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ABSTRACT

By a framework for concurrent design we mean: (1)
formal ways of stating the problems of concurrent design, (2)
visualization (conceptualization) aids to help devise strategies
for solving these problems, and (3) implementation aids to help
translate the strategies into working systems.

This paper begins by defining some terms, including
"conflict,” and "computational path." Next, concurrent design
problems are formulated in these terms. Specifically, these
problems are shown to be equivalent to finding computational
paths that avoid or eleminate conflicts and connect given data-
objects to desired data-objects. A class of graphs, called TAO
graphs, is developed for visualizing such paths. Finally, a
computational environment, called FORS, is described for
implementing selected paths.

INTRODUCTION

The design of a complex artifact, such as a car, a bridge or
a microelectronic chip, involves a large number of tasks each
requiring a different sets of skills. Often, the groups to whom
such tasks are assigned work on their assignments at different
times and in different places. Nevertheless, their work must be
coordinated to take into account the couplings among the tasks.
Because of these couplings, decisions made in one task can affect
some or all of the others. The decisions made in the early
conceptual tasks are of particular concern. These decisions can
have profound effects on all the tasks that come later. Often,
these effects are deleterious, making it difficuJt or impossible to
perform the later tasks well.

The concurrent design problem can be stated simply as
follows: how can the propogation of deleterious effects from one
task to another be reduced to tolerable levels? (Henceforth, we

will refer to intolerable effects as conflicts or inconsistencies).
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Strategies for solving the concurrent design problem can be

divided into two broad categories:

1. Preventive or look-ahead strategies which seek to
anticipate conflicts and avoid them before they occur.

2. Corrective or feedback strategies which allow conflicts to
occur and then use backtracking or iteration to eleminate
them.

Corrective action is usually more time consuming and therefore,

" less desirable than preventive action.

Existing techniques for both prevention and correction tend
to be people-intensive and cumbersome. Typically, experts from
each of the major design areas are assembled into a group that
oversees the design project from start to finish. This requires
considerable committments from the experts and powerful
mechanisms to transcend the communication barriers that
inevitably arise among them.

"To help automate prevention and correction processes we
propose a visualization aid called a TAO graph. Nodes in this
graph denote the declarative portions of design work while
directed arcs denote the procedural portions.

We think of the declarative portions of a design as a set of
~ data-objects each containing information on one view or aspect
of the artifact being designed. A set of specifications, a set of
sketches, a set of blueprints, a parts list, a manufacturing plan,
and a prototype are some of the very many different aspects of a
car.

Both the inputs and the outputs of design processes can be
expressed in terms of aspects and a general form of the design
problem is: given the values of certain input aspects and the
types of the desired output aspects, find values for the output
aspects that are consisten with the inputs and one another. For
example, given the specifications of an automobile engine, find
or develop blueprints and a manufacturing plan that are
consistent with (meet) the specifications and are also consistent
with each other.

The procedures by which design problems are solved can be
divided into two categories: manual procedures (that are
executed through humans) and automatic procedures (that are
executed through computers). We visualize both types of
procedures as operators that map the contents of one data-object
into another (l.e., one aspect into another). Thus, we visualize
design activity, both manual and automatic, as tracing paths
through TAO graphs. These paths begin at given, input aspects
and pass through operators and intermediate aspects to
terminate at output aspects. For the activity to be successful,
the output aspects must be consistent with one another and the
input aspects. .

By displaying the different computational paths that link
_input and output aspects, TAO graphs pravide a way for both
visualizing design problems and planning strategies for solving
them. However, before they can be used, a number of terms
such as aspect, operator and consistency, must be more
precisely defined. We will suggest definitions for these terms in




the immediately following material. The remainder of the paper
is devoted to a description of FORS, a programming environment
for implementing strategies for solving concurrent design
problems.

TERMINOLOGY

Aspects

Let Af, A2,—, be sets or spaces and let ajj, aj2,— be
elements or points of Aj, such that a{j is the j-th instance of the
i-th view or feature of an artifact. To illustrate, consider an
artifact whose i-th feature is a resistive circuit that is known to
have 10 or less nodes. Then a,js aj2.---. are all the different
resistive configurations that are possible with 10 or less nodes
and Aj = { alj, a\p,~ }.

We will refer to the as as aspects and to the A's as aspect-
spaces or data-objects depending on whether we are discussing
conceps or programming implementations.

