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Control of Automatic Processes

Abstract

A growing body of evidence suggests that traditional views of automaticity are in need of

revision. For example, automaticity has often been treated as an all-or-none phenomenon,

and traditional theories have held that automatic processes are independent of attention.

Yet recent empirical data suggest that automatic processes are continuous, and

furthermore are subject to attentional control. In this paper we present a model of attention

which addresses these issues. Using a parallel distributed processing framework we

propose that the attributes of automaticity depend upon the strength of a process and that

strength increases with training. Using the Stroop effect as an example, we show how

automatic processes are continuous and emerge gradually with practice. Specifically, we

present a computational model of the Stroop task which simulates the time course of

processing as well as the effects of learning. This is done by combining the cascade

mechanism described by McClelland (1979) with the backpropagation learning algorithm

(Rumelhart, Hinton, & Williams, 1986). The model is able to simulate performance in the

standard Stroop task, as well as aspects of performance in variants of this task which

manipulate SOA, response set, and the number of competing words in the display. These

simulations demonstrate that when two processes are in competition, the weaker process

can take on several of the attributes that have previously been associated with controlled

processing: susceptibility to interference and a requirement for the allocation of attention.

This suggests that the traditional distinction between controlled and automatic processing

is in need of reconsideration.
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Introduction

At least since Malebranche (1674), it has been observed that some processes appear to

be under voluntary control, whereas others do not. Indeed, a central concept in the

literature on human information processing has been the distinction between automatic

and controlled processes (Cattell, 1886; Posner & Snyder, 1975; Shiffrin & Schneider,

1977). Automatic processes are involuntary and fast, and do not require attention for

their execution. In contrast, controlled processes are voluntary and relatively slow, and do

require attention. Examples of processes thought to be automatic are word reading

(LaBerge, 1980; Posner & Snyder, 1975), activation of semantic associations (Neely,

1977), and target detection after extensive training with a consistent set of targets

(Shiffrin & Schneider, 1977). Examples of processes that are assumed to be controlled

are the use of arbitrary, novel associations (e.g., Neely 1977), the reading of inverted text

(Kolers, 1976), and target detection in situations where the set of targets varies from trial

to trail (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977).

The distinction between automatic and controlled processes is often discussed as

though automaticity were all or none. However, it seems fairly clear that automaticity is

really a matter of degree. Indeed, we suspect that many discussions that treat

automaticity as a dichotomous variable do so only for lack of a theoretical framework in

which to formulate a more continuous account. Our goal in this paper is to help fill this gap

in cognitive theory. In particular, we hope to provide a more detailed description of the

mechanisms that underlie automatic processes, their gradual development with practice,

and their interaction with attentional control.
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We will begin by illustrating the contrast between automatic and controlled processes in

the context of the well-known Stroop interference task. We then present arguments

suggesting that the processes involved in this task differ in degree of automaticity, and

that automaticity varies continuously with processing experience.1 In order to make this

point of view more explicit, we will describe a theoretical framework for capturing the

continuous nature of automaticity and its dependence on processing experience. The

main body of the paper will then describe a simulation model that applies this theoretical

framework to performance in this task, allowing for an account of several different aspects

of performance in the Stroop task and related paradigms.

The Stroop task. The Stroop task actually consists of two subtasks (see Table 1). In one

of the two subtasks, subjects have to name the color of the ink in which a word is printed.

In the other subtask, subjects have to read the word aloud while ignoring the color of the

ink. Usually three types of stimuli are used: conflict stimuli in which the word and the ink

color are different (e.g., the word RED in green ink)2 congruent stimuli in which the word

and the ink color are the same (e.g., the word RED in red ink); and control stimuli. The

control stimuli for the word reading task are typically color words printed in black ink; for the

ink naming task the control stimuli are usually a row of XXXX's printed in a color.

Some authors have argued that some automatic processes are innate. For example, Hasher and

Zacks (1979) maintain that the encoding of event frequency is an automatic process and that it is

innate. Here we will focus on processes that become automatic after extensive practice at a task.

Throughout this paper, references to word stimuli will appear in upper case (e.g., RED),

references to color stimuli will appear in lower case (red), and references to potential responses will

appear in quotation marks ("red").
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Table 1. The Stroop Task.

