
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

On the Analysis of Human Problem Solving Protocols

Allen Newell

June 27, 1966

This paper is to be given at the International Symposium on
Mathematical and Computational Methods in the Social Sciences, Rome,
July 4-9, 1966. It may not be reproduced without the permission of
the author. This research was supported by Research Grant MH-07722-02
from the National Institutes of Health.

Carnegie Institute of Technology
Pittsburgh, Pennsylvania

June 27, 1966

On the Analysis of Human Problem Solving Protocols*

Allen Newell

The last decade has seen the emergence of information processing

theories of human problem solving, expressed usually as computer programs that

simulate behavior. These theories have led to a resurgence of interest in

protocols as a source of data. The term protocol generally refers to a record

of the time sequence of events. In the present context it includes also the

continuous verbal behavior of the subject operating under instructions to

"think aloud." Protocols match well some of the strong points of information

processing theories, but also have several weak features. The purpose of this

paper is to discuss the analysis of protocol data and to suggest one new line

of attack for strengthening it. The intent is somewhat methodological, but

some new material will be introduced.

The use of protocols is not at all new. Their connection with the intro­

spective method, especially of the Wurzburgers [15], goes back to the first

decades of this century. They served Duncker well in his classic contribution

to the psychology of problem solving in 1935 [5]. They formed the primary

material in the forties for an intensive study of thinking in chess by the

Dutch psychologist DeGroot (recently revised and translated into English [4]).

However, free verbal report fell into relative disuse within the mainstream

of behavioristic psychology, especially in the United States. And not until

the advent of the computer, with the corresponding conceptual development in

programming, has it been possible to couple protocols with precise models of

process.

I am grateful to my colleague, H. A. Simon, both for his contribution to
the substance of the work presented here and to his criticism of an
earlier draft.

Let us start with a concrete example, which may be already familiar

[24]. We divide the analysis into stages:

1. The subject, a college student, is given a problem in the

elementary propositional calculus. This task is shown in Figure 1. He is

instructed to say aloud whatever occurs to him throughout the problem.

2. The tape recording of his verbal behavior is transcribed and

becomes the raw record of the experiment, along with a record of relevant

non-verbal behaviors, such as writing down expressions. This is the protocol.

3. After intensive analysis (in terms of hours per minute of

subject behavior) a proposal emerges for a scheme of information processing

that will simulate the subject's behavior. This is shown in Figure 2; we

may call it the flow diagram, although it can take varied forms.

4. A computer program (called GPS in this instance) is coded

and debugged that outputs a record, called the trace, which purports to

correspond to the behavior indicated in the protocol. Figure 3 shows a short

sample of the protocol and trace, side by side.

The behavioral situation used in this example is one of deliberate,

extended problem solving in a formal, abstract, symbolic task. Most attempts

to work with this scheme of protocol analysis have involved tasks that can be

similarly characterized. Since we will continue this focus in the present

paper, let us note now that not all information processing theories deal with

problem solving behavior [1, 3, 32, 33]. Nor is the only appropriate experi­

mental paradigm for problem solving one involving simulation of individual

protocols [8, 13, 14, 29]. Our narrowness of view here is conditioned primarily

by the urge to fashion this one scheme of analysis into a more useful tool.

Objects are formed by building up expressions from letters (P, Q, R, ...)
and connectives . (dot), v(vedge), D (horseshoe), and - (tilde). Examples are
P, -Q, PvQ, -(RDS).-P. — P is equivalent to P throughout.

Twelve rules exist for transforming expressions (where A, B, and C may be
expressions or subexpressions):

Rl. A.B—»B.A
AvB—?BvA

R2. AOB-*-B3-A

R3. A.A«-»A
AvA<—*A

Bh. A.(B.C)«->(A.B).C
Av(BvCH-^(AvB)vC

R5. AvB<-»-(-A.-B)

R6. A^B«->-AvB

R T . A . (B V C) « - » (A . B) V (A . C)

A V (B , C) < - » (A V C) . (A V C)

R8.

R9-

Rll.

A.B—»A
A.B—>B

A—?AvX

RIO. A

R12. ADB
BOC 3

B

Applies to main
expression only.

Applies to main
expression only.

A and B are two
main expressions.

A and A^B are two
main expressions.

ADB and BoC are
two main expressions.

Example, showing subject's entire course of solution on problem:

1. (R-3-P).(-ROQ) -(-Q.P)
2. (- R V P) . (R V Q) Rule 6 applied to left and right of 1 .
3. (-RvP).(-ROQ) Rule 6 applied to left of 1 .
k. R^-P Rule 8 applied to 1 .
5. -Rv-P Rule 6 applied to h.
6 . - R 3 Q Rule 8 applied to 1 .
7- RvQ Rule 6 applied to 6 .
8 . (- R V - P) . (R V Q) Rule 1 0 applied to 5 and J.
9 - P3-R Rule 2 applied to h.
10. -Q3R Rule 2 applied to 6 .
11. PD Q Rule 1 2 applied to 9 and 6 .
12. -PvQ Rule 6 applied to 1 1 .
13- - J P . - O Rule 5 applied to 1 2 .
14. -f-Q.p) Rule 1 applied to 1 3 . QED.

Figure 1: Logic Task.

- 2b -

Goal: Transform object into object B

Match A to B
to find

difference D
B Subgoal:

Reduce D

none

Success

Subgoal:
Transform A f into B

fail

Fail

success ̂Success

fail
N/
Fail

Goal: Reduce difference D between object A and object B

Search for operator Q
relevant to reducing D

none
Fail

Test if feasible
(preliminary)

Subgoal
Y e s)[Apply Q to A

producing A*

no

-^Success

fail

Goal: Apply operator Q to object A

Match condition
of Q to A

find difference D

Subgoal:
Reduce D

none

. A L

Subgoal:
Apply Q to A 1

fail

Produce result

Fail
i

- A ^ > Success

Fail
A M

Success

For logic task of the text:

Feasibility test (preliminary):
Is the main connective the same? (e.g., A.B-hB fails against PvQ)
Is the operator too big? (e.g., (AvB).(AvC) -» Av(B.C) fails against P.Q)
Is the operator too easy? (e.g., A -> A.A applies to anything)

Are the side conditions satisfied? (e.g., R8 applies only to main expressions)

Table of connections
Add terms
Delete terms
Change connective
Change sign
Change lower sign
Change grouping
Change position

X X X X X X-

X X X X X
X X X
X

X X X
X X

X X

x means some variant of the rule is relevant. GPS will pick the appropriate
variant.

Figure 2: Flow diagram for GPS.

- 2c

Program trace Protocol

Bl LO -(-Q.P)
LI (RO -p).(-R^Q)

GOAL 1 TRANSFORM Ll INTO LO

B2

B3

B4

B5

B6

B7

B8

GOAL 2 DELETE R FROM Ll

GOAL 3 APPLY R8 TO Ll

PRODUCES L2 R O -P

GOAL 4 TRANSFORM L2 INTO LO

GOAL 5 ADD Q TO L2

REJECT

GOAL 2

GOAL 6 APPLY R8 TO Ll

PRODUCES L3 - R D Q

GOAL 7 TRANSFORM L3 INTO LO

GOAL 8 ADD P TO L3

REJECT

<no transcription of verbal behavior>

Well, looking at the left hand side
of the equation,

first we want to eliminate one
of the sides

by using rule number 8.

It appears too complicated to
work with first.

Now

no, - no, I can't do that

because I will be eliminating either
the Q or the P in that total expression.

Figure 3: Initial segment of GPS simulation on S4 on problem Dl.

The paradigm just presented has three dominant features. First, it

deals with the dynamics of an individual episode of behavior. Second, it

contains theoretical assertions about the behavior that are precise and

highly specific. Third, it deals with the content of the task. Thus, the

theory simulates behavior that is adequate to the task*. Involvement with

content is also reflected in the use of freely produced linguistic utterances

as the primary source of data. In this respect the protocol is a natural data

form for this type of theory. It is appropriate, also, in providing a large

amount of information per unit of time about the subject. The necessity for

this becomes apparent upon considering how to identify a system as complex as

a problem solving human.

The major problems in protocol analysis arise from these same dominant

features. Let me mention two problems that are already prominent^ before

turning to a third that is my own greatest concern and the focus of this paper.

The problem of assessment. In assessing the validity of the program

to describe or explain the subjects behavior, two things are missing to which

psychologists have become accustomed. First, there is no acceptable way to

quantify the degree of correspondence between the trace of the program and the

protocol. This is not a problem of making the inference definite or public.

Trace and protocol can be laid side by side, as is done in Figure 3. However,

comparison still must be made between an elaborate output statement and a free

linguistic utterance. Although a human can assess each instance qualitatively,

there are no available techniques for quantifying the comparison, or summarizing

the results of a large set of comparisons.

More precisely, a simple and completely specified interpreter is sufficient
to translate the statement of the theory into adequate behavior.

Second, the program has been created partly with the subject's protocol

in view. Thus, something analogous to the calculation of degrees of freedom

used in fitting curves with free parameters to data is appropriate. But

programs are not parameterized in any simple way and no analytic framewprk

yet exists for allowing for degrees of freedom.

The problem of theory. Programs are symbolic structures that specify

the behavior through time of a system in the same manner as difference

equations [25] — thus, their availability as theories. Still a certain

discomfort exists in the idea of programs as theories [30, chapter 2] . The

discomfort stems partly from the specificity of the theory, since it appears

to be limited not only to a single person, but to a single episode. While in

other areas, such as the earth's geological development, we are content to

construct a theory of the history of an individual system, it is clear that

little scientific interest per se attaches to the particular college student

of our example. Thus, we must view these individualized theories — micro-

theories would be an appropriate term* — as the way to bring a more general

theory into contact with its data. This more general theory, of course, is

neither so formalized nor precise as the microtheories to which it gives rise.

In part it includes the basic possibility of viewing a human in a precise way

as an information processing system. But it also includes a theory of how

problem solving is accomplished what mechanisms are common to all humans;

what methods are possible and under what conditions they are evoked; and so on.

This latter theory sometimes receives considerably less emphasis in discussions

of cognitive simulation than the basic information processing model.

Even though this term is currently used in a somewhat broader sense as a
theory covering a miniature domain of behavior — e.g., a theory of the T-maze.

