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On the Analysis of Human Problem Solving Protocols* 

Allen Newell 

The last decade has seen the emergence of information processing 

theories of human problem solving, expressed usually as computer programs that 

simulate behavior. These theories have led to a resurgence of interest in 

protocols as a source of data. The term protocol generally refers to a record 

of the time sequence of events. In the present context it includes also the 

continuous verbal behavior of the subject operating under instructions to 

"think aloud." Protocols match well some of the strong points of information 

processing theories, but also have several weak features. The purpose of this 

paper is to discuss the analysis of protocol data and to suggest one new line 

of attack for strengthening it. The intent is somewhat methodological, but 

some new material will be introduced. 

The use of protocols is not at all new. Their connection with the intro­

spective method, especially of the Wurzburgers [15], goes back to the first 

decades of this century. They served Duncker well in his classic contribution 

to the psychology of problem solving in 1935 [5]. They formed the primary 

material in the forties for an intensive study of thinking in chess by the 

Dutch psychologist DeGroot (recently revised and translated into English [4]). 

However, free verbal report fell into relative disuse within the mainstream 

of behavioristic psychology, especially in the United States. And not until 

the advent of the computer, with the corresponding conceptual development in 

programming, has it been possible to couple protocols with precise models of 

process. 

I am grateful to my colleague, H. A. Simon, both for his contribution to 
the substance of the work presented here and to his criticism of an 
earlier draft. 



Let us start with a concrete example, which may be already familiar 

[24]. We divide the analysis into stages: 

1. The subject, a college student, is given a problem in the 

elementary propositional calculus. This task is shown in Figure 1. He is 

instructed to say aloud whatever occurs to him throughout the problem. 

2. The tape recording of his verbal behavior is transcribed and 

becomes the raw record of the experiment, along with a record of relevant 

non-verbal behaviors, such as writing down expressions. This is the protocol. 

3. After intensive analysis (in terms of hours per minute of 

subject behavior) a proposal emerges for a scheme of information processing 

that will simulate the subject's behavior. This is shown in Figure 2; we 

may call it the flow diagram, although it can take varied forms. 

4. A computer program (called GPS in this instance) is coded 

and debugged that outputs a record, called the trace, which purports to 

correspond to the behavior indicated in the protocol. Figure 3 shows a short 

sample of the protocol and trace, side by side. 

The behavioral situation used in this example is one of deliberate, 

extended problem solving in a formal, abstract, symbolic task. Most attempts 

to work with this scheme of protocol analysis have involved tasks that can be 

similarly characterized. Since we will continue this focus in the present 

paper, let us note now that not all information processing theories deal with 

problem solving behavior [1, 3, 32, 33]. Nor is the only appropriate experi­

mental paradigm for problem solving one involving simulation of individual 

protocols [8, 13, 14, 29]. Our narrowness of view here is conditioned primarily 

by the urge to fashion this one scheme of analysis into a more useful tool. 



Objects are formed by building up expressions from letters (P, Q, R, ...) 
and connectives . (dot), v(vedge), D (horseshoe), and - (tilde). Examples are 
P, -Q, PvQ, -(RDS).-P. — P is equivalent to P throughout. 

Twelve rules exist for transforming expressions (where A, B, and C may be 
expressions or subexpressions): 

Rl. A.B—»B.A 
AvB—?BvA 

R2. AOB-*-B3-A 

R3. A.A«-»A 
AvA<—*A 

Bh. A.(B.C)«->(A.B).C 
Av(BvCH-^(AvB)vC 

R5. AvB<-»-(-A.-B) 

R6. A^B«->-AvB 

R T . A . ( B V C ) « - » ( A . B ) V ( A . C ) 

A V ( B , C ) < - » ( A V C ) . ( A V C ) 

R8. 

R9-

Rll. 

A.B—»A 
A.B—>B 

A—?AvX 

RIO. A 

R12. ADB 
BOC 3 

B 

Applies to main 
expression only. 

Applies to main 
expression only. 

A and B are two 
main expressions. 

A and A^B are two 
main expressions. 

ADB and BoC are 
two main expressions. 

Example, showing subject's entire course of solution on problem: 

1. (R-3-P).(-ROQ) -(-Q.P) 
2. ( - R V P ) . ( R V Q ) Rule 6 applied to left and right of 1 . 
3. (-RvP).(-ROQ) Rule 6 applied to left of 1 . 
k. R^-P Rule 8 applied to 1 . 
5. -Rv-P Rule 6 applied to h. 
6 . - R 3 Q Rule 8 applied to 1 . 
7- RvQ Rule 6 applied to 6 . 
8 . ( - R V - P ) . ( R V Q ) Rule 1 0 applied to 5 and J. 
9 - P3-R Rule 2 applied to h. 
10. -Q3R Rule 2 applied to 6 . 
11. PD Q Rule 1 2 applied to 9 and 6 . 
12. -PvQ Rule 6 applied to 1 1 . 
13- - J P . - O Rule 5 applied to 1 2 . 
14. -f-Q.p) Rule 1 applied to 1 3 . QED. 

Figure 1: Logic Task. 
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Goal: Transform object into object B 

Match A to B 
to find 

difference D 
B Subgoal: 

Reduce D 

none 

Success 

Subgoal: 
Transform A f into B 

fail 

Fail 

success ̂Success 

fail 
N/ 
Fail 

Goal: Reduce difference D between object A and object B 

Search for operator Q 
relevant to reducing D 

none 
Fail 

Test if feasible 
(preliminary) 

Subgoal 
Y e s )[ Apply Q to A 

producing A* 

no 

-^Success 

fail 

Goal: Apply operator Q to object A 

Match condition 
of Q to A 

find difference D 

Subgoal: 
Reduce D 

none 

. A L 

Subgoal: 
Apply Q to A 1 

fail 

Produce result 

Fail 
i 

- A ^ > Success 

Fail 
A M 

Success 

For logic task of the text: 

Feasibility test (preliminary): 
Is the main connective the same? (e.g., A.B-hB fails against PvQ) 
Is the operator too big? (e.g., (AvB).(AvC) -» Av(B.C) fails against P.Q) 
Is the operator too easy? (e.g., A -> A.A applies to anything) 

Are the side conditions satisfied? (e.g., R8 applies only to main expressions) 

Table of connections 
Add terms 
Delete terms 
Change connective 
Change sign 
Change lower sign 
Change grouping 
Change position 

X X X X X X-

X X X X X 
X X X 
X 

X X X 
X X 

X X 

x means some variant of the rule is relevant. GPS will pick the appropriate 
variant. 

Figure 2: Flow diagram for GPS. 
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Program trace Protocol 

Bl LO -(-Q.P) 
LI (RO -p).(-R^Q) 

GOAL 1 TRANSFORM Ll INTO LO 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

GOAL 2 DELETE R FROM Ll 

GOAL 3 APPLY R8 TO Ll 

PRODUCES L2 R O -P 

GOAL 4 TRANSFORM L2 INTO LO 

GOAL 5 ADD Q TO L2 

REJECT 

GOAL 2 

GOAL 6 APPLY R8 TO Ll 

PRODUCES L3 - R D Q 

GOAL 7 TRANSFORM L3 INTO LO 

GOAL 8 ADD P TO L3 

REJECT 

<no transcription of verbal behavior> 

Well, looking at the left hand side 
of the equation, 

first we want to eliminate one 
of the sides 

by using rule number 8. 

It appears too complicated to 
work with first. 

Now 

no, - no, I can't do that 

because I will be eliminating either 
the Q or the P in that total expression. 

Figure 3: Initial segment of GPS simulation on S4 on problem Dl. 



The paradigm just presented has three dominant features. First, it 

deals with the dynamics of an individual episode of behavior. Second, it 

contains theoretical assertions about the behavior that are precise and 

highly specific. Third, it deals with the content of the task. Thus, the 

theory simulates behavior that is adequate to the task*. Involvement with 

content is also reflected in the use of freely produced linguistic utterances 

as the primary source of data. In this respect the protocol is a natural data 

form for this type of theory. It is appropriate, also, in providing a large 

amount of information per unit of time about the subject. The necessity for 

this becomes apparent upon considering how to identify a system as complex as 

a problem solving human. 

The major problems in protocol analysis arise from these same dominant 

features. Let me mention two problems that are already prominent^ before 

turning to a third that is my own greatest concern and the focus of this paper. 

The problem of assessment. In assessing the validity of the program 

to describe or explain the subjects behavior, two things are missing to which 

psychologists have become accustomed. First, there is no acceptable way to 

quantify the degree of correspondence between the trace of the program and the 

protocol. This is not a problem of making the inference definite or public. 