Condition

Color Naming:

Control

Conflict

Congruent

Word Reading:

Control

Conflict

Congruent

Example Stimulus
(where "red" is the response)

XXXX in red ink

GREEN in red ink

RED in red ink

RED in black ink

RED in green ink

RED in red ink

Detailed reviews of the literature on the Stroop task are available in Dyer (1973) and Glaser

and Glaser (1982). As we progress, we will examine many of these details. For present

purposes, though, we focus on three basic aspects of the findings: 1) Word reading is

faster than color naming. 2) In word reading, ink color has no effect on the time it takes to

read the word. 3) In color naming, when the word conflicts with ink color, performance is

slower than in the control or congruent conditions. For example, subjects are slower to

respond to the color red when the word GREEN is written in red ink, than when the word
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RED or a series of X's appear in red ink. Thus, there is dramatic asymmetry between the

word reading and color naming tasks in Stroop experiments.

It is natural to account for these findings by assuming three things:

Word reading is automatic.

Color naming is controlled.

If the outputs of two processes conflict, performance based on one of the two will

be slowed down.

From these assumptions, together with the basic definitions of automatic and controlled

processes, we get an account of the principal results. The finding that word reading is

faster than color naming follows from the relatively greater speed of automatic processes.

The finding that ink color has no effect on word processing follows from the assumption

that color naming is controlled and therefore voluntary; so it will not occur when the task is

to read the word and ignore the color. The finding that a conflicting word interferes with

color naming follows from the automaticity (i.e., involuntary nature) of word reading, and

the assumption that conflicting outputs slow responding.

Traditionally, this interpretation of the Stroop task has suggested a general method for

assessing the automaticity of two arbitrary processes A and C. 1) Compare their relative

speed. 2) Pit them against each other. If all of the following are true:

A is faster than C.

\ A interferes with C.
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C does not interfere with A

then A is automatic and C is controlled. Of course, this method requires that processes A

and C are in some sense comparable in intrinsic difficulty and number of processing

stages.

On the evidence considered so far, automaticity could be considered to be all or none.

However, there is further evidence to suggest that automaticity is really a matter of

degree: We will see that speed of performance, tendency to interfere with other

processes, and susceptibly to interference from other processes all seem to vary

continuously as a function of practice. We will argue that all of these attributes can be

understood in terms of a common variable: the strength of a process.

Speed of performance. Many studies of automatic processes have focussed on speed of

processing, and have noted that automatic processes tend to be executed faster than

controlled processes. We see this in the Stroop task, where word reading is faster than

color naming. However, speed of processing is obviously not a binary variable, and it is a

very common observation that practice produces gradual, continuous increases in

processing speed (e.g., Blackburn, 1936; Bryan & Harter, 1899; Kolers, 1976; Logan,

1979; Shiffrin & Schneider, 1977). A recent experiment by MacLeod and Dunbar (1988),

which we will be examining throughout this paper, illustrates this point. They trained

subjects to use color words as names for arbitrary shapes (see Figure 1), and practiced

subjects in this "shape-naming" task for 576 trials a day for 20 days. Over the course of

training, reaction times to name the shapes gradually improved with practice.

r N
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SHAPE NAMING TASK

"red" "green • i blue"

Figure 1. Training stimuli of the type used by MacLeod and Dunbar
(1988) for the shape naming task. Each of four shapes was assigned an
arbitrary color name, which the subjects had to learn.

The fact that speed of processing varies continuously with practice might not be enough

to convince us that automaticity is a continuous phenomenon. For example, one might

still suppose that there is a threshold for automaticity. On this view, increased practice

might improve the speed of a "controlled" process up to some critical point; additional

practice would then cause the process to become automatic, and continued practice

would merely lead to increases in the speed of performance, but not to any further

changes in the type of processing involved. Contrary to this view, however, there is

reason to suppose that increasing speed reflects a continuous strengthening of the

process underlying performance, and that it is the strength of a process that is

responsible both for its speed of performance, and for the fact that it produces

interference. Logan (1980) has presented such a view of processing in the Stroop task,

and interference data from the experiment of MacLeod and Dunbar mentioned previously

provides strong evidence in favor of this view. They were able to show that practice led

not only to a gradual increase in the speed of processing of shape names, but also to a
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gradual increase in the tendency of shape names to produce interference with another

task. This is discussed below.