The feelings of discomfort with program as theory are compounded by

the difficulty of differentiating those parts of the program that have

psychological import — that are part of the theory — from those that are

only included to get the program to run on a digital computer. This is

further compounded by the large size of simulation programs in numbers of

instructions or subroutines, which seemingly imply a vast number of mechanisms,

almost none of which have direct psychological support.

The problem of program induction. Observing current practice, one may

ask where the simulating program comes from — it appears to leap full grown

from the head of some programming Zeus. While the question of how to induce

programs from protocols has only minor relevance to validating theory, it is

crucial to theory development. This is especially true, since we need to

construct large numbers of microtheories in order to discover the general

nature of the information processing performed by humans. That only a small

number of simulations have actually been completed, each a product of

excessive loving care, testifies to the need for further development of

techniques for protocol analysis and program induction.

There seem to be several issues. Starting with the raw protocol, there

is the question of how to extract information from linguistic utterances. The

concern with linguistic data bequeathed us from the distrust of introspection

by American behaviorism is subsiding and has been discussed elsewhere [4, 19].

But accepting the legitimacy of linguistic data does not of itself provide

positive techniques for analysing them. Second, as already noted, simulation

is often presented with only the basic theory of information processing described,

the theory of problem solving going largely unmentioned. This creates the

appearance that there are no guidelines about how to put a program together,

only that one should start with a "symbol manipulating" system. Finally,

there are few if any data-oriented techniques that permit the analyst to

display the behavior of his subject so that the features that should be in

the program become clear.

In this paper I will present one scheme for improving our ability to

induce programs from protocols. By and large, the other issues will be

ignored, although in the end some suggestions on assessment will emerge.

The scheme will start from the data end -- from the protocol -- and gradually

move toward completely specified programs, although never quite getting that

far.

Theories of Problem Solving

We start with a brief restatement of the information processing theory

of problem solving in a form that facilitates making contact with data from

a new task. The theory, as sketched below, is not as broad in scope as the

full range of experience in constructing programs to solve complex problems

[20, 23]. However, it does appear to capture some of the central notions.

The theory assumes an underlying information processing system like

that shown in Figure 4. This system comprises a large memory of symbolic

structures, an essentially serial processor for accessing and restructuring

this memory, and some imput-output structures. The organization is familiar

enough, differing from existing hardware computers primarily in that (1) its

memory organization is a constructable network of labeled associations between

symbols, rather than a fixed numerically addressed array of words; and (2)

primitive arithmetic processes are absent.

The detailed structure of the information processing system will be

ignored. Providing that memory is sufficiently stable, the system is a universal

machine, capable of carrying out arbitrary symbolic processes. Rather, the

*

- J cc

R- UJ

2 O
LU O
O 0 1

f
CO °i
O O

CL U

U J IL-

7

\ f

Figure 4: Basic information processing system.

theory is concerned with the methods, organization of processes, knowledge,

etc., that constitute the program that a given system follows when problem

solving. This viewpoint is clearly oversimplified. Limitations on immediate

memory, on the rate at which reaction can occur to new data, and on the rate

at which relatively permanent memory can be built up all pose boundary condi­

tions within which the problem solving organization must operate. Additional

limitations exist on perceptual and motor processes, but can be avoided in

setting up experimental situations. Not so the former, and our excuse for

ignoring them is our ignorance of how they affect problem solving, together

with the fact that humans solve problems in such a way that these boundaries

are not especially evident.

Problem solving takes place in a problem space. Abstractly considered,

the elements of this space consist of states of knowledge about the problem.

Operationally, they consist of data structures in the memory, which form an

internal representation of the knowledge about the task environment. Both

the initial situation and the desired situation must find their representation

as elements of this space. Besides elements, a problem space has associated

with it a set of operators, which, when applied to an element of the space,

produce new elements. Thus, these operators are the means by which new

information about the problem can be obtained from old.

Problem solving is always a matter of search — of starting from some

initial position (state of knowledge) and exploring until a position is attained

that includes the s o l u t i o n — the desired state of knowledge. The behavior of

a problem solver is not fully determined by the problem space. Figure 5

shows the range of considerations that are relevant when the problem solver is

at a position in the space. These express the degrees of freedom through

Evaluate new position:

Is it the desired state?

Should it be remembered, so that either can return
to it later, or can recognize it when encountered again?

Is there some new information that should be extracted
and remembered independently of position?

Is this progress, so that search should be continued;
or are there difficulties?

Select new operator:

Has it been used before?

Is it desirable: Will it lead to progress?

Is it feasible: will it work in the present position
if applied?.

Apply operator to present position:

If works, then produces new position.

If not work, what are the difficulties?

Evaluate difficulty:

Should a subgoal be set up to overcome this difficulty?

Should the position be rejected?

Return to prior position?

Return to initial position?

Return to a remembered position; if so,
which one?

Evaluate old position, just returned to:

Should it be used, or rejected?

Figure 5: Considerations at a position in problem space.

which intelligence (or stupidity) can be manifested. The considerations of

Figure 5 do not form a program for behavior at a position, since the system

of a problem solver may organize them very differently, perhaps ignoring some

altogether. Nor is the list necessarily complete, although it seems to

encompass many of the considerations used by both artificial and human

problem solvers.

Search is a problem space is constructive. The elements of the space,

although they exist abstractly, do not exist for the problem solver unless he

generates them, or remembers them for later retrieval once generated. This

gives the search a different character from that through a world that exists

independently of the problem solver — e.g., a forest. In essence, problem

spaces are always exponentially growing trees: two independent paths cannot

end up at the same element of the space. One cannot do in a problem space

what one does in a forest: put marks on trees to recognize the same place

if it is returned to. In the problem space a data structure may be generated

that is identical in structure and content to another but it will not be

the same data structure, hence will not contain any "tree mark. , f Only if the

problem solver remembers each new element as it is constructed, and determines

if each new one is identical with any of those kept so far, will he be able to

simulate the tree marking scheme.

Initially, a problem solver is given a problem through some external

representation of the pertinent situations, goals, constraints, conditions,

operations, auxiliary facts, etc. The problem space is not given — the

problem solver must select or create a problem space in which to solve the

problem. That is, he must encode the information in the external representation

into an internal one in which he can effect the transformations required by

the operators, which he also constructs (or selects). This problem space may

be already available inside the problem solver ~ he may simply translate into

an already well known system. Alternatively, it may be constructed out of

more elementary things he can do, as when he learns a new set of operations

provided by the experimenter.

Currently, the theory says little about the selection and construction

of problem spaces; primarily because experience so far has been mostly with

problem solving systems in which the investigators invented the problem spaces

themselves and simply programmed the computers to problem solve in them. As

we shall see, the question of what problem space is used is critical. However,

it should not be assumed that the problem spaces used are exotic. They often

lie very close to the obvious one suggested by the defining conditions of the

problem.

The problem solver is not limited to a single problem space. He may

obtain a new one after finding the initial one inadequate. More important,

he may make use of more than one simultaneously. An example is provided by

the program for proving theorems in plane geometry [11], which uses both a

space of symbolic expressions, representing theorems, and a space of coordinates,

representing the diagram. This latter provides much of the problem solving

power of the system, since operations of direct measurement of angles and

length are available in it to check the assertions of the theorems.

The possibility of using several problem spaces emphasizes that the total

problem solving system is not to be simply identified with a single problem

space. Information that is constant throughout a problem may find no repre­

sentation in the state of knowledge, nor will the processes that take it

Into account. Retrieval processes and the organization of large amounts of

data may not be represented in a problem space, even though of critical

importance to problem solving.

The Ecoblem Behavior Graph (PBG)

Let us see what this theory implies when applied to protocol material.

If we knew what problem space the subject was working in, then we could

view his behavior, as revealed through the protocol, as a search in this space.

More precisely, we would be able to 1) state the kinds of information that make

up the states of knowledge of this space; and 2) specify a set of operators,

such that each change in the state of knowledge corresponds to an application

of one of the operators.

From a descriptive point of view we can ignore all of the considerations

of Figure 5. To track the subject's search it is enough to have well specified

just the elements and operators of the problem space, not all the additional

rules of selection and decision. Even so, we have stipulated a non-trivial

requirement. Numerous cues exist in any protocol about both the state of

knowledge and the operations and inferences the subject is performing — the

language is full both of phrases indicating propositions and phrases indicating

processes and actions. Since the set of operators is fixed, and since every

change in state of knowledge is to come about through the application of one

of these operators, there are many places to go wrong.

The actual problem space used by the subject is unknown. Indeed, it is

even unknown if the subject is behaving in accordance with the theory.

Consequently, the appropriate data analysis procedure is to posit a problem

space and see if the subject can be analysed as searching in this space.

In case the subject is wandering in more than one space, of course, the two

must be unravelled simultaneously. If we are successful, we shall know it by

getting a reasonably complete picture of the search (it will not be perfect

in any event due to ambiguity and incompleteness in the protocol). Then, we

can go on to consider what other information about the remainder of the subject*

program can be obtained.

Search trees published in the literature of problem solving programs

show mostly the total extent of the search — what positions were ultimately

visited [12, 28], Often, if the search strategy is simple — e.g., a so-

called depth-first strategy — the actual path of search can be inferred from

the total tree. However, we need a way of tracking the search that lets us

reconstruct the time history. The scheme we adopt we call the Problem

Behavior Graph (PBG). We give the conventions below; referring to Figure 6

for an example.

Rules for Problem Behavior Graph (PBG)

A state of knowledge is represented by a node (the
labeled boxes in the figure).

The application of an operator to a state of knowledge
is represented by a horizontal arrow to the right;
the result is the node at the head of the arrow
(Operator Ql to position Pi gives position P2).

A return to the same state of knowledge as node X is
represented by another node below X and connected to it
by a vertical line (P3 results after abandonment of P2;
it constitutes the same state of knowledge as PI).

Time runs to the right and down; thus the graph is
linearly ordered by time of generation (from PI to P5).

The problem solver is viewed as always being located at some node in

the PBG, and having available exactly the information contained in its state

of knowledge. The act of search itself generates information in addition

PI P2 PI P2

P3 az > a i >
P5 P3 P5

Figure 6: Problem Behavior Graph (PBG),

to that represented at the node: in particular, path information about how the

node was arrived at; and past attempts information about what else has been

done when in this state of knowledge. Both these kinds of information are

viewed as being associated with a node; in fact, this sort of information is

what distinguishes node P3 from PI.

