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Abstract1

Rosen's Partitioning Algorithm for nonlinear programming was developed using a gradient projection
method for the master problem. Since then, developments in NLP algorithms have shown the power of
the Han-Powell successive quadratic programming algorithm. Here, the formulas necessary for using the
Han-Powell algorithm for the master problem of Rosen's algorithm are derived. Sensitivity results are
used to handle the 'crossover0 problem.
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1. Introduction
This paper examines an update of Rosen's algorithm (Rosen [5], Lasdon [3]). Rosen's is a partitioning

or decomposition algorithm tor large-scale systems, utilizing a single master problem and one or possibly
several subproblems. In the algorithm's original form (described in Section 2), the subproblems were to
be linear programs and the master problem was to be solved by a gradient projection method. Probably
one of the most popular nonlinear programming algorithms today is the Han-Powell successive quadratic
programming algorithm (Han [2], Powell [4]). Section 3 gives the formulas and results necessary to solve
the master problem using the Han-Powell algorithm instead of a gradient projection algorithm. One of the
messiest parts of Rosen's original algorithm was how to deal with cross-over problem. A significantly
simpler approach is suggested here in Section 4.

2. Rosen's Algorithm
Rosen's partitioning algorithm was originally intended for problems of the form (see [3,5]):

P: min d(y) + ex
xy

8(y) * 0 (1)

where the problem P is linear in the x variables and non-linear in the y variables. The basic idea of the
algorithm is to solve a nonlinear master problem (in y) with linear subproblems (in x). The linear
subproblem associated with P is given by:

LP(y): min ex
x

Ax + b(y)Z0 (2)
It may be the case that the linear program LP(y) can be broken into several independent (with respect to
the x variables) and smaller linear programs. For simplicity of notation, this dividing step will not be done.

Let the solution to LP(y) be x*(y), and let c*(y)-cx*(y). Define the master problem:

P*:mind(y) + c*(y)

8(y)*0 (3)
The problems P and P* are clearly equivalent. c*(y) can be expected to be a piecewise smooth function
with each optimal basis of LP(y) determining the region or patch of smoothness. Rosen's Algorithm
optimizes P* over a given patch, and then decides whether local (or global if the entire problem is convex)
optimality has been achieved or to move to an adjacent patch. Use is made of perturbation results in
linear programming to aid in this process. The algorithm is shown to be globally convergent for the case
where A and c are independent of y; b,d and g are convex in y; and certain differentiability and regularity
conditions are met. The modifications suggested here do not affect the range of problems for which
Rosen's Algorithm is convergent. In all that follows, the above assumptions on y,b,d,g,A, and c are made.
Additionally, a non-degeneracy assumption for P is made.

Suppose that for a point y°, LP(y°) has been solved with a resultant x° solution and a set of tight basic
constraints and a set of non-basic constraints:

(4)



Define xfl(y) and X, by:

XB = -cB~x (5)

Xj(y) is the optimal solution x*(y) to LP(y) as long as it is feasible, that is, as long as it satisfies the
inequality constraints in Equation 4. Now substitute Equation 5 for x*(y) ink) Equation 3 for the restricted
region to get:

8(y) ^ 0 (6)
That is, y is minimized over the region for which B is a feastole basis for the linear subproblem. The
algorithm is to carry out this restricted optimization, and then see whether the solution is optimal to the full
problem, or whether an adjacent patch should be entered.

Define

The Lagrangian for P'(B) is:

= d(y) + XBbB(y)
= d(y) + Xgbgiy) + X^f/y) + ng(y)

(8)

The optimal solution yB* to f (B) is optimal to the original problem iff Xfls0. If one of the components of
XB is negative, then the corresponding constraint can be pivoted into the basis with an expected
improvement. It had been previously suggested that an auxiliary LP be solved to determine these pivots,
but a possible improvement is given below in Section 4.

3. Han-Powell Formulation
When first introduced, Rosen's algorithm utilized a Gradient Projection algorithm for solving the

restricted optimization problem P'(B) of equation 6. More recently, successive quadratic programming
algorithms such as the Han-Powell algorithm have been advocated for solving nonlinear programming
problems. Here we consider such an implementation.

As also for the Gradient Projection algorithm, the Han-Powell algorithm requires the computation of the
function values and gradients for the objective function and constraints. Consider P'(B). The gradients of
the objective function and constraints are given by:

(9)
These are used in a sequential quadratic programming algorithm of the following type:
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Ay

Z0 (10)
Where M is an approximation to

(11)
Since this Hessian is independent of the basis B, it is clear that should the basis change (e.g. after
crossing over into another patch), the old M is usable as a starting estimate. That is, suppose that y* is
on the border between two or more patches, implying that it is the solution to the corresponding P'(B)
restricted problems. The same Hessian estimate, M, is then appropriate for any of these different
restricted problems. Hence, jumping from one patch to another (and possibly back) should not require
restarting the algorithm (i.e. setting M to I).

M is generally constructed by using a variable metric rank-two update formula. For this, one needs to
know y° and y1 (the old and new y estimates respectively), X1 and )i1 (the new dual variable estimates),

•V^o0,*.1^1), and vy^.X'.u,1). (y 1^ 1 ,^ 1 ) is given by the solution to the quadratic programming
problem, and Xg1 can be found from Equation 7.

