<Value>)
<Attrib>)
<Value>))

(Name
(Type
(Reply__To
(From
(To
(Priority
(Time
(Subject

<Attrib>)
Message)
<Attrib>)
<System_Module>)
(<System_Modules>))

0)
<TIme_Stamp>)
<string>))

14

Carnegie Mellon University (Original) FEL Specification

10. Special Attributes (Is_Part and Has_Parts)

There are two very special attributes called fTs_JPart" and "Has_Parts." These two
elements are used to tie the structure of feature lists together- The Is_Part relation is
used to determine the structure of value inheritance, Le., what are the default values.
While the HasJParts relation, is used to indicate that there are more details in other fea-
ture lists and it may be necessary to consider the whole. In the case of geometrical
modeling, Has_Parts can be used to trigger modeling primitives that perform additions
and subtractions from the model.

.Parts T C 1

Figure 1: Four feature lists named: A,B,CandD

Figure 1 is a graphical illustration of the connection between four feature lists. In this
case, we recognize that the Is_Part and Has_Parts relations are not symmetric, because
"B" is not included as part of "A's" description. This hierarchy of feature lists could be
defined as:

(Define ((Name
(Has_Parts

((Name
(Is.Part

((Name
(Is_Part

((Name
(Is Part

A)
(CD)))

B)
A))

O
A))

D)
A)))

15

Carnegie Mellon University (Original) FEL Specification

11. Parsing Feature Lists

On SUNS and other UNIX boxes, LEX and YACC can be used to define a parser for fea-
ture lists. The output of the parse will, in these cases, be stored in C structures.

On Explorers, the LISP reader will be used for reading the feature lists into LISP
association lists.

12. Message Information

Both the source of a message and the target of the message should be represented. We
can decide to include this in the FEL proper or we can let the mail system manage this
information for us. Functionally, the result will be the same, but different modules will
be responsible depending on the choice.

We may also want to add other features to messages, such as, carbon copies,
forwarding and status required or not.

13. Feature List Naming Convention

The subsystem, name in italics, that constructs a feature list must mark it with a two
letter prefix, which corresponds to the name of the module. In this way, it will be clear
which module owns every feature list. This becomes important when we wish to
maintain consistency between values in our distributed environment.

CT - Cutjech Database
CX - (putting Expert
HI — Human Interface
HX — Holding Expert
MX — Modeling Expert
PM - Plan Manager
PX - Planning Expert
SX — j^nsing Expert
UP — Upstream Processes, e.g., Designer, Scheduler.

We may want to break this category down further.

16

Carnegie Mellon University (Original) FEL Specification

14. Convention for Protecting Distributed Data

The feature lists are meant to operate in a distributed environment, which can cause
many database management problems. To avoid problems, like having two copies of
the same feature list with different values, we will enforce a restriction that makes fea-
ture lists "read everywhere" and "write and delete only at the home subsystem." Even
this restriction may be too weak, unless every subsystem remembers who has copies of
that subsystem's feature lists. This means it is even necessary to control when the
owner of the feature list is allowed to make changes.

For example, it is understood that a negotiation between subprocesses is a time for
making changes. But once values have been jointly settled, then that feature list is
effectively closed. To understand this better, a negotiation is like coming to terms on a
contract between two parties. Once an agreement has been devised, then both parties
are honor bound to that agreement and its terms. After the contract has been
completed, then the feature list is obsolete and can be safely removed.

There is a further need to formalize when it is safe to modify existing feature lists, so
that consistency can be guaranteed without giving up flexibility.

Carnegie Mellon University (Original) FEL Specification

15. Dialogues and Communication States

The IMW is designed so that any two subsystems can carry out a dialogue at any time.
These dialogues can have many purposes, which can vary from carrying out actual
machining to simply settling on a plan. Whenever two systems participate in such a
conversation, they must each maintain the current state of the dialogue. In fact, these
states must be maintained for every active dialogue that is going on concurrently.
Furthermore, it is expected that both participants in a dialogue maintain their own state
network.

o • o
M

• o

Subsystem 1 Subsystem2
Figure 2: Two subsystems in dialogue

Figure 2 shows two subsystems with identical state machines, which represent the dia-
logue in process. The first subsystem which began in the first state, issued a message
to the second subsystem and then advanced to the second state- The second subsystem
remains in the first state until it receives the incoming message M after which it also
advances to the second state. The dialogue between the two subsystems in not consid-
ered complete until both state machines return to the initial state. Practically speaking,
the state machines are automatically created and purged as individual dialogues are
started and then completed.

Most communications can be handled with a simple three state machine. Figure 3
shows a three state machine for one participant that starts in S and usually proceeds
through two intermediate states in the process of completing a request However, on
occasion it is possible to determine that the request can be immediately satisfied or that
it cannot be satisfied at all. in this case, the dialogue can be brought to an immediate
end-

Carnegie Mellon University (Original) FEL Specification

ade I NofJMads

Figure 3: Simple Three state communications

In this network, there are two kinds of arcs: bold arcs indicate that the message is
received and plain arcs represent that the message is sent to the other participant.
Therefore, if a subsystem is the origin of a dialogue then it is allowed to initiate the bold
arcs, while if a subsystem is the target of dialogue then that subsystem is allow to ini-
tiate the plain arcs. On the other hand, the origin of a dialogue is expecting to receive
messages on plain arcs, while the target of a dialogue is expecting to receive messages
on bold arcs. Figure 3 also raises a potential problem. Once a subsystem is in the
active state, "making11 in Figure 3, it may have to be forced out of it by the verb
!fStop_Making," otherwise there would be no way to cancel an action once it had
started.

These state machines are quite powerful, but cannot handle all of the complexities that
we wish to capture in a negotiation process. However, Figure 4 shows that with the
addition of one state it is possible to add a negotiation loop, between state 3 and state 4,
and still be able to keep track of which subsystem has the proverbial ball.

Stoplufferaig

Figure 4: Complex Four state communications or negotiation

19

Carnegie Mellon University (Original) FEL Specification

First, the origin of a negotiation decides that it requires information on several features.
It then sends out a possibly empty feature list to be filled in by the source of the mes-
sage. That is the origin requests an "offer" for possible values. When the source of the
message calculates the appropriate values to return it is "offering" a response, one of
possibly many. The source of the original request can then make a counter offer or sim-
ply state that the original offer has been "accepted/'

Another strategy, see Figure 5, for a simple kind of negotiation can use another sub-
system just to validate the terms of an agreement In this case, an "accept" command is
sent to a second system and a response comes back indicating whether or not the terms
have been accepted.

FigureS: Simplest two state interaction

20

Carnegie Mellon University (Original) FEL Specification

16. Modeling Stock Example

This long example starts with one subsystem called a planner sending part information
onto other systems that will also need the information. Since this information was not
requested, the "define" verb is used. The idea is that each subsystem will process this
feature list by building up a three dimensional model using tools in MFGMAP.

Note that in this case the feature list was originally defined by an upstream process and
passed down to the planner. The planner at this point is not given the authority to
delete this feature list without a request from the upstream processes.

Planner: (Define ((Name
(Type
(Width
(Height
(Length
(P_Vector
(D_Vector
(WJVector
(L Vector
(Is.Part

((Name
(Type
(Units
(Material
(Source
(Surfaces
(Presentation
(Has_Parts

((Name
(Type
(From
(To

UP Stock Geometry)
Block)
2.1 inches)
2.1)
2.1)
(0.0 0.0 0.0))
(0.0 2.1 0.0))
(0.0 0.0 2.1))
(2.1 0.0 0.0))
UP_Stock_Part))

UP Stock Part)
Part)
inches)
Aluminum)
<Batch #>)
(Rolled Sawed Rolled Rolled Sawed Rolled)))
(12 3))
UP_Stock_Geometry))

PL_Init_Stock)
Message)
Planner)
(Manager Cutting Holding Sensing)))

We can see from mis first message mat mere are several desirable system features.
Hrst, optional and required arguments must be handled gracefully, and secondly that
default values can be used at any time. In this case, "inches" are specified by the
MUP_Stock_Part" feature list and the units are essentially inherited from this. Finally, it
should be noted that the definition of the stock material was defined in an upstream
process, i.e., was input to the IMW.

21

Carnegie Mellon University (Original) EEL Specification

Now the answers start coming back from the different subsystems. In cases of simple
data transfer, there is not a need to represent the active state of verbs. A process has the
option of sending a completed message, i.ev past tense, immediately. However, some
confirmation must be sent back to the source of a message for every feature list in the
message, except elements of type "message.11 Also the messages can be received in any
order.

Cutting: , (Defined UP_Stock_Geometry
UP_Stock_Part
((ReplyJTo PLJnit_Stock)
(Type Message)
(From Cutting)
(To Hamier)))

Manager: (Defined UPJ>tock_Geometxy
UP_Stock_Part
((ReplyJTo PLJfaitjStock)
(Type Message)

(From Manager)
(To Planner)))

Sensing: (Defined UP_Stock_Geometry
UP_StockJPart
((ReplyJTo PLJnit_Stock)
(Type Message)
(From Sensing)
(To Planner)))

Holding: (Defined UPJ5tock_Geometry
UP_StockJPart
((ReplyJTo PLJnit_Stock)
(Type Message)
(From Holding)
(To Planner)))

Naming every mail message can be annoying, however, there is a strong need for
accountability. Therefore, it is a good convention to name original mail messages.
Responses can then invoke the original name (e.g., with ReplyJTo) and thus it avoids
unnecessary new names. At the same time, this convention simplifies the naming and
management erf reply mail.

A future refinement will be to find a more concise way to fuUy represent a l of the
message oriented inf omtatkm.

22

Carnegie Mellon University (Original) FEL Specification

17. Modeling The Part

In this example, we are going to define a part that is essentially a squared block with
one cut hole, which will be cut from the previously defined stock part. Note that in
these definitions the geometry Is_Part part and is not an operation. Again, this feature
list will be used to drive the primitive functions of MFGMAP in order to make a full
three dimensional model.

Planning: (Define ((Name
(Type
(Width
(Height
(Length
(P_Vector
(D Vector
(W_Vector
(LJVector
(Has Parts
(Is.Part

((Name
(Type
(Radius
(Depth
(P_Vector
(DJVector
(Is_Part

((Name
(Type
(From
(To

UP Geometry)
Block)
2.0)
2.0)
2.0)
(0.0 0.0 0.0))
(0.0 2.0 0.0))
(0.0 0.02.0))
(2.0 0.0 0.0))
UP_Center_Hole)
(UP_Stock_Part UP_Stock_Geometry)))

UP_Center_Hole)
Thru Hole)
.25)
2.0)
(1.0 2.01.0))
(1.0 0.01.0))
UP_Surface))

PL_Part)
Message)
Planner)
(Manager Cutting Holding Sensing)))

Manager: (Defined UP_Geometry UP_Center_Hole UP_Part...)
Cutting: (Defined UP_Geometry UP_Center_Hole UP_Part...)
Sensing: (Defined UPjGeometry UP_Center_Hole UP_Part...)
Holding: (Defined UPjGeometry UP_Center_Hole UP_Part...)

23

Carnegie Mellon University (Original) FEL Specification

18. Negotiation Example

In this example, the planner sends out messages to every subsystem at the same time.
This will cause the subsystems to develop plans that are independent of each other and
will give the planner a chance to study the conflicts. An optional scenario would be to
send each of the subsystems a message in sequence, while imposing successively
stronger constraints on each system in the list While, this organization may seem
simpler than the parallel strategy, it will not always converge on the best solution. For
example, a solution proposed first by the cutting subsystem may unnecessarily over
constrain the holding subsystem, which could result in a second rate solution for
holding even though the cutting system was ambivalent

Planner: (Offer ((Name PL_Center_Hole_Op
(Type Thru_Hole)
(IsJPart (Operation UP_Center_Hole))

((Name PL_Offerl)
(Type Message)
(From Planner)
(To (Manager Cutting Holding Sensing))

Cutting: (Offering ((Name
(Type
(Tools
(NC_Name
(Speed
(Feed

((RepIyJTo
(From
(To

CX_Center_Hole_Op
Operation)
(Drill2))
Peck_Hole)
20)
20))

PL_Offerl)
Cutting)
Planner)))

Holding: (Offering ((Name
(Type
(Fixture
(Top_Face
((ReplyJTo
(From
(To

OC_Center_Hole_Op

(Fixed)
4)
PL.Offerl)
Holding)
(Planner Manager)))

24

Carnegie Mellon University (Original) FEL Specification

At this point in the processing, the sensing system could respond with potential
problems. For example, without yet knowing about the cutter, it is appropriate to
worry about tool wear and tool breakage. It is also appropriate to worry about
potential clogging of the drill which is often a problem when cutting aluminum.
Finally, the surface finish around the hole might have burrs that have been "pulled out"
from the hole. These problems can be addressed in a number of ways, including using
a different drill and adding more steps to the process, e.g., a small hole chamfer. Of
course, as concerns, they can be ignored.

Sensing: (Offering ((Name
5 (Type

(Concerns

((ReplyJTo
(From
(To

Manager: (Offering ((Name
(Type

((ReplyJTo
(From
(To

CX_Center_Hole_Op
Operation)
(Tool_Breakage
SurfaceJBuiTS
Chip_Clogs))

PLJDfferl)
Sensing)
(Planner Manager)))

CX_Center_Hole_Op
Operation)

PL_Offerl)
Manager)
Planner)))

25

Carnegie Mellon University
(Original) FEL Specification

19. Setup Example

Planner:

Manager:

Holding:

(Make UP_Part
((Name
(Type
(From
(To

(Making UP_Part
((ReplyJTo
(Type
(From
(To

Manager: (Make HX_Setupl
((Name
(Type
(From
(To

(Making HX_Setupl
((ReplyJTo
(Type
(From
(To

(Get HX_Setupl
((Reply_To
(Type
(From
(To

Holding: (Got ((Name

PL_Workpackage)
Message)
Planner)
Manager)))

PL_Workpackage)
Message)
Manager)
Planner)))

PM_Setupl)
Message)
Manager)
(Holding Sensing)))

PM_Setupl)
Message)
Holding)
Manager)))

SX_Get_Setupl)
Message)
Sensing)
Holding)))

HX_Setupl)

((Type
CReplyJTo
(From
(To

Message)
SX_Get_Setupl)
Holding)
Sensing)))

Sensing: (Monitoring HX_Setapl
((Type Message)
(BeplyJTo PM.Setupl)
(From Sensing)
(To Manager)))

Holding: (Made HX_Setupl

Carnegie Mellon University
(Original) FEL Specification

((Type
(Reply_To
(From
(To

Message)
PM.Setupl)
Holding)
Manager)))

Sensing: (Monitored HX_Setupl
((Type Message)
(Reply_To PM.Setupl)
(From Sensing)
(To Manager)))

20. Machining Example: Part Completed

Manager: (Made UP_Part
((Reply.To
(Type
(From
(To

PL_Workpackage)
Message)
Manager)
Planner)))

After a part has been accepted by the upstream process, it then issues authorization to
delete the stock and part descriptions, which is then passed on to the various
subsystems.

Upstream: (Delete UP_Stock_Part
UP_Stock_Geometry
UP_Finished_Part
UP_Finished_Geometry
UP_Center_Hole

((Name
(Type
(To
(From

UP_Completed)
Message)
Planner)
Upstream)))

Planner: (Deleted UP_Stock_Part
UP_Stock_Geometry
UP_Finished_Part
UP_Finished_Geometry
UP_Center_Hole

((ReplyJTo:
(Type
(To
(From

UP_Completed)
Message)
Upstream)
Planner)))

27

Carnegie Mellon University (Original) FEL Specification

This example suggests "wildcards" in name could be very useful, such as UP_*, which
would mean that all feature lists that start with "UP_" should be deleted.

28

Center for
Integrated Manufacturing Decision Systems

FEL Interface to the Planning Expert

Paul Erion

March, 1990

Abstract

This document describes the detailed syntax of the FEL (Feature Exchange Language)
sentences that are understood (and generated) by the process planner used in the IMW
(Intelligent Machining Workstation) prototype system.

A description of the Planner's interaction with the modeler is given, together with a
detailed explanation of the meaning of the feature lists received from the modeler. The
method of requesting that the Planner produce a plan and the FEL sentence that it
produces as a response to such a request are explained in detail.

Copyright © 1990 Carnegie Mellon University

Contact:
David Bourne
CIMDS
Carnegie Mellon University
Pittsburgh PA 15213
(412)268-8810

EEL Interface to the Planning Expert

This section assumes that the reader has some familiarity with: FEL syntax, the
MACHINIST1, and the Modeler2.

The Planning Expert (PX) is based on the MACHINIST, a program designed and
written by Caroline Hayes. The MACHINIST is a process planner that produces
manufacturing plans for machined parts. PX is simply the integration of the MACHINIST
and the lisp-based Generic Expert This integration allows input to, and output from,
the MACHINIST to be via FEL sentences.

1. Input to PX

PX's function is to produce a manufacturing plan for a specified part In order to
accomplish this task, certain information is required by PX. The Process Planner needs a
description of the stock envelope, the part envelope, and the features that comprise the
part The Modeler is the expert that will be queried for that information-

1.1. Creating the Model

In order for PX to plan for the machining of a part, the Modeler-must have a model
of the part and stock objects. The model of the part object will include a specification
for each of the part's feature. The ADD sentence that follows is input to MX that would
create a part object named boss, and a stock object3 named S0235. The part and stock
models created by this sentence will be referred to in subsequent examples.

(add ((naine G0927)
(type message)
(to mx))

((type application)
(name planner))

((name ixnw)
(type environment)
(application planner))

((name S0235)
(type object)
(material aluminum)
(p_yector (0*0 0.0 0.0))

L The term Process P t o ^
2. The term MX and M o ^ ^
3. Fcr a detailed explanation of the a t t ^ ^

document entitled, FEL Syniax pr CmmmmMtmg wiA a Geometric Moider*

31

Carnegie Mellon University
FEL Interface to PX

(w_vector
(l_vector
(d_vector

((name
(type
(material
(p_yector
(w_yector
(l_vector
(d_yector

((name
(type
(object
(p_vector
(d_yector
(radius

(3.5 OoO 0.0))
(0.0 2.5 0.0))
(0.0 0.0 1.5)))

boss)
object)
aluminum)
(0.0 0.0
(3.0 0.0
(0.0 2.0
(0.0 0.0

thrul)
thrujiole)
boss)
(1 .5 1.0
(0 .0 0 .0
0.3)))

0 . 0))
0 . 0))
0 . 0))
1.0)))

1 .0))
- 1 . 0))

Figure 1 is a graphical representation of boss, the part object added to the
Modeler.

Figure 1. The part to be machined.

12. Queiying the Modeler

MX may contain models for many objects. So, if PX is to construct a plan, it needs
certain information in order to be able to locate the desired part and stock objects in the
Modeler's hierarchy. That is, the requester of the manufacturing plan must provide the
name of the application, the environment, the part, and the stock. Hence, the initial
function of PX4 expects an FEL sentence of the following form5:

(plan ((name
(type
(application
(environment

<name>)
planning__op)
<application-name>)
<en vironment ~name>)

4. TheimiMfimctionisthefii^^
sentence arrives that initiates a new dialogue.

5. Typically, ©cample FEL sentences will not include the feature Bsf of type message.

32

Carnegie Mellon University FEL Interface to PX

(part <part -name>)
(stock <stock-name>)))

Currently, PX's initial function is only capable of performing meaningful actions for a
plan sentence (that is, a sentence with the verb plan). The sentence should contain one
feature list of type planning_op.6 This feature list contains information that will allow
PX to query MX. The values of the attributes applicat ion 7 and environment specify
the location of the objects in the Modeler's hierarchy. The values of the attributes par t
and stock are the names of the objects about which the process planner needs feature
information.

Once PX has extracted the names of the part and stock objects from the plan
sentence, the next step is to query the Modeler for the features that are associated with
both of these objects. Therefore two dialogues are initiated with MX One of the
dialogues requests the features of the part and, the other, requests the features of the
stock*.

Following are two sentences (a request and a reply) that represent a sample
dialogue between PX and MX. The purpose of the exchange is for PX to obtain the names
of the features associated with the part. The part is an object named boss that resides
in the application, planner, and the environment, imw.

(get ((name px_l)
(type message)
(to xnx)
(from px))

((name boss
(type object)
(application planner)
(environment imw)))

(got ((name px_l)
(type message)
(to px)
(from mx))

((name boss
(type object)
(application planner)
(environment imw)
(material aluminum)

6. pxisnotsniartencraghtobeabletopl^
7. The attribute : app l ica t ion is optional. If it is not provided, then the symbol : planner is used as

the value for this attribute.
8. One's initial thought might be that the stock has no features; however, that is not the case. Associated

with every object is a rectangular bounding box. This is a feature of the object and is known as the
envelope of the object Knowledge about tne part and stock envelopes is vay important to the
MACHINIST.

33

Carnegie Mellon University EEL Interface to PX

(feature (envelope hole))))

Once both of the dialogues with MX have terminated, the returned FEL sentences
are dissected. At this point, each sentence contains two attribute/value pairs that are of
interest to PX. The attributes of importance are material and feature.

The value of the attribute material specifies the material composition of the
object9. This information is converted into a data structure that will be processed by the
MACHINIST10. In the preceding example, the part will machined out of aluminum.

Associated with each object is a set of features. For each of these features, the
Modeler contains detailed information. The process of acquiring that information from
MX commences once the names of all of the features are known to PX. These names are
the elements of the list that is the value of the attribute feature. These feature names
will generate the next round of dialogues with the Modeler. The above example, would
involve two distinct dialogues. One for each of the features named; that is, envelope
and hole.

For each feature associated with an object, a get request will be sent to the
Modeler (each of the requests initiating a new dialogue). The responses to these queries
will contain information needed by the MACHINIST. As an example, if PX wanted to
obtain modeling information about a feature named hole, associated with the object,
boss, in the application, planner, and the environment, imw; then the following FEL
sentence would be sent to MX.

(get ((name px_j2)
(type message)
(to mx)
(from px))

((name hole
(type feature)
(application planner)
(environment imw)))

The response from MX would take the form:

(got ((name px_2)
(type message)
(to px)
(from mx))

((name hole)
(type thrujtiole)
(application planner)

9. ItshwiMcBiiieasitosi^
attribute : mater ia l .

10. XheMACHMBTfean expert system that utilizes t l« nile^Mse^ Asa
ê the data siraetees processed by tteMACMNBT are Working Memory Elements.

34

Carnegie Mellon University FEL Interface to PX

(environment imw)
(opens_on (mx_7 mx_9))
(d i s t ance ((mxJLl 1.5) (mx_8 0.5)))
(radius 0*3)
(depth 2.0))).

Actually, the Modeler returns more information than is shown; but only a subset
of the attribute/value pairs returned in the feature list of type thru_hole are needed
by PX. MX is the modeling expert to all experts. It is the duty of the expert requesting
information to parse the FEL sentence and extract the attribute/value pairs that make
sense to it.

Initially, PX only knows the name of the feature; in this case hole. Once the
preceding got sentence is received, PX can determine the feature type of hole. First,
the feature list that contains the attribute/value pair, (name ho le) , is located11. From
that feature list, the value of the attribute type will provide the type of feature. In the
current example, the value/thru_hole, denotes that the feature is a through hole.

When PX knows the type of feature, then it knows which elements (that is,
attribute/value pairs) to extract from the feature list The attribute/value pairs arrive in
a form that the MACHINIST is not capable of processing. Therefore, steps are taken to
transform the "raw" information into the data structures used by the MACHINIST. Since
the Process Planner is implemented in OPS5, these data structures are Working Memory
Elements.