With this much apparatus, we are ready to consider some examples.

Crypt-arithmetic. The top of Figure 7 shows a version of a familiar

puzzle, called a crypt-arithmetic problem by one collector [2]. Each letter

is to be assigned a distinct digit between 0 and 9 such that when the letters

are replaced by their assigned digits a legitimate sum is obtained.

As a starter, it is given that D is 5; thus, no other letter can be 5 and a

5 must replace all three occurrences of D in the figure.

In accordance with the paradigm, a subject (a college student) was given

the task to solve, with instructions to "think aloud". The initial segment

of his protocol is shown in Figure 8. It has been broken into short phrases,

which have been labeled. The segment shown amounts to about 12$ of the total

protocol, the last phrase of the full protocol being B321 (the subject solved

the problem). The expressions on the right side of Figure 8 will be discussed

later.

The first step in the analysis after obtaining the protocol is to

construct a problem space. The simplest one, of course, is defined directly

from the rules of the puzzle. The elements are sets of assignments; the

operators are the acts of assigning a new digit to a new letter. The initial

position is that one where no assignments have been made; and the final position

is the one where all ten have been made, such that the three constraints have

been satisfied. In fact, this problem space would be used by someone who wanted

to build a simple search program for the task. Clearly, our subject is more

Problem: DONALD D<-5 Each letter assigned to one and only one digit
+GERALD Each digit assigned to one and only one letter
ROBERT

Terms: entities that can be referred to in problem space

I is any letter, A, B, D, E, G, L, N, 0, R, T
d is any digit, 0, 1, 9

ds is any set of digits, tl,d,•••,d
£ is any column, cl, c2,..., c7 (cl is the right hand column)
£ is any carry to a column, tl, t 2 , . . M t7
v is any variable, either a letter, 1$ or a carry, £

Elementary expressions: relationships and properties amond terms

v^d. v has been assigned the value d
v=d v has the value d by inference
v=ds v has one of the values in the set ds
L>d
K d J* t * has the respective constraint 1̂ even 1 — r

1, odd

1 free ,1 can take any value (in an implied domain) without constraint

Expressions: an elementary expression or term, ee, followed by a suffix

ee-p ee is not possible or can take no possible value
ee? the truth or value of ee is unknown

ee! the truth or value of eg is critical to the inference

States of knowledge: any conjunction of expressions (need not be consistent)

Operators

PC(£) Process the column £. The input is all the information about
the column and the letters and carries in it; the output is some
information that can be inferred from the column, which may include
specification of something as critical (!) or unknown (?).

GN(v) Generate the values of variable v. This takes into account the
constraints known to hold for v (e.g., v odd), but not the
exclusion of values due to assignment to other variables.

AV(v) Assign a value to the variable v. The output is in form V*m I .

This value will be selected from the set generated by GN(y).

TD(l,d) Test if I can take the value d. Failure is due to d.being assigned
to another letter, or to d lying outside the permissible range for J..

Goals
get v get a value for v; determine something about the value of v

get ee determine whether expression is true
check ee determine whether expression, known to be true, is in fact true

Figure 7: Crypt-arithmetic: Definition of problem space.

12b -

Bl Each letter has one and only one ? :
numerical value —

B2 Exp: One numerical value.

B3 There are ten different letters

B4 and each of them has one numerical
value.

B5 Therefore, I can, looking at the
two D f s —

B6 each D is 5;

B7 therefore, T is zero.

B8 So I think I 111 start by writing
that problem here.

B9 I fll write 5, 5 is zero.

BIO Now, do I have any other T fs? SI: T=0 -> FC(T)=> 4

Bll No.

B12 But I have another D. Si: D<-5 -> FC(D)=> c6 (no PC(c6))

B13 That means 1 have a 5 over the
other side.

B14 Now I have 2 A f s G4: get Is -> FL(ls)=> R; get R

B15 and 2 L f s

B16 that are each —

B17 somewhere —

B18 and this R --

B19 3 R f s —

B20 2 L f s equal an R — S2: get R -> FC(R)=> c2; PC(c2,R)=> R odd

B21 Of course I fm carrying a 1.

B22 Which will mean that R has to
be an odd number. , ; , , ^

Figure 8: Crypt-arithmetic: Initial segment of protocol.

(ask Exp. about rules)

SI: D*-5 -» FC(D)=> cl; PC(cl)=> T*=0

Tl: T=0 -»TD(T,0)=> +

B22.1 Rl: PC unclear -> get R; repeat PC

B23 Because the 2 L f s

B24 any two numbers added together
has to be an even number

B25 and 1 will be an odd number.

t PC(c2,R)=> R odd

B26 So R can be 1,

B27 3,

B28 not 5,

B29 or 7.

B30 or 9.

S4: get R GN(R)=> 1,3,5,7,9

Tl: R=d TD(R,d)=> R=5-p(D<-5.1)

B30.1 ? :
B31 Exp: What are you thinking now?

B32 Now G

B33 Since R is going to be an odd
number

B34 and D is 5,

B35 G has to be an even number.

S2: get R FC(R)=> c6: PC(c6,R)=> G even

B35.1 Rl: PC unclear -> get G; repeat PC

B36 I'm looking at the left side
of this problem here where it
says D + G.

t : PC(c6,G)=> t6?

B37 Oh, plus possibly another number,

B38 if I have to carry 1 from the
E + 0.

B39 I think 1*11 forget about that
for a minute.

? :

B40 Possibly the best way to get to
this problem is to try different
possible solutions.

B4l I fm not sure whether that would
be the easiest way or not.

Figure 8 (continued)

sophisticated. He makes inferences using the column constraints; he uses the

carry; he works with concepts such as even-oddness; he attends to the columns

in variable order.

The bottom part of Figure 7 provides a definition of a problem space

for this subject*. The element, corresponding to the state of knowledge, is

a conjunction of elementary expressions, each of which deals with some relation

between variables (letters or carries) and digits. Neither path information

nor past attempts information is stated explicitly. Actually, we would hope

to infer from the PBG what information of this kind is being kept.

There are four operators**. Each is defined with reasonable precision

in terms of input-output characteristics, which are the features necessary to

identify whether the operator was evoked in the protocol. Whether all occur­

rences so identified constitute a single operator, in the sense of being produced

by a consistent subroutine, is a matter for later analysis***. The initial part

of the PBG, extending somewhat beyond the segment of protocol reproduced in

Figure 8, is given in Figure 9. The double lines indicate that an operator

is being repeated from the same state of knowledge. A condensed version of the

complete PBG is given in Figure 10.

This analysis of crypt-arithmetic is taken from [22], where the entire
protocol and all the other matters dealt with here informally are treated
in greater detail. In particular, the problem space is defined by means
of Backus Normal Form, in order to give a precise description of what
information can constitute a state of knowledge. Clarity, of course, is
essential if the concept of state of knowledge is to be more than a
descriptive metaphor.

To the alert reader: The formulas on the right hand side of Figure 8
contain not only the four operators of the problem space, but others as
well, which will be discussed later.

It is not discussed further here, but see [22].

bi x i j <D |PC(c i) j b t J o t o | ^ t t R | B*o | P C f r a) [t t 2 a j ^

3

4

5

6

7

8

9

E
B2« GMOO

R.WJ$.7,»!

631 PCO*) B3S.I
Gr even

PC(c«) PC(c«)
• S r | • S r |

AV(0
A

AV(0
L4-I 1

Subject 3 (6 0)

D o n a l d

R O B E R T

R N = M * ? R I

RO-P

B5fl |PC(cg) B59 BCI
1 • R-7,3

I

1 M •
PCCc5) |

l l
B7* PCCc5) | BSCM

G«L,l;tt? 1 E»0

1 RVORT BE*
R4r>7

PC^C*) 66d T D BB4.I
J

BE*
R4r>7

66d BB4.I

M S j P C f e a \ _ j p y ^ j T P |S72 X41 PC(ct)^

10

II

12

13

M l I PCfrS) EST

0 8 3 885 „
E«3.t5t|

JB85.I

IX

B90I

12 %Jt

r r r

Figure 9: Crypt-arithmetic: Initial segment of Problem Behavior Graph.

1 2 3 4 5 6 7 0 9 10 IM£ 13 141516 17 18 1920 2122232425 26 27 20 29 3031 32 33 343536 97 3 0 3 9 4 0 ^ 42 49

^ } T = 0 , R O D D

J G E V E N , NOWHERE. SUBJECT3(«0)

' D O N A L D

' | " L » \ L « - | , R = 3 NOT POTTIBLE

} R«-7, L * 3 , G » I , Z , 3«T E

G E R A L P

R O B E R T

D * - 5

K WORRY JBOUT E = O O R E » 9

} RESOLVE: E « - 9

}E«-3-P (A«4andt3«o)
.
} s t 3 r t « V « R S R*9, L=4, &=3,4, GET E

. } E * O OR E» 9 ; RESOLVED E = 0

U > +RIJ FOR I 3 = L , FAIL

C W .̂ WORRY ABOUT E: E » O, E = 9 , T 5 * 2 .

} RESOLVE: E=* 9 NECESSARY (-TKEIT&RE R * 9 - P)

GO BACK TO j\r*\ \>oard

, 4 « . . J> L * - 8 (FROM GET T3»L {ok A)

l^llr, . . . ̂ } 3 E T M - 3 , 6
SOLVED

check i * r r
£ 3 8 N O D E S

Figure 10: Crypt-arithmetic: Total Problem Behavior Graph.

A
I
4
5
6
7
6
9
10
II
12
13
14
15
16
17
18
19
20
2)
22
23
24
25
18
27
20
29
30
91
92
33
3 *
35
36
37
38
39
40
41
42.

43
44
45
46
47
46
49
50
51
52
53
54
55
56

Let us consider briefly how the coding goes. Starting at the beginning

(Bl) we have an exchange that is really outside the problem space, since it

involves clarification of the rules. We simply indicate this by a special

footnote (1). In the second box, B5, we have a clear statement of 1) considering

the two D f s , asserting their value, and concluding that T is zero. The coding

of this as the operator PC(cl) is clear. Some open questions are 1) when did

the inference actually occur; 2) why did column cl get considered; 3) was it

desired to find the value of T before processing column cl; and 4) was it also

concluded that t2=l ? About some of these questions we do not need to have the

answers. As to the first, we require only the approximate ordering. As to the

second, the selections of columns is internal to each box and thus irrelevant

to the problem graph. The third question is relevant, but we adopt the view

that unless specific information is available on the variable desired, we will

not record it. Finally, although it is plausible that t2=l is inferred since

5 + 5 = 10, there is no immediate evidence. However, later behavior (B21)

shows that in fact this information was retained.