Trace and protocol can be laid side by side, as is done in Figure 3. However, 

comparison still must be made between an elaborate output statement and a free 

linguistic utterance. Although a human can assess each instance qualitatively, 

there are no available techniques for quantifying the comparison, or summarizing 

the results of a large set of comparisons. 

More precisely, a simple and completely specified interpreter is sufficient 
to translate the statement of the theory into adequate behavior. 



Second, the program has been created partly with the subject's protocol 

in view. Thus, something analogous to the calculation of degrees of freedom 

used in fitting curves with free parameters to data is appropriate. But 

programs are not parameterized in any simple way and no analytic framewprk 

yet exists for allowing for degrees of freedom. 

The problem of theory. Programs are symbolic structures that specify 

the behavior through time of a system in the same manner as difference 

equations [25] — thus, their availability as theories. Still a certain 

discomfort exists in the idea of programs as theories [30, chapter 2 ] . The 

discomfort stems partly from the specificity of the theory, since it appears 

to be limited not only to a single person, but to a single episode. While in 

other areas, such as the earth's geological development, we are content to 

construct a theory of the history of an individual system, it is clear that 

little scientific interest per se attaches to the particular college student 

of our example. Thus, we must view these individualized theories — micro-

theories would be an appropriate term* — as the way to bring a more general 

theory into contact with its data. This more general theory, of course, is 

neither so formalized nor precise as the microtheories to which it gives rise. 

In part it includes the basic possibility of viewing a human in a precise way 

as an information processing system. But it also includes a theory of how 

problem solving is accomplished what mechanisms are common to all humans; 

what methods are possible and under what conditions they are evoked; and so on. 

This latter theory sometimes receives considerably less emphasis in discussions 

of cognitive simulation than the basic information processing model. 

Even though this term is currently used in a somewhat broader sense as a 
theory covering a miniature domain of behavior — e.g., a theory of the T-maze. 



The feelings of discomfort with program as theory are compounded by 

the difficulty of differentiating those parts of the program that have 

psychological import — that are part of the theory — from those that are 

only included to get the program to run on a digital computer. This is 

further compounded by the large size of simulation programs in numbers of 

instructions or subroutines, which seemingly imply a vast number of mechanisms, 

almost none of which have direct psychological support. 

The problem of program induction. Observing current practice, one may 

ask where the simulating program comes from — it appears to leap full grown 

from the head of some programming Zeus. While the question of how to induce 

programs from protocols has only minor relevance to validating theory, it is 

crucial to theory development. This is especially true, since we need to 

construct large numbers of microtheories in order to discover the general 

nature of the information processing performed by humans. That only a small 

number of simulations have actually been completed, each a product of 

excessive loving care, testifies to the need for further development of 

techniques for protocol analysis and program induction. 

There seem to be several issues. Starting with the raw protocol, there 

is the question of how to extract information from linguistic utterances. The 

concern with linguistic data bequeathed us from the distrust of introspection 

by American behaviorism is subsiding and has been discussed elsewhere [4, 19]. 

But accepting the legitimacy of linguistic data does not of itself provide 

positive techniques for analysing them. Second, as already noted, simulation 

is often presented with only the basic theory of information processing described, 

the theory of problem solving going largely unmentioned. This creates the 

appearance that there are no guidelines about how to put a program together, 



only that one should start with a "symbol manipulating" system. Finally, 

there are few if any data-oriented techniques that permit the analyst to 

display the behavior of his subject so that the features that should be in 

the program become clear. 

In this paper I will present one scheme for improving our ability to 

induce programs from protocols. By and large, the other issues will be 

ignored, although in the end some suggestions on assessment will emerge. 

The scheme will start from the data end -- from the protocol -- and gradually 

move toward completely specified programs, although never quite getting that 

far. 

Theories of Problem Solving 

We start with a brief restatement of the information processing theory 

of problem solving in a form that facilitates making contact with data from 

a new task. The theory, as sketched below, is not as broad in scope as the 

full range of experience in constructing programs to solve complex problems 

[20, 23]. However, it does appear to capture some of the central notions. 

The theory assumes an underlying information processing system like 

that shown in Figure 4. This system comprises a large memory of symbolic 

structures, an essentially serial processor for accessing and restructuring 

this memory, and some imput-output structures. The organization is familiar 

enough, differing from existing hardware computers primarily in that (1) its 

memory organization is a constructable network of labeled associations between 

symbols, rather than a fixed numerically addressed array of words; and (2) 

primitive arithmetic processes are absent. 

The detailed structure of the information processing system will be 

ignored. Providing that memory is sufficiently stable, the system is a universal 

machine, capable of carrying out arbitrary symbolic processes. Rather, the 
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Figure 4: Basic information processing system. 



theory is concerned with the methods, organization of processes, knowledge, 

etc., that constitute the program that a given system follows when problem 

solving. This viewpoint is clearly oversimplified. Limitations on immediate 

memory, on the rate at which reaction can occur to new data, and on the rate 

at which relatively permanent memory can be built up all pose boundary condi­

tions within which the problem solving organization must operate. Additional 

limitations exist on perceptual and motor processes, but can be avoided in 

setting up experimental situations. Not so the former, and our excuse for 

ignoring them is our ignorance of how they affect problem solving, together 

with the fact that humans solve problems in such a way that these boundaries 

are not especially evident. 

Problem solving takes place in a problem space. Abstractly considered, 

the elements of this space consist of states of knowledge about the problem. 

Operationally, they consist of data structures in the memory, which form an 

internal representation of the knowledge about the task environment. Both 

the initial situation and the desired situation must find their representation 

as elements of this space. Besides elements, a problem space has associated 

with it a set of operators, which, when applied to an element of the space, 

produce new elements. Thus, these operators are the means by which new 

information about the problem can be obtained from old. 

Problem solving is always a matter of search — of starting from some 

initial position (state of knowledge) and exploring until a position is attained 

that includes the s o l u t i o n — the desired state of knowledge. The behavior of 

a problem solver is not fully determined by the problem space. Figure 5 

shows the range of considerations that are relevant when the problem solver is 

at a position in the space. These express the degrees of freedom through 



Evaluate new position: 

Is it the desired state? 

Should it be remembered, so that either can return 
to it later, or can recognize it when encountered again? 

Is there some new information that should be extracted 
and remembered independently of position? 

Is this progress, so that search should be continued; 
or are there difficulties? 

Select new operator: 

Has it been used before? 

Is it desirable: Will it lead to progress? 

Is it feasible: will it work in the present position 
if applied?. 

Apply operator to present position: 

If works, then produces new position. 

If not work, what are the difficulties? 

Evaluate difficulty: 

Should a subgoal be set up to overcome this difficulty? 

Should the position be rejected? 

Return to prior position? 

Return to initial position? 

Return to a remembered position; if so, 
which one? 

Evaluate old position, just returned to: 

Should it be used, or rejected? 

Figure 5: Considerations at a position in problem space. 



which intelligence (or stupidity) can be manifested. The considerations of 

Figure 5 do not form a program for behavior at a position, since the system 

of a problem solver may organize them very differently, perhaps ignoring some 

altogether. Nor is the list necessarily complete, although it seems to 

encompass many of the considerations used by both artificial and human 

problem solvers. 

Search is a problem space is constructive. The elements of the space, 

although they exist abstractly, do not exist for the problem solver unless he 

generates them, or remembers them for later retrieval once generated. This 

gives the search a different character from that through a world that exists 

independently of the problem solver — e.g., a forest. In essence, problem 

spaces are always exponentially growing trees: two independent paths cannot 

end up at the same element of the space. One cannot do in a problem space 

what one does in a forest: put marks on trees to recognize the same place 

if it is returned to. In the problem space a data structure may be generated 

that is identical in structure and content to another but it will not be 

the same data structure, hence will not contain any "tree mark. , f Only if the 

problem solver remembers each new element as it is constructed, and determines 

if each new one is identical with any of those kept so far, will he be able to 

simulate the tree marking scheme. 

Initially, a problem solver is given a problem through some external 

representation of the pertinent situations, goals, constraints, conditions, 

operations, auxiliary facts, etc. The problem space is not given — the 

problem solver must select or create a problem space in which to solve the 

problem. That is, he must encode the information in the external representation 

into an internal one in which he can effect the transformations required by 



the operators, which he also constructs (or selects). This problem space may 

be already available inside the problem solver ~ he may simply translate into 

an already well known system. Alternatively, it may be constructed out of 

more elementary things he can do, as when he learns a new set of operations 

provided by the experimenter. 