Operators

An operator is a mapping from one aspect-space to another.
Thus, the general form of an operator is:

°i,j M= 0T % - Oji(al) (1)
where Aj is the input-aspect-space of the operator and Aj is its
output-aspect-space.

- A _Taxonomy. of OperatQrs
Three dimensions are useful in classifying design
operators. They are:
1. Degree of autonomy. This dimension can be used to divide
. operators into three categories:
-autonomous: operators that act largely on their own
volition, for instance, most human designers,
-semiautonomous: operators that will accept commands but
can also act on their own volition, for instance, intelligent
programs that go looking for tasks when they are not busy
with tasks that have been assigned to them,
-non autonomous: operators that do nothing until they are
assigned a specific task, for instance, conventional
simulation and analysis programs.
2. Effect on information content. This dimension deals with the
relative information content and location of an operator's input
and output aspects, a; and aj. Based on this dimension, operators
are divided into four categories (Fig. 1):
-abstractors: aj has less detail than aj
-refiners: aj has more detail than aj
-translators: aj and aj are informationally equivalent
-modifiers: aj and aj are in the same aspect-space.




3. Function. This dimension deals with the specific type of
transformation performed by an operator. A few of the
categories along this dimension are:
Synthesizers : operators that transform specifications into
design alternatives;
Analyzers and simulators : operators that evaluate the
performance or calculate the responses of given
alternatives to given stimuli;
Optimizers : operators that improve on design alternatives.

Consistency

Consider two typical aspects: a set of specifications and a
set of blueprints. How can one test such aspects for consistency,
that is, check to see if the blueprints meet the specifications? in
many cases the only practical approach is to transform the
blueprints into a physical prototype that is subjected to a
number of laboratory tests. In other words, one must select
operators to transform the specifications and blueprints into
points in a common aspect-space (the space of laboratory
experiments) and then check to see if the points are coincident
or close. More formally, the ideas involved can be stated as
follows:

Aspects aj and aj are consistent to degree b, if:

(1) there can be found widely accepted operators O; i and

Oj,k that map a; and gjinto a single space Ay,

(2) there exists a distance metric || . || for the space Ak,
and

(3) Il Ojk (a) - Ojkla) I sb (2)

The selection of the operators and the distance metric

imparts a subjective quality to the test that is absent from

purer fields, such as mathematical logic, where consistency can
be defined objectively. Another difference is that in design it is
more convenient to think of consistency as a continuum or fuzzy
set rather than as a binary proposition.

Design Tasks
The general design task has the following form:
Given: (1) two aspect spaces, Ajp and Agyt:
(2) a point (aspect) ajp in Ajp;
(3) a consistency threshold b and a test for checking
this threshold;
Find: a point ag, ;3 in Agyy such that a;, and ag ,; are

consistent to degree b or better.




conflicts

Let: AAout be the subset of A”j that contains aspects that
are consistent with aj, to degree b or better. We will say that
there is a conflict between the task and its input if AAgy; is .
empty. In other words, conflicts are said to occur when there is
no solution to a task that is consistent to the required degree
_with its given input. Such conflicts often occur as the result of
the solutions selected for upstream tasks. For instance, the
design of the structure of an artifact could make it impossible to
manufacture. If allowed to persist, such conflicts result in
degradations of quality and performanceanf their elemination is
the objective of concurrent design.

Computational Paths

By a computational path we mean a partial ordering of
operators for solving one or more tasks. To illustrate, consider a
simple task that involves solving a pair of nonlinear algebraic
equations:

x = f(x)y) (3)
y - gxy) (4)

Let x* y* be a solution to these equations. One iterative
algorithm that can be applied to search for this solution is:

(P1): Xpet = f(x,, (5)
nm=0,1,2,™

ym+1 - 9(*m.ym) (6)
Another algorithm is:
(P2): *pn+1 - f(*n. ¥e) (7)

nm=0.1.2,™
ym+1 = 9X¢.¥m) (8)

where X,, yn are the n-th and m-th approximations to x*, y*,
and x+, y. are the latest available values of x,, yn. Let Of and
Og be operators for evaluating functions f.and g. The partial
ordering of these operators corresponding to the two algorithms
are shown in Figs. 2 and 3. The first algorithm requires the two
operators to be invoked in lock step; every time Of is invoked Og
must also be invoked. The second algorithm, however, allows the
invokations of Of and Og to proceed independently (that is,
asynchronously). Neither algorithm enjoys a clear superiority
over the other; in some cases the first is preferable, in others,
the second (Talukdar et al., 1983). Infact, even for this very
_simple task, there are other partial orderings of operators,
each with its own merits, and the number of these orderings
increases dramatically if one considers operators besides the
two listed above. As we shall see, the problem of designing a good




partial ordering of operators for solving this simple task, is in
microcosm, the problem of concurrent design.