The next box, B8, should be considered in conjunction with box B20.

In this latter we clearly have a consideration of column 2 with the inference

of R odd. If we write down what happens before this we have:

B8-B9 Writing prior result

B10-B11 Searching for a next step with no result
in terms of our problem space.

B12-B13 Another writing step, when D of c6 is
noticed; conceivable that new information
obtained, but certainly no evidence for it.
(Result of B9 and B13 indicated by X2.)

B14-B19 Consideration of c2, c3, A, L and R in the
apparent search for a next step. No new
information obtained in our problem space.

B20-B22 Processing of c2.

The concern with R, clearly indicated in B18 and B19, leads to the inference

that the decision to process column c2 is based partly on the decision to

obtain some information about R. Thus we code B8 with the goal of getting R.

Those things occurring prior to B18 all belong within a box: the operations of

writing and the (attempted) selection of columns on which to work. If the

inference to get R were less clear, we would have only a single box for B8 to

B22, whose operator would be PC(c2).

It is clear that in B23 to B25 the reasoning used in B20 to B22 is

repeated. Why the repetition occurred is not as clear. It might be to

check the processing — to assure that the inference is correct. That a

correction can occur the second time around is shown by the sequence B32-B35,

yielding G even, and the immediate repeat, B36-B38, leading to the realization

that no such inference is possible. Repetition might also be affected by the

experimental instruction to get the subject to talk. In any event, we need

to create a box, B22.1, for the result of the first PC(c2) and then back up one

for the second at B23.

In B26-B30 an explicit generation of the odd digits follows immediately

upon the (confirmed) conclusion that R is odd. Thus the inference that GN(R)

occurred is not problematic. The generation does not take into account what

values are already used, since the already used digit, 5, is generated and

explicitly rejected. This supports the inference that TD was applied to the

output of GN. It is not as clear, of course, that TD was applied to 1, 3,

7 and 9, since these were OK and no special indication of their acceptability

is provided. However, if TD was applied sometimes and sometimes not, then a

process must have existed to make this decision; but this process would have

had to perform (uniformly) the same function as TD; namely, to determine if

a digit were used. Consequently, it is simpler to assume that TD was applied

uniformly.

B31 signals a pause, since the experimenter breaks in with a prod to

talk. Since there is no evidence in what follows B32 that the refinement of

the information to R=l,3,7,9 is used, rather than the more primitive, R odd,

it is inferred that the search backed up. Quite possibly additional processing

did go on from B30.1 during the pause, but since we have no evidence for it,

we make no explicit note of it. If new information were obtained, it should

show up either at B31 (which it doesn't) or at some later time as new

"unexplainable 1 1 knowledge.

We have only given the first bit of a very long (and dull) argument.

In a majority of cases the encoding is quite clean. Frequently, some

appreciable inference must be made as to the underlying process. And in a few

cases we have no information as to what transpired, as at B30.1. The basis of

these inferences, from the most obvious to the most indirect^ lies in our

(the encoder's) ability to interpret natural language. This interpretation

itself demands, however, a view of the task in information processing terms

and of the subject as an information processing problem solver. Thus, we have

not attempted any encoding of the language of the protocol prior to extracting

the PBG. Where such an a priori coding is possible, e.g., "each D is 5;

therefore, T is zero", it isn't needed. Where it is needed, 'ttow I have 2 A f s

and 2 L's that are each — somewhere — and this R — 3 R's — it isn't

safe*.

In an earlier study of chess [27] we did try a preliminary coding, but
achieved little more benefit from it than the segmentation of the protocol
into elementary phrases.

What do we learn from the PBG for this subject? First, his problem

solving can be described as search in a well defined problem space. Second,

from the definition of the problem space, we obtain information about the

intellectual tools he is capable of using. This is revealed most clearly

by the kinds of situations in which PC is able to provide new information —

e.g., to take as inputs R odd and D<-5 and produce G even. Third, we have

taken a preliminary step to asking if there exist regularities in his search

behavior. This does not follow from the existence of the search tree. The

encoding has been done entirely on a local basis. Whether the subject has

consistent modes of behavior for carrying out the considerations of Figure 5

remains an open question. The PBG does provide a segmentation of the total

stream of behavior into a set of units (238 of them in this case) that now

permit inquiry into further regularities. Before turning to this next

stage of analysis, let us examine some PBG fs in other tasks.

Chess. Figure 11 shows a complex middle game position in chess, and

Figure 12 gives the initial segment (15$) of the protocol of a player of

moderate ability choosing a move for White. The problem space for this

subject, shown in Figure 11, is by and large the obvious one. The elements

are chess positions, the operators are moves. The position of Figure 11 is the

initial position and the subject searches out from it looking for positions of

advantage. These latter are characterized mostly by tests and not by specific

chess positions. But these tests are only brought to bear on positions

constructed via moves from the initial position, so that a more generalized

problem space element is not required.

The subject occasionally makes use of generalized operators of the form

••Man M on Square S defends, " or '̂ Man M on Square S moves away." That is, the

man is fully specified, but the square to which he moves is only specified up

to a function term. This does imply a generalization of the concept of position,

T

Position A [4]

White to move.

State of knowledge. A generalized chess position containing:
Located men: Men are located on a specific square

Unlocated men:

Functions:

Operators:

Men on no specific square, but have an
associated function they have performed
Functions that have been performed, but whose
agents have not been specified

A move consisting of an agent (the man being moved)
and an action (his moving to a square, vacating a
square and perhaps capturing a man)

Legal moves: The agent is a located man and the action is specified
Examples: Given in standard chess notation, except

that on the graphs Black men are primed
P-K4 White Pawn moves to square K4
Q f-Ql Black Queen moves to square Queen 1

Function moves: A located man as agent with the action given only by the
function to be performed; produces an unlocated man

Examples: B-defends
Qt-retreats

An action either specified completely or by function,
but with no agent given

Examples: wxB White capture a specific Black Bishop
not P fxP A Black move that is not a specific

one

Figure 11: Chess: Definition of problem space.

El Bl

B2

B3

B4

B5

B6

B7

B8

B9

BIO

Bll

B12

B13

B14

B15

B16

B17

B18

B19

B20

One, two, three, four, five
six - six Pawns each.

Black has what threats?

His Queen is threatening my
Knight's Pawn

and also he has one piece on
my Queen's Pawn -

has a Rook in front of the
Bishop,

which will give him an open file.

Let's see, all right, what
threats do we have?

We have his Knight under
single attack

protected by the Bishop.

We have his other Knight under
attack

protected by three pieces.

The Queen is bearing down on
the Knight's Pawn

and the Rook is over here
protecting the Knight

and the Bishop at Rook 2 is
bearing down on the Knight.

All right, looks like we have
something going on the King's side.

All Black's pieces are over on
the Queen's side -

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32

B33

B34

B35

B36

E3 B37

B38
most of them out of play -

good chances for an attack perhaps. B39

See, what moves are there?

The Bishop at Rook 2 can take the
Knight,

which would be no doubt answered
by either Bishop takes Bishop or
Pawn takes Bishop.

Probably Bishop takes Bishop

to avoid isolating the Pawn.

If we then play Knight takes Bishop.

he will then play Pawn takes
Knight or Rook takes Rook,

but this would give White an open
file if he exchanged

and this is doubtful.

This would isolate Black's
Queen's Pawn -

it would be protected only by
the Knight

which is pinned,

therefore we could move the
Queen to Bishop 3,

not only putting another threat
on the Knight,

but also threatening an isolated*
Pawn.

Both of them could not be protected
simultaneously unless Queen to
Queen 1.

All right, well, what about Queen
to Bishop 3 immediately.

Queen to Bishop 3 immediately is
not good -

it gives no threat on the Knight
at Bishop 3

Figure 12: Chess: Problem segment of protocol of subject 2.

Okay, White to move... E2 B21

In material the positions are even. B22

since after such a move has been made the board is not fully specified. That

the subject can take such partially specified boards and apply other chess

moves (operators) to it shows that the problem space is genuinely larger than

the space of chess positions. This corresponds in crypt-arithmetic to the

expansion of the state of knowledge to include subset information — e.g., that

R is odd or that E is 0 or 9. Although the problem space includes function

moves on located men, it does not include moves on unlocated men; e.g., moving

a man who was previously f\noved away. 1 1

The PBG for the subject's total analysis, which lasted about 17 minutes,

is shown in Figure 13. This is taken from a previously published paper £27].

It can again be inferred that the subject's behavior can be viewed as search

in a well defined problem space. Further, it is clear that the subject does

not reason very abstractly about the position; his tools of analysis focus on

the exploration of specific future paths. These tools include the range of

functions indicated in Figure 5 — move generators, evaluation functions, etc.

~ but they still work within this highly concrete framework.

As in the case of the crypt-arithmetic example, the chess PBG provides

a segmentation of the total behavior in a form in which further regularities

can be sought. However, even without detailed examination, the total graph

reveals a striking regularity: the search proceeds by a series of deep

penetrations with very little branching (and only first level branching),

followed by a return to the initial position (all of the base points on El to

E25 the initial position although not tied together by a vertical line).

Following DeGroot [4], we have called this the progressive deepening strategy

of search. More details can be found in the original paper.

Q q - K B 3 Q q - q i q

E 3 Q-KB3 q

E 4 BXN'B ^ B ' X B ̂ nNxB' ^-nP*N ^Q-KB3x-SR'-t»chonfl«

Iq'-QI z - ^ RxR ' qQ'xR q
E 5 BxN'|5 qB'xB qN xB * qP'xN qQ - K B3qQ'xN Pq

Q'xQP qB xN ' qB*xB Q Q* B'q
E 6 NXFL' qQ'xN q

R'xN q
E 7 N « B P ' q

E 8 NxNP' Q B P ' * N q

E 9 < R - Q B 2 >q <R(KB)-QB^

E I O P-move f\

ELL BxN'|5 /^Q'xnP^-nBxB'

Q ! L I J L _ 0

E | 2 BXN'|5 qQ'xNP q B x B ' Q Q ' X R P Q B - m o v ^ Q-bock Q N-mov Q

F R B xN ' | 5 qN ^ B q N x N ' q
FI4BxN'l5 q B x b ' q N ^ B qf/xN q B x B '

B-retreot J ® E 1 5 Q-KB3 n Nx N'

BXN'B /-nN'xB n N " N ' n P ' " N / - V B - R 6 qwb Q N * " Q P W Q B " Q E I 6 N - K 4
t

E I 7 AQ-bock

Q'*NP q N x B 1 Q P ' * n Q R * P ' Q
Figure 13: Problem Behavior Graph of Subject 2 [reproduced from 27].