Currently, the theory says little about the selection and construction 

of problem spaces; primarily because experience so far has been mostly with 

problem solving systems in which the investigators invented the problem spaces 

themselves and simply programmed the computers to problem solve in them. As 

we shall see, the question of what problem space is used is critical. However, 

it should not be assumed that the problem spaces used are exotic. They often 

lie very close to the obvious one suggested by the defining conditions of the 

problem. 

The problem solver is not limited to a single problem space. He may 

obtain a new one after finding the initial one inadequate. More important, 

he may make use of more than one simultaneously. An example is provided by 

the program for proving theorems in plane geometry [11], which uses both a 

space of symbolic expressions, representing theorems, and a space of coordinates, 

representing the diagram. This latter provides much of the problem solving 

power of the system, since operations of direct measurement of angles and 

length are available in it to check the assertions of the theorems. 

The possibility of using several problem spaces emphasizes that the total 

problem solving system is not to be simply identified with a single problem 

space. Information that is constant throughout a problem may find no repre­

sentation in the state of knowledge, nor will the processes that take it 



Into account. Retrieval processes and the organization of large amounts of 

data may not be represented in a problem space, even though of critical 

importance to problem solving. 

The Ecoblem Behavior Graph (PBG) 

Let us see what this theory implies when applied to protocol material. 

If we knew what problem space the subject was working in, then we could 

view his behavior, as revealed through the protocol, as a search in this space. 

More precisely, we would be able to 1) state the kinds of information that make 

up the states of knowledge of this space; and 2) specify a set of operators, 

such that each change in the state of knowledge corresponds to an application 

of one of the operators. 

From a descriptive point of view we can ignore all of the considerations 

of Figure 5. To track the subject's search it is enough to have well specified 

just the elements and operators of the problem space, not all the additional 

rules of selection and decision. Even so, we have stipulated a non-trivial 

requirement. Numerous cues exist in any protocol about both the state of 

knowledge and the operations and inferences the subject is performing — the 

language is full both of phrases indicating propositions and phrases indicating 

processes and actions. Since the set of operators is fixed, and since every 

change in state of knowledge is to come about through the application of one 

of these operators, there are many places to go wrong. 

The actual problem space used by the subject is unknown. Indeed, it is 

even unknown if the subject is behaving in accordance with the theory. 

Consequently, the appropriate data analysis procedure is to posit a problem 

space and see if the subject can be analysed as searching in this space. 



In case the subject is wandering in more than one space, of course, the two 

must be unravelled simultaneously. If we are successful, we shall know it by 

getting a reasonably complete picture of the search (it will not be perfect 

in any event due to ambiguity and incompleteness in the protocol). Then, we 

can go on to consider what other information about the remainder of the subject* 

program can be obtained. 

Search trees published in the literature of problem solving programs 

show mostly the total extent of the search — what positions were ultimately 

visited [12, 28], Often, if the search strategy is simple — e.g., a so-

called depth-first strategy — the actual path of search can be inferred from 

the total tree. However, we need a way of tracking the search that lets us 

reconstruct the time history. The scheme we adopt we call the Problem  

Behavior Graph (PBG). We give the conventions below; referring to Figure 6 

for an example. 

Rules for Problem Behavior Graph (PBG) 

A state of knowledge is represented by a node (the 
labeled boxes in the figure). 

The application of an operator to a state of knowledge 
is represented by a horizontal arrow to the right; 
the result is the node at the head of the arrow 
(Operator Ql to position Pi gives position P2). 

A return to the same state of knowledge as node X is 
represented by another node below X and connected to it 
by a vertical line (P3 results after abandonment of P2; 
it constitutes the same state of knowledge as PI). 

Time runs to the right and down; thus the graph is 
linearly ordered by time of generation (from PI to P5). 

The problem solver is viewed as always being located at some node in 

the PBG, and having available exactly the information contained in its state 

of knowledge. The act of search itself generates information in addition 



PI P2 PI P2 

P3 az > a i > 
P5 P3 P5 

Figure 6: Problem Behavior Graph (PBG), 



to that represented at the node: in particular, path information about how the 

node was arrived at; and past attempts information about what else has been 

done when in this state of knowledge. Both these kinds of information are 

viewed as being associated with a node; in fact, this sort of information is 

what distinguishes node P3 from PI. 

With this much apparatus, we are ready to consider some examples. 

Crypt-arithmetic. The top of Figure 7 shows a version of a familiar 

puzzle, called a crypt-arithmetic problem by one collector [2]. Each letter 

is to be assigned a distinct digit between 0 and 9 such that when the letters 

are replaced by their assigned digits a legitimate sum is obtained. 

As a starter, it is given that D is 5; thus, no other letter can be 5 and a 

5 must replace all three occurrences of D in the figure. 

In accordance with the paradigm, a subject (a college student) was given 

the task to solve, with instructions to "think aloud". The initial segment 

of his protocol is shown in Figure 8. It has been broken into short phrases, 

which have been labeled. The segment shown amounts to about 12$ of the total 

protocol, the last phrase of the full protocol being B321 (the subject solved 

the problem). The expressions on the right side of Figure 8 will be discussed 

later. 

The first step in the analysis after obtaining the protocol is to 

construct a problem space. The simplest one, of course, is defined directly 

from the rules of the puzzle. The elements are sets of assignments; the 

operators are the acts of assigning a new digit to a new letter. The initial 

position is that one where no assignments have been made; and the final position 

is the one where all ten have been made, such that the three constraints have 

been satisfied. In fact, this problem space would be used by someone who wanted 

to build a simple search program for the task. Clearly, our subject is more 



Problem: DONALD D<-5 Each letter assigned to one and only one digit 
+GERALD Each digit assigned to one and only one letter 
ROBERT 

Terms: entities that can be referred to in problem space 

I is any letter, A, B, D, E, G, L, N, 0, R, T 
d is any digit, 0, 1, 9 

ds is any set of digits, tl,d,•••,d 
£ is any column, cl, c2,..., c7 (cl is the right hand column) 
£ is any carry to a column, tl, t 2 , . . M t7 
v is any variable, either a letter, 1$ or a carry, £ 

Elementary expressions: relationships and properties amond terms 

v^d. v has been assigned the value d 
v=d v has the value d by inference 
v=ds v has one of the values in the set ds 
L>d 
K d J* t * has the respective constraint 1̂  even 1 — r 

1, odd 

1 free ,1 can take any value (in an implied domain) without constraint 

Expressions: an elementary expression or term, ee, followed by a suffix 

ee-p ee is not possible or can take no possible value 
ee? the truth or value of ee is unknown 

ee! the truth or value of eg is critical to the inference 

States of knowledge: any conjunction of expressions (need not be consistent) 

Operators 

PC(£) Process the column £. The input is all the information about 
the column and the letters and carries in it; the output is some 
information that can be inferred from the column, which may include 
specification of something as critical (!) or unknown (?). 

GN(v) Generate the values of variable v. This takes into account the 
constraints known to hold for v (e.g., v odd), but not the 
exclusion of values due to assignment to other variables. 

AV(v) Assign a value to the variable v. The output is in form V*m I . 

This value will be selected from the set generated by GN(y). 

TD(l,d) Test if I can take the value d. Failure is due to d.being assigned 
to another letter, or to d lying outside the permissible range for J.. 

Goals 
get v get a value for v; determine something about the value of v 

get ee determine whether expression is true 
check ee determine whether expression, known to be true, is in fact true 

Figure 7: Crypt-arithmetic: Definition of problem space. 
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Bl Each letter has one and only one ? : 
numerical value — 

B2 Exp: One numerical value. 

B3 There are ten different letters 

B4 and each of them has one numerical 
value. 

B5 Therefore, I can, looking at the 
two D f s — 

B6 each D is 5; 

B7 therefore, T is zero. 

B8 So I think I 111 start by writing 
that problem here. 

B9 I fll write 5, 5 is zero. 

BIO Now, do I have any other T fs? SI: T=0 -> FC(T)=> 4 

Bll No. 

B12 But I have another D. Si: D<-5 -> FC(D)=> c6 (no PC(c6)) 

B13 That means 1 have a 5 over the 
other side. 

B14 Now I have 2 A f s G4: get Is -> FL(ls)=> R; get R 

B15 and 2 L f s 

B16 that are each — 

B17 somewhere — 

B18 and this R --

B19 3 R f s — 

B20 2 L f s equal an R — S2: get R -> FC(R)=> c2; PC(c2,R)=> R odd 

B21 Of course I fm carrying a 1. 

B22 Which will mean that R has to 
be an odd number. , ; , , ^ 

Figure 8: Crypt-arithmetic: Initial segment of protocol. 