Design. Systems:

A design system consists of decision making agents (people
and programs) supported by passive resources such as
technology bases and laboratories. The agents tend to be arranged
in complex hierarchies, that is, structures with multiple levels
in which an agent can report to two or more agents in the level
above. Some of the agents serve as operators, the others serve
as managers. Managers are responsible for setting goals,

* decomposing large design tasks into smaller tasks and assigning

these tasks to operators. As such, the operators occupy the
lowest level of the organizaion.

The purpose of a design systems is to select and implement
computational paths for performing given design tasks.

TAO GRAPHS

A TAO graph (the T stands for Tao or path in Chinese, the
"A" for aspect-space, and the "O" for operator) is an aid for
visualizing the capabilities of the Ilowest level in the
organizational structure of a design system, that is, the level in
which the operators reside.

A TAO graph is an and/or graph whose nodes represent
aspect-spaces and whose arcs represent operators. As such, a
TAO graph depicts all the paths through a given set of aspect-
spaces that are made possible by a given set of operators. Since
both aspect-spaces and operators can be aggregated and
disaggregated, this perspective can be widened to view the paths
for an entire project or narrowed to view an individual task in
any desired degree of detail.

The purposes of TAO graphs are (1) to help view available
paths and select the best from among them, thereby, aiding in
the design of design projects, and (2) to compare the best
available paths with desired paths, and thereby, determine how
to upgrade an existing design system or design a new design
system.

An_Example

The Integrated Building Design Environment (IBDE) is a
prototype system for the design and construction of high rise,
speculative office buildings. IBDE is being assembled to serve
as a testbed for the exploration of three sets of issues: (1) the
information, control and communication needs of the diverse
agents required for the design and construction of a building;
(2) the applicability and role of generic tools and design
environments .in the domain of architectural and civil

- engineering design; and (3) concurrent design.

IBDE is being developed in two phases. The first phase,
which has been completed, involves the integration of seven
automatic operators that cover the architectural, structural and
foundation design, and the construction planning of high rise




buildings. These operators are implemented as knowledge-based
systems (KBS's) to facilitate rapid development and
modification. While some of the current operators are too
limited to serve as models of practical programs, they are
comprehensive enough to serve as surrogate experts in
exploring the types of design representations and communication
mechanisms needed for the concurrent design of buildings and
their construction process..
This first phase of IBDE uses the following aspect-spaces:

A1l: building owner's targets (area and cost), objectives
and constraints
A2: building massing, functional assignments of spaces,
vertical circulation area
A3: structural grid: a 3D grid of bays and stories where
structural elements can be placed
A4: optimal spatial layout of elevators, stairs, restrooms
etc. occupying the building's core
A5: structural system selection
A6: structural layout and approximate forces acting on
structural components
A7: design of structural components
AS8: design of foundation components
A9: construction project activities, sequence, costs,
durations
A TAO graph of these aspect-spaces and the current
complement of operators is shown in Fig. 4. In making available
an automatic path that leads all the way from A1l, the building's
specifications, through several intermediate spaces to a
construction plan, IBDE provides a larger scale of design tool
integration than any other building design system that we know
about. However, notice that there is one and only one path. As we
will point out in the next section, concurrent design requires
multiple paths and in the second phase of the project, which is
now underway, the IBDE team is adding an appropriate set of
additional paths.

CONCURRENT DESIGN

Over the last few years, the terms "concurrent design" and
"simultaneous engineering," have come to be used for
technologies that strive for high quality in a design from several
different and often conflicting points of view, such as those taken
by the marketers, manufacturers, users, and maintainers of an
artifact. Each .such group has its own stringent set of
specifications that must be met in order for it to consider the




artifact to be of high quality. In our terminology this problem

can be posed as follows:

Given:  a number of design tasks in which each task can have
several input aspects, some that are independently
specified, others that are computed by previous tasks;

Find: (1) a path to perform each task;

(2) a means for integrating these individual task-
paths into a composite path such that all the input and
output aspects are consistent (conflict free).