For example, the attribute/value pair:

(distance ((mx_l 1 1.5) (mx_8 0.5)))

is converted into the following Working Memory Elements:

(center_dist *of hole
^from <name used by MACHINIST for mx_ll>
*is 1.5
*status filled)

(centerjdist Aof hole
^from <name used by MACHINIST for mx_8>
"is 0.5
*status filled).

11- It is possible, though not likely, for the dialogue to have the s a i ^ name as the feature. In other
words, the feature list of type :message and the feature list of type : thrujtxole have the same
value for the attribute znaxm. PX takes this into account by ignoring the feature list of type
rinessage.

35

Carnegie Mellon University EEL Interface to PX

L3. Feature Lists for Features: the Attribute/Value Pairs of Interest

From the perspective of the Process Planner, the Modeler can currently provide
information for the features12: blind_hole, envelope, thru_ angle, thrujiole, and
thru_siot. The following sections cover those five features. Specifically, the
attribute/value pairs of interest to PX are listed and explained for the feature in
question.

L3.L BlindJHole

In a feature list of type blindjiole, the attribute/value pairs of interest to PXare those with the attributes:

depth The value of this attribute is a real number which gives the
depth of the hole.

dis tance The value of this attribute specifies the center of the hole. The
value is of the form:

((side^ distance^) (side^ distance^)).

This gives the hole's center by]
„ ^j hr* wiuui^ one distance of the

center of the hole from two ortnogonal skies of the envelope erf
the part object

opeas_on TMs attribute's value is a list of one element, a face name from
the set erf face names assigned to flie —-* ** ***̂ iiouio dsagji«i to the part envelope by MX. The
face name denote the face upon which the hole opens*

radius The value erf this attribute is a real number that gives die radius
of the bind hole.

JL3J2* Envelope

The envelope describes a rectangular bounding box mmifid in object Remember,
the MACMNKT expects two objects, the part and the stack. AmociMtmi with each of
these objects is an envelope feature.

The Process Planner and the Modeler use different naming schemes for surface
finishes and face names* But experts who wish to converse with P%# should not be
concerned with the naming conventions used by MAOBNBT. Hence, mapping
functions are employed by PX to translate between the differing, naming schemes.
12. Tlte Modeler can model more than time Bm Afttinm

described in terms erf vectt
vectors is of limited utility.

CJCT c«n moaei more than these fiw Jfettam JHfew«wwv the other fafttumsaie cutrwtly
described in lenns of wctofs. Since the Process Planner is tetuie hmmi0MmmMtionmti£mikig

of limited utility.

36

Carnegie Mellon University FEL Interface to PX

For the surface finishes, the correspondence between the two schemes is known a
priori Therefore, that mapping function is created at system start-up. However, that is
not the case for face names- The names attached by MX to the face of an envelope are
dynamic; that is, they are created when the model is added to the Modeler. Hence, PX
uses the information provided in the envelope feature list to set up a mapping function
between the names used by the Modeler and the names employed by MACHINIST. The
result is that when experts converse with PX, they do not have to be concerned with
how the Process Planner represents face names or surface finishes. A single
representation can be used, that of the Modeler.

In a feature list of type envelope, the attribute/value pairs of interest to PX are
those with the attributes:

distance

finish

The value of this attribute specifies the dimensions of the
envelope. The value is of the form:

((side distance^)

(side3 side4 distance2)
(side^ sideg distance^)).

Each element of the list specifies the distance between two
parallel faces of the envelope. Let X be such an element The
first two elements of X are face names from the set of face names
assigned to the part envelope by MX, with the added constraint
that the f aces be parallel to one another. The third element, a
real number, is the distance between these two faces. So, if X is
equal to:

(s ide 3 s ide 4 d i s tance 2)

then sideg is parallel to s i d e 4 and d i s t a n c e is the
distance separating these two fares.

This attribute's value is a list of the form:

finish^) (sideg finishg)),

s ide J (where i * 1 to 6) is a face name from the set of face
names assigned to the part envelope by MX, and f inish^ is the
surface finish of that face- f i n i s h i may be assigned one of die
values: none13, machined* rolled^ or saw_cut.

13. If the Modeler has assigned a value of none to a £ace,thenPX assiimra the face is saw a i t The value
of saw_cut is chosen, since thai presents a worst rase scenario.

37

Carnegie Mellon University PEL Interface to PX

normal The value of this attribute is a list of the form:

((side^ normal^) •. • (sideg normalg)).

side^ (where i = 1 to 6) is a face name from the set of face
names assigned to the part envelope by MX. normal i is the
unit normal vector for that face.

133. Thra_Angle

In a feature list of type thru_angle, the attribute/value pairs of interest to PX
are those with the attributes:

angle This attribute's value is a list of two elements. The first element
is a face name from the set of face names assigned to the part
envelope by MX. The second element is a real number between
0 and 90, exclusive* The second element is the degree of the
angle formed by the new face created by the feature and the face
given by the first element. In Rgure 2, for example, the value of
the attribute, angle, could be either (B 8), or (E 0); where <)>
= (90-6). .

distance The value of tins attribute gives the distance from one of the
faces not affected by the thru angle to a vertex of an angle
formed by the feature. The value is of the form:

((side.^ d i s t a n c e ^).

sidej^ is the name of a fare not affected by the thru angle.
Consequently, it will not be an element of the value of the
attribute, opens_on. d is tance^ is the distance along an
orthogonal face to a vertex of the angle formed by the thru
angle. For example, in Figure 2, Ms attribute's value could be
either ((D 5)) or ((F <D)).

qpeujen This attribute's value is a list of four elements, all are face names
from the set of face names assigned to the part envelope by MX.
Hie four £aces are those thai the tfara angle feature will open out
upon. That is, if we envision the tool making this feature, these
faces will have the tool pass through than. In Figure 2, the thru
angle opens out upon the faces; A, B, C, and E.

38

Carnegie Mellon University FEL Interface to PX

Figure 2. A block with a thru angle feature.

L3.4. Thra_Hole

In a feature list of type throjkiole, the attributes whose values are meaningful to
PXare:

depth,

distance

optosjon

radios

The value of this attribute is a real number which gives the
depth of the hole.

The value of this attribute specifies the center of the hole. The
value is of the form:

((sidtej^ distance.^) (side^ dis tance*)) .

This gives the hole's center by providing the distance of the
center of the hole from two orthogonal sides of the envelope of
the part object.

This attribute's value is a list of two elements, both are face
names from the set of face names assigned to the part envelope
by MX. These two faces are the opposite sides of the envelope
upon which the hole opens.

The value of this attribute is a real number that gives the radius
of the thru hole.

Carnegie Mellon University FEL Interface to PX

1.3.5. Thru_Slot

In a feature list of type thru_s lo t , the attribute/value pairs of interest to PX are
those with the attributes:

depth

distance

opens_on

width

This attribute's value is a real number that gives the depth of
the slot from the part envelope. In Figure 3, this would be <J).

The value of this attribute gives the distance from a face, to the
closest edge of the thru slot The value is of the form:

((s ide^ d i s t ance^)) .

s ide . is the name of a face that meets two conditions: (i) it is
not affected by the thru angle, and (ii) the face is not parallel to
the bottom of the slot d i s t ance^ is the distance from s i d e i

to the closet edge of the thru slot For Figure 3, an example of a
value for d i s t ance is: ((A a))

This attribute's value is a list of three elements, all are face
names from the set of face names assigned to the part envelope
by MX. The three faces are those that the thru slot feature will
open out on. That is, if we envision the tool making the feature,
these faces will have the tool pass through them.

This attribute's value is a real number that gives the width of
the slot This is the value, p, in Figure 3.

Figure 3. A block with a thru slot feature.

Carnegie Mellon University FEL Interface to PX

2. Output from PX

The MACHINIST is run once the information from the Modeler, that describes the
part and stock objects, has been received and transformed into OPS5 Working Memory
Elements- Originally, the result of a run of the MACHINIST was simply displayed to the
terminal. This is of little use to an expert that requests a machining process plan.
Hence, part of the function of PX is to gather the plan together and construct an FEL
sentence that embodies the plan. This sentence will be returned as the response to the
original PLAN request.

Each of the next three subsections is an example that will expand upon a portion of
the preceding paragraph. Following is a brief description of the examples to be used.

(1) Presented is an example of a PLAN sentence sent to PX, requesting a
process plan for the specified part.

(2) The process plan is presented as it would have been originally output
to the terminal by MACHINIST14. This plan is not in the form of an FEL
sentence.

(3) Shown is the PLANNED sentence returned in response to the PLAN
request. This sentence will contain the process plan transformed into a
meaningful form (that is, feature lists of attribute/value pairs).

2.1, Requesting a Machining Plan

ited a process plan for machining the pa
• PX, an FEL

If the Human Interface (HI) wanted a process plan for machining the part, boss,
from the piece of stock, SO235; then HI would need to construct, and send to PX
sentence of the form:

{plan ((name
(type
(to
(from

((name
(type
(application
(environment
(part
(stock

G0942)
message)
px)
hi))

plan_boss)
planning_op)
planner)
inn*)
boss)
S0235)))•

FX does not need detailed inf ormation about the part and stock models from the
expert requesting a machining process plan. All that is required is the names of the part
and stock objects, and their location in the modeling hierarchy. The name of the part
object is the value of the attribute, par t , and the name of the stock object is the value of

14, Excluding some inessential graphics.

41

Carnegie Mellon University FEL Interface to PX

the attribute, stock. The location of these objects in the modeling hierarchy is given by
the values of the attributes: app l i ca t i on and environment.

2J2. Output Displayed by the Process Planner

The previous example was of a PLAN sentence directed to PX. The response
returned by PX is solely determined by the outcome of the Process Planner. If it is not
possible to plan the part, the response will be a NOTPLANNED sentence. When the
Process Planner is able to plan machining operations for the part, then a PLANNED
sentence is returned. The contents of this sentence are based upon the plan output to
the terminal by MACHINIST. For the part currently under consideration, MACHINIST
produces the plan:

THE STOCK DIMENSIONS:
3,5 x 2.5 x 1.5

THE PLAN:

Set-Up #1, use VISE
- Put side 1 UP
- Put side 4 DOWN
- Put side 5 QN_SOLID_JAW
- FACE MILL 1

Set-Op #2, use Vise
- Put side 2 UP
- Put side 1 0Nj50LID_JftW
- Put side 5 DOWN
- FACE MILL 2 to size

Set-Up #3, use Vise
- Put side 4 UP
- Put side 1 DOWN
- Put side 2 ONJSOLIDjJAW
- EHDJCELL 3 to size
- FACEJ4ILL 4
- DRILL THRU1

22JL Explanation of Output

Hie process plan employs three setups to machine the part; boss. An Individual
setup provides (a) the fixturing device to nsef (b) the orientation erf the stodc piece wi A
respect to the bed of the tool table and the fixturing device, and (c) die features to be
machined*

42

Carnegie Mellon University FEL Interface to PX

In the preceding plan, a vise is the fixturing device utilized in all three of the
setups- A sine table would be an example of another device.

In order to cut features, the stock must be placed on the tool table. For an
individual setup, the process plan dictates how to orient the sides of the stock. For
example, in setup #2, side 5 is placed face down on the tool bed (Put side 5 DOWN),
and side 1 is placed against the solid jaw of the vise (Put s ide 1 ON_SOLID_JAW).
Directions are also given for orienting side 2; however, that information may be
ignored, since side 2 is parallel to side 5.

2.3. PX's Response to PLAN Sentence

From the information culled from the process plan generated by the MACHINIST
component of PX, a PLANNED sentence is constructed and returned to the Human
Interface (HI).

2.3.1. Feature List Ordering for Setups and Machined Features

The order of the feature lists in the PLANNED sentence is critical. It is the ordering
of the feature lists that determines, both, the ordering of the setups and the ordering of
the features machined during each setup. That is, when iterating through the feature
lists of the PLANNED sentence, the setups are executed in the prder in which they are
read. This method of ordering ("executing" the feature list as it read) also applies to the
feature lists whose types designate a feature to be machined. Hopefully, the foEowing
example will dear up any confusion. In the PLANNED sentence (in Section 23.5),
setup_47 is executed first, followed by setup_4 9, then setup_51. During
setup_51, feature f ace_52 is machined, followed by f ace_J53, and finally, t h ru l .

2.3.2. PLANNINGjOPTeatwteUst

The above discussion concentrated on the feature lists that pertained to setups and
machined features, but one feature list precedes all of these. The feature list in question
is of type planning_op. In this feature list, the attribute, t r ans l a t i on , is the only one
whose value contains useful information. The value of this attribute, a vector15,
provides the X, Y, and Z offsets necessary to correctly translate the part object within
the stock object* What is meant by a correct translation? If all of the face features, given
in the process plan, are removed from the stock object, then the vertices of the part
envelope will be equal to the vertices of the modified stock object

15. A vector is a list with exactly three real numeric dements. In the case of translation, the elements of
the vector specify the translation in X, Y, and Z, respectively.

43

Carnegie Mellon University FEL Interface to PX

2.33. SET UP Feature List

i basic fixtureThe primary function of a feature list of type setup is (a) to give the basic fixti
that will be employed, and (b) provide information that will allow other experts to
orient the stock with respect to that fixture and any other fixtures16 employed.

2.33.1. Attributes of Generic SETJIP Feature List

A generic setup feature list consists of the attributes (ignoring name and type):

method

major-ref

minor-ref

a&jor-pos

alnorjpos

A symbol used to designate the type of fixture to be used in this
setup. Typical values include: vise, anglejplate,
sine^table, subplate, or toe_clamps.

The attribute's value is a face name from the set of face names
assigned to the stock by MX. The face name denotes the face
that the Process Planner has designated as the major reference
side. This is important for probing operations.

The attributed value is a face name from the set of face names
assigned to the stock by MX. The face name denotes the face
that the Process Planner has designated as the minor reference
side. This is important for probing operations.

The value of this attribute is used in conjunction with the values
of the attributes ma jor_ref and method. It specifies the
orientation of the face named by ma jor_ref with respect to the
fixture designated by method. For example, the attribute/value
pairs:

(method
(major^ref
(majorjpos

vise)
mx_5)
on_sol±d_jaw)

state that face mx_5 is to be placed against the solid jaw of the
vise.

The value of this attribute is used in conjunction with the values
of the attributes minorjref and ©ethod. It specifies the
orientation of the face named by minorjref with respect to the
fixture designated by method Fcr example, the attribute/value
pairs:

(method vise)

16. Inthteconint thetenn^ In addition
fixture, include the tool bed, a sine table, or a subpiaie*

Carnegie Mellon University FEL Interface to PX

(minor_ref
(minor_j?os

mx_3)
down)

state that face mx_J3 is to be placed face down in the vise.

ma jor_normal This attribute's value is a vector. Specifically, it is the unit
normal vector of the face denoted by the value of the attribute,
major_ref.

minor_normal The value of this attribute is a vector. Specifically, it is the unit
normal vector of the face denoted by the value of the attribute,
minor_ref.

x j ro ta t ion A real number that specifies the number of degrees the model
must be rotated17 about the x-axis; such that, the appropriate
face18 has the unit normal vector, (0 0 1).

A real number that specifies the number of degrees the model
must be rotated17 about the y-axis; such that, the appropriate
face18 has the unit normal vector, (0 0 1).

The current version of PX always considers (0 0 1) to be the
desired unit normal vector. Therefore, no matter what the
initial orientation of the model, a rotation about the z-axis can
never bring about the desired orientation. Consequently, The
value of this attribute will always be 0.

The astute reader may have noticed that two of the attributes given for the feature
list of type setup, ma jor_ref and minor_ref, do not appear to be deducible from the
output of the MACHINIST. This information is not concocted by PX- It is internal to the
Process Planner, but is never displayed to the user. However, other experts do require
this information; consequently, it is collected by PX, and added to the setup feature list.

y_rotation

z rotation

17. The convention is adopted that positive rotations are such that, when looking from a positive axis
toward the origin, a ninety degree counterclockwise rotation will transform one positive axis into the
other. The following table, usable for either right-handed or left-handed coordinate systems, derives
from this convention:

Axis of Rotation Direction of Positive Rotation

Y - > ZX
Y
Z X~>Y

18. By convention, a face whose unit normal vector is (0 01) is considered to faceup. In determining
which face should be up, the first step is to examine the values of the two attributes ma j o r_po s and
minor_pos, and note which one has a value erf either up or down. Next find the related "reference"
attribute. Remember, a relation exists between the values of the attributes ma jor_ref and
ma jor_po3, and also between the attributes »inor_ref and minorjpos. finally, if the value of the
"position* attribute is up, then the value erf the corresponding "reference"' attribute is the name of the
face to be placed up. If the value of the "position* attribute is down, then the face opposite to the

45

Carnegie Mellon University PEL Interface to PX

233 JL Additional Attributes for Setup Employing a Sine Table

The preceding attributes were described as belonging to a generic setup feature
list. In other words, those attributes will be found in all feature lists of type setup,
regardless of the value of the attribute method- However, if sine_table is the value
of method, then there are two additional attribute/value pairs:

angle The value of this attribute is a real number which provides the
degree of the angle that should exist between the sine table and
the tool bed.

posi t ion This attribute's value is one of the three symbols: X, Y or z. The
symbol denotes the axis to which the hinge of the sine table is
parallel.

23A* Feature Lists for Machined Features

When constructing the PLANNED sentence, PX views machined features as falling
into two classes. Features that are originally added to the model (e.g., a thru hole) and
ones that are added by the Process Planner.

2.3.4JL Original Features of the Part Model

Hie first class, features originally added to the model, are trivially handled by PX.
Adding a feature list that describes machining features of this class, requires no more
effort than giving the name and type of the feature. Since the MAOBJMT does not alter
anything that would affect MXrs definition of the feature, there is no naed to' provide
any other information- FOT example, to describe the thru hole, thrul , the feature Msk

((name thrul) {type thruj io le))

would suffice*

value of the cOTre^xmdfitg "rrfawa* attrilKttei$iwfiK»tobe«i«i^op.
R>r example, given the attribute/value pain:

(najor.jraf aac^5)

(aaajor^pos on^solid^jawl
(ainorjpoa down)

the luce opposite to mx_3 will be the lace to be placed mp, rinoe the value of ain© r jpoe ft down.

46

Carnegie Mellon University FEL Interface to PX

2.3.4.2. Face Features Added by Process Planner

Features added by the Process Planner comprise the second class. The current
version of MACHINIST generates new features during the process of reducing the stock
envelope to the part envelope (i.e., squaring the stock). To reduce the stock, MACHINIST
specifies milling operations. The Process Planner distinguishes between two types of
milling operations, face mills and end mills. However, the Modeler does not
distinguish-between the two; they are both simply defined as face features (see Figure
4).

p_vector

/
Lyeetor /

n̂ / w_vector

IXcLvector /

/

Figure 4. Definition of a Face Feature.

When PX detects one of the milling operations, a feature list of type face is added
to the PLANNED sentence. This feature list should contain the information necessary for
MX to model the feature. Therefore, ignoring name and type, a face feature list
consists of the attributes:

face The attribute's value is a face name from the set of face names
assigned to the stock by MX. The face name denotes the side
upon which the milling operation will take place.

pjvoetor The value of this attribute is a vector. The origin is the model
ori^n. The vector points to an open corner of the face that is to
be machined away.

1 vector The value of this attribute is a vector. The origin is defined by
""" the value of the attribute, pjvector. The vector points along

an open, edge of the area to be milled away.

w vector This attribute's value is a vector. The origin is defined by the
value of the pjvector attribute. The vector points along an
open edge of the area to be machined away.

Carnegie Mellon University FEL Interface to PX

d_yector This attribute's value is a vector. The origin is defined by the
value of the attribute, p_yector. The vector points along an
open edge of the area to be machined away. However, this
vector is directionally significant. It must point toward the part
face.

23.5. PLANNED Sentence for the Part, BOSS

The following PLANNED sentence is the FEL translation of the process plan
generated by MACHINIST for the part, boss. This is also the reply that would be
generated for our example PLAN sentence.

(planned ((name
(type
(to
(from

((name
(type
(application
(environment
(part
(stock
(translation

((name
(type
(method
(majorjref
(minorjref
(majorjpos
(minor_pos
(majorjnormal
(minor_normal
(xjrotation
(^rotation
(z_rotation

< (name
(type
(face
(p_vector
(l^vector
(wjrector
(djvector

((name
(type
(method

GO942)
message)
hi)
px))

plan_boss)
planning_op)
planner)
imw)
boss)
S0235)
(0.0 0.5 0.

setup_47)
setup)
vise)
mx_6)
mx 3)
down)
on solid jaw)

25)))

(0.0 0.0 -1.0))
{0.0 1.0
0)
0)
0))

face_48)
face)
mx S)
(1.5 2.5
(-3.5 0.0
(0.0 -2.5
(0.0 0.0

3etup_49)
setup)
vise)

0.0))

1.5))
0.0))
0.0))

-0.25))

48

Carnegie Mellon University
FEL Interface to PX

(major_ref
(minor_ref
(ma jorjpos
(minor_pos
(major_normal
(minor_normal
(x__rotation
(y_rotation
(z__rotation

((name
(type
(face
(p__vector
(l_vector
(w^vector
(d__vector

((name
(type
(method
(major__ref
(minor_jref
(major_j?os
(minor_pos
(major_normal
(minor_normal
(x_rotation
(y__rotation
(z_rotation

((name
(type
(face
(p_yector
(l_yector
(w_yector
(d_vector

((name
(type
(face
(p_yector
(1_vector
(w^yector
(djvector

< (name
(type

mx_5)
mx_3)
on_solid_jaw)
down)

0.0 1.0)
1.0 0.0)

(0.0
(0.0
-90)
0)
0))

face_50)
face)
mx__l)
(3.5
(-3.5
(0.0
(0.0

0.0
0.0
0.0
0.5

1.5))
0.0))
-1.5))
0.0))

setup_51)
setup)
vise)
mx_5)
mx_l)
down)
on_solid_ j aw)
(0.0 0.0 1.0))
(0.0 -1.0 0.0))
180)
0)
0))

face_52)
face)
mx 6)
(T.5 2.5
(0.0 -2.5
(-3.5 0.0
(0.0 0.0

face_53)
face)
mx 2)
(3.5
(0.0
(0.0
(-0.5

0.0))
0.0))
0.0))
0.25))

0.0
2.5
0.0
0.5

0.0))
0.0))
1.5))
0.0))

thrul)
thru hole)

49

Center for
Integrated Manufacturing Decision Systems

FEL Syntax for Connnunicating with a
Geometric Modeler

Duane T. Williams

March, 1990

Abstract

This document describes the detailed syntax of the FEL (Feature Exchange Language)
sentences that are understood (and generated) by the geometric modeler used in the
IMW (Intelligent Machining Workstation) prototype system.

A brief description of the general form of FEL sentences is given, as well as a brief
overview of the hierarchical structure of objects that the modeler is capable of
representing. The bulk of the document describes the details of sentences that cause
models composed of objects to be constructed, that cause features to be added to
objects, that enable information about models to be retrieved by remote processes, and
that enable models to be transformed and graphically displayed.

Copyright © 1990 Carnegie Mellon University

Contact
Dmrid Bourne
CHADS
Qtmegk Mdbn Uwoersitjf
Pittsburgh, PA 15213
(412)268-8810

This document describes the syntax of FEL sentences understood by the Modeling
Expert (MX). It also explains the interface between the modeler and the program
(MXD) that displays models on the Sun.

1. General FEL Syntax

The usual syntax of FEL sentences is a parenthesized list whose first element is a verb
and whose subsequent elements are feature lists.

(aVerb featurelistl ... featurelistN)

A feature list is a parenthesized list of attribute-value pairs. An attribute-value pair is a
parenthesized list of two elements: an attribute name and a value.