WHITE I.BLACK 2.WHITE 2.BLACK 3.WHITE 3 BLACK 4WHITE 4.BLACK 5WHITE

E 2 BxN'5 qP'xB q
B'xB q N x B ' qR'xR qC RxR Vq

P*xN /-nQ-KB3/-^Q'-QI

18b

I.WHITE I.BLACK 2.WHITE 2.BLACK 3.WHITE 3.BLACK 4.WHITE 4 BLACK 5 WHITE.

Flf>N-K4 Q N ' x N Q B k B ' Q N x B Q

E I 8 ^ Q ' x N P Q B x N ' Q

F I Q BxN ' J S ^ P ' kB

B'x B

N'xfl
0

E 2 0 Q E f x B Q N - R 4^jQVmw^ N - B S Q B ' « N Q

FPlBxN'l5 ^ B ' " B ^ N - R 4 ^ Q - B 2

Q ' - Q I

Q ' - R 4 Q J J Z B 5 q Q , - N 3 (d

)xN'l8 ^ s N'x B / ^ N x N '^-NQ'-mowt^-N B * B'

i Nxfl'ch /t\ ; ©
E 2 4 ^ P ' " B Q P - K B 4 Q P - K B S Q ^ P

fcgtpVP O E ^ B i Q . £ * B « U @

F ^ B x N ' I S Q N V B Q N ' x N

P ' x B /-NP-KB4

B'x B Q N ~ R 4 Q _ _ N - B 5

Figure 13 (continued)

No such clear cut strategy shows up in crypt-arithmetic example. Partly

this is because of the forms of external memory available. In the chess of

Figure 13 only the initial position is available; all other positions must be

carried in the head. In the crypt-arithmetic of Figure 10 the subject is

permitted write and erase operations in an external memory. Thus, he could go

back not only to the initial situation, but also to the one written on the board.

The position of Figure 12 is taken from DeGroot [4]. Hence, it is possible

to go back and reanalyse some of his protocols on the same position. Figure 14

shows the PBG of Max Euwe (world chess champion, 1935-37). It should be noted,

however, that Euwe was by far the most methodical of the grand masters studied

by DeGroot, and the one who produced the most copious protocols.

Logic. Figure 15 shows the PBG for the logic problem presented in the

original example. The behavior in Figure 3, corresponds to the first line

(where it is assumed that both parts of R8 are carried along together); the

simulation reported in [24] was carried through line 5. The full PBG represents

the total episode, lasting close to thirty minutes and ending in the subject

finding a solution.

The basic problem space is that defined by the experimenter in setting

up the task. The states of knowledge are the sets of expressions that have been

derived to a given point. The operators are the 12 rules in Figure 1 (actually

representing a very large number of operators if all variations are taken into

account). The initial element of the problem space consists of the single

expression initially given (in other variants, several initial expressions

were used); the desired situation is given explicitly.

The subject modifies this basic space in two ways. First, in the same

manner as in the crypt-arithmetic example, he works between two spaces —

Figure 14: Chess: Problem Behavior Graph of M. Euwe [from protocol in 4] .

NXN'

NXB'

P'XN

m

N X N ' I — i B x N B X N ' I—I B'X R— j B'xB/3 R— | N-Q7 R— | Q'-Q)

NXN' B'xM BxN' BxB/3

N'xH J — | BxN' J—|B'xB/XR— |wxB/6|—|

P-B4

N'XN BX N'

5
BS.0/N Rx&'

B X B ' l — I N ' X B

P X N

O

N x N ' N'XN B X N ' B'xB/M BxB' R - I R ' x B
D 0

N'xN B-R6 KR-QI Q-KB3

BaM/5

B'xB N-Q7|—|B' -B5

BkH'/5 N'XB NXN' 4 X N I — | B X G '

0

BXH'/G B'yg j — j B x N ' j — | B ' x B | — | N - Q 7 [— | Q - Q l | — | WxB75 [—|P'xN

B»N'/5 P'xB

Q-63 K - N A

BxU'/y
| | CHOICE

Figure 14 (continued)

1

I 2 3 4 5 6 7
, J ~ Y « * i o o < U U U R - i M

i

3

4

5

6

7

8

9

10

I I

12

13

14

IS

16

17

16

Aft R7 j—î âo.

SUBJECT 4 (5 7)

LOGIC PROBLEM D I

• ~ ™ n r «

• a

f Z r ^ C r ^ - a

Figure 15: Logic: Problem Behavior Graph of subject 4 on problem Dl.

Figure 15 (continued)

the written one and the one in his head. Thus, although by the rules of logic

anything derived becomes part of the current state of knowledge forever, the

subject cannot remain cognizant of the entire past. Instead, the current state

is defined by a subset of those expressions that have been derived. This is

forced on the subject by working internally. However, it may even be true of

some of the expressions that have been recorded on the board; they may be

taken as irrelevant and not enter into the processing of the current state.

The extent and lawfulness of these constrictions of the actual state of know­

ledge from that available according to the permissible rules of inference is

a matter for later analysis. What is recorded in Figure 15 is the information

actually used in advancing the search at each point.

The second modification in the problem space is the use of function

terms for operators. The subject not only has the specific rules (Rl to R12),

but also 'thange sign," '^Change connective to wedge," 'delete Q," "Cancel

the S fs," etc. These expressions play a dual role. First, they are the con­

version into an action language of the differences seen between expressions.

Given PvQ to be transformed into - P O Q , the difference in connectives (the

v versus the o) is converted into the statement "Change the connective from

wedge to dot," or an abbreviated version such as "Change connective." This is

then used to select one of the admissible operators; e.g., Rule 6 in the example

above. Thus, function terms play the role of intermediaries in getting from

perceptions (differences in characteristics of expressions) to actions (the

legal rules). If this was all they did, then they could be absorbed in the

process of operator selection and would not appear as operators at all. This

is essentially the view taken in GPS, where a table of connections going directly

from differences to legal operators was provided.

These function terms become operators at the point where a new state of

knowledge is produced as the result of applying a function term, which then

becomes the input for another operator, either a legal one or another function

term. This happens frequently enough in the various protocols to warrant

treating them as operators. Thus, these function terms correspond directly

to the function moves in chess (Bishop defends) or the inferences in crypt-

arithmetic based on states of knowledge incorporating set information (E even

implies E cannot be 9) .

Extensive use of function terms as operators constitutes a variety of

planning — of proceeding on the assumption that a sequence of legal operations

can be found later that will carry out the transformation implied by the

function terms. Figure 16 shows the PBG on a different problem (and a

different subject) that leads to an extended plan (lines 1 and 2) with reworking

of the plan to fill in the detail (successfully, as it turns out). This form

of planning has been analysed elsewhere in more detail using the sorts of goal

structures GPS would set up in creating such plans [21].

Missionaries and Cannibals. The missionaries and cannibals puzzle has

been used frequently as a task for problem solving programs. Three missionaries

and three cannibals wish to cross a river, but have only a boat that holds two

people. All can row, but it must never happen that on any shore there are more

cannibals than missionaries. The task is to specify the schedule of boat loads

back and forth across the river so that all six will eventually end up on the

far side of the river.

Figure 17 shows the problem space for a human subject solving the M&C

puzzle; Figure 18 shows the PBG [18]. The problem space is again the obvious one:

a particular arrangement of missionaries, cannibals and boat being the state of

Ll PvQ lo Pv*r
LZ
L3 5
L4 R3~S
LJ R2t«rL4
L6 Rl2t»Ll«,L5
L7 Rlt*L*<LG
L8 R6-torL!
L4 ~ C } d P R2-t«rL8
LIO P
Lll PvT R3VLIO

Subject 6(57)
Logic Prot>\ew\ A4

Figure 16: Logic: Problem Behavior Graph of subject 8 on problem A4.

knowledge, and the various possible boat loads moving across the river being the

operators. The one additional feature is that the subject sometimes distinguishes

putting men into boat and taking them out as a separate move. This additional

elaboration, which is completely non-functional, accounts not only for some of

the elaborateness of the PBG, but for some of the blind alleys. In line 6,

for example, the subject ignores the constraint on the right because the cannibal

doesn't get out of the boat. Again, like crypt-arithmetic and logic, the subject

has an external representation, which provides a memory of the current position.

In this task actual porcelain figures on a facsimile river were used, rather than

a written record, so there was no cumulation of past data, as in logic. Through­

out the entire course of problem solving this subject remained within this

elementary problem space, except at one point. In line 16, he discovers the

crucial move by making two illegal moves in a row. He then combines them legally

in line 17. Of course, this does not go outside the problem space, only outside

the bounds of strictly legal moves.

Summary. We have now presented PBG fs from several tasks. In all cases

we get the same information. First, we obtain confirmation that the subject is

solving the problem by search in a closed space. Second, we get a characterization

of that space in terms of the kinds of knowledge used for states and the kinds

of operators for deriving new knowledge. This provides one description of the

intellectual level on which the subject is operating. Third, we prepare for

the next stage of the analysis — to ask what can account for the particular

search patterns that emerge in the PBG. In some cases, such as chess, we could

already generate some hypotheses on the basis of the global features of the graph,

without inquiring in detail what choices were made at each point. More generally,

if a program were to be constructed to simulate the episode, we would expect it to

reproduce the PBG with some fidelity.