(ask Exp. about rules) 

SI: D*-5 -» FC(D)=> cl; PC(cl)=> T*=0 

Tl: T=0 -»TD(T,0)=> + 



B22.1 Rl: PC unclear -> get R; repeat PC 

B23 Because the 2 L f s 

B24 any two numbers added together 
has to be an even number 

B25 and 1 will be an odd number. 

t PC(c2,R)=> R odd 

B26 So R can be 1, 

B27 3, 

B28 not 5, 

B29 or 7. 

B30 or 9. 

S4: get R GN(R)=> 1,3,5,7,9 

Tl: R=d TD(R,d)=> R=5-p(D<-5.1) 

B30.1 ? : 
B31 Exp: What are you thinking now? 

B32 Now G 

B33 Since R is going to be an odd 
number 

B34 and D is 5, 

B35 G has to be an even number. 

S2: get R FC(R)=> c6: PC(c6,R)=> G even 

B35.1 Rl: PC unclear -> get G; repeat PC 

B36 I'm looking at the left side 
of this problem here where it 
says D + G. 

t : PC(c6,G)=> t6? 

B37 Oh, plus possibly another number, 

B38 if I have to carry 1 from the 
E + 0. 

B39 I think 1*11 forget about that 
for a minute. 

? : 

B40 Possibly the best way to get to 
this problem is to try different 
possible solutions. 

B4l I fm not sure whether that would 
be the easiest way or not. 

Figure 8 (continued) 



sophisticated. He makes inferences using the column constraints; he uses the 

carry; he works with concepts such as even-oddness; he attends to the columns 

in variable order. 

The bottom part of Figure 7 provides a definition of a problem space 

for this subject*. The element, corresponding to the state of knowledge, is 

a conjunction of elementary expressions, each of which deals with some relation 

between variables (letters or carries) and digits. Neither path information 

nor past attempts information is stated explicitly. Actually, we would hope 

to infer from the PBG what information of this kind is being kept. 

There are four operators**. Each is defined with reasonable precision 

in terms of input-output characteristics, which are the features necessary to 

identify whether the operator was evoked in the protocol. Whether all occur­

rences so identified constitute a single operator, in the sense of being produced 

by a consistent subroutine, is a matter for later analysis***. The initial part 

of the PBG, extending somewhat beyond the segment of protocol reproduced in 

Figure 8, is given in Figure 9. The double lines indicate that an operator 

is being repeated from the same state of knowledge. A condensed version of the 

complete PBG is given in Figure 10. 

This analysis of crypt-arithmetic is taken from [22], where the entire 
protocol and all the other matters dealt with here informally are treated 
in greater detail. In particular, the problem space is defined by means 
of Backus Normal Form, in order to give a precise description of what 
information can constitute a state of knowledge. Clarity, of course, is 
essential if the concept of state of knowledge is to be more than a 
descriptive metaphor. 

To the alert reader: The formulas on the right hand side of Figure 8 
contain not only the four operators of the problem space, but others as 
well, which will be discussed later. 

It is not discussed further here, but see [22]. 
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Let us consider briefly how the coding goes. Starting at the beginning 

(Bl) we have an exchange that is really outside the problem space, since it 

involves clarification of the rules. We simply indicate this by a special 

footnote (1). In the second box, B5, we have a clear statement of 1) considering 

the two D f s , asserting their value, and concluding that T is zero. The coding 

of this as the operator PC(cl) is clear. Some open questions are 1) when did 

the inference actually occur; 2) why did column cl get considered; 3) was it 

desired to find the value of T before processing column cl; and 4) was it also 

concluded that t2=l ? About some of these questions we do not need to have the 

answers. As to the first, we require only the approximate ordering. As to the 

second, the selections of columns is internal to each box and thus irrelevant 

to the problem graph. The third question is relevant, but we adopt the view 

that unless specific information is available on the variable desired, we will 

not record it. Finally, although it is plausible that t2=l is inferred since 

5 + 5 = 10, there is no immediate evidence. However, later behavior (B21) 

shows that in fact this information was retained. 

The next box, B8, should be considered in conjunction with box B20. 

In this latter we clearly have a consideration of column 2 with the inference 

of R odd. If we write down what happens before this we have: 

B8-B9 Writing prior result 

B10-B11 Searching for a next step with no result 
in terms of our problem space. 

B12-B13 Another writing step, when D of c6 is 
noticed; conceivable that new information 
obtained, but certainly no evidence for it. 
(Result of B9 and B13 indicated by X2.) 

B14-B19 Consideration of c2, c3, A, L and R in the 
apparent search for a next step. No new 
information obtained in our problem space. 

B20-B22 Processing of c2. 



The concern with R, clearly indicated in B18 and B19, leads to the inference 

that the decision to process column c2 is based partly on the decision to 

obtain some information about R. Thus we code B8 with the goal of getting R. 

Those things occurring prior to B18 all belong within a box: the operations of 

writing and the (attempted) selection of columns on which to work. If the 

inference to get R were less clear, we would have only a single box for B8 to 

B22, whose operator would be PC(c2). 

It is clear that in B23 to B25 the reasoning used in B20 to B22 is 

repeated. Why the repetition occurred is not as clear. It might be to 

check the processing — to assure that the inference is correct. That a 

correction can occur the second time around is shown by the sequence B32-B35, 

yielding G even, and the immediate repeat, B36-B38, leading to the realization 

that no such inference is possible. Repetition might also be affected by the 

experimental instruction to get the subject to talk. In any event, we need 

to create a box, B22.1, for the result of the first PC(c2) and then back up one 

for the second at B23. 

In B26-B30 an explicit generation of the odd digits follows immediately 

upon the (confirmed) conclusion that R is odd. Thus the inference that GN(R) 

occurred is not problematic. The generation does not take into account what 

values are already used, since the already used digit, 5, is generated and 

explicitly rejected. This supports the inference that TD was applied to the 

output of GN. It is not as clear, of course, that TD was applied to 1, 3, 

7 and 9, since these were OK and no special indication of their acceptability 

is provided. However, if TD was applied sometimes and sometimes not, then a 

process must have existed to make this decision; but this process would have 



had to perform (uniformly) the same function as TD; namely, to determine if 

a digit were used. Consequently, it is simpler to assume that TD was applied 

uniformly. 

B31 signals a pause, since the experimenter breaks in with a prod to 

talk. Since there is no evidence in what follows B32 that the refinement of 

the information to R=l,3,7,9 is used, rather than the more primitive, R odd, 

it is inferred that the search backed up. Quite possibly additional processing 

did go on from B30.1 during the pause, but since we have no evidence for it, 

we make no explicit note of it. If new information were obtained, it should 

show up either at B31 (which it doesn't) or at some later time as new 

"unexplainable 1 1 knowledge. 

We have only given the first bit of a very long (and dull) argument. 

In a majority of cases the encoding is quite clean. Frequently, some 

appreciable inference must be made as to the underlying process. And in a few 

cases we have no information as to what transpired, as at B30.1. The basis of 

these inferences, from the most obvious to the most indirect^ lies in our 

(the encoder's) ability to interpret natural language. This interpretation 

itself demands, however, a view of the task in information processing terms 

and of the subject as an information processing problem solver. Thus, we have 

not attempted any encoding of the language of the protocol prior to extracting 

the PBG. Where such an a priori coding is possible, e.g., "each D is 5; 

therefore, T is zero", it isn't needed. Where it is needed, 'ttow I have 2 A f s 

and 2 L's that are each — somewhere — and this R — 3 R's — it isn't 

safe*. 

In an earlier study of chess [27] we did try a preliminary coding, but 
achieved little more benefit from it than the segmentation of the protocol 
into elementary phrases. 



What do we learn from the PBG for this subject? First, his problem 

solving can be described as search in a well defined problem space. Second, 

from the definition of the problem space, we obtain information about the 

intellectual tools he is capable of using. This is revealed most clearly 

by the kinds of situations in which PC is able to provide new information — 

e.g., to take as inputs R odd and D<-5 and produce G even. Third, we have 

taken a preliminary step to asking if there exist regularities in his search 

behavior. This does not follow from the existence of the search tree. The 

encoding has been done entirely on a local basis. Whether the subject has 

consistent modes of behavior for carrying out the considerations of Figure 5 

remains an open question. The PBG does provide a segmentation of the total 

stream of behavior into a set of units (238 of them in this case) that now 

permit inquiry into further regularities. Before turning to this next 

stage of analysis, let us examine some PBG fs in other tasks. 