<(attributel valuel)... (attributeN valueN))

In general, an FEL sentence should contain a feature list that names the sentence and
specifies its source and destination (usually the names of experts, e.g., PL, CX, MX, etc.).
This feature list must contain a TYPE attribute with value MESSAGE. Thus, FEL
sentences will usually have the following form:

(aVerb ((type message) (name aName) (from aSource) (to aDestination))
featureList2

featureListN

Each of the other feature lists in a sentence should be a complete and independent pack-
et of information for a single application of the verb. In other words, the sentence
above should be equivalent to the following sequence of sentences:

(aVerb ((type message) (name aName) (from aSource) (to aDestination))
featurelist2

(aVerb ((type message) (name aName) (from aSource) (to aDestination))
featurelistN

)

This condition of feature list independence is not an absolute requirement, but it is
highly desirable, because it simplifies the interpretation of individual sentences-
It is the primary purpose of this document to describe the verbs and feature lists that
are meaningful to the modeler, and the information that it is currently capable of
providing.

53

Carnegie Mellon University FEL Syntax for the IMW Modeler

2. Modeler Hierarchy

The basic thing to know about the modeler is that it organizes geometry in a hierarchy:
worlds, applications, environments, objects, features, and faces (see Figure 1 on page 54).
Worlds, applications, environments, objects, and features are collections of the elements
at the next level down in the hierarchy. Each object is associated with a TWIN1 BREP
structure that approximates the intended geometry of the object Each face contains a
connection with the corresponding BREP structure that represents its geometry. "

Every element of the hierarchy is given a name, which must be unique within the col-
lection of which the element is a part. Thus, the names of objects within a particular en-
vironment must be unique, but the names may be reused in other environments, or at
other levels of the hierarchy. In order for an FEL sentence to refer to a particular node
in the hierarchy, it must specify the path through the hierarchy that leads to that node.
For example, in order for an FEL sentence to refer to a particular object, it must specify
the world, the application, the environment and the object. This is done by giving the
name of each of these things.

In the current implementation of the modeler, there is only one world and it is never
named explicitly in FEL sentences. All applications are automatically part of this de-
fault world. Furthermore, there is a predefined application named *DEFAULT_APP" and
it contains a predefined environment named "DEFAULTJENV"; so it is possible to con-
struct a simple model without explicit mention of" either an application or an
environment

World

I1EP

Figure 1. Modeler Hierarchy

1. TWIN is a solid modeling packajp? developed H Tsmcihy Si&%hbum *i
basis for his Master's thesis ZM«*k«s sssr,.

54

lTu%efsi!y It is the

Carnegie Mellon University FEL Syntax for the IMW Modeler

3. Synopsis of Modeler Verbs

There are six verbs currently understood by the modeler:

Add The primary verb for creating and modifying a model. Five
types of things can be added: features, objects, groups,

environments, and applications-

Copy Copies objects (and groups) from one environment to another
(possibly the same) environment and environments from one
application to another (possibly the same)-

Draw Generates line drawing commands to an external display
program that is connected to the modeler via a Unix pipe.
Three types of things can be drawn: objects, groups, and
environments. Scaling and translation can be used.

Get Retrieves information from the model about all types of things.

Read Reads a sequence of FEL sentences stored in a disk file and then
presents them to the modeler as if they were typed one by one
on the command line.

Transform Applies geometrical transformations to either individual
objects, groups, or to all the objects and groups in an
environment. Three kinds of transformations are supported:
translation, rotation (in X, Y, and Z), and scaling.

4. How Sentences are Processed

A single sentence can do lots of work, because a sentence can contain multiple feature
lists. For example, a single odd sentence can add an object to an environment and then
add several features to the object A transform sentence can transform several objects
and environments. A single sentence cannot both add and transform an object, because
a sentence can have only one verb-

4.1. Order

Each sentence received by the modeler is fuHy processed before work begins on the
next one. The verb is extracted and the indicated action is then performed on each fea-
ture list

The feature lists are processed in order, as they appear in the sentence. In the case of an
aid sentence, this is necessary because the order in which a mixture of positive and neg-
ative features are processed affects the result

In general, attribute-value pairs within feature lists are not processed sequentially, but
the transform sentence is an exception. Oder is significant when rotations about several
axes are performed, or when translations and rotations are intermixed in order to rotate
an object about a point other than the origin. For these reasons, the transformation

55

Carnegie Mellon University FEL Syntax for the IMW Modeler

attributes within feature lists of a transform sentence are processed in order, as they ap-
pear in the feature lists.

4.2. Defaults

It has already been mentioned that there is a default application and, within it, a default
environment They are created when the modeler starts up. Other applications and
environments are created by means of add sentences-

Every feature list must specify what application, environment, group (if any), object,
etc., it is intended to apply to. The modeler remembers the most recently specified ap-
plication, environment, group, and object; so repeated specification of the same names
is not necessary.

5. The Add Verb

The add verb is used to add applications, environments, groups, objects and features to
the model, but the most common use is to add objects and groups to an environment
and features to an object.

5.L Adding Objects

The following example shows how to add an object to an environment. The TYPE at-
tribute specifies what kind of thing, in this case an object, is to be added and the NAME
attribute gives the name which will be used to refer to this thing. The APPLICATION and
ENVIRONMENT attributes specify where in the model hierarchy the new object will exist.
Currently, a new object can only be created with a rectangular envelope. In a future
version of the modeler, arbitrarily shaped envelopes will be allowed.

(add
possibly other feature lists

{type object)
(name boomerang)
(application planner)
(environment partjmodel)
(pjvector (0 0 0))
(wjvector (2.5 0 0))
(l_vector (0 6.982 0))
(d vector (0 0 .25))

what kind of thing is being added
its name
the application name
the environment name
the rectangular envelope

5*2. Adding Features

We can extend the above ©ample to show how to add a feature to an object Note that
"object*\ previously the value of the TYPE attribute, is now an attribute whose value is
the name of the object to which the feature is being added.

m,m I possibly other feature lists
I (type thru slot) ; what kind of thing Is being added

56

Carnegie Mellon University FEL Syntax for the IMW Modeler

(name facemill) ; its name
(application planner) ; the application name
(environment part_model) ; the environment name
(object boomerang) ; the object name

; parameters for a thru_slot(p__vector
(w
(1
(d

vector
vector
vector

(0
(2
(0
(0

1
.5
3
0

.7 0>)
0 0))
.582 0))
.1))

The above example could have been abbreviated as show below, because the previously
specified application, environment and object names will have become the default val-
ues for these attributes.

(add

(type thru_slot) ; what kind of thing is being added
(name facemill) ; its name
(p_yector (0 1.7 0)) ; parameters for a thru__slot
(wjrector (2.5 0 0))
(l_yector (0 3.582 0))
(d vector (00.1))

There are currently eleven features that can be added to an object and they are of two
kinds: positive volume and negative volume. Adding a positive volume feature to an
object adds volume to the object; adding a negative volume feature removes volume.
The positive volume features include block, cylinder, swept_cylinder, and wedge. The
negative volume features include facejnill, id_drculaj_profile, od_drcular_profile,
thra_slot, thrujhole, sweptjradius, and thru_angle.

5.2.1. Block, Face_MiIl, and Thru_Slot

A block (or a facejmill or a thru_slot) is defined by four vectors, a position vector and
the three vectors that form the comer of the block at that position. The corner vectors
determine the size and shape of the block. These four vectors are defined using the at-
tributes PJ/ECTOR, WJVECTOR, L_VECTOR, and D_VECTCflL The values of these at-
tributes are defined by order triples of real numbers. Here is an example definition of a
feature list that describes a thru slot that is to be created.2

2* Recall that a feature list is only meaningful in the context erf a sentence that begins with a verb, like

It is actually unfortunate that new feitur^ared^cribeciina manner so closely tied to the underlying
geometrical representation. For ©cample, specifying a slot by length, width, depth,, and relative posi-
tion on the part would be much doso1 to a **feature oriented1" description, wouki be mom natural
from the point of view of a designer, and would be easier to interface with our feature oriented plan-
ner.

57

Carnegie Mellon University FEL Syntax for the IMW Modeler

(type thru_slot)
(name slot!)
(p_vector (0 1.7
(w_vector
(l_vector
(d vector

(0 1.7 0))
(2.5 0 0))
(0 3.582 0))
(0 0 .1))

feature type
its name
position vector
direction vector
direction vector
direction vector

5.Z2. BlindJHole, Cylinder, and Thru.Hole

A cyKnder (or a thru_hole) is defined by two vectors, a position vector and an axis vec-
tor, and a real number, the radius of the cylinder. The position vector defines the center
of one end of the (circular) cylinder and the axis vector determines the length and orien-
tation of the cylinder. The vectors are defined using the attributes P_VECTOR and
D_VECTOR The radius is define using the attribute RADIUS. Here is an example defini-
tion of a feature list that describes a cylinder.

(type cylinder)
(name axmjholder)
(p_vector (1.62 .52 1.35))
(d_vector (0 0.7 0))
(radius .31)

feature type
its name
position vector
axis vector

; radius of cylinder

5JL3* SwepLCyHnder and SweptJRadiiis

A swept_cylinder (or a swept_radius) is defined by three vectors and two real numbers.
A position vector (attribute PJVECTOR) defines the onto* of rotation. Relative to the
cento: of rotation, the W_VECIOR attribute gives the renter of one a id erf a cylinder. An
axis vector (D_VECTOR) defines the orientation and length <rf the cylinder and the
RADIUS attribute defines its radius as a real number. The attribute AMGLE gives die
number of degrees through which the cylinder is to be swept Here h an example defi-
nition of a feature list that describes a sweptjradliis*

(type sweptjeadius)
(name top)
C p _ i r e c t o r (. 2 8 -28 0))
(w j v e c t o r (. 6 4 0 0))
(director (0' 0 .2825))
(mngle 3€0)
{radius .5)

feature type
i ts naae
cmntmr of rotation
relative position of cylinder
axis v«ctor
dmgrmms of »n««p
radius of cylinder

ID.Oiciilar.Frof2c and OD^Ciroilar^Profle

A circular profile feature describes a surface that is an arc of a cylinder
(see Figure 2, page 58).

58

Carnegie Mellon University FEL Syntax for the IMW Modeler

((type id_circular_profile) ; feature type
(name inside_radius)
(p_yector (.28 .28 0);
(r_vector (.64 0 0))
<d_vector (0 0 .2825)!
(angle 360)

its name
center of rotation
far edge of cylinder
axis vector
degrees of sweep

Figure 2. Circular Profile

5.2.5. Wedge and Thru_Angle

A wedge (or a thru_angle) is defined just like a block or thru_slot, but the edge vectors
are interpreted differently.

5.2.6. Adding Groups (of objects)

In addition to simple objects, the modeler supports groups of simple objects. Groups
can be treated like simple objects, i.e., they can be transformed, copied, drawn, etc.
Groups also behave as complex objects whose parts can be manipulated independently.
Groups are added to an environment in much the way that simple objects are, but there
is no bounding box to be specified-

{add

((type group)
(nan© toe_clasep)
(application holding)
(environment setupl)

possibly other feature lists
what kind of thing is being added
its name
the application name
the environment name

59

Carnegie Mellon University FEL Syntax for the IMW Modeler

5.3. Adding Applications

An application can be explicitly created as shown below. Because all applications are
made part of a single predefined world, only TYPE and NAME attributes are given-

(add

{ (type application)
(name planner)

; possibly other feature lists
; what kind of thing is being added
; its name

In a future version of the modeler, applications may be created automatically when
they are first mentioned.

5.4. Adding Environments

An environment can be explicitly created as shown below. The TYPE and NAME at-
tributes indicate what environment is to be created and the APPOCATIQN attribute tells
where in the model it is to be.

(add

(type environment)
(name partjnodel)
(application planner)

possibly other feature lists
what kind of thing is being added
its name
the application name

lii a future version of the modeler, environments may be created automatically when
they are first mentioned-

6. The Copy Verb

The copy verb duplicates an object or an environment, assigns the copy a possibly new
name, and places it in a possibly different environment or application. The TYPE, NAME,
APHJCAHON, and m^VTOCMMEMT attributes are used to spedfy what is to be duplicated.
The TOJUTUCATiON, TOJENVIRONMENT, and TOJ5BJECT attributes are used to specify
where the duplicate is to be located and what it should be called.

6X Copying Objects

Objects can be copied from one environment to another or duplicated (with a new
name) within a single environment Hie following example shows how to copy an ob-
ject to a different environment It says that an object named ''boomerang" in the envi-
ronment "partjoftodel" of application "planner" is to be copied with the same name to
an already existing environment named #*partjxi<xlel2#* of the same application.

60

Carnegie Mellon University FEL Syntax for the IMW Modeler

(copy

(type object)
(name boomerang)
(application planner)
(environment part_rnodel)
(to_application planner)
(to_environment part_model2)

(to_object boomerang)

possibly other feature lists
what kind of thing is being copied
its name
source application name
source environment name
destination application

destination environment
destination object name

Duplicating an object in an environment (i.e., when the ENVIRONMENT and
TOJENVTCRONMENT attributes have the same value) requires that the duplicate be given a
new name (the value of the TCLOBJECT attribute).

6*2. Copying Environments

Environments can be copied from one application to another or duplicated (with a new
name) within a single application- The following example shows how to duplicate an
environment within an application. It says that an environment named "part_model"
in the application "planner" is to be duplicated and that the duplicate is to reside in the
same application under the new name "partjrnodel2*\

(copy

(type environment)
(name part_model)
(application planner)
(to_application planner)
(to_environment part_mode!2)

possibly other feature lists
what kind of thing is being copied
its name
source application name
destination application

destination environment

Duplicating an environment within an application (Le., when the APPLICATION and
TO_APPUCATION attributes have the same value) requires that the duplicate be given a
new name (the value of the TO_ENVmONMENT attribute).

7. The Delete Verb

The ddet.e verb deletes an object from an enviroranent or an environment from an appli-
cation. The TYPE, NAME, AITUCATIQN, and ENVIRaSMENT attributes are used to specify
what is to be deleted.

61

Carnegie Mellon University EEL Syntax for the IMW Modeler

7.1. Deleting Objects

The following example shows how to delete an object from an environment.

(delete
. . . ; possibly other feature l i s t s
((type object) ; what kind of thing i s being deleted

(name boomerang) ; i t s name
(application planner) ; application name
(environment part_model) ; environment name

•)

Deleting an object from an environment not only removes the reference to the object
from the environment, but also destroys the object structure, its underlying features, as-
sociated BREP structures, etc.

7.2* Deleting Environments

The following example shows how to delete an environment from an application.

(delete

— ; possibly other feature l i s t s
((type environment) ; what kind of thing is being deleted

(name part_model) • ; i t s name
(application planner) ; application name

Deleting an environment from an application not only removes the reference to the en-
vironment from the application, but also destroys the environment structure, the objects
within the environment, their features, etc

a The Draw Verb

The draw verb causes a group of display commands to be sent to a separate Unix pro-
cess via a Unix pipe. Hie primary application of this verb is the graphic display of an
environment of a model on a Sun screen by means of the SunCORE-based MXD pro-
gram.

&X Drawing Objects

The following example shows how to draw an object The TYPE, NAME, APPLICATION
and ENVJMMMENT attributes together spec% wtmt is to be drawn. The AFFUCATION
and ENVIRONMENT attribute may be omitted if the most recently used values are
acceptable- Translation and scaling are often needed to bring the desired portion of the
model into view. These transformations only apply to the display and have no effect on
the model itself.

62

Carnegie Mellon University

(draw

((type object)
(name boomerang)
(application planner)
(environment part_model)
(translation (0 -.7 0))
(scale (.014 .014 .014))

FEL Syntax for the IMW Modeler

possibly other feature l ists
what kind of thing to draw
its name
the application name
the environment name
Y translation
Xr Y, Z scaling

8-2. Drawing Environments

Drawing an environment is similar to drawing an object and the same transformations
may be applied. There is, though, a difference between drawing an environment and
drawing all the objects in an environment. When an environment is drawn, the view-
ing surface is automatically cleared before the first object is drawn. When individual
objects are drawn, no clearing is done.

(draw

(type environment)
(name part_model)
(application planner)
(translation (0 -.7 0))
(scale (.014 .014 .014))

possibly other feature lists
what kind of thing to draw
its name
the application name
Y translation
X, Y, Z scaling

83. Display Commands

The display commands generated via draw consist of a sequence of lines, each contain-
ing a single character code followed by some number of parameters.

Close Syntax: C
Closes the SunCORE "view_surface" window.

Draw Syntax: D x y z
Draws a line from the "current position" to the specified 3D po-
sition and updates the "current position".

Line Syntax: L x1 yx zx x2 y2 z2

Draws a line from the point (Xj y t Zj) to the point (Xj y2 ^

Move Syntax: M x y z
Moves the "current position" to the specified 3D point

New Page Syntax: N
Clears the SunCORE "viewjsurfoce" window.

63

Carnegie Mellon University

Open

FEL Syntax for the IMW Modeler

Syntax: 0
Opens and initializes the SunCORE "view_surface" window.

Scale Syntax: S x_seale y_scale z_scale
Scales the drawing in each dimension by the specified scale fac-
tor.

Translate Syntax: T x_offset y_offset z_of fset
Translates the drawing in each dimension by the specified
amount

Wait Syntax: W time
Wait for the specified number of 1 /60th seconds.

X Rotation Syntax: X x_degrees
Rotates the drawing around the X axis by the specified number
of degrees.

Y Rotation Syntax: Y y__degrees
Rotates the drawing around the Y axis by the specified number
of degrees.

Z Rotation Syntax: Z z_degrees
Rotates the drawing around the Z axis by the specified number
of degrees.

Alternate Display Programs

When the modeler (mx) is executed, the name of an (optional) executable "display"
program may be provided as an argument. For example, if "mxd" is the name of such a
display program, the modeler could be executed with the foEowing command.

% mx Hixd

TMs display program is executed as a "chM" process under the modeler and is con-
nected to the modeler via a "pipe" so that the display process can receive commands
from the modeler via the display process* standard input The commands that it may
receive are described in the previous section.

A display program (mxd) that produces perspective drawings on the Sun (using the
SunCORE library) is currently available. Simple modifications of this program could
be used to generate PostScript or types of output from the modeler.

The get verb is used to retrieve information from the modeler- The format for retrieving
applications,, environments, objects, and features is illustrated in the example below.
Each feature list specifies the type, name, and appropriate context of the thing to be re-
trieved. The amount and Mud of information supplied by the modeler depends on the
type of Mug requested.

64

Carnegie Mellon University

9.1. Application Request

FEL Syntax for the IMW Modeler

When you want to know what environments are contained in an application, you send
the modeler a get message with TYPE "application". You specify the name of the appli-
cation you want with the NAME attribute, Here's how to get a list of environments in
the "planner" application:

(get

((type application)
(name planner)

what kind of thing to get
its name

(got

(type application)
(name planner)
(world world)
(environment (part_model))

type of thing retrieved
its name
the world name
list of environments in this
application

The reply repeats the TYPE and NAME attributes, tells you the name of the "world" con-
taining the application, and gives the list of environments as the value of the
ENVIRONMENT attribute. You can use this information to retrieve information about
each of the environments.

9.2. Environment Request

When you want to know what objecte are contained in an environment, you send the
modeler a get message with TYPE "environment". You specify the name of the
environment you want with the NAME attribute. You specify the application containing
this environment with the APPLICATION attribute. Here's how to get a list of objects in
the "partjmodel" environment:

(get

(type environment)
(name part_ntodel)
{application planner)

what kind of thing to get
its name
the application name

(got

(type environment)
(xiaittB partjmodel)
{world world)

; type of thing retrieved
; i t s name
; the world name

65

Carnegie Mellon University FEL Syntax for the IMW Modeler

(application planner) ; the applicat ion name
(object (boomerang)) ; l i s t of objects in t h i s environment

The reply repeats the TYPE, NAME, and APPLICATION attributes, tells you the name of the
"world" containing the application, and gives the list of objects as the value of the
OBJECT attribute. You can use this information to retrieve information about each of the
objects.

9.3. Object Request |
i

When you want to know what features are contained in an object, you send the modeler
a get message with TYPE "object7'• You specify the name of the object you want with the |
NAME attribute. You specify the application and environment containing this object \
with the APPUCATION and ENVIRONMENT attributes. Here's how to get a list of features !
in the "boomerang" object i

(get

(type object) ; what kind of thing to get f
(name boomerang) ; its name I
(application planner) ; the application name [
(environment part_model) ; the environment name [

(got

(type object) ; type of thing retrieved
(name boomerang) ; its name
(world world) ; the world name
(application planner) ; the application name
(environment part_xnodel) ; the environment name
(feature (envelope holel)) ; list of features of this object

The reply repeats the TYPE, NAME, AFmCAHOM and EJWmOMMEMT attributes, tells you
the name of the "world" containing the application, and gives the list of features as the
value of the FEATURE attribute. You can use this information to retrieve information
about each of the features.

9 A Feature Request

When you want to know about a particular feature in an object you send the modeler a
get message with TYPE "feature". You specify the name of the name you want with the
MAIffi attribute. You specify the application, environment and object containing this
feature with the AWUCATICM, ENVIRCMMENT, OBJECT attributes. Here's how to get

m

Carnegie Mellon University

information about a feature named "holel":

FEL Syntax for the IMW Modeler

(get

(type feature)
(name holel)
(application planner)
(environment part_model)
(object boomerang)

what kind of thing to get
its name
the application name
the environment name
the object name

(got

(type thru_hole)
(name holel)
(world world)
(application planner)
(environment part__model)
(object boomerang)

type of thing retrieved
its name
the world name
the application name
the environment name
the object name

The reply repeats the NAME, APPLICATION, ENVIRONMENT and OBJECT attributes, tells
you the name of the ''world" containing the application, includes a TYPE attribute with
the specific type of the feature, and gives other attribute/value pairs appropriate for
that feature.

The following sections describe the special attribute/value pairs for each of the features
supported by the modeler-

9.4.1. BREP

The BREP pseudo-feature gives a boundary representation of an object and is included
in the modeler for use by the Holding Expert, which employs preexisting algorithms
that require this kind of non-feature-oriented input Three attributes are provided in
addition to the standard ones that accompany all feature descriptions.

(got

I . . .

(vertex {

(loop (

(face (d

V

Carnegie Mellon University FEL Syntax for the IMW Modeler

The VERTEX attribute gives a list of all vertices of the object. A vertex is a triple of real
numbers giving the x-y-z coordinates of a point. The LOOP attribute gives a list of all
loops of the object- A loop is a sequence of vertices that describe a connected sequence
of edges on a face- Each vertex in a loop is described by an integer index into the
VERTEX list The FACE attribute gives a list of all the faces of the object. A face is de-
scribed by a list of loops, the first of which is its outer boundary; subsequent loops on a
face describe holes in the face. Each loop is described by an integer index into the LOOP
list

9.4JL Envelope

The ENVELOPE feature describes a rectangular bounding box around an object. Three
attributes are given in addition to the standard ones that accompany all feature descrip-
tions: FINISH, DISTANCE, and NORMAL.

(got

{ (finish <(side1 f±) ...(side^ f6)))

(distance ((s^ s2 d^ (s3 s 4 d2) (s5 sg d3)))

(normal (<side1 (a^ y± z^) ... {sidefi (x€ y6 z£))))

)

The FINISH attribute specifies the surface finish of the sides of the stock. It is given as a
list of pairs, each of which is composed of the name of a side and the name of the finish
property for that side. The DISTANCE attribute specifies the distance between parallel
sides of the envelope. It is given as a list of three triples, each of which has two side
names and the real numbered distance between those sides. The NORMAL attribute unit
face normals of the sides of the stock. They are given as a list of pairs, each of which is
composed of the name of a side and a vector, represented as a three element list

9.C& Thmjlole

Hie THRUJHDLE feature describes a hole that opens on two opposite sides of the enve-
lope of an object Rve attributes are provided in addition to the standard ones that ac-
company all feature descriptions.