States of knowledge:
The configuration on the river, consisting of the location of the boat
(> on left, <J on right) and the location of the missionaries (M) and
cannibals (C) on the riverside and in the boat.
Examples: MMMCCO Initial position: all on left, boat empty

MMMC.CO All on left, but two C in boat
MMMC<CC. Two C on right, but still in boat
MMMC<CC Two C on right with empty boat
<*1MMCCC Final position: all on right, boat empty

Operators:
Moving boat across the river and putting men in and out of boat
Let X be a sequence of M v s and C f s

-> Move boat from left to right, disembark all men
<- Move boat from right to left, disembark all men

Move boat from left to right, do not disembark
Move boat from right to left, do not disembark

*X Add X to the boat (note: boat may already have men in it)
tX Disembark X from the boat (note: may leave some men in boat)
X-* Add X to boat, move from left to right and disembark
<-X Add X to boat, move from right to left and disembark

X->. Add X to boat, move from left to right, do not disembark
• «-X Add X to boat, move from right to left, do not disembark

Evaluation codes:
-1 Too many C on left
-r Too many C on right
c Cycle: return to prior position
i Experimenter interrupts
? Uncertain
+ Success

Two spaces (both with same knowledge states and operators):
External space: States are squares; operators are solid
Internal space: States are circles; operators are dashed

Figure 17: Missionaries and Cannibals: Definition of problem space

f MMMCCO)

I

2

3

4

5

6

7

8

9

to

I I

12

14

15

16

17

S u b j e c t 6 4 (6 4)

O H 3

fc*|(/WC4MC.C)

0 ^ O = C O * - O - - - O

(MMCC^Mc) (A MMMCCC")

Figure 18: Missionaries and Cannibals: Problem Behavior Graph of subject 64.

We have not discussed the various possibilities for error in creating a

PBG, except to comment on the problems of encoding in the crypt-arithmetic case.

The problem space permits one to ignore part of what goes on in the protocol,

attending only to what indicates a change of knowledge state as defined in the

problem space. Thus, much material in the protocol may be left out of considera­

tion. As an extreme example, Figure 19 shows the PBG that would have been

generated for the crypt-arithmetic example if one had decided to use the external

problem space i.e., what was written on the board ~ as the state of knowledge;

and writing a digit in place of a letter as an operator*. We can see that

this graph is much sparser than the graph of Figure 10. One clue as to its

inadequacy certainly would be the long stretches of the protocol that lead to

no change in state of knowledge. The more important evidence would come, however,

from the inability to carry out the next stage of the analysis — to find any

way to characterize the way choices are made in this space.

In general, several kinds of errors are possible in analysing a protocol

into a PBG. The problem space might be too aggregated, so that the essential

problem solving occurs within a single node of the graph, and the PBG as drawn

is concerned only with relatively unimportant features. Alternatively, the problem

space might be too detailed, so that the relevant control over search is going on

at a higher level, with the steps in the given problem space simply being the

means to carrying out these higher level plans. Finally, the problem space

might be simply epiphenomenal, so that the real problem solving occurs in some

space that does not reveal itself. The clues that indicate each of these errors

5/D12 means "write 5 at the occurrence of D in column 1, row 2";
3/R2 means 'Vnrite 3 for the occurrence of R in column 2";
0/T means 'Vnrite 0 for the occurrence of T. "

B '
XI X2

5 / D 6 J B I 4 1 X2
T

4

1 4 5 7
X3

3 / R 2 > 3 / R 4 ? 3 / R 6 B+ 7
X3

3
| B 6 I I 7/K2 , [» • » . M | - 3 7 * 4 j 7 / R 6

3/LZ\ V 3 / L 2 2 l / f r
6

3/LZ\ V 3 / L 2 2 872.
X4

l / f r 865" v. „ X 5
872.

X4
865" v. „ X 5

3

4

Bl0f Yl 5/PH ^ g/Pta O/T Biee
z 3

9 / L 2 l ^ 9 / L 2 2 6 1 8 7
* 1 Y 3 Y2

B I 0 9 9/RFC 4 / 1 2 1 ^ 4 A 2 2 ^

*Y4

9 / R 6 Y 9 / G 4

5 / P 6 Bi9r
Y 4

B249 X/^31, */<y52 v 9/E5 - J / E 3 B25* „ B25* „

U / L 2 I „ Q M * .
» 2 7 , V 7

4/A3I ^ 4 / A 3 2
» 2 7 , V 7

1

J J 2 .
3 / B

T T
3

B 3 0 2
XIO

1 a.
XII

S U B J E C T 3 (6 0 >

XI •* > ©-> X 2 X * . *X3 X3 * • > » •
'X4 * 4 X5 -

> > * •

Yl . Yl Y3
•) > — * * •

„ Y 4
> > »• » > >»

X | : P O N A L P P ^ - S T

R O B E R T

X 6 X 7 X B X9 XIO X I I

> > > > • > • > » » > • > » »

Figure 19: Crypt-arithmetic: Problem Behavior Graph in external problem space.

revolve around the unexplainability of various choices made in the PBG under

analysis. Contrariwise, if the problem space is the appropriate one for the

episode, then we should be able to describe a collection of processes that

collectively perform the functions of Figure 5 in a consistent way.

Analysis of Regularities in the PBG

At each node of a PBG the subject makes a number of decisions (or

selections), already summarized in Figure 5. According to the theory, these

should be based in large part on the state of knowledge existing at that time;

that is, on the state of knowledge associated with the node, including path

information and past attempts information. Information outside this state

may be used as well, but it is either not covered by the problem space (e.g.,

time is running out) or is not variable over the course of problem solving

(e.g., properties of integers). The subject makes repeated use of these

processes of decision, and we get essentially one observation per node of the

PBG. This is an "experiment of nature" in that we do not control the population

of trials; but if we are lucky we will get a number of decisions in closely

related states of knowledge from which we can induce what these decision

processes are and whether they are sufficiently stable to replicate themselves.

Production systems. We need some language to express the decision and

selection processes that might characterize the subject. We would like a scheme

that facilitates inducing these processes, rather than requiring the invention

of the complete program all at once. One that appears to have some of the

desired virtues is the production system. This consists of a set of productions,

each of which consists of a condition expression followed by an action expression

condition -» action

The production is to be considered in the context of the state of knowledge at

a node. If the condition is true of the state of knowledge, then the action

part is evoked; otherwise the production has no implication for the behavior of

the system at that node. In applying a production system (i.e., a set of

productions) to a node, some doctrine of conflict resolution is necessary to

select a unique action if the condition of more than one production is satisfied.

The simplest such scheme is a priority ordering of the productions, so that the

one of highest priority always wins out.

Production systems have an extensive history in logic and the theory of

algorithms [17]. They have been much used recently in programming, as schemes

for handling syntax [6] and doing symbolic computation [9]. Production systems

are still a perfectly general scheme for information processing; they simply

divide up the computation somewhat differently than a standard sequential

programming language. The generality of production systems does not imply

theoretical neutrality. They make it easy to express certain forms of organi­

zation, hard to express others. Thus, they mold psychological theory to some

extent. The issue will not be explored further in this paper, but its existence

should be noted.

The advantage of a production system for the task of program induction

lies in the fact that at each node one of the productions is evoked. Therefore

its condition is true of that state of knowledge and its action occurs at that

point. Thus, an hypothesis formed by the analyst at a node takes the form of a

proposal for one of the productions that exists in the system. This can be

specified independently of what other productions exist in the system.

Thus, the total system can be put together piece by piece from a consideration

of what happens in each local situation.

The system is not actually as free as the above paragraph indicates.

Once a production has been specified, it should be evoked in any situation where

its condition is satisfied. Since the states of knowledge are already given

in the PBG, the set of nodes where a production is theoretically evoked is

determined. Whether it is in fact evoked, as indicated by what action takes

place there, is an empirical matter to be answered by an inspection of the PBG.

To the extent that the production does occur where predicted, we get confirmation

of a regularity in the subject's behavior.

Some extensions to the above picture must be introduced before the

scheme for the analysis of regularities is complete. The nodes provide a first

segmentation of the protocol. Thu% there will be at least one production per

node whose action includes the operator that is evoked at the node. But it is

possible to have additional productions whose output is some intermediate infor­

mation used by another production that leads to the selection of the operator.

This intermediate information will not be such as to change the state of knowledge

in the problem space, of course. For example, it might be the discovery that all

operators had been tried at the node, which would lead to the cessation of the

attempt to select an operator and to the evocation of a production leading to

the selection of what node to return to. Thus, the total population of

observables may increase somewhat as productions are defined.

Secondly, defining the productions locally and in isolation only partially

specifies the total production system. Many productions may be predicted to

occur at a node. The evidence will indicate which one (or perhaps none) of the

predicted set occurred. A conflict resolution rule, such as a priority ordering,

needs to be added to complete the production system in a way consistent with

the actual occurrences.

A final complication is that we may want to define productions whose

action part consists of a sequence of actions to be taken unconditionally.

Such a production would cover several nodes. This situation corresponds to the

PBG being too disaggregated, so that what is being plotted in the PBG is not

a series of independent actions, but the implementation of a more global method.

We are now ready to examine these ideas concretely. We will do this

only for the crypt-arithmetic example, and even here we will have to be sketchy,

considering how much detail is necessary to describe fully a production system

and its coordination with the full protocol. The original analysis [22]

provides a fuller account. In the original study of our chess example [27]

a partial analysis of this same kind was carried out, which we will not discuss.

However, similar analyses are not available for either the logic or the

missionaries and cannibals examples.

Crypt-arithmetic. Figure 20 shows the production system for the PBG of

Figure 10. The condition part of a production occurs on the left side of the

arrow (->) and the action part on the right. The condition is sometimes composite,

the bar (|) serving to separate disjunctive alternatives. The underlined letters

indicate both variables and the class to which the variables belong, as defined

by the problem space. Thus, v is a variable which is a letter or a carry. The

square brackets are used to identify something or state an additional condition.

Thus, in e[v] the variable v that occurs in e is identified; in v[constrained]

only those v satisfy the condition that are constrained as given in the sub­

sequent definition. The action part may consist of a sequence of actions

(separated by ;) . The double arrow (=>) is used to indicate the output of a

process.

There are four types of productions. SI to S5 lead to the selection of

an operator of the problem space (PC, GN, AV). In doing so they may require

intermediate information about a column, provided either by FC, FA, or GNC,

processes that are not operators in the problem space since we decided not to

make the column being attended to a state variable.

l=d|GN(l)=> d -> TD(l,d)=> J
V L = ± - P (E E !)

T2 ee-p FA(ee)=> e e 1 ; ee f-p
(except <-)

Repeating

Rl e[v] [unclear] get v; repeat 2

R2 check ee[old] -> FP(ee)=> P; get ee; repeat P

Definitions of additional processes
FC(v) Find a column that involves v. For 19 the column includes 1^

but for t: it may be either the carry-out-of column or the
carry-into column.