4. Changing Bases
Consider a slightly different but equivalent version of P:

P": min d(y) + ex

Bx + bB(y) + s = 0
Nx + b^ZO
g(y) ̂  o

(12)

Define xfl(y,s) as the solution to:

gy (13)

P" is then equivalent to

P"{B):min<Ky)*XBbB(y)*XBs

-NBrxbB(y) - NB~ls + brfy) S 0
«00
520 (14)

Define the parametric program



P"(fij): min dfy) + X#B(y) +
7

8y
for 5*0 (15)

Solving />"(B,0) (which is identical to P*(B)) by the Han-Powell method is a possible improvement over
Rosen's original suggestion of using a gradient projection method. However, the above method enables
a further simplification. It is a relatively simple matter to compute the gradient of optimal value function of
/'"(B.O) with respect to s. If any of the components of this gradient are negative, then an increase in the
corresponding s- will cause a decrease in the value of the program. This change in s can be used to drive
a change in the y variables, automatically causing a change of basis in the linear programming problem,
LP(y)(see [1]). (Rosen's method, as given in Lasdon [3] is to change the basis artificially. That is, to force
the corresponding constraint out of the basis by pivoting. The method described here seems more
natural.)

Suppose />"(B,0) has been solved yielding an optimal y(0). By the non-degeneracy assumption, the
gradient of the optimal value function with respect to s is simply (see Fiacco [1])

and the gradient of y(s), with respect to s, at 0 is given by the solution to

r o i rv z° vh<> v<g° ] r v(o> i
i i i i i i
\NB-1 I =1 VVA° | |VA<(O) I
I I I I I I
L o J Lv^° J Lvy(0) J (17)

where
= Vyy{d(y(0))+\bB(y(0))

h° includes only the tight constraints from P"(B,0).

A simple procedure for changing the basis in P is to perform an elementary steepest descent step in s
on P"(0), keeping at 0 all components of s with a non-positive value for \B. Define \+B as the vector with
the same values of XB for positive components and 0's for the negative components. The following is a
descent direction for the master problem:

Ay = V ^ O ^ x y (18)
A crude line search over positive S could be used, but this is not necessary since the point of the
perturbation is to change the basis so further improvement is possible.

4.1. Example
The above modifications to Rosen's method were applied to the following problem.



i a
min-Uj - 2xj+3(yr5)2 + (yj-2)2 + 2C3-8)2

18

-xx £ 0 -*2 * 0

The sub-problem is given by:

m*>i-lx l-2x2

rowl
x1 + 2*2

The initial y and the resultant x from LP(y) are

Basis is (row2, rowj)
y, = 2. x, = 1.1
y, = l. x, = 8.1

There is an alternate optimal solution of x1-2.7, x2«7.3 with basis of (row\,

r 1 2 1 r 1/3 -2/31

L - l 1 J L1/3 1/3J

r i ii
iV = 1 - 1 01

L o - l j
ro i .in>,i r 191

bB<y)= I 1 1 % I - I I
L2 0 1 Jly3J L18 J

n I ,
I o o o 1 1 % I - I o I
Lo o o JLy3 J L o J

The general master problem is

P\B)min d(y)

-NBrl

For the current basis, this becomes:



1 3
P'(B)mi* 5&J-5)2 + (y2-2f + Hyf*? + y2--ly3- 19

y

r 1.667 0.333 1.267 "II" yj I"-13.33 1
1-1.333 0.333 -0.633 II y2 I + I 5.67 I 10
L 0.667 0.333 0.367 JL y3J L-12.33 J

The solution to the master problem gives the new y and X^ vectors and updated x (by Equation 5 and XB

(by Equation 7) vectors:
y, = 2.2333185 x, = 1.50499
y2 = 1.2233471 Xj = 7.77254
y3 = 7.2658054

X = (1.6600, -.1067,0.5533,0., 0.)
Since X^ is negative, it should be pivoted out of the LP basis. The direction for the Ay vector is given by
the solution to:

r o i [Q v<h° ir

To 1 \Q V'A° ir ^ v
I 1 = 1 II I
UVB-'XV J L v / JLv/V(°) -I

Plugging the values for the current point and basis,
NB~xX*B

t = \ 2/3 -1/3 1 f-.106661
I -1/3 2/3 I I I
L- l /3 -1/3 J L 0 J

T O 1 T 1 0 0 5/3 ,̂()
10 1 = 1 0 2 0 1/3 11 v>2(0) I
I 0 1 1 0 0 3 3.8/3 II I
L.07111J L5/3 1/3 3.8/3 0

Ay* = (.03513, .00358, .00897)
Only the first row of N was selected since the other two corresponded to loose constraints in P'(B).

A value of 8-.1 was used, resulting in a new y and x values of:
Basis is (rowl,row3)
y, = 2.23335 JC, = 1.50500
y2 = 122335 *2 = 7.77248
y3 = 726581

X/> = (1.5,.5)
Since the constraints are all linear, any small value of a would have the same result.
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i i ] ri/2 -1/21

.-1 1 J ~Ll/2 1/2 J

1 2
-1 0

L 0 -1J

ri
i I I * I - I i
L2 o i JL>3 J L18 J

ro I . l i r ^ i r 191
2

Lo o o JL?3J L o J
The new master problem is

1 3 5 3
P\B) min 2(y r 5) 2 + (y2-2)2 + 20>3-8)2 + 2yx + 2y2 + 2y3

y

T-0.5 0.5 0.0 l f y , 1 T - l 1
I -2.5 -0.5 -1.9 11 y2 I + I 20 I S 0
L 1.5 0.5 1.0 JL>3 J L-19 J

New y and X^ vectors from P'(B) and resultant x and Xg vectors:

yj = 2.5000022 x
y2 = 1.2500134 %
>3 = 7.3333409

1.62499
7.29165

X = (1.5,0., 1.5,0..0.)
Since all of the dual variables are non-negative, this last solution is optimal. The above was computed
using an inexact algorithm for solving the quadratic programming problem. The exact solution is:

>i = 5/2 xj = 13/8
y2 = 5/4 X2 = 175/24
3*3 = 22/3

= (1.5,0., 1.5,0..0.)
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