(got
• . .
f (position {(x1 y^ Zj) <x2 Y2

 Z2*'}

• position 00 true faces corresponding
; to the mapmnm^pnm sides

(depth d> ; depth of the hole
{radius r) ; radius of the hole
(©pension (sidtaK sid«2>i * envelope sides

(distance (<sid*3 dist1) Csid©4 dist2)))

; distance from orthogonal sides

Carnegie Mellon University PEL Syntax for the IMW Modeler

The POSITION attribute gives the position of the hole on each of the surfaces that it
opens onto, in the order that corresponds with the envelope sides given by the
OPENS_ON attribute* The DEPTH attribute gives the depth of the hole as a real number.
The RADIUS attribute gives the radius of the hole as a real number. The OPENS_ON at-
tribute specifies the two opposite sides of the envelope associated with the hole. The
DISTANCE attribute tells the distance of the center of the hole from two orthogonal sides
of the envelope of the object.3

9.44. Blind_Hole

The BUNDJHOLE feature describes a hole that opens on only one side of the envelope of
an object. Five attributes are provided in addition to the standard ones that accompany
all feature descriptions.

(got

(position (x- y- z-)) ; position on wopens__on" side

(depth d) ; depth of the hole
(radius r) ; radius of the hole
(opens_on (side-)) ; envelope side the hole is *on"

(distance ((side3 dist1) (side4 dist2)))

; distance from orthogonal sides

The POSITION attribute gives the position of the hole on the surface that it opens onto;
this surface corresponds to, but may not be identical with, the envelope side supplied
by the OPENSJDN attribute. The DEPTH attribute gives the depth of the hole as a real
number. The RADIUS attribute gives the radius of the hole as a real number. The
OPENS_ON attribute specifies the side of the envelope associated with the hole. The
DISTANCE attribute tells the distance of the center of ihe hole from two orthogonal sides
of the envelope of the object.4

9A5. Channel fHira_Slot)

The CHANNEL feature describes a slot that opens on three sides of the envelope of an
object Four attributes are provided in addition to the standard ones that accompany all
feature descriptions; QPEMSJ5N, WIDTH, DEPTH, and DISTANCE.

3, Fbr the cutting expert we also supply the original vectors (possibly transfoimeci} used to define this
feature. These vectors are the values of the attributes PJVBCTOR and Dj/BCHOk

4. See footnote 3.

m

Carnegie Mellon University FEL Syntax for the IMW Modeler

(got

(depth d)
(width w)
(opens_on

(distance (side dist))

; depth of
; width of
; envelope

; distance

the channel
the channel
sides cut by the channel

from one side

The POSITION attribute gives the position of the hole on the surface that it opens onto;
this surface corresponds to, but may not be identical with, the envelope side supplied
by the OPENSjON attribute. The DEPTH attribute gjves the depth of the channel as a real
number. The WIDTH attribute gives the width of the channel as a real number. The
OPENSJDN attribute specifies the three sides of the envelope associated with the
channel. The DISTANCE attribute tells the distance from one side of the envelope of the
object to the nearest side of the channel.5

10. The Read Verb

The read verb6 allows input of FEL sentences from one or more files, which are specified
by the feature lists. This is especially useful for loading models of the relatively un-
changing machining environment Each such feature list must contain the attribute-val-
ue pair " (type f i l e) " and a pair with attribute NAME whose value is the name of a file.
The following sentence would cause two files to be read and the sentences in them to be
processed before input from any other source, such as the network, is processed.

(read

I (type file) (name
((type file) (name ^modai-transforms.fel"))

1L The Transform Verb

Hie transform verb is used to apply geometric transformations to one or more objects.
Translation, rotation, and scaling are supported- Unlike transformations applied with
the £mw verb, these actually alter the coordinates of the vertices of the objects. Both en-
vironments and individual objects may be transformed- Transforming an environment
has the same result as indiviaually applying the same transformation to all the objects
in that environment

What is to be transformed (either object or environment) and what transformation (a
combination of translation, rotation, and scaling) is to be applied are specified by one or
more feature lists. If an individual object is to be transformed, then the list should oon-

5. Scs footnote 3*
& This is not, strictly spdkmg, a ^iwxldo" vcri*." Sentences containing this w b are processed by the

Network task in the Generic Expert and are newer passed mi to the applicatknvspexafic Expert task
So# the Model task in the MXapplkatora never sees such sentences.

70

Carnegie Mellon University FEL Syntax for the IMW Modeler

tain the attribute-value pair "(type object)" and a pair with attribute NAME whose value
is the name of the object. If an environment is to be transformed, the TYPE attribute
should have the value "environment"* Here is a typical transform sentence.

(transform
((type environment) (name envl)
(translation (1. 1. 0.)) (scale (2. 2. 2.))

)
((type object) (name obj2)
(translation (-1. -1. 0.))
(z_rotation 30.)
(translation (1. 1. 0.))

11.1. Translation

The TRANSLATION attribute takes a vector (Le, a list with exactly three real numeric ele-
ments) as its value. The elements of the vector specify the translation in X, Y, and Z, re-
spectively* For example, the following sentence adds 1 to the X components and -2 to
the Y components of all vertices of all objects in the environment named "envl".

(t r a n s f o r m
((t y p e e n v i r o n m e n t) (name e n v l) (t r a n s l a t i o n (1 . - 2 . 0)))

)

11.2. Rotation

There are three rotation attributes: X̂ ROTATION, YJIOTATION, and ZJROTATIONL Each
takes a real numeric value which specifies the number of degrees of rotation about the
X, Y, and Z axes, respectively. Positive rotations are clockwise from the point of view of
a positive axis, looking towards the origin. The following example rotates all the ob-
jects in the specified environment by 90 degrees about the X axis.

(transform
((type environment) (name envl)

(x_rotation 90)

11.3. Scaling

The SCALE attribute takes a vector (i.e., a list with exactly three numeric elements) as its
value. The elements of the vector specify the scaling in X, Y# and Z# respectively. The
folowing acample shrinks a l the objects in the specified environment to one fourth
their previous size.

(transform
{ (type environment) (name envl)

(scale (0.25 0,25 0.25))
1

Carnegie Mellon University FEL Syntax for the IMW Modeler

12. Bibliography

Mashbum 1987 Mashburn, Timothy Allen, A Polygonal Solid Modeling Package, Masters Thesis, Purdue
University, 1987.

72

Center for
Integrated Manufacturing Decision Systems

FEL Interface for Communicating
with the Holding Expert

JeffBaird

March, 1990

Abstract

The Holding Expert selects and positions fixtures for each setup planned by the IMW
(Intelligent Machining Workstation) system. This document describes the FEL
sentences accepted and generated by the Holding Expert (HX).

A description of the Holding Experts communication with other IMW subsystems is
given. The bulk of the document is a detailed description of the semantics of every
VERB, feature list TYPE, and ATTRIBUTE handled by the current prototype version of
the Holding Expert.

Copyright © 1990 Carnegie Mellon University

Contact
DmM Bourne
CMDS
Carnegie Mellon llrmersiiy
Pittsburgh, PA 15213
(412)268-8810

Carnegie Mellon University FEL Holding Expert Interface

1. Introduction
This document describes the FEL interface to the IMW Holding Expert. The interface is a
mapping of the program inputs and outputs into FEL sentences. The holding expert was
developed by Kyoung Kim and is described in his doctoral thesis (forthcoming). This document
provides an explanation of the input requirements and provides a complete reference to the
messages the program sends and receives.

The IMW is composed of several different expert systems, each with its own area of expertise in
different machining tasks. The primary systems are for planning, holding, cutting, sensing,
modeling and execution/control. In order to achieve the goal of machining a part, these different
expert systems must exchange information and agree upon constraints.

The goal of the holding expert system is to provide a fixturing plan for a part to the
execution/control system that will hold the part securely during machining and allow good
access to the part for the cutting and sensing systems. The fixturing plan is a list of fixtures from
a library, a sequence of NC programs for the IMW novel tooling to place the fixtures, and
commands to update the modeler with the changes in the environment that the plan causes (e.g.,
so other systems querying the modeler see that fixtures have been placed in the environment.)

To generate the fixturing plan, the holding expert needs several pieces of data. It needs to know
the shape of the part, the location and orientation of the part on the machine tool bed, and the
access paths that the cutting system would like to use.

The shape or geometry of the part is maintained by the modeler. A simple bounding box or part
envelope approach is not sufficient enough for the holding expert. Toe clamps cannot be placed
on holes in the part and vises cannot use curved surfaces. A complete description of the part is
required in order to position fixtures in a rigid, error-free manner. The modeler maintains a
complete boundary representation (BREP) of the part that can be used by the holding expert to
locate good surfaces for fixturing.

The location and orientation of the part are determined by the planner. The planner orders the
making of features (holes, shoulders, slots,...) which determines the location and orientation of
the part (e.g., on a 3 axis milling machine, the side to have a hole drilled in it must be facing
Mup*\) This ordering process in the planner strongly impacts the flow of data among the expat
systems. Since the planner orders features, several features may be machined within one
fixturing setup. Effectively, the entire system is driven on a setup by setup basis.

The primary task for the holding expert is to plan the fixturing for each setup generated by the
planner. The planner also can affect the pait location and orientation by selecting special
fixtures to aM in making the part The part might be on top of a subplate because it is thin. The
part might have an angled surface that must be made by mounting the part to a sine table. The
use of these methods must be conveyed to the holding export The planner also knows which
part surface is best to treat as a reference surface. A reference surface is used to accurately
locate the part (e.g., a milled surface is usually bettor than a saw cut one. So die milled surface
would be placed against the locating pins.) The planner's selection of a reference surface must
also be sent to the holding expert

The cutting expat produces tool paths to produce the features in each setup. Obviously the

75

Carnegie Mellon University FEL Holding Expert Interface

fixtures cannot interfere with the cutting paths. The cutting expert also selects tools and feeds
and speeds. The tool diameter and the horsepower along a cutting trajectory impose force
vectors upon the part that the holding expert must negate in order to hold the part stable. Each
tool path and parameters must be given to the holding expert for each setup.

Although the above paragraphs describe the logical flow of information in and out of the holding
expert, the actual flow in die IMW systems is a bit different The control/execution system,
sometimes referred to as the plan manager, is collecting output from each system for execution.
It has the planner part location information and the cutting expert tool paths and the "path" in the
modeler of the part geometry. (Since machining a part typically involves multiple setups, the
modeler has different models for each setup. The modeler maintains a named hierarchy of
models and the control/execution system knows which names correspond to each setup. These
names form a path that can be given to the holding expert to retrieve the part boundary
representation (BREP) for the part in the current setup.)

The control/execution system can send a FEL message to the holding expert with the above
information, then the holding expert need only query the modeler (using the path from the
control/execution system) to get the BREP. Then the holding expert will have all the data
needed to produce a plan fixturing the current setup. This basic cycle of "control teUs holding to
plan, holding queries modeler and then produces a plan" is repeated for each setup that the
planner generates.

If the holding expert can generate a fixturing plan, it will return the plan to the control/execution
system. Although the plan contains an ordered Kst of fixtures, the important output is actually an
NC program. The name of a file containing NC programs to physically place die fixtures at the
appropriate locations is returned. Also the geometric models of the fixtures to be used are
moved to the appropriate place (in the environment that the planner named (path)) from a library
of fixture models in the modeler.

The sections that follow are a very detailed list of the FEL sentences and their components that
implement the interface described above- They are intended to be used as a reference for
implementation. They do not explain functions and terms from other systems. Readers should
be familiar with FEL, the generic expat, and the modeling expert

2. Flow of Sentences

The basic flow of sentences in and out of the bedding expert (called HX) is as follows:

HX receives a FLAN a SETUP message* PLAN messages are typically from the plan manager
(PL). The PLAN sentence contains one type SCTOP fesfisetist and zero OT more type
TOOLPATH featnrelists. Hie SETUP describes the location erf the part model in the modeler,
its orientation* reference skies, and the planner's fixturing methods- Each TGOLPATH
describes the cutter size, start and stop points of die path, feed mte» horsepower, and the kind of
COL

Using the setup Momatioft HX then sends a GET BREP message to the modeler MX. The
BREP is Ac boundary representation of the part The edges and surfaces of the part are defined
in the BREP.

76

Carnegie Mellon University FEL Holding Expert Interface

When HX receives GOT BREP from the modeler, it converts the BREP's VERTEX, LOOP,
FACE, and NORMAL data plus the TOOLPATHs into structures usable by the main fixture
planning routine and calls it The fixture planning routine returns a list of fixtures and the name
of a file containing NC code to position the fixtures.

HX then sends a COPY sentence and a TRANSFORM sentence to MX. The COPY message
copies each fixture from a library to the current part model. The TRANSFORM message moves
each fixture into the correct position and orientation in the part model.

When HX receives the COPIED message and then the TRANSFORMED message back from
MX, it sends a PLANNED BUILD_SETUP message back to the originator of the PLAN
message (usually PL), (It should really send back a PLAN SETUP message, but due to some
restrictions in the plan manager software, it uses BUILD_SETUR) The PLANNED message
contains a list of the fixture names used and the name of the NC file.

Now HX is ready to receive the next PLAN SETUP message.

If any negated verbs (NOTGOTTEN, NOTCOPIED, or NOTTRANSFORMED) are received
from MX or the fixture planning routine cannot give a list of fixtures to hold the part, a
NOTPLANNED message is sent back to the originator of the PLAN SETUP message.

In the current version of HX, version 0.6, only one PLAN message at a time will be handled.
PLAN requests sent while planning is already in progress will print an error message on the
temmal and wm then be IGNORED! (no NOTPLANNED is sent back).

3. Verbs
The holding expert accepts a very limited number of FEL verbs. The PLAN verb is the only
verb used to command the holding expert (sent from another expert or typed in to the generic
expert terminal interface,) All other verbs are generated or are received as replies from the
modeling expert

PLAN The PLAN verb is the primary input that drives the holding expert It creates
a plan for fixturing a setup using the information in its featurelists and will
quay the modeler for part geometry information. PLAN has two featurelists
(TYPES) that it uses. The first is one type SETUP featurelist The second is
zero or more type TOOL_PATH featurelists. See the Attributes description
for further details.

GOT The GOT verb is the reply from the modeler containing the part BREP.
Only the featerelist type BREP is allowed here.

NOTGOTTEN The NOTGOTTEN verb is the reply from the modeler that the part BREP
was not retrieve do to some error (Sec the Errors section.) All featurelists of
this verb are i^iored.

COPIED The COPIED verb is the reply from the modeler that the fixtures have been
copied from the library into the cxmtmx part environment All featorelists of
this verb are ignored.

NQTCGPIED The NOTCOPIED verb is the reply from the modeler that there was an mm

Carnegie Mellon University FEL Holding Expert Interface

copying the fixtures from the library into the current part environment (See
the Error section.) All featurelists of this verb are ignored.

TRANSFORMED The TRANSFORMED verb is the reply from the modeler that the fixtures
have been transformed to die correct location in the current part
environment All featurelists of this verb are ignored.

NOTTRANSFORMED
. The NOTTRANSFORMED verb is the reply from the modeler that there

was an error transforming the fixtures to the correct location in the current
part environment (See the Error section.) All featurelist of this verb are
ignored.

There are three other verbs that the holding expert accepts: ADD, DELETE, and INSPECT
These were used in debugging during development and will not be documented here because
they should not be used!

The holding expert generated a very limited number of fel verbs. Only the PLANNED or
NOTPLANNED verbs are sent back to the originator of the plan request. The other verbs are
generated as requests to the modeling expert to retrieve or update feature information.

PLANNED The primary output of the holding expert is return in the PLANNED verb to
the originator of the PLAN request It has one featurelist type
BUILD_SETUP (Due to some limitations in the plan manager software, it
returns BUILELSETUP instead of SETUP.)

The NOTPLANNED verb is returned to the originator of the PLAN request
whenever a plan cannot be made* This could be from an error in the input
(PLAN verb) or from an incorrect modeler environment or from lack of
fixtures for the current part configuration/size. This verb has one featurelist
type BUILELSETUP (see BUILELSETUP in the PLANNED verb above)
which will have an error message in the ERRORS attribute.

The GET verb is sent to the modeler from the holding expert to retrieve part
geometry information. It has one featurelist type BREP which contains the
name of the object, environment, and application of the part.

The COPY verb is sent to the modeler from the holding expert to copy the
fixtures used in the plan from the fixture library to the current part
environment. It contains one type of featorelist type OBJECT which will be
repeated for each different fixture used in the plan.

The TRANSFORM verb is sent to the modeler from the holding expert to
transferal the fixtures (placed by the COPY verb, see above) into the correct
position in the current part environment It contains one type of featurelist
type OBJECT which will be repeated for each different fixture used in the
plan. If the COPY verb could also translate each object copied, this verb
would be unnecessary.

Verbs other than those listed above cause the holding expert f® print out a error message and to
ijpiore the rest erf Ac sentence- A negated vert* is not retained for tmstjppocted verbs.

NOTTLANNED

GET

COPY

TRANSFORM

78

Carnegie Mellon University FEL Holding Expert Interface

4. FEL Types

Only a few types (FeatureList types) are accepted by the holding expert. The ones actually used
in input sentences are SETUP and TOOLPATH. Other message types are primarily replies to
queries. The input types are

SETUP (in PLAN) This feature list contains all the planner specific information required by HX
to make a fixturing plan. It also contains the location in the modeler (MX)
that the part boundary representation can be retrieved from.

TOOLPATH (in PLAN)
This feature list contains the a list of tool paths generated by the cutting
expert (CX) to make the features used in the current setup.

BREP (in GOT) This feature list contains the part boundary representation returned from the
modeler (MX).

The main Type (FeatureList type) generated by the holding expert is BUILDJSETUP. It
contains the fixturing plan information. Other types generated by the holding expert are modeler
operations. The types generated by the holding expert are

OBJECT (in GET and COPY and TRANSFORM)
This feature list names the part or a fixture to be retrieved/manipulated by
the modeler (MX).

BUHXLSETUP (in PLANNED)
This feature list contains the finished fixturing plan to be returned to the plan
manager.

The type HOLDING_OP is accepted and ignored. All other types generate an error message and
are ignored. Types returned from the modeling experts COPIED/NOTCOPIED and
TRANSFORMED/NOTTRANSFORMED verbs are completely ignored. Unless mentioned as
optional, all attributes listed under each type are required.

5. Attributes for SETUP in PLAN

The attributes for PLAN SETUP messages contain the information from the planner that the
holding expat needs to generate a fixturing plan- (The holding expert also needs information
from the modeler and the cutting expert to complete the plan.)

NAME The value of this attribute is a string which is used to identify the setup. It is
returned in the PLANNED and NOTPLANNED messages.

APPLICATION The value of this attribute is a string that names the application in the
modeler that has the pait description.

ENVIRONMENT Tlie value of this attribute is a string that names the environment in the
modeler that has the part description.

PART The value of this attribute is a string that names the object in the modeler that
has the part description. The obsolete attribute OBJECT if PART is not
present

HNBHEDJPART The value of this attribute is a string. Currently not used except that it is
required to be returned to PL.

79

Carnegie Mellon University FEL Holding Expert Interface

SETUP_NO The value of this attribute is an integer that is unique for each setup. Used to
generate unique NCJFILENAMES.

XJROTATION The value of this attribute is an real in units of degrees that is the inverse of
the last X axis rotation applied to the part. See the ANGLE attribute below.

YJROTATION The value of this attribute is an real in units of degrees that is the inverse of
the last Y axis rotation applied to the part. See the ANGLE attribute below.

ZJROTATION The value of Ms attribute is an real in units of degrees that is the inverse of
the last Z axis rotation applied to the part,

TRANSLATION The value of this attribute is a vector of 3 reals that were the last translations
applied to the part

METHOD The value of this attribute is a symbol that is the name of the suggested
fixturing method from the OPS5 planner. Must be one of SUBPLATE,
VISE, SINEJTABLE, or ANGUEJPLATE, It is required, but currently not
used by main fixture planning routine.

SUBPLATE_DEPTH
The value of this attribute is an real that is the height (along the Z axis) of the
subplate used in fixturing. If METHOD SUBPLATE is not used it should
have the value 0.0. The obsolete attribute DEPTH is checked if
SUBPLATEJ)EPTH is not present.

ANGLE The value of this attribute is an real in units degrees that is the angle of the
sine table that the part is on. If METHOD SINEJTABLE is not used it
should be the value 0.0, When using ANGLE, the POSITION attribute
should be set to the axis of which this angle of rotation is applied too.
WARNING! It is unclear if it is still necessary to have one of the
XJtOTATION OT YJRDTATTON attributes set to the inverse (negation) of
angle so that the axis can be determined.

POSITION The value of this attribute is a symbol that is the name of the axis of rotation
of the ANGLE attribute. Must be one of X, or Y.

MAJORJNTORMAL
The value of this attribute is a vector of 3 reals that is the unit normal vector
of the modeler envelope face that coffespoods to the OPS5 planner's major
reference face in the current part coordinate system in the APPLICATION,
ENVIRONMENT, and PART(=GBJECT).

MINORJ9ORMAL
The value of this attribute h a vector of 3 reals that is the unit normal vector
of die modeler envelope face that corresponds to the OPS5 planner's minor
reference face in the current part cooniinate system in die APPLICATION,
ENVIRONMENT,, awl PART(=OB JECT).

6. Attributes for TOOLPATH in PLAN

Use erf t ie TCK)LPATH fetteelist is more complex tban just t i s t of attribute values. It has
several different fauns and ordering restrictions. Hie toolpaifas axe a the actual cutter paths to
make the part (specified in the put mode! ccKsdlnates*) Each request to PLAN a setup has zoo
or more type TQOLPATH featmelists. If itoae are provided, then the holding expert will make

•0

Carnegie Mellon University FEL Holding Expert Interface

an extremely conservative fixturing plan assuming that no access to the part is needed. There are
four different kinds of toolpaths: RAPID, LINEAR, TAPPING, CIRCULAR. Exactly one of
these name must be present in each TOOLPATH featurelist In every PLAN message, the first
TOOLPATH featurelist should be a RAPID attribute. The last featurelist should also be a
RAPID, but in the current version of HX this is not checked for and can be omitted. The RAPID
attribute commands the machine tool to move to a position without cutting. It is used purely for
positioning the tool to the place to start cutting. Each successive cut starts at the place where the
last cut left off. This is why the first TOOLPATH featurelist of each PLAN is a RAPID, it sets
the "last11 cutting position before the first cut The last TOOLPATH featurelist should be a rapid
to home the tool to a safe position. After the initial RAPID, any sequence of LINEAR,
CIRCULAR, TAPPING, or RAPID is pennitted. The LINEAR, CIRCULAR, and TAPPING
attributes specify paths that are actually cutting metal. Each one of these attributes start from the
position the previous TOOLPATH featurelist left off at. Since RAPID does not cut metal, the
HORSEPOWER, SFM, and DIAMETER attributes are ignored when RAPID is present The
HORSEPOWER, SFM, and DIAMETER attributes are required for the attributes that cut:
LINEAR, CIRCULAR, and TAPPING- The CIRCULAR attribute also requires center point for
the circular path to be specified in the CENTER attribute. See the Sample Sentences section for
some examples of using TOOLPATHS.