Chess. Figure 11 shows a complex middle game position in chess, and 

Figure 12 gives the initial segment (15$) of the protocol of a player of 

moderate ability choosing a move for White. The problem space for this 

subject, shown in Figure 11, is by and large the obvious one. The elements 

are chess positions, the operators are moves. The position of Figure 11 is the 

initial position and the subject searches out from it looking for positions of 

advantage. These latter are characterized mostly by tests and not by specific 

chess positions. But these tests are only brought to bear on positions 

constructed via moves from the initial position, so that a more generalized 

problem space element is not required. 

The subject occasionally makes use of generalized operators of the form 

••Man M on Square S defends, " or '̂ Man M on Square S moves away." That is, the 

man is fully specified, but the square to which he moves is only specified up 

to a function term. This does imply a generalization of the concept of position, 



T 

Position A [4] 

White to move. 

State of knowledge. A generalized chess position containing: 
Located men: Men are located on a specific square 

Unlocated men: 

Functions: 

Operators: 

Men on no specific square, but have an 
associated function they have performed 
Functions that have been performed, but whose 
agents have not been specified 

A move consisting of an agent (the man being moved) 
and an action (his moving to a square, vacating a 
square and perhaps capturing a man) 

Legal moves: The agent is a located man and the action is specified 
Examples: Given in standard chess notation, except 

that on the graphs Black men are primed 
P-K4 White Pawn moves to square K4 
Q f-Ql Black Queen moves to square Queen 1 

Function moves: A located man as agent with the action given only by the 
function to be performed; produces an unlocated man 

Examples: B-defends 
Qt-retreats 

An action either specified completely or by function, 
but with no agent given 

Examples: wxB White capture a specific Black Bishop 
not P fxP A Black move that is not a specific 

one 

Figure 11: Chess: Definition of problem space. 



El Bl 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

B9 

BIO 

Bll 

B12 

B13 

B14 

B15 

B16 

B17 

B18 

B19 

B20 

One, two, three, four, five 
six - six Pawns each. 

Black has what threats? 

His Queen is threatening my 
Knight's Pawn 

and also he has one piece on 
my Queen's Pawn -

has a Rook in front of the 
Bishop, 

which will give him an open file. 

Let's see, all right, what 
threats do we have? 

We have his Knight under 
single attack 

protected by the Bishop. 

We have his other Knight under 
attack 

protected by three pieces. 

The Queen is bearing down on 
the Knight's Pawn 

and the Rook is over here 
protecting the Knight 

and the Bishop at Rook 2 is 
bearing down on the Knight. 

All right, looks like we have 
something going on the King's side. 

All Black's pieces are over on 
the Queen's side -

B23 

B24 

B25 

B26 

B27 

B28 

B29 

B30 

B31 

B32 

B33 

B34 

B35 

B36 

E3 B37 

B38 
most of them out of play -

good chances for an attack perhaps. B39 

See, what moves are there? 

The Bishop at Rook 2 can take the 
Knight, 

which would be no doubt answered 
by either Bishop takes Bishop or 
Pawn takes Bishop. 

Probably Bishop takes Bishop 

to avoid isolating the Pawn. 

If we then play Knight takes Bishop. 

he will then play Pawn takes 
Knight or Rook takes Rook, 

but this would give White an open 
file if he exchanged 

and this is doubtful. 

This would isolate Black's 
Queen's Pawn -

it would be protected only by 
the Knight 

which is pinned, 

therefore we could move the 
Queen to Bishop 3, 

not only putting another threat 
on the Knight, 

but also threatening an isolated* 
Pawn. 

Both of them could not be protected 
simultaneously unless Queen to 
Queen 1. 

All right, well, what about Queen 
to Bishop 3 immediately. 

Queen to Bishop 3 immediately is 
not good -

it gives no threat on the Knight 
at Bishop 3 

Figure 12: Chess: Problem segment of protocol of subject 2. 

Okay, White to move... E2 B21 

In material the positions are even. B22 



since after such a move has been made the board is not fully specified. That 

the subject can take such partially specified boards and apply other chess 

moves (operators) to it shows that the problem space is genuinely larger than 

the space of chess positions. This corresponds in crypt-arithmetic to the 

expansion of the state of knowledge to include subset information — e.g., that 

R is odd or that E is 0 or 9. Although the problem space includes function 

moves on located men, it does not include moves on unlocated men; e.g., moving 

a man who was previously f\noved away. 1 1 

The PBG for the subject's total analysis, which lasted about 17 minutes, 

is shown in Figure 13. This is taken from a previously published paper £27]. 

It can again be inferred that the subject's behavior can be viewed as search 

in a well defined problem space. Further, it is clear that the subject does 

not reason very abstractly about the position; his tools of analysis focus on 

the exploration of specific future paths. These tools include the range of 

functions indicated in Figure 5 — move generators, evaluation functions, etc. 

~ but they still work within this highly concrete framework. 

As in the case of the crypt-arithmetic example, the chess PBG provides 

a segmentation of the total behavior in a form in which further regularities 

can be sought. However, even without detailed examination, the total graph 

reveals a striking regularity: the search proceeds by a series of deep 

penetrations with very little branching (and only first level branching), 

followed by a return to the initial position (all of the base points on El to 

E25 the initial position although not tied together by a vertical line). 

Following DeGroot [4], we have called this the progressive deepening strategy 

of search. More details can be found in the original paper. 
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No such clear cut strategy shows up in crypt-arithmetic example. Partly 

this is because of the forms of external memory available. In the chess of 

Figure 13 only the initial position is available; all other positions must be 

carried in the head. In the crypt-arithmetic of Figure 10 the subject is 

permitted write and erase operations in an external memory. Thus, he could go 

back not only to the initial situation, but also to the one written on the board. 

The position of Figure 12 is taken from DeGroot [4]. Hence, it is possible 

to go back and reanalyse some of his protocols on the same position. Figure 14 

shows the PBG of Max Euwe (world chess champion, 1935-37). It should be noted, 

however, that Euwe was by far the most methodical of the grand masters studied 

by DeGroot, and the one who produced the most copious protocols. 

Logic. Figure 15 shows the PBG for the logic problem presented in the 

original example. The behavior in Figure 3, corresponds to the first line 

(where it is assumed that both parts of R8 are carried along together); the 

simulation reported in [24] was carried through line 5. The full PBG represents 

the total episode, lasting close to thirty minutes and ending in the subject 

finding a solution. 

The basic problem space is that defined by the experimenter in setting 

up the task. The states of knowledge are the sets of expressions that have been 

derived to a given point. The operators are the 12 rules in Figure 1 (actually 

representing a very large number of operators if all variations are taken into 

account). The initial element of the problem space consists of the single 

expression initially given (in other variants, several initial expressions 

were used); the desired situation is given explicitly. 

The subject modifies this basic space in two ways. First, in the same 

manner as in the crypt-arithmetic example, he works between two spaces — 



Figure 14: Chess: Problem Behavior Graph of M. Euwe [from protocol in 4 ] . 
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Figure 15 (continued) 



the written one and the one in his head. Thus, although by the rules of logic 

anything derived becomes part of the current state of knowledge forever, the 

subject cannot remain cognizant of the entire past. Instead, the current state 

is defined by a subset of those expressions that have been derived. This is 

forced on the subject by working internally. However, it may even be true of 

some of the expressions that have been recorded on the board; they may be 

taken as irrelevant and not enter into the processing of the current state. 

The extent and lawfulness of these constrictions of the actual state of know­

ledge from that available according to the permissible rules of inference is 

a matter for later analysis. What is recorded in Figure 15 is the information 

actually used in advancing the search at each point. 

The second modification in the problem space is the use of function 

terms for operators. The subject not only has the specific rules (Rl to R12), 

but also 'thange sign," '^Change connective to wedge," 'delete Q," "Cancel 

the S fs," etc. These expressions play a dual role. First, they are the con­

version into an action language of the differences seen between expressions. 

Given PvQ to be transformed into - P O Q , the difference in connectives (the 

v versus the o ) is converted into the statement "Change the connective from 

wedge to dot," or an abbreviated version such as "Change connective." This is 

then used to select one of the admissible operators; e.g., Rule 6 in the example 

above. Thus, function terms play the role of intermediaries in getting from 

perceptions (differences in characteristics of expressions) to actions (the 

legal rules). If this was all they did, then they could be absorbed in the 

process of operator selection and would not appear as operators at all. This 

is essentially the view taken in GPS, where a table of connections going directly 

from differences to legal operators was provided. 



These function terms become operators at the point where a new state of 

knowledge is produced as the result of applying a function term, which then 

becomes the input for another operator, either a legal one or another function 

term. This happens frequently enough in the various protocols to warrant 

treating them as operators. Thus, these function terms correspond directly 

to the function moves in chess (Bishop defends) or the inferences in crypt-

arithmetic based on states of knowledge incorporating set information (E even 

implies E cannot be 9 ) . 