Thus, in essence, the concurrent design problem is one of
conflict-free, path integration. As was pointed out earlier, the
two basic types of approaches to achieving this sort of
integration are preventive and corrective. In the former,
conflicts are anticipated and avoided; in the latter, conflicts are
allowed to occur and then reduced to tolerable levels through
backtracking and iteration. When it is done well, prevention
tends to be faster. The ditficulties are in the breadth of
knowledge required and in the extended horizons over which
predictions must be made. To illustrate, consider the IBDE
case (Fig. 4). In making massing and space allocation
decisions (A->A2), knowledge of all the subsequent design tasks
must be brought to bear to predict impacts and potential
conflicts to the end of construction planning (A8->A9). As has
been pointed out, existing approaches to solving the prevention
problem tend to be manual and distributed (a team of experts
with a wide enough range of knowledge is assembled to predict
and resolve conflicts). Our research has focussed on automating
these manual processes. Specifically, we have been investigating

“the substititution of a team of expert systems, called critics, for

some or all of the team of human experts. Each critic consists of
a simulation, analysis or forecasting program sandwiched
between an intelligent pre- and post-processor. The pre-

-processor is required to:

1. understand the representations used by all the synthesis
tasks that might require the services of the critic. For
instance, the critic for predicting conflicts with the
construction planning task in IBDE (A8->A9 in Fig. 4)
must understand the representations used by all the

~ preceeding synthesis operations.

2. monitor the progress of these synthesis operations and
activate its simulation or forecasting program whenever
necessary. For instance, if decisions being made in the
A1->A2 operation (Fig. 4) are likely to have effects on
construction planning, then the associated critic should
activate itself and predict the extent of these effects.

The purpose of the post-processor is to summarize and explain

the predicted results.

Thus, a critic is an autonomous operator that contains an
analysis or forecasting program augmented with self activation
and self explanation capabilities whose collective purpose is the
automatic identification of potential downstream conflicts. Once
such conflicts have been identified they must be resolved. We are




in the early stages of developing automatic procedures for
conflict resolution.

Q_nqglng Work -

In IBDE, work is now underway to enrich the
computational path throgh the addition of a number of critics and
two conflict resolvers, one at the level of spatial conflicts
between aspects A3, A4, A5, and the other at the level of
construction cost and time conflicts between the owner's targets
(A1) and the system's projections (A9). General rules or
solutions arising from the implementation of these conflict
resoivers may eventually be incorporated into a generic and
automatic look-ahead strategy for conflict elemination.

Besides IBDE, we have been developing platforms for
invesigating critics in two other areas: the real time control of
electric power systems (Stoa et al.f 1989) and the design of
automobile parts (Sapossnek et al.,, 1989). Work in the real
time area is at about the same stage as IBDE, that is critics are
just being introduced. However, in the area of automobile parts a
number of prototype critics have been completed and from the
results of preliminary testing, seem capable of producing
considerable improvements in both design time and quality.

FORS

Notation

In this section we will use the terms data-object and tool-
object to mean programmed versions of aspect-spaces and
operators. Data- and tool-objects are obtained by adding front
ends to new or existing programs to provide them with object-
like capabiHties. The principal function of a data-object is to
. store aspects; of a tool-object, to transform aspects.

Philosophy.

Earlier sections of this paper have argued that (1)
problems of concurrent design are equivalent to problems of
designing integrated, conflict free, computational paths that
connect given aspects to desired aspects; and (2) TAO graphs are
useful in visualizing and designing such paths. In this section we
will briefly describe FORS (flexible QiganizationsJ, an
environment for implementing computational paths that have
been designed with the aid of TAO graphs. Specifically, FORS
provides facilities to aid in (1) integrating people, tool-objects
and data-objects into computational paths; and (2) building
control organizations on top of the computational paths to control
the flows of information along them.




The integration problem is difficult because the data-and
tool -objects that one would like to connect often contain
programs from different vendors, are written in different
languages and styles, reside in different computers, have
different interfaces and use different data formats. Integration
environments, such as FORS, provide facilities or "smarts" to
help overcome these difficulties. In most environments these
smarts tend to be placed either with the data or with the tools
but not both (see for instance (Daniell and Director, 1989)).
‘We feel that some smarts fit more naturally with the data,
others, more naturally with the tools. In particular, facilities
for translation, browsing, detecting and correcting errors, and
filling in missing bits of information, belong with the data;
while information on how to use, repair and modify a tool,
belongs rightfully with the tool. Therefore, FORS allows for its
smarts to be divided between data- and tool-objects.