NAME

RAPID

LINEAR

TAPPING

CIRCULAR

HORSEPOWER

SFM

DIAMETER

CENTER

The value of this attribute is a string which is used to identify the tool being
used in each cut. Currently, this attribute is not referenced.
The value of this attribute is a vector of 3 reals that set the starting position
for the next cutter path.
The value of this attribute is a vector of 3 reals that forms the end of a linear
cutting path. The last cutting path position is used as the starting point
The value of this attribute is a vector of 3 reals that forms the end of a
tapping cutting path. Currently, the holding expert treats this identically to
the LINEAR attribute. The last cutting path position is used as the starting
point.
The value of this attribute is a vector of 3 reals that forms the end of a
circular cutting path. The last cutting path position is used as the starting
point. Using this attribute requires that a CENTER point for the circular
path appear in this TOOLPATH.
The value of this attribute is a real that is the maximum horsepower used
during this TOOLPATH.
The value of this attribute is a real that is the feed rate of the tool table used
during this TOOLPATH. If SFM is not present, the obsolete attribute
SPEED is check far.
The value of Ms attribute is a real that is the diameter of the cutter used
during this TOOLPATH.
The value of this attribute is a vector erf 3 reals that forms the center point of
a circular cutting path. This attribute must be present if flic CIRCULAR
attribute is used.

The are several obsolete attribute for TOOLPATHS that are recognized: RADIUS, PJVECTOR,
and D JVECTGR. They will not be documented because they should not be used.

Si

Carnegie Mellon University FEL Holding Expert Interface

7. Attributes for BREP in GET

The attributes in the GET BREP (boundary representation) message are used to query the
modeler to get BREP for the current setup. These attributes are generated automatically from
attribute values in the PLAN SETUP message.

The value of this attribute is a symbol which is the name of current part
object in the modeler. The value used is the value of the PART attribute
from the PLAN veib. This value is the same as the value of the OBJECT
attribute.

The value of this attribute is a symbol which is the name of current part
application in the modeler. The value used is the value of the
APPLICATION attribute from the PLAN verb.

ENVIRONMENT The value of this attribute is a symbol which is the name of current part
environment in the modeler. The value used is the value of the
ENVIRONMENT attribute from the PLAN verb.

NAME

APPLICATION

OBJECT The value of this attribute is a symbol which is the name of current part
object in the modeler. The value used is the value of the PART attribute
from the PLAN verb. This value is the same as the value of the NAME
attribute.

8. Attributes for BREP in GOT

The attribute values in the GOT BREP (boundary representation) message are the values
returned by the modeler from a GET BREP quay. They contain the part description that the
holding expert uses to locate good surfaces for fixturing.

NAME

APPLICATION

The value of this attribute is a symbol which is the name of current part
object in the modeler. The value received is the value of the NAME attribute
from the GET verb. This value is the same as the value of the OBJECT
attribute.

The value of this attribute is a symbol which is the name of current part
application in the modeler. Tlie value received is the value of the
APPUCATION attribute from the GET vertx

ENVIRONMENT The value of this attribute is a symbol which is the name of current part
environment in the modeler. The value received is the value of the
ENVIRONMENT attribute from the GET verb.

OBJECT

WORLD

VERTEX

The value of this attribute is a symbol which is the name of current part
object in fee modeler. The value received is the value of the PART attribute
from the GET verb. This value is the same as the value of the NAME
attribute.

The value erf this attribute is a symbol which is the name of current part
worid in the modeler. This value is not used.

The value of this attribute is a Est of vectors of 3 reals of the vertices of the
part named by APPLICATION, ENVIRONMENT, and OBJECT. It is
converted into an array for use by the main fixture planning routine.

82

Carnegie Mellon University FEL Holding Expert Interface

LOOP

FACE

NORMAL

The value of this attribute is a list of vectors of 3 reals of the TWIN loops of
the part named by APPLICATION, ENVIRONMENT, and OBJECT. It is
converted into an arrays HOLES and FACES for use by the main fixture
planning routine.
The value of this attribute is a list of vectors of 3 reals of the TWIN faces of
the part named by APPLICATION, ENVIRONMENT, and OBJECT. It is
used to guide which LOOPS are converted into HOLES and into FACES for
use by the main fixture planning routine.

The value of this attribute is a list of vectors of 3 reals of the TWIN face
normals of the part named by APPLICATION, ENVIRONMENT, and
OBJECT. It is included in the array of FACES for use by the main fixture
planning routine.

9- Attributes for BUILD_SETUP in PLANNED

The BUILD_SETUP featurelist in PLANNED is the primary output of the holding expert. It
returns the part rotations and translations and the list of fixtures to use and the name of an NC
code file that has commands for placing the fixtures. Due to some limitations in plan manager
software, it also returns all the attributes sent down in the PLAN SETUP message. Only
X_ROTATION, Y_ROTATION, Z_ROTATTON, TRANSLATION, NCJFILENAME,
FIXTURES, and MODE contain useful, new information. All other attributes of this sentence
are copied from the original PLAN sentence.

NAME

XJtOTATION

YJtOTATION

2LROTATION

TRANSLATION

NCJFILENAME

The value of this attribute is a symbol which is the name of the setup that
was planned. Its value is the value of the attribute NAME for SETUP in
PLAN.
The value of this attribute is an real in units of degrees that is the X axis
rotation to be applied to the part for fixturing tins setup. In the current
version of HX, this value is not used (always 0.0.)
The value of this attribute is an rod in units of degrees that is the Y axis
rotation to be applied to the part for fixturing this setup. In the current
version of HX, this value is not used (always 0.0.)
The value of this attribute is an real in units of degrees that is the Z axis
rotation to be applied to the part for fixturing this setup. In the current
version of HX, this value is the only rotation actually used, (X and Y are
not.)

The value of this attribute is a vector of 3 reals that are translations to be
applied to the part for fixturing this setep. In the current version of HX, this
value is not used (always (0*0 0.0 0.).)
The value of this attribute is a string that is the name of a file that has the NC
code to place fixtures for the current setup. This file is generated for each
setup planned and thus must have t unique name. The name is of the form
hxjmacroJ^umber, where Number is the value of the SFTUP_NO attribute
from SETUP in PLAN. The file is generated in the current working
directory of the HX process, so an absolute path (filename start with a /) is
provided.

83

Carnegie Mellon University FEL Holding Expert Interface

FIXTURES

MODE

SETUP NO

APPLICATION

The value of this attribute is a list of symbols that the main fixture planning
routine choose to fixture the part for the cuiTent setup. These each of these
symbols have the form Name_Number where Name is one of LOCATOR,
TOE_CLAMP, FIXEDJVISEjrAW, MOVEABLE_VISE_JAW,
PARALLELJBAR, RISER, BOLT, SUBPLATE. Each type of fixture is
uniquely identified by appending a number to its name. If the fixture library
has three locators, they would be referenced by LOCATOR_1,
LOCATORS, and LOCATORS

The value of this attribute is a symbol that the says whether the fixturing
operations are done automatically or manually. Its value is one of
MANUAL or AUTOMATIC Due to limitations in plan manager software
this is returned in BUILDJSETUP always as MANUAL. When the
limitations are removed, the per fixture mode generated in the NC file will
be used instead.

The value of this attribute is an integer that is unique for each setup. It is
Used to generate unique NC_FILENAMES. It is the value of the
corresponding attribute from SETUP in PLAN.

The value of this attribute is a string that names the application in the
modeler that has the part description. It is the value of the corresponding
attribute from SETUP in PLAN.

ENVIRONMENT The value of this attribute is a string that names the environment in the
modeler that has the part description. It is the value of the corresponding
attribute from SETUP in PLAN.

PART The value of this attribute is a string that names the object in the modeler that
has the part description. It is the value of the corresponding attribute from
SETUP in PLAN.

HNISHED_PART The value of this attribute is a string. It is currently not used. It is the value
of the corresponding attribute from SETUP in PLAN.

ANGLE The value of this attribute is an real in units degrees that is the angle of the
sine table that the part is on. See SETUP in PLAN for more information
about its use- It is the value of the cotrespoikling attribute from SETUP in
PLAN.

SUBPLATBJDEPTH
The value of this attribute is an real that is the height (along the Z axis) of the
subplate used in fixtmring. It is the value of the corresponding attribute from
SETUP in PLAN.

POSITION The value of this attribute is a symbol that is the name of the axis of rotation
of the ANGLE attribute. Mast be one of X, cr Y. It is the value of the
corresponding attribute from SETUP in MAN.

METHOD The value of this attribute is a symbol thai is the name of the suggested
fixtoring method from the OPS5 planner. Most be one of SUBPLATE,
VISE, SINLTABLE, or ANGLEJPLATE* It is the value of the
conesponduig attribute from SETUP in PLAN. If no method is sent in the
FLAN message, the symbol NONE win be returned.

84

Carnegie Mellon University FEL Holding Expert Interface

10. Attributes for BUILD_SETUP in NOTPLANNED

The NOTPLANNED BUILD_SETUP message is returned when there is an error planning a
setup. The attributes of this message describe the error that occurred,

NAME The value of this attribute is a symbol which is the name of the setup that
was not successfully planned. Its value is the value of the attribute NAME
for SETUP in PLAN.

ERRORS The value of this attribute is a string describing the error that occurred in
attempting to create a plan. See the section on Errors and Warnings for a list
of strings.

11. Attributes for OBJECT in COPY

The COPY OBJECT message updates the current setup in the modeler with the fixtures that will
hold the part The attributes of this message name the fixtures from a standard fixturing library
and the current setup environment. Each type OBJECT featurelist in a COPY sentence contains:

NAME The value of this attribute is a symbol which is the name of a fixture that is
to be copied from the fixture library to the current part environment. These
names have the form Name_Number where Name is one of LOCATOR,
TOEJXAMP, FDCED_VISE_JAW, MOVEABLE_VISE_JAW,
PARALLEL_BAR, RISER, BOLT, SUBPLATE. Each type of fixture is
uniquely identified by appending a number to its name. If the fixture library
has three locators, they would be referenced by LOCATOR_1,
LOCATORS, and LOCATOR^.

APPLICATION The value of this attribute is a symbol which is the name of the application in
the modeler which has the fixture library. In the current version of HX this
is always LIBRARY,

ENVIRONMENT The value of this attribute is a symbol which is the name of the environment
in the modeler which has the fixture library. In the current version of HX
this is always FKELS.

TO_APPLICATION
The value of this attribute is a symbol which is the name of current part
application in the modeler. The value used is the value of the
APPLICATION attribute from the PLAN verb-

TO^ENVIRONMENT
The value of this attribute is a symbol which is the name of current part
environment in the modeler. The value used is the value of the
ENVIRONMENT attribute from the PLAN verb.

12. Attributes for OBJECT in TRANSFORM

The TRANSFORM OBJECT message updates the position of the fixtures (created by the COPY
OBJECT message) in the current setup in the modeler. The COPY OBJECT message cannot
position the fixtures, so the TRANSFORM message is used to correct the positions. The
attributes of this message name the fixtures and their locations. Each type OBJECT featurelist in

85

Carnegie Mellon University FEL Holding Expert Interface

a TRANSFORM sentence contains:

NAME The value of this attribute is a symbol which is the name of a fixture that is
to be translated to its final position. See the NAME attribute for OBJECT in
COPY for a description of its values,

APPLICATION The value of this attribute is a symbol which is the name of current part
application in the modeler. The value used is the value of the
APPLICATION attribute from the PLAN verb. Obviously this is the same
as the value of the TO_APPLICATION in the corresponding COPY
sentence.

ENVIRONMENT The value of this attribute is a symbol which is the name of current part
environment in the modeler. The value used is the value of the
ENVIRONMENT attribute from the PLAN verb. Obviously this is the same
as the value of the TO^ENVTRONMENT in the corresponding COPY
sentence.

ZJROTATION The value of this attribute is an real in units of degrees that is the Z axis
rotation to be applied to the fixture object to correctly orient it in the current
part model

TRANSLATION The value of this attribute is a vector of 3 reals that is the translations to be
applied to the fixture object to coxrectly position it in the current part model.

13. Sample Sentences

Listed below are four sample files tooLdc.1, tooLdc.2, tooLdcJ, and tooLdc.4 approximating the
four setups for an IMW test part

FOe tooLdcl
On the first setup just simple face milling on the top surface is done,

(plan ((type setup) (naara fool)
(part obji) (application appl) {environment envl)
(£inlsb*djpart none)
(method none)
(MtaqpMOo 1)
(angle 0)
(3ubplate_depth 0)
(translation (0 0 1.25))
(xjrotafcion -90)
(^rotat ion 0)
(•^rotation 0)
(najor_ncrmal (0 1 0))
(•ajorjpo* 0)
(mln®r_n0xaal (0 10)) ; variable
(minor_pos 0)

((type tool_path)(nan® tooll)
(rapid (-.5 .25 1.135))

tooljptth) (nan® tooll) ; fmomm&ll
(mtm 300)
(hcrsepcwer 3)

0.S)

Carnegie Mellon University FEL Holding Expert Interface

(l inear (3 .25 1 .135))))

File tool.dc.2
On the second setup the part is flipped over and the other face is milled and exposed edges are
edge milled. A channel or slot in the center of the part is milled.

(plan ((type setup) (name fool)
(part obj2) (application app2) (environment env2)
(finished_part none)
(method none)
(setupjao 2)
(angle 0)
(subplate_depth 0)
(translation (0 0 0))
(x_rotation 0)
(y_rotation 0)
(z_rotation 0)
(xnajor_normal (0 1 0))
(raajor_pos 0)
(minorjiormal (0 -1 0)) ; variable
(minor_pos 0)
)
((type tool_path) (name tooll)
(rapid (-.2 -.5 --5))

)
((type tool_path) (name tool l) ; endmill

(sfm 300)
(horsepower 3)
(diameter 0.6)
(linear (-.2 1.5 -.5)))
((type tool_path)(name too12)
(rapid (-.5 .€ .42))

)
((type tool_path) (name too!2) ; f acemill
(sfm 300)
(horsepower 3)
{diameter 1.5)
(linear (3 .€ .42)))

((type tool_patli) (name tool3)
(rapid (1.25 - .5 .25))

)
((type tool_path) (name too!3) ; millslot
(sfm 300)
(horsepower 3)
(diameter 1.5)
(linear (1.25 1.5 .25))}

)

File tooLdc3
On the third setup the remaining end and face mining is done and two holes are diiBed.

(plan ((type setup) (nane fool)
(part obj3) (application app3) (environraent
(finished^part none)
(method none)
(mmtuspjao 3)
(angle 0)

87

Carnegie MeUon University *EL Holding Expert Interface

(subplate_depth 0)
(translation (0 0 0))
(acjrotation 0)
(y^rotation 0)
(sjcotatian 0)
(majorjaormal (0 1 0))
(majorjpos 0)
(minor_nox3aal (0 -10)) ; variable

0)
)
((typm tool_path) (name tooll)
(rapid (-.2 -.5 -.5))

)
((type tool_path) (name tooll) ; endmill
(»£» 300)
(horsepower 3)
(diaiaeter 0.6)
(linear (-.2 1.5 -.5}))
((type tooljpath) (name tool2)
(rapid (0.25 .57 .34))

)
((typm tooljpath) (name tool2) ; £ aceaill
(sfm 300)
(horsepower 3)
(diameter .3)
(linear (3 .6 .34)))

((type tool_pat3i) (name tool3)
(rapid (.25 .€ .34))

)
((type tcol_path)(name too13) ; d r i l l 1
(s£a 300)
{horsepower 3)
(diameter 1.5}
(linear (.25 .€ - .5)))

((typ® tool_patl*) (name too!4)
(rapid (2.25 .S .34))

)
((type tooljpath) (name- tool4) ; d r i l l 2
(sfm 300)
(horsepower 3)
(diameter .3)

(2.25 .€ -.5}))

FEtetooLdc4
On the fourth (and final) setup the part is mounted on a me table al 30 degrees. The edge
ewcfittnging the table is both cod milled and face railed to produce a beveled edge.

(plan ((rvpe serup) (mam f oo4)
cbj4) (application app4) (m&w&xmamnt

)

Csetup no 4)
l r3

x)
0)

(tr«aaXatioa (0 0 .5))

Carnegie Mellon University FEL Holding Expert Interface

(x_rotation -30)
(y_rotation 0)
(z_rotation 0)
(ma jor_normal (0 1 0))
(major_pos 0)
(minor_normal (0 0.8660 -.5)) ; variable
(minor_pos 0)
)
((type tool_j>ath)(name tooll)
(rapid (-.5 .2 .8))

)
((type tool_j>ath) (name tooll) ; facemill
(sfm 300)
(horsepower 3)
(diameter 0.6)
(linear (2.8 .2 .a)))

((type tooljpath)(name tool2)
(rapid (-.5 -0.1 .2))

)
((type tool_path) (name tool2) ; endmill
(sfm 300)
(horsepower 3)
(diameter 0.6)
(linear (2.8 -0.1 .2))

After loading in the fixture library and loading in the pait into APP/ENV/OB J 1 through 4 in the
modeling expert MX, the above files can be read into the holding expert HX to produce the
following output: (The user input is underlined. Some long lists of part coordinates have been
omitted from the output)

% hx

> S t a r t i n g HX v e r s i o n 0 . 6

> (read ((type ffleXiiame

(Holding) Error i n Setup: :AttrMethod: bad method NONE rece ived
(Output: : send) '{GST ({NAME GO) (TYPE MESSAGE) (TO EX) (PROM hx)) ((T
YPS BREP) (APPLICATION APP1) (ENVIRONMENT ENVl) (OBJECT OBJ1) (NAME OB
Jl))) ' (131)

Fixture plan with toeclazops or a -rise may e x i s t
xcmin xemaT xcmin xcnax 0.000 2.750 0.000 LOSS
acvaln x v m x -10 .000 10.000

*** Fixture with a vise ***
xdist from left end of solid jaw = -0.375
distance between jaws = 0.700

*** Mo parallel bar is needed ***
Size X

fixec^jrisejaw 5.§€S 3.M3 0-000
part 4.493 4.4*3 0.000

89

Carnegie Mellon University FEL Holding Expert Interface

moveable_vise_jaw 5.868 5.193 0.000

(Output: : send) ' (COPY ((NAME Gl) (TYPE MESSAGE) (TO me) (FROM hx)) ((
TYPE OBJECT) (HAME WJXEBjnSEJJXSIJL) (APPLICATION LIBRARY) (ENVTRONMEN
T FIXELS) (TOJkFPLXCJkffXON APP1) (TOJENVIRONMENT ENV1)) ((TYPE OBJECT)
(NAME MOVSABLE_VTSE_JAW_1) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS)
(TO—APPLICATION APP1) (TOJENVIRONMENT ENV1)))' (312)

(Output::send) ' (TRANSFORM ((NAME G2) (TYPE MESSAGE) (TO me) (FROM hx)
) ((TYPE OBJECT) (NAME FIXED_VTSE_JAW_1) (APPLICATION APP1) (ENVTRONM

ENT ENV1) (Z_ROTATION 0.000000) (TRANSLATION (5.867600 3.292600 0.0000
00))) ((TYPE OBJECT) (NAME MOVEABLE_VISE_JAW_1} (APPLICATION APP1) (
ENVIRONMENT ENV1) (ZJROTATION 0.000000) (TRANSLATION (5.867600 5.19260
0 0.000000))))' (351)
(Output::send) ' (PLANNED ((NAME NONE) (TYPE MESSAGE) (TO none) (FROM n
one)) ((NAME FOO1) (TYPE BUILD_SETUP) (XJROTATION 0.000000) (Y_B0TATI
ON 0.000000) (Z_ROTATION 180.000000) (TRANSLATION (0.000000 0.000000 0
.000000)) (SETUP_NO 1) (APPLICATION APP1) (ENVIRONMENT ENV1) (PART OB
Ji) (FINISHEDJPART NONE) (ANGLE 0.000000) (SUBPLATEJDEPTH 0.000000) (P
OSITION X) (MODE MANUAL) (METHOD NONE) (NC_FILEKAME f7ssdh/usr2/baird/
i2aw/hx/doc/exa2nple/hx_macro_lM) (FIXTURES (FIXED^yiSE^JAW^l MOVEABLE^V
ISE_JAIf_l))))' (490)
no such name 'none7 for Send

> (read ((type fiteKname "tool-dd")))

(Holding) Error in Setup: rAttsMethod: bad method NONE received
(Output::send) • (GET ((NAME G3) (TYPE MESSAGE) (TO mac) (FROM hx)) ((T
vpE BREP) (APPLICATION APP2) (ENVIRONMENT ENV2) {OBJECT OBJ2) (NAME OB
J2)))' (131)

Fixture plan with toeclamps or a -vise may exist
acewtin xcmaT zemin zemax 0.300 2.700 0.000 0.200
aromin xvmax 0.300 10.000

*** Fixture with a vise ***
xdist frca l e f t mnd of solid jaw = -0.300
distance between jaws = 1.335

*** A parallel bar i s needed ***
TOXITWTMI length^ 2.300
—ytwmm width= 1.035

0.738

Size X Y 2

paralleljbar
part

5.7t3
4.4§3
4.452
5.7t3

3
4
4
5

.293

.493

.493

.828

0.000
0.000
0.000
0.000

(Holding} Warning in SendFlan: no tranforsaation. matrix
(Output: zmmod) ' {COPY ((KM« G4) (TTPB HEISSASE} (TO asat) (WMM hx) } ((

90

Carnegie Mellon University FEL Holding Expert Interface

TYPE OBJECT) (NAME FIXED_VISE_JAW_1) (APPLICATION LIBRARY) (ENVTRONMEN
T FIXELS) (TO_APPLICATION APP2) (TO_ENVIRONMENT ENV2)) ((TYPE OBJECT)
(NAME PARALLEL_BAR_1) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS) (TO_

APPLICATION APP2) (TOJBNVIRONMENT ENV2)) ((TYPE OBJECT) (NAME MOVEABL
E_VISE_JAW_1) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS) (TO_APPLICATI
ON APP2) (TOJENVIRONMENT ENV2))) ' (438)
(Output::sand) '(TRANSFORM ((NAME G5) (TYPE MESSAGE) (TO xnx) (FROM hx)
) ((TYPE OBJECT) (NAME FIXED_VISE_JaW_l) (APPLICATION APP2) (ENVIRONM

ENT ENV2) (ZJROTATION 0.000000) (TRANSLATION (5.792600 3.292600 0.0000
00))) ((TYPE OBJECT) (NAME PARALLELJ&AR_1) (APPLICATION APP2) (ENVIR
ONMENT ENV2) (ZJROTATION 0.000000) (TRANSLATION (4.492600 4.492600 0.0
00000))) ((TYPE OBJECT) (NAME M0VEABUSJ7ISE_JAW_l) (APPLICATION APP2
) (ENVIRONMENT ENV2) (ZJROTATION 0.000000) (TRANSLATION (5.792600 5.82
7600 0.000000))))' (494)
(Output: :send) ' (PLANNED ((NAME NONE) (TYPE MESSAGE) (TO none) (FROM n
one)) ((NAME FOO1) (TYPE BUILD_SETUP) (XJROTATION 0.000000) (Y_ROTATI
ON 0.000000) (ZJROTATION 0.000000) (TRANSLATION (0.000000 0.000000 0.0
00000)) (SETUP_NO 2) (APPLICATION APP2) (ENVIRONMENT ENV2) (PART OBJ2
) (FINISHED_PART NONE) (ANGLE 0.000000) (SUBPLATE_DEPTH 0.000000) (POS
ITION X) (MODE MANUAL) (METHOD NONE) (NC_FILENAME f7ssdh/usr2/baird/im
w/hx/doc/exaa5>le/hxjnacro_2ff) (FIXTURES (FXXED_VXSB_JAW_1 PARALLEL_BAR
_1 W>VEABLEJVISE_JAW_1))))' (503)
no such name 'none' for Send

> (read ((true fileXnaine

(Holding) Error in Setup: :AttrMethod: bad method NONE received
(Output::send) ' (GET ((NAME 66) (TYPE MESSAGE) (TO EX) (FROM hx)) ((T
YPE BREP) (APPLICATION APP3) (EKVXRONMENT ENV3) (OBJECT OBJ3) (NAME OB
J3)))' (131)