Extensive use of function terms as operators constitutes a variety of 

planning — of proceeding on the assumption that a sequence of legal operations 

can be found later that will carry out the transformation implied by the 

function terms. Figure 16 shows the PBG on a different problem (and a 

different subject) that leads to an extended plan (lines 1 and 2) with reworking 

of the plan to fill in the detail (successfully, as it turns out). This form 

of planning has been analysed elsewhere in more detail using the sorts of goal 

structures GPS would set up in creating such plans [21]. 

Missionaries and Cannibals. The missionaries and cannibals puzzle has 

been used frequently as a task for problem solving programs. Three missionaries 

and three cannibals wish to cross a river, but have only a boat that holds two 

people. All can row, but it must never happen that on any shore there are more 

cannibals than missionaries. The task is to specify the schedule of boat loads 

back and forth across the river so that all six will eventually end up on the 

far side of the river. 

Figure 17 shows the problem space for a human subject solving the M&C 

puzzle; Figure 18 shows the PBG [18]. The problem space is again the obvious one: 

a particular arrangement of missionaries, cannibals and boat being the state of 
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Figure 16: Logic: Problem Behavior Graph of subject 8 on problem A4. 



knowledge, and the various possible boat loads moving across the river being the 

operators. The one additional feature is that the subject sometimes distinguishes 

putting men into boat and taking them out as a separate move. This additional 

elaboration, which is completely non-functional, accounts not only for some of 

the elaborateness of the PBG, but for some of the blind alleys. In line 6, 

for example, the subject ignores the constraint on the right because the cannibal 

doesn't get out of the boat. Again, like crypt-arithmetic and logic, the subject 

has an external representation, which provides a memory of the current position. 

In this task actual porcelain figures on a facsimile river were used, rather than 

a written record, so there was no cumulation of past data, as in logic. Through­

out the entire course of problem solving this subject remained within this 

elementary problem space, except at one point. In line 16, he discovers the 

crucial move by making two illegal moves in a row. He then combines them legally 

in line 17. Of course, this does not go outside the problem space, only outside 

the bounds of strictly legal moves. 

Summary. We have now presented PBG fs from several tasks. In all cases 

we get the same information. First, we obtain confirmation that the subject is 

solving the problem by search in a closed space. Second, we get a characterization 

of that space in terms of the kinds of knowledge used for states and the kinds 

of operators for deriving new knowledge. This provides one description of the 

intellectual level on which the subject is operating. Third, we prepare for 

the next stage of the analysis — to ask what can account for the particular 

search patterns that emerge in the PBG. In some cases, such as chess, we could 

already generate some hypotheses on the basis of the global features of the graph, 

without inquiring in detail what choices were made at each point. More generally, 

if a program were to be constructed to simulate the episode, we would expect it to 

reproduce the PBG with some fidelity. 



States of knowledge: 
The configuration on the river, consisting of the location of the boat 
(> on left, <J on right) and the location of the missionaries (M) and 
cannibals (C) on the riverside and in the boat. 
Examples: MMMCCO Initial position: all on left, boat empty 

MMMC.CO All on left, but two C in boat 
MMMC<CC. Two C on right, but still in boat 
MMMC<CC Two C on right with empty boat 
<*1MMCCC Final position: all on right, boat empty 

Operators: 
Moving boat across the river and putting men in and out of boat 
Let X be a sequence of M v s and C f s 

-> Move boat from left to right, disembark all men 
<- Move boat from right to left, disembark all men 

Move boat from left to right, do not disembark 
Move boat from right to left, do not disembark 

*X Add X to the boat (note: boat may already have men in it) 
tX Disembark X from the boat (note: may leave some men in boat) 
X-* Add X to boat, move from left to right and disembark 
<-X Add X to boat, move from right to left and disembark 

X->. Add X to boat, move from left to right, do not disembark 
• «-X Add X to boat, move from right to left, do not disembark 

Evaluation codes: 
-1 Too many C on left 
-r Too many C on right 
c Cycle: return to prior position 
i Experimenter interrupts 
? Uncertain 
+ Success 

Two spaces (both with same knowledge states and operators): 
External space: States are squares; operators are solid 
Internal space: States are circles; operators are dashed 

Figure 17: Missionaries and Cannibals: Definition of problem space 
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Figure 18: Missionaries and Cannibals: Problem Behavior Graph of subject 64. 



We have not discussed the various possibilities for error in creating a 

PBG, except to comment on the problems of encoding in the crypt-arithmetic case. 

The problem space permits one to ignore part of what goes on in the protocol, 

attending only to what indicates a change of knowledge state as defined in the 

problem space. Thus, much material in the protocol may be left out of considera­

tion. As an extreme example, Figure 19 shows the PBG that would have been 

generated for the crypt-arithmetic example if one had decided to use the external 

problem space i.e., what was written on the board ~ as the state of knowledge; 

and writing a digit in place of a letter as an operator*. We can see that 

this graph is much sparser than the graph of Figure 10. One clue as to its 

inadequacy certainly would be the long stretches of the protocol that lead to 

no change in state of knowledge. The more important evidence would come, however, 

from the inability to carry out the next stage of the analysis — to find any 

way to characterize the way choices are made in this space. 

In general, several kinds of errors are possible in analysing a protocol 

into a PBG. The problem space might be too aggregated, so that the essential 

problem solving occurs within a single node of the graph, and the PBG as drawn 

is concerned only with relatively unimportant features. Alternatively, the problem 

space might be too detailed, so that the relevant control over search is going on 

at a higher level, with the steps in the given problem space simply being the 

means to carrying out these higher level plans. Finally, the problem space 

might be simply epiphenomenal, so that the real problem solving occurs in some 

space that does not reveal itself. The clues that indicate each of these errors 

5/D12 means "write 5 at the occurrence of D in column 1, row 2"; 
3/R2 means 'Vnrite 3 for the occurrence of R in column 2"; 
0/T means 'Vnrite 0 for the occurrence of T. " 
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Figure 19: Crypt-arithmetic: Problem Behavior Graph in external problem space. 



revolve around the unexplainability of various choices made in the PBG under 

analysis. Contrariwise, if the problem space is the appropriate one for the 

episode, then we should be able to describe a collection of processes that 

collectively perform the functions of Figure 5 in a consistent way. 

Analysis of Regularities in the PBG 

At each node of a PBG the subject makes a number of decisions (or 

selections), already summarized in Figure 5. According to the theory, these 

should be based in large part on the state of knowledge existing at that time; 

that is, on the state of knowledge associated with the node, including path 

information and past attempts information. Information outside this state 

may be used as well, but it is either not covered by the problem space (e.g., 

time is running out) or is not variable over the course of problem solving 

(e.g., properties of integers). The subject makes repeated use of these 

processes of decision, and we get essentially one observation per node of the 

PBG. This is an "experiment of nature" in that we do not control the population 

of trials; but if we are lucky we will get a number of decisions in closely 

related states of knowledge from which we can induce what these decision 

processes are and whether they are sufficiently stable to replicate themselves. 

Production systems. We need some language to express the decision and 

selection processes that might characterize the subject. We would like a scheme 

that facilitates inducing these processes, rather than requiring the invention 

of the complete program all at once. One that appears to have some of the 

desired virtues is the production system. This consists of a set of productions, 

each of which consists of a condition expression followed by an action expression 

condition -» action 

The production is to be considered in the context of the state of knowledge at 



a node. If the condition is true of the state of knowledge, then the action 

part is evoked; otherwise the production has no implication for the behavior of 

the system at that node. In applying a production system (i.e., a set of 

productions) to a node, some doctrine of conflict resolution is necessary to 

select a unique action if the condition of more than one production is satisfied. 

The simplest such scheme is a priority ordering of the productions, so that the 

one of highest priority always wins out. 

Production systems have an extensive history in logic and the theory of 

algorithms [17]. They have been much used recently in programming, as schemes 

for handling syntax [6] and doing symbolic computation [9]. Production systems 

are still a perfectly general scheme for information processing; they simply 

divide up the computation somewhat differently than a standard sequential 

programming language. The generality of production systems does not imply 

theoretical neutrality. They make it easy to express certain forms of organi­

zation, hard to express others. Thus, they mold psychological theory to some 

extent. The issue will not be explored further in this paper, but its existence 

should be noted. 

The advantage of a production system for the task of program induction 

lies in the fact that at each node one of the productions is evoked. Therefore 

its condition is true of that state of knowledge and its action occurs at that 

point. Thus, an hypothesis formed by the analyst at a node takes the form of a 

proposal for one of the productions that exists in the system. This can be 

specified independently of what other productions exist in the system. 