FA(ee) Find the antecedent that generated ee or, if a variable,
a relationship that determines v.

GNC(cs) Generate the columns in the set of columns, cs.
FL(ls) Find letter in the set of letters, Jjj, that is still

undetermined and occurs a maximum number of times.
FP(§§) Recall the production, P, that was used to generate the

expression ee. (Therefore ee is not a variable.)

Figure 20: Crypt-arithmetic: Production system.

Selection
51 v = d * | - » F C (v) = > c; PC(c) (not repeated)

52 get v| get v=d -» FC(v)=> c; PC(£,v)

53 GETL ->FA(1)==> c[v]; AV(v); P C (c , D

54 get v[constrained]| [simple]=> d[first]; AV(v,d)
1 free -» GN(v) (not repeated)

[-simple]=> ds; [small] -> AV(v)

v constrained = v odd|v even|v>d|v=ds[small]

55 check £ S -> GNC(cs)=> £; PC(jc)

Goal setting
Gl ee? -» get ee (immediately)
G2 ee[v]-p -> get v (note: ee-p accepted) (immediately)

G3 check ee[new] -> get ee
G4 get Is. -> ¥L(ls)^> 1; get 1
G5 ee! check ee (not repeated)

Terminating (+ (n Q t r e p e a t e d)

Tl

SI reflects the use of newly achieved information by trying to find someplace

where it can yield still other information. S2 is just the opposite; given

the goal of getting something, it tries to find a place where something about

it can be found out. S3 is an indirect form of assignment; instead of assigning

an arbitrary value to 1 directly, it backs off to something that determines 1̂ ,

assigns a value to it and then derives the value of I. This tends to assure

that one more relationship will be taken into account. S4 is a reaction to

obtaining partial information by generating the possible values and assigning

one of them as a trial. However, if the generation is complex and there are

many of them (more than two), no assignment is made. S4 is the only production

with a conditional action sequence. S5 provides for checking an answer by

iterating through the columns and adding up each successively; it occurs

only once during the course of the protocol.

The second type of production, Gl to G5, leads to setting up a goal,

either to get something or to check something. Gl says: if the value of

something is unknown, then set up the goal of getting it. This will arise,

of course, only in the context where the value of that thing has occurred in

some other processing. That is, the knowledge state does not contain an

expression, ee?, for everything the system does not know. G2 says: if a

given statement has been found out not to be true of something, then set up

the goal of finding out what is true of that thing. G3 says: one way to check

something is to get its value. G4 reduces the goal of getting the members of

a set to the goal of getting one of them (the one produced by FL). G5 says:

if some fact,ee, becomes critically important, as symbolized by eej, then it

should be checked. Such items can arise from TD in causing something to be

impossible, or from PC.

The third type of production, Tl and T2 f is concerned with terminating

lines of search, Tl evokes TD, the problem space operator that can declare

something not possible; T2 is the backtrack operator that concludes that if

something implies an impossibility, then it is, itself, not possible.

The final type, Rl and R2, is concerned with repeating paths already

trod. Rl repeats processes that were unclear. R2 says to check an item that

has already been produced by some processes, repeat that process. It implies

that the subject remembers something about paths already taken, and has this

path information accessible as a function of the results produced.

There is not space to discuss fully the psychological implications of

this system; they are examined in the more extended treatment. Note that the

productions jointly accomplish most of the functions given in Figure 5, but

that they are not organized entirely as that figure would suggest. Notice

also that the productions are neither novel nor cryptic. Each expresses a

meaningful unit of action that is rational at a local level — that is,

adapted to the task at hand. This does not imply that when put together the

system adds up to highly rational or effective total behavior. In fact a global

judgment on the subject's behavior would be that, although he appeared to know

what he was doing, it still took him three to four times as long as it would a

really good problem solver.

Given the production system of Figure 20, one can go back to the protocol

and determine just what productions occur at each point. The right-hand side

of Figure 8 gives a sample of this. In general there is only one production

per node, although occasionally more than one, (B8), and sometime a single

production covers several nodes (B22.1 and B23). A judgment is clearly involved

in whether a particular production occurs or not. However, it is rare for there

to be uncertainty between two or more productions. Where it has not been

possible to determine what production occurred, either because none of the

defined productions fit or because the protocol is too obscure, a question

mark (?) has been put down.

Having decided what can be concluded from the protocol about what

productions did occur, the next question concerns which productions should

have been evoked according to their conditions. (It is not possible for a

production to be evoked when it shouldn't, since both condition and action must

exist in the data before evocation.) A matrix is obtained, shown in Figure 21*,

in which the entry in the i-th row and j-th column gives the number of instances

in which both production Pi and Pj should have been evoked, but Pj was in fact

evoked. Thus the diagonal entries, (j,j), give the number of times the

production Pj occurred in the coding of the protocol. Likewise the sum of the

two symmetric entries, (i,j) and (j,i), give the number of times the two

productions were brought into competition, so to speak. Their division shows

who won. Blanks in the matrix indicate that the two productions never competed,

and are to be distinguished from zeros, which indicate competition with no wins.

To finish the specification of the production system a conflict

resolution rule is required. We have used a priorty scheme, although it is not

entirely satisfactory. Thus, for each pair of productions we want to put higher

in the order the one which was chosen most often when there was a choice between

the two. That is, put Pj over Pi if the (i,j) entry was greater than the (j,i)

entry. If we do this for each entry separately, intransitivities are possible and

Attend only to the numbers in the upper half of each cell. The figure is
reproduced from the more extensive study; the lower number indicate a
category of questionable failures, which we do not discuss here.

DID OCCUR

own

COULD

OCCUR

own

SI S2 S3 S4 S5 Gl G2 G3 G4 G5 Tl T2 Rl R2 t t ?

SI 35 2 0 3 0 2 4 3 18 6

S2 8 29 9 15 6 2 4 13 2 11 34

S3 4 16 9 14 3 1 4 9 1 7 16 19 19

S4 2
2

0
2

2 4

1
0
3

0 1 3 0 1
2

4
4

2
3

S5 1 6

Gl 0 0 0 11 0 0 3

G2 0 0 1 8 0 5 9 11 9

G3
1

2

G4 26 1 5 4 4 2 18 8 6 3 9

G5 0 0 0 0
I

0 7 4
4

3
2

3

Tl 1
2

0 0 0 2
1

0 31 2
2

1
3 2

T2 0 1 5 0 4 10 11 9

Rl 0 0 0 0
1

0 0 0
1

0 0 18 18 2
1

R2 4

t 44

t

? 38

Figure 21: Crypt-arithmetic: Matrix showing production conflicts.

indicate that a priority system is not operating. In fact, this procedure

leads to a consistent ordering, which is shown in the matrix of Figure 22,

where R2 is highest and G4 lowest. The ordering is not fully determined by

the matrix. For example, there are no occasions when Rl and S5 were contrasted;

consequently they could be permuted in the ordering.

With this priority ordering added, the production system of Figure 20

uniquely determines the production that occurs at each node, except for the

?-nodes. The entries above the diagonal of Figure 22 give the number of

errors made by the system in which a production with lower priority occurred in

the protocol even though a production with higher priority could have been evoked.

Figure 23 provides a final summary of what the production system has

accomplished. It suggests that we could go on adding productions to take care

of additional cases in the PBG until — in the limit — we would add one

production for each node. Thus, we can think of adding productions one by one,

getting for each a certain number of cases handled. The main curve, labeled

"successful," shows the growth of the total number of situations successfully

described. Rl, the best production, produces 38 successes; G3, the least

successful, adds only 2. Since the productions are reordered according to their

successes, we get a smooth curve showing the diminishing marginal utility of the

productions in the system.

As noted earlier, adding productions also adds to the total population

of observables. This is shown by the curve labeled "relevant," which gives the

number of situations in the protocol for which some production (or ?) was coded.

The actual total number of situations (275) was slightly higher,since 8

situations were deemed to be clearly outside the problem space and thus should

not be counted. An example is Bl, which deals with the definition of the rules

of the task.

DID OCCUR

own

OCCUR

own t

R2 " 55 G3 Gl Rl Tl G5 S4 T2 G2 SI S2 S3 G4 t t ? Ex

R2 4 4

S5 1 6 7

G3
X

2 2

Gl 11
0

0
0

0 0 0 0 3 11

Rl
1

18 0 0
1

0 0 0 0 0 0 0 18 2
1

36

Tl 2
1

2
?

31 0 1
?

0 0 0 1
3 2

31

G5 3
2

7 0 4
4

0
1

0 0 0 3 7

S4
1

1
2

3 1 24 0 0
3

2
2

0
2

0 4
4

2
3

28

T2 11 4 1 10 5 0 0 9 10

G2 11 5 1 9 8 0 0 0 9 8

SI 3 3 24 35 2 0 0 18 6 35

S2 6 2 13 4 15 2 8 29 9 11 34 29

S3 3 7 9 4 14 1 1 4 16 9 16 19 19 25

G4 5 6 18 2 1 8 4 26 4 3 9 4

t 44

t

? 38

Figure 22: Crypt-arithmetic: Reordered matrix according to priority rule.

3 O 0 J

250
TOTAL
N O D E S " 0

ZOO

O C C A S I O N S

T 0 1 5 0

A P P L Y

P R O P U C T I O N S

100

50-

2 7 5 T O T A L

2 6 7 R E L E V A N T

2 3 7 S U C C E S S F U L

3 8 E R R O R S * ? ERRORS

2 3 ERRORS

Rl SI Tl S2 S4 S3 Gl T2 GZS5 G5 R2 G* G3

P R O D U C T I O N S
SUBJECT 3 (6 0)
DONALD + GERALD

Figure 23: Crypt-arithmetic: Summary of performance of production system.

As productions are added, the number of cases not handled (?-nodes)

diminishes. At the same time errors arising from conflicts between pro­

ductions gradually increase. This is shown by the solid lower curve, labeled

"errors," which starts at zero and climbs eventually to 23*. This comes from

summing the appropriate entries above the diagonal in the matrix of Figure 22.

Let us summarize where we have come. Technically any production system

is a program. If presented with an initial information state, it will evoke a

sequence of productions, executing their actions and modifying the information

state accordingly. This will continue until either the system loops, or a

state is reached where no production is evoked, at which point the system

stops. The system of Figure 20, although a program in this sense, is not yet a

full program either for simulating the subject or even for solving crypt-

arithmetic tasks. If set loose on a new task,

SEND
MORE

MONEY

it would not know what to do with the left hand column, which has blanks in it.