Fixture plan with toeclaaaps or a vise may exist
xcmin jrcnmir zcmin zcmax 0.300 2.600 0.000 0.290
xvmin xvmax 0.300 10.000

*** Fixture with a vise ***
xdist from left end of solid jaw = -0.300
distance between jaws = 1.335

*** A parallel bar is needed ***
waTifn-nti length^ 1 2 . 2 0 0
TB«TiTmifffl w i d t h s 1 .035
wt4yî fnfffii h e i c h t 3 5 0 .647

Name Size X X 2

parallel_bar
part

aw

5.7S3
4.493
4.493
5.7§3

3.293
4.493
4.493
5.S2B

0.000
0.000
0.000
0.000

(Holding) Warning in SendPlan: no tranformation matrix
(Output: :send) ' (COPY ((HAME G7) (TYPE MESSAGE) (TO B E) (FROM hx)) ((

OBJECT) (HM«E FIXEDJ71SEJT1HJ.) (APPI«!C&TIOi! LIBRARX) (EMVtRGNMEN

91

Carnegie Mellon University FEL Holding Expert Interface

T FIXELS) (TO_APPLICATION APP3) (TO_ENVIRONMENT ENV3)) ((TYPE OBJECT)
(NAME PARALLEL_BAR_1) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS) (TO__

APPLICATION APP3) (TO_ENVIROHMENT ENV3)) ((TYPE OBJECT) (NAME MOVEABL
EJTISE_JAir_l) {APPLICATION LIBRARY) (ENVIRONMENT PIXELS) (TO_APPLICATI
ON APP3) (TOJENVIRONMENT ENV3))) ' (438)
(O t

3) (TOJENVIRONMENT ENV3))) (4 3 8)
(Output: :send) ' (TRANSFORM ((NAME G8) (TYPE MESSAGE) (TO ox) (FROM hx)
} {(TYPE OBJECT) (NAME FIXED_VISE_JAWJL) (APPLICATION APP3) (ENVIRONM

ENT ENV3) (ZJROTATION 0.000000) (TRANSLATION (5 .792600 3 . 2 9 2 6 0 0 0 .0000
00))) ((TYPE OBJECT) (NAME PARALLELJBAR_1) (APPLICATION APP3) (ENVTR
ONMENT ENV3) (Z_R0TATION 0.000000) (TRANSLATION (4 .492600 4 .492600 0 .0
00000))) ((TYPE OBJECT) (NAME MOVEABLEJTCSE_JAirjL) (APPLICATION APP3
) (ENVIRONMENT ENV3) (Z_ROTATION 0 .000000) (TRANSLATION (5 .792600 5 . 8 2
7600 0 .000000)))) ' (494)
(Output: : mend) ' (PLANNED ((NAME NONE) (TYPE MESSAGE) (TO none) (FROM n

one)) ((NAME FOO1) (TYPE BUILDJSETUP) (XJROTATION 0 .000000) (Y_ROTATI
ON 0 .000000) (Z_ROTATION 0.000000) (TRANSLATION (0 .000000 0 .000000 0 . 0
00000 }) (S£TUP_NO 3) (APPLICATION APP3) (ENVIRONMENT ENV3) (PART OBJ3
) (FINISHED_PART NONE) (ANGLE 0.000000) (SUBPLATEJDEPTH 0 .000000) (POS
ITION X) (MODE MANUAL) (METHOD NONE) (NC_FILENAME f 7 8 8 d h / u s r 2 / b a i r c l / i m
w/hx/dac/eacaiif>l«/hacjnacro_3M) (FIXTURES (FIXED_VISE_JAWJL PARALLEL_BAR
_ 1 |^)VEABLEjyiSE_JAiSr_l)))) ' (503)
n h
_ jyiSE_JAiSr_l)))) (503)
no such name 'none' for Send

> (read ((type fBeXname "tooi.dc.4"

(Holding) Error i n Se tup: :AttrMethod: bad Eaethod NONE r e c e i v e d
(Output: : send) '(GET ((NAME G9) (TYPE MESSAGE) (TO me) (FROM hz)) ((T

YPS BREP) (APPLICATION APP4) {SNVTRONME2̂ T ENV4) (OBJECT OBJ4) (NAME OB
J4)))' (131)

Fixture plan with toeclaaps or a vise may exist

*** Pin Location in part coord. ***
P I N

1
2
3

0
1

- 0

X
.457
.871
.250

Y
-0.250
-0.250

0.457

Max. Keiffht
0
0.
0,

&—
.240.240
.240

Total no. of Clantp Ranges = 3

*** CLAMP RABGSS ***
xi yl zl x2 y2 x2 langth

1 0,500 0.000 0.170 2.000 0.000 0.170 1.500
2 0.000 0.000 0.340 0.500 0.000 0.340 0.500
3 2.000 0.000 0.340 2.500 0.000 0.340 0.500

*** rixfca*. «itl* fco^dasps on « *lnm_plMtm 30.000) * * *jp
Size X T Z

pin 13.935 27.370 0.000
pin 15.349 27.370 0.000
pin 13.228 2S.077 0.000

part 13.478 27.620 0.000

92

I I I Nl V. V. IMHU

Carnegie Mellon University FEL Holding Expert Interface

damp 14.278 27.620 0.170
clamp 15.178 27.620 0.170

(Output::send) ' (COPY ((NAME G10) (TYPE MESSAGE) (TO mx) (FROM hx)) (
(TYPE OBJECT) (NAME LOCATORJ.) (APPLICATION LIBRARY) (ENVIRONMENT FIXE
LS) (TO_APPLICATION APP4) (TO_ENVIRONMENT ENV4)) ((TYPE OBJECT) (NAME
LOCATORJ2) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS) <TO_APPLICATION
APP4) (TOJENVTRONMENT ENV4)) ((TYPE OBJECT) (NAME LOCATORJ3) (APPLIC

ATION LIBRARY) (ENVIRONMENT FIXELS) (TO_APPLICATION APP4) (TOJENVIRONM
ENT ENV4)) ((TYPE OBJECT) (NAME TOEjCLAMP_l) (APPLICATION LIBRARY) (E
NVIRONMENT FIXELS) (TOJkPPLICATION APP4) (TOJENVIRONMENT ENV4)) ((TYP
E OBJECT) (NAME TOE_CLAMP_2) (APPLICATION LIBRARY) (ENVIRONMENT FIXELS
) (TO_APPLICATION APP4) (TOJENVIRONMENT ENV4)))' (663)
(Output::send) ' (TRANSFORM ((NAME Gil) (TYPE MESSAGE) (TO mx) (FROM hx
)) ((TYPE OBJECT) (NAME LOCATORJ.) (APPLICATION APP4) (ENVIRONMENT EN
V4) (Z_ROTATION 0.000000) (TRANSLATION (13.934900 27.369801 0.000000)
)) ((TYPE OBJECT) (NAME LOCATOR_2) (APPLICATION APP4) (ENVIRONMENT EN
V4) (Z_ROTATION 0.000000) (TRANSLATION (15.349100 27.369801 0.000000)
)) ((TYPE OBJECT) (NAME LOCATOR_3) (APPLICATION APP4) (ENVIRONMENT EN
V4) (Z_ROTATION 0.000000) (TRANSLATION (13.227800 28.076900 0.000000)
)) ((TYPE OBJECT) (NAME TOE_CLAMP__1) (APPLICATION APP4) (ENVIRONMENT
ENV4) (ZJROTATION 0.000000) (TRANSLATION (14.277800 27.619801 0.170000
))) ((TYPE OBJECT) (NAME TOE_CLAMP_2) (APPLICATION APP4) (ENVTRONMEN

T ENV4) (ZJROTATIQN 0.000000) (TRANSLATION (15.177800 27.619*01 0.1700
00))))' (763)
(Output::sand) ' (PLANNED ((NAME NONE) (TYPE MESSAGE) (TO none) (FROM n
one)) ((NAME FOO4) (TYPE BUILDJSETUP) (X_ROTATION 0.000000) (Y_ROTATI
ON o.oooooo) (ZJROTATION ISO.OOOOOO) (TRANSLATION (o.000000 0.000000 0
.000000)) (SETUPJVC 4) (APPLICATION APP4) (ENVIRONMENT ENV4) (PART OB
J4) (FINISHED_PART NONE) (ANGLE 30.000000) (SUBPLATEJDEPTH 0.000000) (
POSITION X) (MODE MANUAL) (METHOD NONE) (NCJTILSNAME (7ssdh/usr2/baird
/iaw/hx/doc/example/hxjnacro_4") (FIXTURES (LOCATOR_1 LOCATOR_2 LOCATO
R_3 T0E_O*AMP_l TOEjCLAMP_2))))' (508)
no such name 'none' for Send

14. Errors and Warnings

If the holding export cannot plan fixtures for the setup, it will return a NOTPLANNED message
to the originator of the PLAN request See the NOTPLANNED verb description for a list
attributes. The ERRORS attribute will have one of the following strings (underlined):

"No fixture element"
This means that the main fixture planning routine could not create a plan. One frequent cause of
this is that the part is too small or too big for the current fixture geometry compiled into holding
export

"No macro file namew

This means that although a plan was created, the nc file name containing the cock to load the
fixtures was not generated. This case only happens when there is an internal error in the mam
fixture planning routine.

"No part brep from modeler"

93

Carnegie Mellon University FEL Holding Expert Interface

This means that the GET message to the modeling expert returned NOTGOTTEN. This
typically happens when the PART, APPLICATION, or ENVIRONMENT passed in from the
PLAN verb are not the names that are in the modeler.

"Unable to copy fixtures to model"
This means that after creating a setup plan containing a list of fixtures, the COPY message (from
the holding expert to the modeler) failed to copy fixtures from the fixture library to the current
part environment Typically this is caused by not loading the fixture library into the modeler, or
the fixture libracy names do not agree with the holding expert names, or that the number of
fixtures in the library is less than what the holding expert requested.

"Unable to transform fixtures in model"
This means that after creating a setup plan containing a list of fixtures and copying them from
the library to the current part environment, the TRANSFORM message (from the holding expert
to the modeler) failed to transform fixtures in the current part environment. This has the same
failures as the previous "Unable to copy fixtures to model" message but is less likely to appear
because the copy message generates the error first This message will be seen if the modeler
copy command silently fails, but the transform reports NOTTRANSFORMED.

Other errors and warning are just printed on the terminal. Since the other expert systems will not
utilize warnings, they are printed instead of being included in a return message. The most
common causes of warnings are using an obsolete attribute or omitting an attribute (but a
reasonable default value can be supplied.) Other errors printed out instead of returning
NOTPLANNED are fataL These are typically from leaving out an attribute that no reasonable
default can be supplied for (e.g., MINOR_NORMAL.) Any message with "new TYPENAME
failed" is a fatal error in memory allocation procedure (e.g., malloc out of memory.) The only
option at this point is to "(quit)" and restart the program.

Both printed errors and warnings have the following format:

(Holding) ETYPE i n PROC: EBRSTR

where ETYPE is "Error11 or "Warning", PROC is a procedure name or a class::method name and
ERRSTR is some descriptive string. Note! All errors are printed on stdout, not stderr!

Center for
Integrated Manufacturing Decision Systems

Generic Environment for
Unix-based Experts

Duane T. Williams

March, 1990

Abstract

This document describes a library of C++ classes that supports the common elements
of the-Cutting, Holding, Sensing, and Modeling subsystems of the IMW (Intelligent
Machining Workstation). Enough information is provided to enable a programmer to
develop or maintain one of these programs.

A brief description of the general form of the Unix-based subsystems is given,
including an introduction to the C++ Task System. The bulk of the document describes
the class interfaces to various components of the internal representation of FEL
sentences.

Copyright © 1990 Carnegie Mellon University

Contact:
David Bourne
CIMDS
Carnegie Mellon University
Pittsburgh, PA 15213
(412)268-8810

1. Introduction

This document describes a library of C++ classes that supports the common elements of
the Cutting, Holding, Sensing, and Modeling subsystems of the Intelligent Machining
Workstation (IMW), and how to construct such a subsystem based on this library?
Since the various subsystems that have been developed with this library are termed "ex-
perts'7, e.g., Cutting Expert, we call the library itself the Generic Expert.

This document is necessarily somewhat technical, since it is intended for someone
writing a computer program such as the Cutting Expert in the C++ language. It presup-
poses an understanding of C++.2

2. Purpose

The purpose of the Generic Expert library is to reduce the effort required to produce a
subsystem for the IMW that interfaces properly with the rest of the system. Since com-
munication capabilities are required by all subsystems, they are provided in the Generic
Expert. All subsystems are also expected to communicate in a common language, Fea-
ture Exchange Language (FEL), so an FEL parser and FEL sentence generation proce-
dures are part of the Generic Expert A simple terminal interface is also provided.

In the following sections, we describe the various user-accessible C++ classes in the Ge-
neric Expert library that enable the user to take advantage of these common capabilities.
We also recommend a programming style that will enable the user to best take advan-
tage of possible future enhancements.

3. C++ Task System

The implementation of the Generic Expert is based on the C++ Task System, which is
supplied as a standard library with the AT&T C++ translator. We describe only the
basic features in this section.3 Note: we use the version of the Task System which sup-
ports waiting on UNIX SIGNALS, as described in [Shopiro 1987], The Generic Expert will
not work with the old version.

3-1- Tasks

The Task System defines a type of "lightweight process" in the guise of the class task.
Constructors of classes (directly) derived from class task can share the CPU under the
control of a task scheduler. Each such task can be suspended and late- resumed with-
out disturbing its internal state, but suspension is always voluntary, occurring only
when a task chooses to wait for an event to occur.

Tasks are created by defining a class that derives directly from the base class task and
by implementing a constructor for the new class that docs the work that the new task is
supposed to do. The only serious requirement that the abstractor must satisfy is that it
must terminate properly by invoking the function resoltisCO). The example near the

1. The library file is named libshdLa. The system also requires the i«w AT&T C++Task Systen
supports software interrupts (Le., signals).

2. See {Staswfcrap 1986].
3. See tSfcroiisinip 1987]

97

Carnegie Mellon University Generic Expert (Unix-Based)

end of this document does this by using the macro TERMINATE (defined in macros.h).

3,2. Queues

The Task System defines a type of first-in-first-out queue based on two classes: qtail
and qhead. Tasks can communicate through such a queue. One task "puts'' an object
to an instance of class qtail, while another task waits for the arrival of an object on the
corresponding qheacL The action of waiting causes the task to be swapped out by the
task scheduler; the arrival of a object on the qhead causes tasks that are waiting on that
qhead to be put on the run chain.

3.2,1. Message Queues

Queues are used extensively within the Generic Expert for intra-expert communication
between the multiple tasks that make up a program built from the Generic Expert
library. These queues are instances of two classes, MessageQHead and MessageQTail,
that are derived from qhead and qtail. These classes are specialized to handle only ob-
jects of type Message.

Class MessageQTail defines only two functions:

int put (Message*)
MessageQHead* head ()

The put function puts a message on a queue; this action can cause a task to block if the
queue is full. The head function returns a pointer to the head of the queue.

Class MessageQHead defines three functions:

Message* get ()
int putback (Message*)
MessageQTail* tail ()

The get function retrieves the next message from the head of a queue; if there is no mes-
sage, the task will block until a message arrives. The putbock function returns a message
to the head of a queue. The taU function returns a pointer to the tail of the queue.

3*2i Creating Queues between Tasks

The following example shows how to connect two tasks via a queue. This code is taken
from the '"central control" task in the Generic Expert; this is how the Generic Expert sets
up queues to communicate with the user's Expert task.

/* create the queue I will read fron */
MessageQBead* ntyQHead • new MessageQHead;
MessageQTail* myQTail - myQBead -> tail ();

/* create the queue he will read from */
MassageQHead* aQHead - new MessageQHead;
MessageQTail* toExpert - aQHead -> tail ();

/* create the task */

Carnegie Mellon University Generic Expert (Unix-Based)

(void) new Expert (argvO, aQHead, myQTail);

Note that only one end of a queue (here a MessageQHead) is actually created using new.
You get a pointer to the other end by invoking the appropriate tail or head function (in
our case, tail). The task Expert, defined in experth, has a MessageQHead* parameter,
from which it receives its messages, and a MessageQTail* parameter, to which it puts
messages that it wants to send to the "central control" task. The "central control" task
sends messages to Expert by putting them on the toExpert MessageQTail.

The user's Expert task could create sub-tasks of its own, together with appropriate
queues to communicate with them.

4, Class Expert

The primary effort in developing a program based on the Generic Expert is the
implementation of the constructor for class Expert, as declared in the file experth.
What this means, basically, is that one has to write a C++ subroutine with the following
procedure declaration:

Expert::Expert (char* inyName,
MessageQHead* readFrom,
MessageQTail* writeTo)

This subroutine automatically becomes a task4 within the final program. It communi-
cates with other tasks and subsystems via two message queues, which are capable of
transmitting Sentences, described below. Incoming messages are retrieved from the
head of the "readFrom" queue; outgoing messages are placed on the tail of the "write-
To" queue.

To wait for the arrival of a message, use the member function get:

/* Messages are described in the next section */
Message* request;
request * readFrom -> get();

This puts your task to sleep until a message is available from the "readFrom" queue. To
send a message, use the member function put:

/* Assume that aSentence is an instance of class Sentence,
described below. */

Message* reply - new Message (OUTPUT, aSentence);
writeTo -> put (reply);

This creates a new message with a Sentence that is destined for a subsystem on the
network and then puts it into a queue where it can be picked up by another task, which
will handle the details of the transmission. Sending a message does not suspend a task

A prototype implementation of Expert:Expert is provided in the file expex&c The
developer should replace the program block under case INPUT with Ms own code. See
the Example section later in the document One of the main features of this prototype is
that it gets aH input in one place. For this to work effectively, the code you add should
4. See Bimtfnp 19K71.

99

Carnegie Mellon University Generic Expert (Unix-Based)

be designed to do only a small amount of work each time this task becomes active.5

5. Class Message

Instances of this class represent messages that are passed between tasks within a single
subsystem; so users do not have to know much about them, except for how to retrieve
the contents—presumably a Sentence—from an incoming message and how to package
a Sentence into a message for transmission to another subsystem.

Class Message contains a public data field called mContents which contains'a pointer to
the contents of the message. No information about the size of the data is maintained by
the Message class. Here is how a sentence can be extracted from a message.

/* get a message and access its contents as a Sentence */
Message* request;
request » readFrom -> get () ;
Sentence* theSentence - (Sentence*)(request -> mContents);

Packaging a sentence as a message for transmission to the Output task for delivery to
another subsystem is simple using the constructor for class Message:

Message* reply » new Message (OUTPUT, aSentence);
writeTo -> put (reply);

Messages can also be used to put an error message on the standard output stream as fol-
lows:

Message* error — new Message (ERROR, ^Naughty, naughty!");
writeTo -> put (error) ;

6. Class Sentence

Instances of class Sentence represent FEL messages. Member functions provide access
to significant components of a message and allow the construction of new messages.
Currently supported functions include:

Sentence 0
Sentence (VERB^ENUM a Verb)

Hie constructor takes an optional VERB_ENUM as an argument6 If none is
supplied, the verb will default to VERBJNIONR

Sentence* append (Featurelist* flist)
The function append appends a Featurelist to a Sentence. The argument is a
pointer to the FeatureLast to be appended. A pointer to the new Sentence is
returned.

ADDRMENUM destination 0
5. We do not describe in thtedooon^ Aitare documentation on the to-toe-de-

wlopedl inte-^il^sten dialogue iMdwuton wiS kidode a technique bised on the rescheduling of a
task.,

6. Refer to the fife veri>Jh for the d e ^

100

Carnegie Mellon University Generic Expert (Unix-Based)

The function destination returns as an ADDR_ENUM the address of the receiver
of the message.7 This is the value of the TO attribute within the feature list of
type MESSAGE.

Featurelist* featureListOf (TYPEJENUM aType)
The function featurehistOf searches the feature lists that compose a Sentence and
returns a pointer to the first feature list whose TYPE attribute has the value
aType.

Sentence* insert (FeatureList* flist)
The function insert inserts a FeatureList before other Featurelists in a Sentence.
The argument is a pointer to the FeatureList to be inserted- A pointer to the new
Sentence is returned.

Sentence* reply (VERBJENUM aVerb)
The function reply creates and returns a pointer to a new Sentence that can be
used as a reply to a message. It will contain a FeatureList with the same NAME
and TYPE attributes as the original Sentence, but with values of the TO and
FROM attributes reversed. The argument aVerb specifies the value of the verb
for the new message.

Sentence* setVerb (VERB_ENUM aVerb)
The function setVerb makes the argument aVerb the new value of the verb of the
Sentence. A pointer to the Sentence is returned.

ADDRJENUM source 0
The function source returns as an ADDR_ENUM the address of the sender of the
message. This is the value of the FROM attribute within the feature list of type
MESSAGE.

VERB_ENUM verb 0
The function verb returns the verb of the Sentence as a VERB_ENUM.

The intended use of this class is illustrated by the following example of how to create a
reply to a message.

I
/* assume that aSentence is a pointer to a Sentence */
/* and that aVerb is appropriate for the reply to aSentence */
Sentence* response - aSentence -> reply (aVerb);

/* add one FeatureList */
FeatureList* fList » new FeatureList;
fList ~> include (ATTRJtAME, VT_SYMBOL, aMa»e) ;
fList -> include (ATTRJTCPEr VT_TYPEr TXPEJTIXroRB) ;
* • •
response -> append (fList) ;

/* send the response */
/* assume that writeTo is an appropriate JfessageQTail

pointer */

7. Retetottefifeaddivhfor liie d^Mtic» irf AIX)1^

101

Carnegie Mellon University Generic Expert (Unix-Based)

Message* m = new Message (OUTPUT, response) ;
writeTo -> put (m) ;

7. Class Sentence Iterator

Instances of class Sentencelterator allow one to step through the feature lists of a
Sentence. Each call to the member function nextO returns a pointer to a Featurelist A
zero is returned after all the feature lists have been returned- Currently supported
functions include:

Sentencelterator (Sentence& aSentence)
The constructor takes a reference to a Sentence as its sole argument.

Featurelist* first 0
The function first resets the iterator and returns a pointer to the first FeatureList
in the Sentence.

Featurelist* next 0
The function next returns a pointer to the FeatureList following the last one
returned by this function, or to the first FeatureList in the Sentence if none has
been returned from the Sentencelterator since it was created. A zero is returned
when a pointer to every FeatureList has been returned.

This class is provided so that one can sequentially process all the feature lists in a
message without having to know the internal representation of messages. The intended
use is illustrated in the following example:

f
/* assume that aSentence is a pointer to a Sentence */

Sentencelterator slter (*aSentence);
FeatureList* fList;

while (fList - slter.next()) {
/* process the FeatureList pointed to by fList */

I
I

8. Qass Feature List

Instances of class Featurelist represent the Hst of attribute/value pairs that are the
principal components of FEL messages. Member functions provide access to the values
of the paire and allow the construction erf new lists of paire. Currently supported
functions include:

Featurelist 0
FeatureList (char* aMame)

102

Carnegie Mellon University Generic Expert (Unix-Based)

The constructor takes an optional char* as an argument. If none is supplied, the
value will default to zero. When the optional name is supplied, it is construed as
the name of an existing FeatureList and no attribute/value pairs should be
added to this new FeatureList

FeatureList* append (AttributeValuePair* avPair)
The function append appends an AttributeValuePair to a FeatureList. The
argument is a pointer to the AttributeValuePair to be appended. A pointer to the
FeatureList is returned.

void include (ATTRJENUM, VTJENUM, int, int)
void include (ATTR_ENUM, VTJENUM, long, int)
void include (ATTRJENUM, VT_ENUM, float, int)
void include (ATTRJENUM, VTJENUM, double, int)
void include (ATTRJENUM, VT_ENUM, char*)
void include (ATTRJENUM, VT_ENUM, List*)
void include (ATTRJENUM, VTJENUM, char**)
void include (ATTRJENUM, VT_ENUM, VECTOR)

The include functions add attribute/value pairs to the beginning of a FeatureList.
The attribute is given in the first argument The type of value is given in
argument two and the actual value in argument three. An optional fourth
argument specifies the units (as a UNITJENUM) of the value.