Thus, the total system can be put together piece by piece from a consideration 

of what happens in each local situation. 

The system is not actually as free as the above paragraph indicates. 

Once a production has been specified, it should be evoked in any situation where 



its condition is satisfied. Since the states of knowledge are already given 

in the PBG, the set of nodes where a production is theoretically evoked is 

determined. Whether it is in fact evoked, as indicated by what action takes 

place there, is an empirical matter to be answered by an inspection of the PBG. 

To the extent that the production does occur where predicted, we get confirmation 

of a regularity in the subject's behavior. 

Some extensions to the above picture must be introduced before the 

scheme for the analysis of regularities is complete. The nodes provide a first 

segmentation of the protocol. Thu% there will be at least one production per 

node whose action includes the operator that is evoked at the node. But it is 

possible to have additional productions whose output is some intermediate infor­

mation used by another production that leads to the selection of the operator. 

This intermediate information will not be such as to change the state of knowledge 

in the problem space, of course. For example, it might be the discovery that all 

operators had been tried at the node, which would lead to the cessation of the 

attempt to select an operator and to the evocation of a production leading to 

the selection of what node to return to. Thus, the total population of 

observables may increase somewhat as productions are defined. 

Secondly, defining the productions locally and in isolation only partially 

specifies the total production system. Many productions may be predicted to 

occur at a node. The evidence will indicate which one (or perhaps none) of the 

predicted set occurred. A conflict resolution rule, such as a priority ordering, 

needs to be added to complete the production system in a way consistent with 

the actual occurrences. 

A final complication is that we may want to define productions whose 

action part consists of a sequence of actions to be taken unconditionally. 

Such a production would cover several nodes. This situation corresponds to the 

PBG being too disaggregated, so that what is being plotted in the PBG is not 



a series of independent actions, but the implementation of a more global method. 

We are now ready to examine these ideas concretely. We will do this 

only for the crypt-arithmetic example, and even here we will have to be sketchy, 

considering how much detail is necessary to describe fully a production system 

and its coordination with the full protocol. The original analysis [22] 

provides a fuller account. In the original study of our chess example [27] 

a partial analysis of this same kind was carried out, which we will not discuss. 

However, similar analyses are not available for either the logic or the 

missionaries and cannibals examples. 

Crypt-arithmetic. Figure 20 shows the production system for the PBG of 

Figure 10. The condition part of a production occurs on the left side of the 

arrow (->) and the action part on the right. The condition is sometimes composite, 

the bar (|) serving to separate disjunctive alternatives. The underlined letters 

indicate both variables and the class to which the variables belong, as defined 

by the problem space. Thus, v is a variable which is a letter or a carry. The 

square brackets are used to identify something or state an additional condition. 

Thus, in e[v] the variable v that occurs in e is identified; in v[constrained] 

only those v satisfy the condition that are constrained as given in the sub­

sequent definition. The action part may consist of a sequence of actions 

(separated by ; ) . The double arrow (=>) is used to indicate the output of a 

process. 

There are four types of productions. SI to S5 lead to the selection of 

an operator of the problem space (PC, GN, AV). In doing so they may require 

intermediate information about a column, provided either by FC, FA, or GNC, 

processes that are not operators in the problem space since we decided not to 

make the column being attended to a state variable. 



l=d|GN(l)=> d -> TD(l,d)=> J 
V L = ± - P ( E E ! ) 

T2 ee-p FA(ee)=> e e 1 ; ee f-p 
(except <-) 

Repeating 

Rl e[v] [unclear] get v; repeat 2 

R2 check ee[old] -> FP(ee)=> P; get ee; repeat P 

Definitions of additional processes 
FC(v) Find a column that involves v. For 19 the column includes 1^ 

but for t: it may be either the carry-out-of column or the 
carry-into column. 

FA(ee) Find the antecedent that generated ee or, if a variable, 
a relationship that determines v. 

GNC(cs) Generate the columns in the set of columns, cs. 
FL(ls) Find letter in the set of letters, Jjj, that is still 

undetermined and occurs a maximum number of times. 
FP(§§) Recall the production, P, that was used to generate the 

expression ee. (Therefore ee is not a variable.) 

Figure 20: Crypt-arithmetic: Production system. 

Selection 
51 v = d * | - » F C ( v ) = > c; PC(c) (not repeated) 

52 get v| get v=d -» FC(v)=> c; PC(£,v) 

53 GETL ->FA(1)==> c[v]; AV(v); P C ( c , D 

54 get v[constrained]| [ simple]=> d[first]; AV(v,d) 
1 free -» GN(v) (not repeated) 

[-simple]=> ds; [small] -> AV(v) 

v constrained = v odd|v even|v>d|v=ds[small] 

55 check £ S -> GNC(cs)=> £; PC(jc) 

Goal setting 
Gl ee? -» get ee (immediately) 
G2 ee[v]-p -> get v (note: ee-p accepted) (immediately) 

G3 check ee[new] -> get ee 
G4 get Is. -> ¥L(ls)^> 1; get 1 
G5 ee! check ee (not repeated) 

Terminating ( + ( n Q t r e p e a t e d ) 

Tl 



SI reflects the use of newly achieved information by trying to find someplace 

where it can yield still other information. S2 is just the opposite; given 

the goal of getting something, it tries to find a place where something about 

it can be found out. S3 is an indirect form of assignment; instead of assigning 

an arbitrary value to 1 directly, it backs off to something that determines 1̂ , 

assigns a value to it and then derives the value of I. This tends to assure 

that one more relationship will be taken into account. S4 is a reaction to 

obtaining partial information by generating the possible values and assigning 

one of them as a trial. However, if the generation is complex and there are 

many of them (more than two), no assignment is made. S4 is the only production 

with a conditional action sequence. S5 provides for checking an answer by 

iterating through the columns and adding up each successively; it occurs 

only once during the course of the protocol. 

The second type of production, Gl to G5, leads to setting up a goal, 

either to get something or to check something. Gl says: if the value of 

something is unknown, then set up the goal of getting it. This will arise, 

of course, only in the context where the value of that thing has occurred in 

some other processing. That is, the knowledge state does not contain an 

expression, ee?, for everything the system does not know. G2 says: if a 

given statement has been found out not to be true of something, then set up 

the goal of finding out what is true of that thing. G3 says: one way to check 

something is to get its value. G4 reduces the goal of getting the members of 

a set to the goal of getting one of them (the one produced by FL). G5 says: 

if some fact,ee, becomes critically important, as symbolized by eej, then it 

should be checked. Such items can arise from TD in causing something to be 

impossible, or from PC. 



The third type of production, Tl and T2 f is concerned with terminating 

lines of search, Tl evokes TD, the problem space operator that can declare 

something not possible; T2 is the backtrack operator that concludes that if 

something implies an impossibility, then it is, itself, not possible. 

The final type, Rl and R2, is concerned with repeating paths already 

trod. Rl repeats processes that were unclear. R2 says to check an item that 

has already been produced by some processes, repeat that process. It implies 

that the subject remembers something about paths already taken, and has this 

path information accessible as a function of the results produced. 

There is not space to discuss fully the psychological implications of 

this system; they are examined in the more extended treatment. Note that the 

productions jointly accomplish most of the functions given in Figure 5, but 

that they are not organized entirely as that figure would suggest. Notice 

also that the productions are neither novel nor cryptic. Each expresses a 

meaningful unit of action that is rational at a local level — that is, 

adapted to the task at hand. This does not imply that when put together the 

system adds up to highly rational or effective total behavior. In fact a global 

judgment on the subject's behavior would be that, although he appeared to know 

what he was doing, it still took him three to four times as long as it would a 

really good problem solver. 

Given the production system of Figure 20, one can go back to the protocol 

and determine just what productions occur at each point. The right-hand side 

of Figure 8 gives a sample of this. In general there is only one production 

per node, although occasionally more than one, (B8), and sometime a single 

production covers several nodes (B22.1 and B23). A judgment is clearly involved 

in whether a particular production occurs or not. However, it is rare for there 

to be uncertainty between two or more productions. Where it has not been 



possible to determine what production occurred, either because none of the 

defined productions fit or because the protocol is too obscure, a question 

mark (?) has been put down. 