That is, the productions have all been built around one episode and have not

been extended to form a complete system. They have not even been extended to

cover the ?-nodes, so that as a system it will not keep going for the

DONALD+GERALD task. Instead, Figure 20 represents the regularities found in the

protocol and has expressed them in a form in which any program that is built

can take them into account. Such final programs can be made by extending the

system by additional productions until it is complete, say, over all crypt-

arithmetic tasks of the simple type used here. Indeed, this seems the natural

The dotted curve, labeled "errors + ?-errors," adds to the error curve the
additional entries from the lower half of each cell of the matrix. As noted
in the earlier footnote, we do not have space to discuss the nature of these
"questionable" errors.

way to proceed. But one could also proceed using more conventionally organized

programs with a more constrained flow of control, or trying to embed the

process into a structure such as GPS. In these latter cases, the production

system, along with the summary of how well the various productions fared,

provides strong statements about what has to go into the simulating system.

The matrix of Figure 22 and the accounting of Figure 23 also suggest

we may have made some progress on the assessment of an information processing

theory. We have managed to obtain an ensemble of instances and to divide our

process representation up into pieces that can be handled as individual units,

so that we can count successes and failures. It is still unclear what these

counts mean in the sense of any underlying statistical theory of the expecta­

tion of various degrees of success. But it is already clear that empirical

norms are possible. For instance, the appropriate way to record the present

venture might be as a system of 14 productions in a task with a population of

267 evocations yielding a coverage of 85$ with conflict errors of 10$. This

could be compared with behavior on other crypt-arithmetic tasks, and even with

behavior on other tasks. A population of such figures might serve to indicate

whether a proposed theory in fact yields an improvement and in what way. Such

information would be exceedingly useful, even without any formal theory of

significance*.

It has been suggested [31] that one might be able to use the kind of
information transmission analysis described by Garner [10]. The
productions would be viewed as reducing the amount of uncertainty one
had about the data, and under suitable assumptions one might calculate
a specific figure for this. As of now, it is unclear to me what such
further aggregations would add to the summaries of Figures 22 and 23.

Summary

Let us pull together the threads of the story. We have been concerned

with making protocol analysis into a useful tool. This has led to a methodo­

logical emphasis with, however, the focus on improving the technology for

developing theory, rather than for validating theory. We introduced a series

of steps in the data analysis whose function was to make evident the important

regularities in the protocol, and pave the way for constructing process models

of the subject's behavior. Briefly summarized, these steps are:

Divide the protocol into phrases. Each phrase represents a single

assertion about the task or a single act of task oriented behavior. Although

trivial, this step is worth noting, since it represents the limit of precoding

of the verbal behavior.

Construct a problem space. Both the operators and the information

constituting a state of knowledge are set down. There may be more than one

problem space, of course. The problem space is a hypothesis about the subject

behavior.

Plot the Problem Behavior Graph (PBG). Proceed through the protocol

phrase by phrase. The key constraint is that all changes in knowledge state

(as defined for the problem space) that are detectable in the protocol must

come about through application of one of the operators of the problem space.

The PBG segments the protocol into a population of occasions for action.

Create a production system. This system attempts to capture the

regularities in the search behavior. It can be viewed (with some literary

license) as proceeding in several steps:

Conjecture individual productions. At each node of the PBG

conjecture a production that responds to features in the knowledge of that node

(essentially known through the construction of the PBG) and yields the action

taken. This leads to a large collection of individual productions.

Consolidate the production system. Rewrite as many productions

as possible as variations on a few, thus reducing the total number of

productions in the system. This is analogous to subroutinizing a large program,

and yields the same dividends in permitting the essential organization of the

system to emerge.

Plot the production system against the PBG. Proceed through the

PBG node by node. For each determine not only what production occurred, but

what others could have occurred, but didn't.

Determine a conflict resolution rule. This may be a simple

priority system, as used here, but it may involve quite different distinctions.

For example, it may lead to elaborating the conditions of some of the productions.

The matrix of Figure 21 showing how productions fare in competition with each

other is a useful display.

This analysis scheme is still incomplete, as we have not carried it

through the final steps of getting a running program. These latter steps are

not superfluous. They provide the verification that we have a sufficient set

of processes for carrying out not only the immediately present task, but others

of similar character as well. In addition, the hand codings engaged in during

the preliminary steps described in this paper always leave something to be

desired by way of accuracy. The final system as a running program provides

much stronger quarantees.

In our emphasis on the methodology, we have slighted the psychology.

As already noted, production systems carry additional psychological implications

beyond those already apparent in the problem solving theory we laid out explicity.

We have not discussed these, nor have we discussed the nature of the particular

production system we derived. Finally, even assuming we accept a production

system as an appropriate way to express the micro theories, we have not explored

how these contribute to the more general information processing theory of

problem solving.

A final note should be made about the scope of the techniques. Although

it is reasonably clear that they apply to tasks involving the exploration

of consequences, it is unclear how far they stretch. For example, no evidence

is available yet for concept formation tasks, even though some of these have

made good use of protocols [7, 13, 16].

References

1. R. F. Abelson, "Computer simulation of 'hot 1 cognition," in S. S. Tomkins
and S. Messick (eds.) Computer Simulation of Personality. New York:
Wiley, 1963.

2. M. Brooke, 150 Puzzles in Crypt-arithmetic. New York: Dover, 1963.

3. K. M. Colby and J. P. Gilbert, "Programming a computer model of neurosis,"
J. Mathematical Psychology, vol. 1, no. 2, July 1964, 405-417.

4. A.D.DeGroot, Thought and Choice in Chess. The Hague: Mouton, 1965.

5. K. Duncker, "On problem solving." Psych. Monogr.. Whole No. 270, 1945.

6. A. Evans, "An ALGOL compiler," Annual Review of Automatic Programming,
vol. 4, 1964, 87-124.

7. J. Feldman, "Simulation of behavior in the binary choice situation,"
in E. Feigenhaum and J. Feldman, (eds.) Computers and Thought. New York:
McGraw-Hill, 1963.

8. J. Feldman, F. Tonge, and H. Kantor, "Empirical explorations of a hypothesis-
testing model of binary choice behavior," in A. Hoggatt and F. Balderston
(eds.), Symposium on Simulation Models. Cincinnati: South-Western, 1963.

9. R. Floyd, (ed.) Proc. ACM Symposium on Symbolic and Algebraic Manipulation,
published as a special issue of Communications of the ACM, vol. 9, no. 8,
August, 1966

10. W. R. Garner, Uncertainty and Structure as Psychological Concepts. New York:
Wiley, 1962.

11. H. Gelernter, "Realization of a geometry-theorem proving machine," in
E. Feigenbaum and J. Feldman (eds.), Computers and Thought. New York:
McGraw-Hill, 1963.

12. H. Gelernter, "Machine generated problem-solving graphs," in Proc. of the
Symposium on Mathematical Theory of Automata, New York: Polytechnic Press, 1963

13. L. Gregg, "Internal representations of sequential concepts," in B. Kleinmuntz
(ed.) Concepts and the Structure of Memory. New York: Wiley, 1967 (in Press).

14. J. R. Hayes, "Memory, goals and problem solving," in B. Kleinmuntz (ed.),
Problem Solving: Research. Method and Theory. New York: Wiley, 1966.

15. G. Humphrey, Thinking. New York: Wiley, 1951.

16. E. S. Johnson, "An information processing model of one kind of problem
solving," Psych. Monogr. Whole No. 581, 1964.

17. A. A. Markov, Theory of Algorithms. Academy of Sciences, USSR, 1954.

18. W. McPhee, Unpublished data, 1965.

19. G. Miller, E. Galanter, and K. Pribram, Plans and the Structure of
Behavior. New York: Holt, 1960.

20. M. Minsky, "Steps toward artificial intelligence," in E. Feigenbaum and
J. Feldman (eds.) Computers and Thought, New York: McGraw-Hill, 1963.

21. A. Newell, "The possibility of planning languages," in F. Geldard (ed.)
Communication Processes. New York: Pergamon, 1965.

22. A. Newell, Studies in Problem Solving: Subject 3 on the Crypt-arithmetic
Task DONALD+GERALD=ROBERT, Carnegie Institute of Technology, July, 1966.

23. A. Newell and G. Ernst, "The search for generality," in W. Kalenich (ed.)
Proceedings of IFIP Congress 65. vol. 1, Washington: Spartan, 1965, 17-24.

24. A. Newell and H. A. Simon, 'tPS, a program that simulates human thought,"
in E. Feigenbaum and J. Feldman (eds*) Computers and Thought, New York:
McGraw-Hill, 1963.

25. A. Newell and H. A. Simon, "Information processing in computer and man,"
American Scientist, vol. 52, no. 3, 1964, 281-200. (see the appendix)

26. A. Newell and H. A. Simon, "Programs as theories of higher mental processes,"
in R. W. Stacy and B. Waxman (eds.) Computers in Biomedical Research,
vol. 2, New York: Academic Press, 1965.

27. A. Newell and H. A. Simon, "An example of human chess play in the light of
chess playing programs," in N. Weiner and J. P. Schade (eds.) Progress in
Biocybernetics, vol. 2, Amsterdam: Elsevier, 1965.

28. A. Newell, J. C. Shaw and H. A. Simon, "Empirical explorations with the
Logic Theory Machine," in E. Feigenbaum and J. Feldman (eds.), Computers
and Thought. New York: McGraw-Hill, 1963.

29. J. J. Paige and H. A. Simon, '^Cognitive processes in solving algebra word
problems," in B. Kleinmuntz (ed.), Problem Solving: Research/Method and
Theory, New York: Wiley, 1966.

30. W. R. Reitman, Cognition and Thought, New York: Wiley, 1965.

31. W. R. Reitman, personal communication.

32. H. A. Simon and E. Feigenbaum, "An information processing theory of some
effects of similarity, familiarity and meaningfulness in verbal learning,"
J. Verbal Learning and Verbal Behavior, vol. 3, no. 5, 1964, 385-396.

33. L. Uhr, C. Vossler and J. Uleman, "Pattern recognition over distortions
by human subjects and by a computer simulation of a model for human perception,"
J. Experimental Psychology, vol. 63, 227-234, 1962.