FeatureList* insert (AttributeValuePair* avPair)
The function insert inserts an AttributeValuePair before other
AttributeValuePairs in a FeatureList The argument is a pointer to the
AttributeValuePair to be inserted. A pointer to the FeatureList is returned.

TYPE_ENUM typeOf 0
The function typeOf returns the value of the pair whose attribute is ATTRJTYPE.

ValueType* valueOfAttribute (ATTR_ENUM)
ValueType* valueOf Attribute (char*)

The valueOfAttribute functions return a pointer to the value (an instance of class
ValueType) of the attribute specified by their arguments. The argument is either
an ATTRJENUM (the usual case) or the name of an attribute.

The intended use of this class is illustrated in die following two examples. The first
shows how to create a new list of attribute/value pairs. The second shows how to
retrieve values from such a list

/* Allocate a new FeatureList, */
FeatureList* fList - new FeatureList;

/* Include the pair whose attribute is ATTRJJAMB
and whose value is the symbol aHame. */

fList -> include (ATTRJIAME, VTJSYMBOL, aflame) ;

/* Include the pair whose attribute is ATTHJFYPE
and whose value is the type TYPBJFXXTORB- */

Carnegie Mellon University Generic Expert (Unix-Based)

f L i s t -> inc lude (ATTRJTYPE, VT_TYPE, TYPE_FIXTURE) ;

/ * Assume that fList i s the FeatureList created
in the above example. One can retrieve i t s
values as follows. */

ValueType* vType;
char* aSymbol;
TYPE_ENUM aType;

vType - valueOf Attribute (ATTRJNAME) ;
aSyxnbol * (char*) vType;

vType « valueOf Attribute (ATTRJTYPE) ;
aType - (int) vType;

9. Class Feature List Iterator

Instances of class Featurelistlterator allow one to step through the list of pairs of a
Featurelist Each call to the member function nextO returns a pointer to an
AttributeValuePair. A zero is returned after all the pairs have been returned. Currently
supported functions include:

Featurelistlterator (Featurelist&)
The constructor takes a reference to a FeatureList as its sole argument

AttributeValuePair* first 0
The function first resets the iterator and returns a pointer to die first
AttributeValuePair in the Featurelist

AttributeValuePair* next 0
The function nod returns a pointer to the AttributeValuePair following the last
one returned by this function, or to the first AttributeValuePair in the FeatureList
if none has been returned from the featurelistlterator since it was created. A
zero is returned when a pointer to every AttributeValuePair has been returned.

TMs class is provided so that one can sequentially process aM the pairs in a Featurelist
without having to know the internal representation of feature lists. The intended use is
iHustrated in the following example:

f
/ * assume that aF«atur*List points to a FMturftLlst */

Faatttr^ListIterator f l t e r (*aFeattir©List);
AttribtiteVaiuePair*

while (avPtir - fltftr.nextO) I
/ * process th* pair pointed to by avPair */

104

Carnegie Mellon University Generic Expert (Unix-Based)

}

}

10. Class Value Type

The class ValueType is the base class for a set of derived classes that represent the
various primitive types of values that may appear in the attribute/value pairs of
messages. These include addresses, dimensioned numbers, integers, material
identifiers, real numbers, strings, symbols, type identifiers, and lists of other types of
values.

The two most important things that can be done with these classes is to create instances
of them and to extract their underlying values. The constructors and coercion operators
for these classes are documented below.

10*1. Class Address

This class represents addresses of IMW subsystems, such as PL (planner), CX (cutting ex-
pert), HX (holding expert), MX (modeler), etc. If you are generating a reply to a sentence,
you do not care where it came from, and just want the reply to go back to the sender,
the reply function in class Sentence takes care of creating the return address.

Address (ADDR_ENUM)
int operator int 0

Instances of this class may be coerced to an int, which will, in fact, be an
ADDR_ENUM.8 Some programs will not care where messages come from, so
long as they are meaningful messages in context.

10.2. Class Dimension

This class represents dimensioned numbers.

Dimension (int, UNIT^ENUM)
Dimension (long, UNIT_ENUM)
Dimension (float, UNTT_ENUM)
Dimension (double, UNTTJENUM)
int operator int 0
long operator long 0
double operator double 0

The constructors take a numeric first argument of one of four types: int, long,
float, or double. The second argument specifies the unite. Instances of this class
may be coerced to an int, whose value will be the dimension part of the
dimensioned number (of type UNTT_ENUM).9 They may also be coerced to
either a long or a double, whose value will be the numeric part of the
dimensioned number.

8, IMerfoiheffleaddrJhforite^
9. Refer to the file unith for the definition of UNTTJENUM.

105

Carnegie Mellon University Generic Expert (Unix-Based)

10.3- Class Integer

This class represents integers.

Integer (int)
Integer (long)
long operator long 0

The constructor takes either an int or a long as argument; internally the value is
represented as a long. Instances of the class may be coerced to a long.

10.4. Class Material

This class represents types of materials, e.g., aluminum, steel, etc.

Material (MAT_ENUM)
int operator int 0

The constructor takes as argument a value of the enumerated type MAT_ENUM.
Instances of this class may be coerced to an int, which will, in fact, be a value of
type MAT_ENUM.10

10.5. Class Real

This class represents real numbers.

Real (float)
Real (double)
double operator double 0

The constructor takes either a float or a double as argument; internally the value
is stored as a double. Instances of this class may be coerced to a double.

10.6. Class String

This class represents character strings.

String (/* dynamically allocated */ char*)
char* operator char* 0

The constructor takes a null terminated dynamically allocated C string as
argument Instances of this class may be coerced to a C string.

10.7. Oas t Symbol

This class represents names of various Mugs-

Symbol (/* dynamically allocated */ char*)

mar* operator char* 0

10. ^

106

Carnegie Mellon University Generic Expert (Unix-Based)

The constructor takes a null terminated C string as argument. Instances of this
class may be coerced to a C string.

10.8. Class Type

This class represents types of feature lists.

Type (TYPE_ENUM)
int operator int 0

Instances of this class may be coerced to an int, whose value will be a feature list
type (of type TYPE_ENUM).n

10.9. Class List

This class represents a list of values.

ListO
The constructor simply creates a new empty list.

List* append (ValueType* vType)
List* insert (ValueType* vType)

The member functions append and insert, respectively, add items to the tail and
head of the list.

int length 0

The member function length returns the number of items in the list The user
could determine this information using a Listlterator, but length is much more
efficient and convenient.

VECTOR operator VECTORO
list* VectorToList (VECTOR)

Lists of three real numbers are commonly used to represent vectors. The geomet-
ric modeler used by the IMW represents vectors as a struct with three fields rep-
resenting real numbers (x, y, and z). The coercion operator VECTORO converts a
list of three numbers into this structure representation- The function
VectorToList creates a list with three real numbers from its VECTOR parameter.

10.10. Class Listlterator

This class allows one to step sequentially through the values of a list.

Listlterator (list& alist)
ValueType* first 0
ValueType* next 0

II. Refer to toe file typeli for the definition of TYFEJENUM.

107

Carnegie Mellon University Generic Expert (Unix-Based)

The constructor takes a reference to a List as its sole argument. The function first
resets the iterator and returns a pointer to the first ValueType in the l is t The
function next returns a pointer to the ValueType following the last one returned
by this function, or to the first ValueType in the list if none has been returned
from the listlterator since it was created. A zero is returned when a pointer to
every ValueType has been returned.

11. Example

The following code is a template from which an IMW subsystem can be developed. The
implementor is primarily responsible for replacing the comment

/ * USER CODE GOES HERE * /

under "case INPUT" with whatever code segment is required to implement the sub-
system. This will probably be little more than a procedure invocation. If there is one-
time initialization to be done, it should be placed before the BEGINjrASK macro.

The macros BEGXfsLTASK, ENDJTASK, EXEMTASK, and TERMINATE are defined in mac-
ros.h. BEGINjrASK and ENDJTASK create an indefinitely long loop that gets and process-
es the next message sent to this task. EXTTJTASK causes the loop to terminate, and
TERMINATE terminates the task. Aside from knowing the general structure imposed by
these macros, the user need not worry about them.

•include <macros.h>
•include <parser.h>
•include "expert.hw

Expert::Expert { char* myName,
MessageQHead* readFrom,
MessageQTail* writeTo)

: /* task */ (myName, DEDICATED, SIZE)

f

Message* request;

/* USER INITIALIZATION GOES HERE */

BEGIHJTASK;

request « readFrom -> get O P

switch (request -> ̂ Operation) I
case INPUT:

I
/* USER CODE GOES HERE */

I
break;

case QUIT:
EXITJTASK;

default:

I
Message* error * new Message (£RRGR#

• (Expert) Illegal operation*1);
-> put (error);

106

Carnegie Mellon University Generic Expert (Unix-Based)

break;
}

delete request;

ENDJTASK;
TERMINATE;

}

If the subsystem being implemented can perform its function without intermediate
communication with other subsystems, then it can be implemented as a fimction that
takes a Sentence as input and returns a Sentence as output

Sentence* job * (Sentence*)(request -> mContents);
Sentence* reply * SimpleServerSubsystem (job);
writeTo -> put (reply);

In most cases this is not feasible and the user's code must be designed to deal with mul-
tiple messages per job.

12. Makefile

The following is a simple makefile for creating a program based on expertc and the Ge-
neric Expert library.

INC ** <the directpry containing macros.h and parser.h>
LIB « <the directory containing libtask.a and libshell.a>

CC - CC
CFLAGS - -DPRIMITIVE -c ~g -I. -1$ (HIC)

LIBTASK - $(LIB)/libtask.a
LIBSHELL - $(LIB)/libshell.a
MATHLIB « -lm

LIBS « $(LIBSHELL) $(LIBTASK) $(MATHLIB)

OBJECTS — expert.o

c.o:
$(CC) $(CFLAGS) $*.c

ex: $(OBJECTS)
$<CC) -f68881 $(OBJECTS) $(LZBS) -o ex

expert.©: expert.h $(IMC) /macros.h $(ZNC)/parser.h

13. Release Notes

The following files are needed to use the generic application she!:

libtaska C++ Task library (you must have the version that supports
software intemipts/ Lev signals)

109

Carnegie Mellon University Generic Expert (Unix-Based)

libshell.a Generic application library file.

expertx A template for the implementation of the constructor for
class Expert.

expert.h Header file with the declaration of class Expert.

14. Limitations

There is a limit on the total size of local variables associated with the constructor of a
task such as Expert. The task system default limit is defined in task.h as 750.
Applications which use lots of stack space can raise this limit at task creation time. This
is the function of the SIZE parameter that appears in the line

: /* task • / (myName, DEDICATED, SIZE)

at the beginning of the constructor for class Expert (see the Example section). SIZE is
defined in experth.

15. Bibliography

Shopiro 1987 Shopiro, Jonathan. "Extending the C++ Task System for Real-Time Con-
trol/' Proceedings, USENDC C++ Workshop, 1987, pp. 77-94.

Stroustrap 1986 Stroustrup, Bjame, The C++ Programming Language. Addison-Wesley,
1986.

Stroustrup 1987 Stroustrup, Bjarne, and Jonathan E. Shopiro. "A Set of C++ Classes for
Co-routine Style Programming/7 Proceedings, USENIX C++ Workshop, 1987,
pp. 417-439.

110

Center for
Integrated Manufacturing Decision Systems

Generic Environment for
Lisp-based Experts

Paul Erion

March, 1990

Abstract

This document describes the generic expert shell that supports the common elements
of the Planner, Plan Manager, and Human Interface subsystems of the IMW
(Intelligent Machining Workstation).

The interfaces to the internal representation of FEL sentences is described, the dialogue
mechanism is explained, and issues of integrating subsystem specific code with the
generic expert are discussed. Enough information is provided to enable a programmer
to develop or maintain such a program.

Copyright © 1990 Carnegie Mellon University

Contact:
Dmrid Bourne
CZMDS
Carnegie Mellon University
Pittsburgh, PA 15213
(412)268-8810

Carnegie Mellon University Generic Expert (Lisp-Based)

PLAN

PLANNED

Figure L Example of a Simple Dialogue

1J1. Complex Dialogues

However, the system architecture of the Intelligent Machining Workstation dictates
that an expert also be able to conduct complex dialogues. In other words, due to the
specialization of the experts it is virtually a requirement that an expert be able to
interact with other experts while performing a service triggered by an FEL sentence. A
complex dialogue will be defined as one that involves separate, independent dialogues
with other experts in order to generate an answer for the expert that initiated the
original dialogue.

For example, the Human Interface may request that the Planner formulate a plan
for a part. During the process of planning, the Planner determines that some
information is required from the Holding Expert The Planner needs to be able to
acquire the information from the Holding Expert and then continue the planning
process. Finally, when the planning process is complete, the result, in the form of an
FEL sentence, will be returned to the Human Interface What has transpired is two
separate dialogues- A dialogue between ihe Human Interface and the Planner, and a
dialogue between the Planner and the Holding Expert The first dialogue, which was
complex, was initiated by the Human Interface and involved the Planner. The second
dialogue was originated by the Planner and involved the Holding Expert. This
dialogue was a simple dialogue (see Figure 2).

Carnegie Mellon University Generic Expert (Lisp-Based)

PLANNED

OFFERING

Figure 2 Example of a Complex Dialogue

1.2,1. Functions to Facilitate Complex Dialogues

The latest version of the Lisp-based generic expert provides three functions that
facilitate complex dialogues:

(a) spawn-request, '
(b) conditioncd-suspend, and
(c) create-Qtest

1.2.1.1. Spawn-Request

While an expert is servicing one request, it is not at all unusual to need some
additional information or a service performed by an other expert. Spmvn-request is the
mechanism provided to initiate a new dialogue. It requires four arguments. The first
argument is the sentence that will initiate the new dialogue. It will be sent to the
specified expert. This sentence requires a unique name, since, it is through the sentence
name that the generic expert shell is able to direct incoming sentences to their
appropriate destinations.

If the expert specific code uses the function bound to the spawn slot of an object of
type sentence, then the integrator need not worry about creating a new sentence name.
For example, if FEL-sentence is such an object, then evaluation by the Planner of the
form:

(funcall (sentence-spawn FEL-sentence) -.offer)

returns two values (a) an object of type sentence, and (b) the name of the sentence. The
FEL form of the returned sentence is:

115

Carnegie Mellon University Generic Expert (Lisp-Based)

(offer ((name unique-symbol) (type message) (from pi)))

Remember the name of this new sentence is a unique symbol.

The second argument to spawn-request is the function used to queue sentences for
output This function is available to the subsystem integrator as the first argument
passed to the expert's initial function.

Typically, a spawned dialogue will generate a result The third argument to spawn-
request is the disposition of this result Currently, the third argument may be one of two
symbols, either return-result or independent

A disposition of .return-result signifies that the originating dialogue expects to have
access to the final result, which should be an FEL sentence. In order to gain access to
this FEL sentence, the spawned dialogue should ensure that, upon termination, this
sentence is the value returned.

The symbol, nndependent, denotes that the spawned dialogue may proceed
independently of the spawner. In other words, the spawned dialogue does not in any
way need to concern itself with returning a value to its parent, the originating dialogue.

The fourth and final argument to spawn-request is the function that will handle the
spawned dialogue. The first argument will initiate a dialogue with another expert, say
the Holding Expert. When the Holding Expert responds there must be a function
provided to deal with the response. It may amply accept the response, or engage in a
protracted negotiation with the Holding Expert- The point is that whatever occurs is
determined by the provided function. This function should be written to accept the
same arguments as the initial function- For example, a function that would just accept
the response returned by the Holding Expert could be written as follows:

(defun handle-hx (enQ-outgoing
Qst atus - incoming
deQ- incoming
conditional-suspend)

"Handle the dialogue with the Holding Expert."
(declare

(ignore enQ-outgoing)
(ignore Qstatus-incoming)
(ignore conditional-suspend))

(let ((s (funcall deQ-incoming)))
(declare

(type sentence s))
(values s)))

12.12. Ccmditlonal-Siispciid

116

Carnegie Mellon University Generic Expert (Lisp-Based)

Once a dialogue has been spawned the originator may continue processing. Of
course, if the disposition given to spawn-request was return-result, there will come a time
when the response from the spawned dialogue is required for further processing.
However, the originator has no way of knowing the state of the spawned dialogue.
Therefore, the originating dialogue needs a way of suspending operation and waiting
for the result from the spawned dialogue. This functionality is provided by conditional-
suspend, which is available to the subsystem integrator as the fourth argument passed to
the expert's initial function, conditional-suspend takes two arguments. The first is a test
When it evaluates to non-nil, the second argument, a function, is executed.

The test function may be supplied by create-Qtest, which is described in section
1.2.1.3.

conditional-suspends second argument should dequeue the returned result from the
expert's incoming queue and continue processing. It should be noted that this function
is not passed any arguments when it is finally called. Consequently, the integrator
should make sure that the function has access to whatever local variables or functions it
may need. For example, if continue is the function to be called, and it expects all of the
arguments that are passed into the initial function, then:

#f (lambda <) (continue enQ-outgoing
Qstatus-incoming
deQ-incoming
condit ional-suspend))

would be the second argument passed to conditional-suspend.

There is a source of possible confusion that needs to be clarified, conditional-suspend
does NOT suspend processing of the function that calls it. That is, if other Lisp forms
follow this call, they are executed immediately following evaluation of the conditional-
suspend form. What is being suspended is execution of the form that is passed as a
second argument to conditional-suspend.

12X3. Create-Qtest

As mentioned above, conditional-suspend requires a form that provides a test to
determine when to execute its second argument If a dialogue is waiting for a spawned
dialogue to complete, then a test is needed to make such a determination. creaie-Qtest
will return just such a test That is, create-Qtest creates and returns a function that will
query a queue and return a boolean value depending on the outcome.

create-Qtesfs primary purpose is to be used in conjunction with conditional-suspend.
As a consequence, the following description is based upon that usage- create-Qtest
expects two arguments. The first aigpment is a function that queries a queue. Of the
arguments passed to the initial function, this is the second argument create-Qtesfs
second argument is a list of dialogue names (possibly just one). The names should be
the ones for which the originating dialogue wants to wait

117

Carnegie Mellon University Generic Expert (Lisp-Based)

1.2*2. Example

Following is an example that outlines the use of the above functions. Scenario: this
is a piece of code from PL, the initial function of the Planner. An incoming sentence is
dequeued. Some processing is performed. It is determined that a dialogue must be
initiated with the Holding Expert. The request sentence is created. Once the request
sentence is properly initialized, a new dialogue is spawned. At this point the Planner
may continue processing. When the time comes to retrieve the response from the
Holding Expert, a call to conditional-suspend is made.

(defun p i (enQ-outgoing
Qstatus-incoming
deQ-incoming
condi t ional-suspend)

(l e t ((FEL-sentence (funcall deQ-incoming)))
(declare

(type sentence FEL-sentence))

some processing

(multiple-value-bind (request-sentence dialog-name)
(funcall (sentence-spawn FEL-sentence) :offer)

(declare
(type sentence request-sentence)
(type keyword dialog-name))

(setf (sentence-to request-sentence) :hx)

some processing- [this would include setting up the
sentence that will initiate the new dialogue
(that is,the request sentence)]

(spawn-request
request-sentence
enQ-outgoing
:return-result
#f some-£unction-to-handle-requestj

may do more processing (if needed)

(funcall conditional-suspend
(create-Qtest

Qstatus-incoming
(list dialog-name))

#• (lambda ()
(continue enQ-outgoing

Qstatus-incoming
deQ-incoming

118

Carnegie Mellon University Generic Expert (Lisp-Based)

conditional-suspend))))))

2. Integrating the Generic Expert and a Subsystem

The responsibility of the subsystem integrator is to provide the functionality that
makes a generic expert an instantiation of an IMW subsystem. In order to accomplish
this task the user needs to be able to (a) access the information contained in a request,
and (b) to generate a response. Since FEL is the language of communication between
IMW subsystems, both requests and responses will take the form of FEL sentences.

2.1. Accessing the Request Sentence

The generic expert shell supplies functions that extract, from the incoming FEL
sentence, the information needed by a subsystem to satisfy the request For example,
similar to the C++ version of the generic expert shell, the lisp version provides both a
sentence iterator and a feature list iterator.

The access functions may be divided into two categories, those that access the top
level elements of a sentence, and those that access the dements of a feature list.

2.1.1. Accessing the Top Level Elements of the Request Sentence

Following are the functions that allow access of the top level elements of a sentence.
For the sake of explanation, assume that FEL-sentence is an object of type sentence.

(A) sentence-Iterator returns two functions that may be used to iterate through the
feature lists of a sentence. The first function always returns the first feature list. Each
call to the second function returns the next feature list. When the list is exhausted, :end
is returned.

For example, the s-expression:

(multiple-value-bind (s l t e r - f i r s t s l ter-next)
(sentence-Iterator FEL-sentence))

locally binds a function to each of the two variables: slter-first and slter-next The first
feature list of FEL-sentence is always returned by slter-first, and slter-next returns the
subsequent feature lists.

(B) The form (sentence-name FEL-sentence) will return the dialogue name of
FEL-sentence.

(C) The form (sentence-verb FEL-sentence) returns the verb of FEL-sentence.

119

Carnegie Mellon University Generic Expert (Lisp-Based)

(D) The form (sentence-from FEL-sentence) returns the name of the expert that
originated FEL-sentence.

2.1 JL Accessing the Elements of a Feature List

Following are the functions that provide access to the elements of a feature list (i.e,
the attribute/value pairs)- For the sake of exposition, assume that fList is an object of
type featureList

(A) featureList-Iterator returns two functions that may be used to iterate through the
feature lisf s attribute/value pairs. The first function always returns the first
attribute/value pair of the feature list Each call to the second function returns the next
available attribute/value pair. When the list is exhausted, tend is returned.

For example, the s-expression:

(multiple-value-bind (fL_I ter - f i r s t fL_Iter-next)
(featureList-I terator fList))

binds a function to each of the two local variables. fLJter-ftrst returns the first
attribute/value pair oifUst andfLJter-next returns the next available attribute/value
pair of fList.

(B) The form (valueOfAttribute fList attribute-name) will retrieve, from
fList, the attribute/value pair whose attribute is equal to attribute-name.

(C) The form (typeOf fList) returns the feature list type of fList In other words,
typeOf returns the value of the attribute/value pair whose attribute is the symbol TYPE.

2JL Creating the Response

For each request received, it is expected that the subsystem will generate a
response. In order to fadHtate the process, a set of functions are provided that construct
and modify sentences and feature lists.

2JL1. Creating and Modifying FEL Sentences

The most straight forward way to create a sentence that will be used as a response
to a request is to evaluate' the form:

(funcail (sentence-replyTo FEL-sentence) symbol)

where,

(i) FEL-sentence is an object of type sentence, and

120

Carnegie Mellon University Generic Expert (Lisp-Based)

(ii) symbol is an object of type keyword.

FEL-sentence is the sentence that initiated the request for which the response is being
prepared, symbol is either a verb, or the tense of a verb. If symbol is one of the
recognized verbs, then the verb of the newly created sentence will be set to symbol If
symbol is a legitimate verb tense2, then the predicate of the response sentence will be the
verb that is the specified inflected form of FEL-sentencefs verb.