Having decided what can be concluded from the protocol about what 

productions did occur, the next question concerns which productions should 

have been evoked according to their conditions. (It is not possible for a 

production to be evoked when it shouldn't, since both condition and action must 

exist in the data before evocation.) A matrix is obtained, shown in Figure 21*, 

in which the entry in the i-th row and j-th column gives the number of instances 

in which both production Pi and Pj should have been evoked, but Pj was in fact 

evoked. Thus the diagonal entries, (j,j), give the number of times the 

production Pj occurred in the coding of the protocol. Likewise the sum of the 

two symmetric entries, (i,j) and (j,i), give the number of times the two 

productions were brought into competition, so to speak. Their division shows 

who won. Blanks in the matrix indicate that the two productions never competed, 

and are to be distinguished from zeros, which indicate competition with no wins. 

To finish the specification of the production system a conflict 

resolution rule is required. We have used a priorty scheme, although it is not 

entirely satisfactory. Thus, for each pair of productions we want to put higher 

in the order the one which was chosen most often when there was a choice between 

the two. That is, put Pj over Pi if the (i,j) entry was greater than the (j,i) 

entry. If we do this for each entry separately, intransitivities are possible and 

Attend only to the numbers in the upper half of each cell. The figure is 
reproduced from the more extensive study; the lower number indicate a 
category of questionable failures, which we do not discuss here. 
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Figure 21: Crypt-arithmetic: Matrix showing production conflicts. 



indicate that a priority system is not operating. In fact, this procedure 

leads to a consistent ordering, which is shown in the matrix of Figure 22, 

where R2 is highest and G4 lowest. The ordering is not fully determined by 

the matrix. For example, there are no occasions when Rl and S5 were contrasted; 

consequently they could be permuted in the ordering. 

With this priority ordering added, the production system of Figure 20 

uniquely determines the production that occurs at each node, except for the 

?-nodes. The entries above the diagonal of Figure 22 give the number of 

errors made by the system in which a production with lower priority occurred in 

the protocol even though a production with higher priority could have been evoked. 

Figure 23 provides a final summary of what the production system has 

accomplished. It suggests that we could go on adding productions to take care 

of additional cases in the PBG until — in the limit — we would add one 

production for each node. Thus, we can think of adding productions one by one, 

getting for each a certain number of cases handled. The main curve, labeled 

"successful," shows the growth of the total number of situations successfully 

described. Rl, the best production, produces 38 successes; G3, the least 

successful, adds only 2. Since the productions are reordered according to their 

successes, we get a smooth curve showing the diminishing marginal utility of the 

productions in the system. 

As noted earlier, adding productions also adds to the total population 

of observables. This is shown by the curve labeled "relevant," which gives the 

number of situations in the protocol for which some production (or ?) was coded. 

The actual total number of situations (275) was slightly higher,since 8 

situations were deemed to be clearly outside the problem space and thus should 

not be counted. An example is Bl, which deals with the definition of the rules 

of the task. 
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As productions are added, the number of cases not handled (?-nodes) 

diminishes. At the same time errors arising from conflicts between pro­

ductions gradually increase. This is shown by the solid lower curve, labeled 

"errors," which starts at zero and climbs eventually to 23*. This comes from 

summing the appropriate entries above the diagonal in the matrix of Figure 22. 

Let us summarize where we have come. Technically any production system 

is a program. If presented with an initial information state, it will evoke a 

sequence of productions, executing their actions and modifying the information 

state accordingly. This will continue until either the system loops, or a 

state is reached where no production is evoked, at which point the system 

stops. The system of Figure 20, although a program in this sense, is not yet a 

full program either for simulating the subject or even for solving crypt-

arithmetic tasks. If set loose on a new task, 

SEND 
MORE 

MONEY 

it would not know what to do with the left hand column, which has blanks in it. 

That is, the productions have all been built around one episode and have not 

been extended to form a complete system. They have not even been extended to 

cover the ?-nodes, so that as a system it will not keep going for the 

DONALD+GERALD task. Instead, Figure 20 represents the regularities found in the 

protocol and has expressed them in a form in which any program that is built 

can take them into account. Such final programs can be made by extending the 

system by additional productions until it is complete, say, over all crypt-

arithmetic tasks of the simple type used here. Indeed, this seems the natural 

The dotted curve, labeled "errors + ?-errors," adds to the error curve the 
additional entries from the lower half of each cell of the matrix. As noted 
in the earlier footnote, we do not have space to discuss the nature of these 
"questionable" errors. 



way to proceed. But one could also proceed using more conventionally organized 

programs with a more constrained flow of control, or trying to embed the 

process into a structure such as GPS. In these latter cases, the production 

system, along with the summary of how well the various productions fared, 

provides strong statements about what has to go into the simulating system. 

The matrix of Figure 22 and the accounting of Figure 23 also suggest 

we may have made some progress on the assessment of an information processing 

theory. We have managed to obtain an ensemble of instances and to divide our 

process representation up into pieces that can be handled as individual units, 

so that we can count successes and failures. It is still unclear what these 

counts mean in the sense of any underlying statistical theory of the expecta­

tion of various degrees of success. But it is already clear that empirical 

norms are possible. For instance, the appropriate way to record the present 

venture might be as a system of 14 productions in a task with a population of 

267 evocations yielding a coverage of 85$ with conflict errors of 10$. This 

could be compared with behavior on other crypt-arithmetic tasks, and even with 

behavior on other tasks. A population of such figures might serve to indicate 

whether a proposed theory in fact yields an improvement and in what way. Such 

information would be exceedingly useful, even without any formal theory of 

significance*. 

It has been suggested [31] that one might be able to use the kind of 
information transmission analysis described by Garner [10]. The 
productions would be viewed as reducing the amount of uncertainty one 
had about the data, and under suitable assumptions one might calculate 
a specific figure for this. As of now, it is unclear to me what such 
further aggregations would add to the summaries of Figures 22 and 23. 



Summary 

Let us pull together the threads of the story. We have been concerned 

with making protocol analysis into a useful tool. This has led to a methodo­

logical emphasis with, however, the focus on improving the technology for 

developing theory, rather than for validating theory. We introduced a series 

of steps in the data analysis whose function was to make evident the important 

regularities in the protocol, and pave the way for constructing process models 

of the subject's behavior. Briefly summarized, these steps are: 

Divide the protocol into phrases. Each phrase represents a single 

assertion about the task or a single act of task oriented behavior. Although 

trivial, this step is worth noting, since it represents the limit of precoding 

of the verbal behavior. 

Construct a problem space. Both the operators and the information 

constituting a state of knowledge are set down. There may be more than one 

problem space, of course. The problem space is a hypothesis about the subject 

behavior. 

Plot the Problem Behavior Graph (PBG). Proceed through the protocol 

phrase by phrase. The key constraint is that all changes in knowledge state 

(as defined for the problem space) that are detectable in the protocol must 

come about through application of one of the operators of the problem space. 

The PBG segments the protocol into a population of occasions for action. 

Create a production system. This system attempts to capture the 

regularities in the search behavior. It can be viewed (with some literary 

license) as proceeding in several steps: 



Conjecture individual productions. At each node of the PBG 

conjecture a production that responds to features in the knowledge of that node 

(essentially known through the construction of the PBG) and yields the action 

taken. This leads to a large collection of individual productions. 

Consolidate the production system. Rewrite as many productions 

as possible as variations on a few, thus reducing the total number of 

productions in the system. This is analogous to subroutinizing a large program, 

and yields the same dividends in permitting the essential organization of the 

system to emerge. 

Plot the production system against the PBG. Proceed through the 

PBG node by node. For each determine not only what production occurred, but 

what others could have occurred, but didn't. 

Determine a conflict resolution rule. This may be a simple 

priority system, as used here, but it may involve quite different distinctions. 

For example, it may lead to elaborating the conditions of some of the productions. 

The matrix of Figure 21 showing how productions fare in competition with each 

other is a useful display. 

This analysis scheme is still incomplete, as we have not carried it 

through the final steps of getting a running program. These latter steps are 

not superfluous. They provide the verification that we have a sufficient set 

of processes for carrying out not only the immediately present task, but others 

of similar character as well. In addition, the hand codings engaged in during 

the preliminary steps described in this paper always leave something to be 

desired by way of accuracy. The final system as a running program provides 

much stronger quarantees. 

In our emphasis on the methodology, we have slighted the psychology. 



As already noted, production systems carry additional psychological implications 

beyond those already apparent in the problem solving theory we laid out explicity. 

We have not discussed these, nor have we discussed the nature of the particular 

production system we derived. Finally, even assuming we accept a production 

system as an appropriate way to express the micro theories, we have not explored 

how these contribute to the more general information processing theory of 

problem solving. 

A final note should be made about the scope of the techniques. Although 

it is reasonably clear that they apply to tasks involving the exploration 

of consequences, it is unclear how far they stretch. For example, no evidence 

is available yet for concept formation tasks, even though some of these have 

made good use of protocols [7, 13, 16]. 
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