The control problem is difficult for two reasons. First, the
control structures required for complex design problems are
complex hierarchies (c.f. Section 2.8). However, the experience
with automating such hierarchies is limited. In existing design
systems automation covers at most the two lowest levels, as in
the use of a software structure called a blackboard (Proceedings
of the AAAI and Boeing Workshop on Blackboard Systems, 1987).
All other control is manual.

Second, control structures need to be dynamically adjusted
to account for unforseen contingencies. Invariably, programs
will not work as expected, pieces of data will turn up missing,
errors will be made, and unforseen opportunities will appear.

FORS has been designed to allow for the building of
complex, dynamically adjustable control structures. However,
as yet we have not taken advantage of this capability and its
benefits remain to be evaluated.

The following material describes FORS' features in slightly
greater detail.

Data-Objects

FORS allows for an expandable library of data-objects.
Each of these objects can store one or more aspects and has the
facilities to make the aspects available to operators. These
facilities include translators (to make aspects available in
representation schemes of the operator's. choice), error
correctors, editors, browsers and default generators (to fill in
missing information when necessary). An example is a data-
object that is under development for the circuits of electric
power networks. When completed, this object will make its
. contents available in both diagramatic and tabular forms. Simple
errors will be identified and rectified where possible. Typical -
values of missing information will be supplied when asked for.
Both browsing and editing functions will be supported.




To create a new class of data-objects one must develop the
mechanisms to support it—representation schemes,
translators, etc. This can take a considerable amount of effort.
Once the class has been established, however, individual
members inherit the support mechanisms and are relatively
easy to create. '

Tool-Objects .

FORS allows for an expandable library of tool-objects.
Each of these objects contains a tool or programmed operator
that -may be written in a number of languages (currently, the
list includes: Common Lisp, Fortran-77, C and OPS 5).

Each tool-object also contains a simple template whose
contents describe the principal characteristics of the tool, which
computer it resides in, how to use it, and which formats it
prefers for its input and output data. If the usage patterns and
data formats of a new tool are supported by the existing classes
of data-objects, then adding the tool to FORS is as simple as
filling out the template-a matter of a few minutes. Otherwise,
modifications to the clases of data objects are required, and as
has already been mentioned, these modifications can require a
good deal of effort.

The Interface

FORS has a multi-window interface (Papanikolopoulos,
1989) that has been built on top of DPSK (Cordozo, 1989), a
kernel for distributed problem solving, and on a graph display
package (Vidovic, 1989). The interface represents each data-
object and tool-object by an icon. By arranging these icons to
form chains (Fig. 5), the user can create and execute arbitrary
computational paths. All the underlying details involved in
dealing with a distributed set of heterogenous computers and
programs written in different languages are transparent to the
user (provided that the computers are networked and use UNIX).

Automatic Planning and Execution Control ,

The interface can, ofcourse, be used by people but it can
also be used by supervisory programs to construct and modify
computational paths. At present, we have only one such program
and it is rather simple-given starting and ending data-objects,
it identifies all paths that link these objects through available
tools. The distributed problem solving facilities that underlie
the interface can accomodate much more complicated control
structures, including trees and lattices of supervisory
programs. The advantages that will accrue from the use of such
structures is just beginning to be investigated.




The basic design, interface and underlying distributed
problem solving structure of FORS have been completed. We are
proceeding to stock its libraries with objects that will allow the
rapid construction of computational paths through a variety of
disciplines. Currently, FORS contains about 15 data-objects and
17 tool-objects from the domains of civil, mechanical and
electrical engineering. Within a year we expect to add twenty to
fifty new objects. These additions will consist primarily of
critics and conflict resolvers for the IBDE project and the other
two concurrent design platforms under development, namely,
the real time control of power networks and the design of
automobile parts.

CONCLUSIONS

This paper has:
1. defined a set of terms, including aspects, operators,
consistency and conflicts, with which to formulate the
computational problems of concurrent design;
2. argued that, good concurrent design is equivalent to
constructing integrated, conflict free, computational paths;
3. suggested that available and desired computational paths be
visualized with the aid of TAO graphs whose nodes represent
aspect-spaces and whose arcs represent design operators;
4. described FORS, an integration environment that is being
developed for the rapid implementation of integrated, conflict
free, computational paths.
As such, the paper provides the beginnings of a framework for
handling problems in concurrent design.
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Fig 4: The mappings produced by four types of operators.
Al and A2 are Informatlonally equivalent spaces.
A3 has more Information contact than Al