For example, if the value of the symbol, FEL-sentence, is:

(coffer
((rname :pl_l) (:type rmessage) (:to :hx) (:from :pl)))

then,

(:offered
((:narne :pl_l) (:type tmessage) (:to :pl) (:from :hx)))

would be the sentence created by evaluation of either of the following s-expressions:

(funcall (sentence-replyTo FEL-sentence) :offered)

(funcall (sentence-replyTo FEL-sentence) : pas t) .

From the preceding example it should be noted that the form:

(funcall (sentence-replyTo FEL-sentence) symbol)

does not just initialize the sentence's verb. A feature list of type message is also added to
the response. This feature list contains (a) the name of the dialogue3, (b) the destination
of the sentence4, and (c) the source of the sentence5.

If, once again, the value of the symbol, FEL-sentence, is the request sentence, then
the destination of the response sentence is equal to the result of evaluating the form,
(sentence-from FEL-sentence)- The source of the response is set to the expert
that received FEL-sentence. And the name of the newly created sentence and FEL-
sentence are identical. That is, both sentences belong to the same dialogue.

A subsystem integrator is provided with the means to easily access the name, verb,
source and destination of a sentence, Tlie following functions provide that access.
They all take an object of type sentence as an argument Let FEL-smtmce be such an
object. The dialogue name is obtained via evaluation of the form:

(sentence-nane FEL~sentence).

2. TypkaUy#raLprov^^
3. The name of a dialogue is the ̂ aliie ol the atiriiMî
4. Itedestinatimofasentera
5. TI«smin^ of a sentence

121

Carnegie Mellon University Generic Expert (Lisp-Based)

The verb of the sentence is obtained via evaluation of the form:

(sentence-verb FEL-sentence).

The source of the sentence is obtained via evaluation of the form:

(sentence-from FEL-sentence).

And the destination of the sentence is provided by evaluation of:

(sentence-to FEL-sentence).

On rare occasions die subsystem integrator may be constructing a sentence whose
verb, name, destination, and/or source are not appropriate- When this situation arises,
self may be used on any of the preceding four forms to alter their values. For example,
to set the verb of FEL-sentence to motoffered, the form:

(setf (sentence-verb FEL-sentence) :notoffered)

needs to be evaluated. If the name, source, or destination of a sentence is changed, then
this new information is reflected in the sentence's message feature list.

2.2.2. Creating and Modifying Feature lists

Once a request sentence has been created, it typically needs to filled with feature
lists that comprise the response. The lisp based generic expert provides functions to
assist in the initial creation, and subsequent modification, of feature lists.

The function create-featureList returns an object of type featureUst create-featurellst
requires no arguments.

In order to add an attribute/value pair to the front of a feature list the expert
specific code must include an s-expression of the form:

(funcall (featureList-include fL) attribute value)

where
(i) ft is an object of type featurdJst,
(li) attribute is the name of an attribute, and
OH) tmlueis the value that is tobe associated with attribute.

if it is desired order to add an attribute/value pair to the back of a feature list the
expert specific code must evaluate an s-expression erf the £onn:

(funcall (featureList-append fL) attribute value)

122

Carnegie Mellon University Generic Expert (Lisp-Based)

where
(i) fL is an object of type featureList,
(ii) attribute is the name of an attribute, and
(iii) value is the value that is to be associated with attribute.

A note of warning: a feature list created by expert specific code needs to contain
both an attribute/value pair of type NAME and an attribute/value pair of type TYPE.

2.23. Adding Feature Lists to Sentences

Once the feature list is complete (that is, all of the attribute/value pairs have been
added), it may be added to the response sentence. The subsystem integrator has the
option of adding the feature list at the beginning of the sentence or at the end.

Adding a feature list at the beginning of an FEL sentence is accomplished by
evaluation of an s-expression of the form:

(funcall (sentence-include reply) fL)

where
(i) reply is an object of type sentence, and
(ii) ft is an object of type featureList

To add a feature list at the end of an FEL sentence, the following form must be
evaluated:

(funcall (sentence-append reply) fL)

3. Symbols in an FEL Sentence

Up to this point, it has not been explicitly stated as to the package in which the
symbols of an FEL sentence should reside. If all of the components of an expert were to
be interned in the same package, and the current package never deviated from that
package, then problems would never arise. However, this is an unreasonable
assumption. For example, the application specific code for the Human Interface is read
into the CKL-USER package while the generic expert component is read into the
GENERIC-EXPERT package.

To alleviate any potential problems, all of the symbols in an FEL sentence must be
interned in the KEYWORD package. This will ensure that the symbols of an FEL
sentence that have the same print name will be EQ.

The implications for the subsystem integrator are two. First all symbols used in the
construction of an FEL sentence must reside in the KEYWORD package. For example,
when adding the attribute/value pair (name foo) to the feature lisk,fl, the integrator
should use the form:

123

Carnegie Mellon University Generic Expert (Lisp-Based)

(funcal l (fea tureLis t - inc lude fL) :name : f o o) .

Secondly, when comparing a symbol against a symbol from an FEL sentence the
integrator should be cognizant of the fact that the symbol from the sentence will be
interned in the KEYWORD package. For example, to obtain the value of the attribute
name from the feature list, fL, use the form:

(valueOfAttribute fL :name)

Why use the KEYWORD package? The symbols of an FEL sentence are only to be
used as symbolic constants. That is, the value, definition, or properties bound to the
symbols are irrelevant. Common Lisp provides the KEYWORD package for exactly this
purpose.

4. Interface Between Generic Expert and Subsystem Specific Code

To ease the process of integration, an outline of a function is provided for the user.
This function, ex, provides an interface between the subsystem specific code and the
generic expert shell. The subsystem integrator need not worry about any of the
implementation details below this function.

Brief comments are interspersed throughout the function definition that follows.
Some of the comments are hints as to the placement of subsystem specific code.

(in-package (find-package 'expert-package))

<use-package {find-package f generic-expert))

(defim ex (enQ-owtgoing
Qstatus-incoming
dteQ- incoming
conditional-suspend)

(declare
(function ex (symbol symbol symbol symbol) t))

(let ((FEL-sentence (funcall deQ-incoming))) ; Deepen the request.
(declare

(type sentence FEL-sentence))

(case (sentence-verb FEL-sentence)
;; tbm subsystem integrator should insert clauses for the
;; wmxfam that the expert is expected to handle.
;; For exaspXeF let :plmn be mndh a verb.
(:pian

;; Create iterators for the request sentence.
(mtzltiple-^alue-bind (alter-first slter-next)

(sentence-Iterator FEL-sentence)

124

Carnegie Mellon University Generic Expert (Lisp-Based)

;; Cycle through the feature lists.
(do ((fList (funcall slter-first) (funcall slter-next)))

((eq fList :end))
(let ((fList -type (typeOf fList)) ; Get feature list type

(reply (funcall
(sentence-replyTo FEL-sentence)
:planned)))

(case fList-type
;; key-symbol is application dependent. Normally,
;; there will be a clause for each feature list type
;; that the IMW subsystem is required to handle.
(key-symbol

;; & subsystem integrator may either use the
;; function valueOfAttribute to obtain the value
;; of an attribute, or use the iterator functions,
;; fL^Iter-first and f!L_Xter-nejct, to step through
;; the feature list.

(multiple-value-bind (fL_Iter-first fL_Iter-next)
(featureList-Iterator fList)

(let ((f L (create-featureList)))
(declare

(type featureList fL))

;; Expert dependent code should cossqpute
;; the appropriate attribute /value pairs
;; and add than to £L.

(funcall (featureList-include fL)
attribute value)

;; Once the feature list is cdeplete, add
;; it to the sentence to be sent as a reply.

(funcall (sentence-include reply) fL))))
(otherwise

;; Application specific error handling.

The following subsections provide information about miscellaneous topics that
affect the writing of an subsystem's initial function (such as the example, ex)-

4.1. Explicit Use of Packages

The lisp-based version of the generic expert makes explicit use of packages.
Normally, the symbols of a lisp-based expert will be interned in a package specific to
the expert. In the statement:

125

Carnegie Mellon University Generic Expert (Lisp-Based)

(in-package (find-package 'expert-package))

expert-package should be the package utilized by the expert.

The generic expert shell resides in the GENERIC-EXPERT package and exports the
symbols that have meaning for the subsystem integrator. Hence, the use of the
statement:

(use-package (find-package ' g e n e r i c - e x p e r t)) .

Evaluation of this form imports the symbols from the generic expert into the package
used by the expert

4.2* Naming the Initial Function of an Expert

When an FEL sentence is delivered to an expert, the generic expert shell determines
if it is for an existing dialogue, or if the sentence initiates a new dialogue. If the
sentence is to initiate a new dialogue, the generic expert calls the function provided by
the subsystem integrator, ex was just such a function.

A convention exists for the naming of the initial function. The name of the function
is the abbreviation of the expert. For example, the name of the Planner's initial function
would be PL

43. Arguments Passed to the Expert's Initial Function

Four arguments are passed by the generic expert shell to the initial function. They
are as follows:

(a) enQ-outgoing,
(b) Qstatus-incoming,
(c) deQ-incoming, and
(d) conditional-suspend.

Associated with each expert are two queues. One is a queue for incoming sentences
and the other is a queue for outgoing sentences (see Figure 3).

126

Carnegie Mellon University Generic Expert (Lisp-Based)

Eth<snn<st

Outgoing Incoming

Figure 3. Incoming and Outgoing Queues

The argument enQ-outgoing is a variable whose value is a function that may be
called to send out an FEL sentence- For example, if reply is an object of type sentence
and a valid FEL sentence, then the form:

(funcall enQ-outgoing reply)

will place reply on the output queue-
Incoming sentences for an expert are placed on the appropriate queue by the

generic expert shell. Qstatus-incoming gives access to a function that allows the
integrator to programmatically check if there are any FEL sentences on the incoming
queue. Qstatus-incoming returns lernpty if the queue is empty, and mon-empty if it is not

Of course, just knowing that there is a sentence on the queue is not much help.
There needs to be a way of obtaining the sentence from the queue. deQ-incoming serves
that function. For example, the code segment

(le t { (FEL-sentence (funcall deQ-incoming)) }
. . .)

will pop the next entry off of the queue and bind FEL-sentence to it If the queue
contains no entries, then deQ-incoming returns xmpty.

conditional-suspend is used when an expert needs to suspend execution until a
particular event occurs. The details of cotditkmd-suspend are described in section
1.2X2.

127

Carnegie Mellon University Generic Expert (Lisp-Based)

4*4. Branch on Verb of EEL Sentence

Typically, an expert must be able to handle more than one verb- For example, the
initial function of the Plan Manager is currently able to process the verbs xxecute and
rreceive. The example initial function, ex, employs a case statement to branch on the verb
of the incoming FEL sentence. For example, following is the outline of the case
statement used by the Plan Manager to branch on the verb of the incoming sentence,
FEl-sentence.

(case (sentence-verb FEL-sentence)
(:execute

. . •)

(:receive
. . .)

(otherwise
(format *terminal-io* "-^Unexpected Verb~%")))

5* Creating an Instantiation of a Lisp-Based Expert

Once the user has provided the functionality required by a particular subsystem, an
instantiation of that expert is accomplished by evaluation of the function expert • The
only required argument is the name of the expert which the instantiation will represent.
For example, for an instantiation of the Planner the name would be PL.

The generic interface provides two interfaces to an expert (a) a network interface,
and (b) a terminal interface. The user, at the time of instantiation, specifies which
interfaces will be made available to the expert. This is accomplished through the use of
keyword options. That is, for each of the interfaces there is a keyword option which
determines if the interface will be operable during the current instantiation- The
keyword option for the network interface is, metzvork-medium, and for the terminal
interface, dermiml-rnedium. Either, or both, of these interfaces may be provided to the
user.

6. Network Interface

Hie network interface is the default interface. If the network interface is not
desired, then the keyword option metwark-medium should be given the value of nil.

Before creating a lisp-based IMW subsystem there is a matter concerning network
communication that needs to be discussed. The network communication software
currently requires a file, Bosamdb, that lists the experts in the IMW system and
specifies over which ports they communicate If the network OHnmunication software
is to be used then this file must be properly configured (see documentation on
BASCOM). As provided, the file lists two expels: PL and DUMMY. This may be
changed by editing BasamJb. With the current file organization, this file is located in
the Gmerk-Expert(^mnunimtimIj]w-lMml; directory.

128

Carnegie Mellon University Generic Expert (Lisp-Based)

7. Terminal Interface

The default action of the generic expert is also to provide a terminal interface. If the
terminal interface is not desired, the keyword option :terminal-medium should be given a
value of nil

Why provide a terminal interface? An IMW subsystem may be viewed as a filter;
an FEL sentence is input, some processing is performed, and then an FEL sentence is
output During development and testing, it is occasionally desirable to have total
control over the input to the subsystem. Then, after the processing is complete it would
be nice to easily view the output As mentioned in the preceding section, the experts
communicate with each other via the ethernet This process of network communication
implies the existence of at least two functioning IMW subsystems. On occasion, this
complicates the process of development Consequently, a terminal interface is provided
that will allow an instantiation of an expert to function stand-alone. That is, the input is
provided to the expert via the terminal interface and the output from the expert is
displayed on the terminal window.

In order to obtain a stand-alone configuration, enter the command:

(generi c-expert expert-name
: network-medium ni 1)

During evaluation of the above function call, the user will be required to provide the
upper-left and bottom-right hand corners of the interface window. The corners are
chosen via the mouse.

Initially, the interface window is not visible. When it is needed the window needs
to be selected. This may be accomplished by bringing up the Explorer System Menu.
In the YJINDOWS column dick on the entry named Select This will bring up a menu
that will list the currently available windows. One of those will have the name of the
expert (e.g., PL), dick on that name. This will bring up the interface window. At this
point, FEL sentences may be input to the expert for processing. That is, the sentence
may be typed into the window. After processing, the resulting FEL sentence will be
displayed in the window.

Don't be misled by the above discussion of a stand-alone subsystem. It is also
possible to have both a terminal interface and a network interface for an expert In that
way you can provide input to one expert and have the output sent along to another
expert.

As an example, let's assume that we have two experts: a holding expert (HX) and a
sensing expert (SX). If the command:

129

Carnegie Mellon University Generic Expert (Lisp-Based)

(OFFER
((NAME SXJDFFERJL)
(TYPE MESSAGE)
(TO HX)
(FROM SX)
(MEDIUM (:NETWORK))

((NAME SX_SELECT_1)
(TYPE SELECT)
•(FIXTURES MAX)))

is entered into the terminal interface for the HX subsystem, it will receive the FEL
sentence as if the source were the SX subsystem. Therefore, the reply generated by HX
will be sent over the network to SX.

In the above example, there is one detail worth noting; that is, the attribute/value
pair (MEDIUM (NETWORK)) in the feature list of type MESSAGE. In the current
implementation of the generic expert, the medium over which a reply will be sent
defaults to the medium over which the request was received. In other words, if the
request comes in over the network the reply goes out over the network and similarly for
the terminal interface. The attribute MEDIUM provides a method for overriding the
default Hence, if a sentence is input from the terminal interface, but it is desired that
the response go out over the network then that can be accomplished. It is also possible
to have a response go out over both mediums. A value of ONETWORK :TERMINAL)
for the attribute MEDIUM wiH send the reply out over both.

8. Setting up the Generic Expert on the Explorer

The files that define the lisp based generic expert may be obtained by tape or by
copying the files from the directory Generic-Expert on the machine kafka.imw.ricmu.edu.

i) Copy the files into a directory named Generic-Expert on your machine. All is not lost
if some reason exists that prevents the use of a directory by that name. The files may be
loaded into a directory of your choice. However, by not using the default, some
additional work is required. After the files are copied into a directory, the file Generic-
Expert.Translations must be edited to reflect the actual location of the files. It should be
noted that the Generic-Expert.Translations file is not required if a Generic-Expert entry,
with the appropriate translations, is added to the network namespace.

ii) Move the files Generk-ExpertSystem and Generk-ExpertJTranslations into the Site
directory.

lii) From a lisp listener, evaluate the command:

(make-system 'generic-expert :compile :noconfirm).

This will load the lisp based generic expert skeleton into the environment.

130

Carnegie Mellon University G e n e r i c *P" (Lisp-Based)

9. Glossary of Functions for Lisp-based Generic Expert

(make-system 'generic-expert :compile rnoconfirm)

Install the lisp-based generic expert on a TI Explorer. This assumes that
the source code exists on the machine in question.

(ge-.expert fXX)

Instantiate an expert XX is the initial function for the expert. This
function name should also be the two letter abbreviation of the expert
For example, the initial function for the Planner would be PL. The default
for the function ge:expert is to provide a terminal and network interface.

The symbol expert is exported by the GENERIC-EXPERT package, so if the
user executes the form:

(use-package (find-package f generic-expert))

then access may be gained to gexxpert without the annoying package
prefix (that is, ge;).

Following is the basic outline of the initial function for an expert. In this
example, the expert is named XX

(defun XX (enQ-outgoing
Qstatus-incoming
deQ-incoming
conditional-suspend)

(declare
(function XX (symbol symbol symbol symbol) t))

(let ((FEL-sentence (funcall deQ-incoming)))
(declare

(type sentence FEL-sentence))

(case (sentence-verb FEL-sentence)

;* Clauses for the verbs that e^ert XX Is
;* expected to handle

(otherwise
;* Application specific error haadiing
)))

(funcal l enQ-otitgoing FEL-sentence)

131

Carnegie Mellon University Generic Expert (Lisp-Based)

enQ-outgoing takes one argument, an object of type sentence. FEL-sentence
is placed on the queue which is read for output. enQ-outgoing is not a
global function. It is one of the arguments passed to the expert's initial
function.

(funcall Qstattis-incoming)

Returns :non-empty when the incoming queue has at least one unread
object of type sentence on it lempty is returned when the queue is empty.
Qstatus-incoming is not a global function. It is one of the arguments passed
to the expert's initial function.

(funcall deQ~ineoming)

Returns an object of type sentence. FEL sentences placed on this queue are
to be read as input deQ-incoming is not a global function. It is one of the
arguments passed to the expert1 s initial function.

(funcall conditional-suspend t e s t fen)

conditional-suspend takes two arguments. The first is a test. When it
evaluates to non-nil, the second argument, a function, is executed.
conditional-suspend is not a global function. It is one of the arguments
passed to the experts initial function.

Qstatus dialogNames)

Returns a function that queries the queue whose status is obtained via the
function Qstatus. The query is determined by the value of dialogNames,
which should be a list of dialogue names. That is, the returned function
will return non-nil if sentences exist on the queue that are associated with
the names in dialogNames; otherwise nil is returned Typically, create-Qtest
is used in conjunction with conditional-suspend.

FEL-sentence enQ-outgoing disposi t ion fen)

This function initiates a new dialogue. It requires four arguments.

FELsmtmce is the sentence that will initiate the dialogue with the
designated expert TTie spawn slot of a sentence object is normally used to
create this new sentence

132

H I M O

Carnegie Mellon University Generic Expert (Lisp-Based)

enQ-outgoing is the function used to queue the sentence for output. This
function is an argument passed to the initial function of the expert

disposition is the disposition of the result of the spawned dialogue.
Currently, this may be one of two values, either return-result or
independent A disposition of return-result signifies that the originating
dialogue expects to have access to the final result, which should be an FEL
sentence. In order to gain access to this FEL sentence, the spawned
dialogue should ensure that, upon termination, this sentence is the value
returned, -.independent signifies that the spawned dialogue may proceed
independently of the spawner.

fen is the function that will handle the spawned dialogue.

(ereate-featureList)

Returns an object of type featureList

The next three functions take an object of type featureList as an argument Let fllst
be such an object

(featuareList-itarator fList)

Returns two functions that may be used to iterate through the
attribute/value pairs of a feature list The first function always returns the
first attribute/value pair of the feature list Each call to the second
function returns the next attribute/value pair. When the list is exhausted
:end is returned.

(funcall (featureList-append fList) a t t r i b u t e value)
Associate value with attribute and add this attribute/value pair at the end
of the feature list's attribute/value pairs.

(funcall (featureList-incliad® fList) attribute value)

Associate value with attribute and add this attribute/value pair at the
beginning of the feature list's attribute/value paks.

(funcall (featureList-updata fList) attribute value)

Find the attribute/value pair bxfUst with an attribute equal to attribute.
Change the value of this pair to value.

133

Carnegie Mellon University Generic Expert (Lisp-Based)

The following functions take an object of type sentence as an argument. Let FEL-
sentence be such an object.

(sentence-iterator FEL-sentence)

Returns two functions that may be used to iterate through the feature lists
of the sentence. The first function always returns the first feature list
Each call to the second function returns the next feature list When the
list is exhausted tend is returned.

It should be noted that the feature list containing the attribute/value pair
(type message) is not returned by either of the iterators. The

information that is contained in that feature list is to be obtained more
directly. For example, sentence-to returns the destination.

(sentence-name FEL-sentence)

Returns the dialogue name of FEL-sentence. self may be used on this form
to change the value.

(sentence-verb FEL-sentence)

Returns the verb of FEL-sentence. setf may be used on this form to change
the value.

(sentence-from FEL-sentence)

Returns the source of FEL-sentence. setf may be used on this form to
change the value.

(sentence-to FEL-sentence)

Returns the destination of FEL-sentence. setf may be used on this form to
change the value.

(sentence-aediiaa FEL-sentence)

Returns a list whose elements are the medium of FEL-smtence* setf may be
used on this form to change the value.

134

Carnegie Mellon University Generic Expert (Lisp-Based)

If FEL-sentence is a sentence to be output, then the value of the above form
gives the media over which this sentence will be sent. For example, if
evaluation of the form:

(sentence-medium FEL-sentence)

produced the result:

(:network :terminal);

then, when output, the FEL-sentence would be sent to both the network
handler and the terminal handler. If FEL-sentence is a sentence that was
sent to the expert, then the form, (sentence-medium FEL-sentence),
gives the medium over which the sentence arrived. Normally, the
subsystem integrator need not worry about the input and/or output

media.

(funcall (sentence-include FEL-sentence) f ea tu re - l i s t)

Include feature-list in the sentence FEL-sentence, where feature-list is an
object of type featureList.

(funcall (sentence-replyTo FEL-sentence) verb-or-tense)

Returns an object of type sentence. The verb of the newly created sentence
is determined by the value of the symbol verb-or-tense. If the value of verb-
or-tense is one of the recognized verbs, then the verb of the sentence is
simply the value of verb-or-tense. If verb-or-tense is a legitimate verb tense,
then tike predicate of the response sentence will be the verb that is the
specified inflected form of FEL-sentence?s verb. The destination of the
sentence is equal to (sentence-from FEL-sentence). The source of
the sentence is set to the expert that received FEL-sentence. The name of
the created sentence and FEL-sentence are identical.

(funcall (sentence-spawn FEL-sentence) verb)

Returns an object of type sentence. The verb of the newly created sentence
has been set to verb. The source of the sentence is set to the expert that
received FEL-sentence. The destination of the sentence is not set A unique
symbol is created for the name of the sentence.

The next two functions take an attribute/value pair as an argument An
attribute/ value pair is a list of two elements- The first element is a symbol. The second
element may be one of four types: a symbol, a number, a string, or a list. In the

135

Generic Expert (Lisp-Based)

examples, let pair be an attribute/value pair.

(attribotoOf pair)

Returns the attribute of pair.

fvalueOf pair!

Returns the value of pair.

These last functions take an object of type featureList as an argument. Let fList be
such an object

(aaswOf fList)

Return the value of the attribute/value pair whose attribute is the symbol
NAME.

fList)

Return the value of the attribute/ value pair whose attribute is the symbol
TYPE.

attribute)

Return the value of the attribute denoted by attribute.

136