Tendency to interfere. As we mentioned above, it is commonly accepted that a central

feature of automatic processes is that they can occur outside of voluntary control, and

thereby produce intertef6"h"C0"witt«r^6ifhpeting task. Gradual development of the ability

to "produce interference would therefore strongly favor the view that automaticity is

continuous in nature. MacLeod and Dunbar (1988) tested for the ability of shape names

(which were arbitrary color words) to interfere with naming the color of the ink in which the

shapes appeared. Subjects were tested after 1, 5, and 20 sessions of pnctice

associating the shapes with their color word names. After 1 session of practice, there was

no effect of a shape's name on the subject's ability to identify the color of the ink in which

it appeared; after 5 sessions the shape produced some interference; and after 20

sessions there was a large effect. That is, presenting a shape whose name conflicted with

its ink color produced strong interference with the color naming response. The fact that

this effect appeared to develop incrementally with practice lends further support to the

idea that automaticity is a graded, rather than an all-or-none phenomenon.

Susceptibility to interference from other tasks. We have suggested that there is a gradual

strengthening of a process which occurs with practice, and that this leads to an increased

tendency to interfere with competing processes. This is consistent with the data just

discussed. It also suggests that as the tendency for a process to produce interference

increases, its susceptibility to interference might decrease. MacLeod and Dunbar

examined this point as well; they looked at the effects of conflicting, congruent, and

neutral ink colors on shape naming after 1, 5 and 20 sessions of practice with shape



Cohen, Dunbar & McClelland Control of Automatic Processes

10

naming. After one session of practice, conflicting ink color interfered with naming the

shape. After 20 sessions, this was no longer the case; if there was any residual effect of

color, it was below the level of statistical detectability. Once again, these changes

appeared to occur incrementally with practice.

MacLeod and Dunbar's results are incompatible with a dichotomous view of the distinction

between automatic and controlled processes. If we assume that automaticity is all or

none, we are lead to a contradiction. From the standard Stroop experiment we know that

ink color does not influence word reading, while words can interfere with (and facilitate)

color naming. Hence we must conclude that color naming is not automatic. Yet, in

MacLeod and Dunbar's experiment color naming reversed roles. That is, during the first

two testing periods ink color was able to interfere with shape naming, while shapes were

unable to influence color naming. According to these data, we must conclude that color

naming is automatic.

A way out of the contradiction is to suppose that interference effects are a reflection not

of a dichotomy between automatic and controlled processes, but are a reflection of the

relative strength of each of two processes which are placed in conflict. When process A is

stronger than process B, A can interfere with B but B can not interfere with A. As B gains

strength, there comes a point where the strengths are commensurate and the processes

can interfere with one another; as B is strengthened further, to the point where it is

stronger than A, B can now interfere with A but A can no longer interfere with B.
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Strength versus Speed

The argument just given is consistent with the facts, but it might be supposed instead that

the only thing that is really varying among the processes considered above is speed. On

this view, we could assume that all the processes in question are automatic but that one

process has to finish before another to produce interference.

The view that interference is a matter of relative timing of completion predicts that it should

be possible to make color information conflict with word reading, if the color information is

presented long enough before the onset of the word. However, this does not occur.

This fact was demonstrated by Glaser and Glaser (1982). Glaser and Glaser varied the

stimulus onset asynchrony (SOA) of a color patch and a color word1, and found no

interference of the color patch on word reading even when the color preceded the word

by as much as 400 msec.

The pattern of results in the Glaser and Glaser study is interesting, and we will return to it

below. For now we mention this study to show that it seems to require an appeal to

something other than just the relative finishing time of two processes. If color naming and

word reading differ simply in how long they take, then we should be able to compensate

for this difference by adjusting the onset of the relevant stimulus inputs. But this does

not work. It appears instead that color naming really is in some sense weaker, and not

simply slower than word reading. Yet it is not so weak that it cannot interfere with another

1 As we will discuss below, the Stroop effect can still be observed even when the two stimulus

dimensions are physically disjoint.
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task, such as shape naming when this has received only a moderate amount of practice

(e.g., less than 1,000 trials).

Overall, then, the findings we have reviewed suggest the following two basic

conclusions:

As a process is practiced, some parameter of that process gradually changes. We

will call this parameter strength.

Increasing strength produces increased speed, increased tendency to interfere,

and decreased susceptibility to interference.

Automatlcity and Attention

Thus far we have omitted one central issue. This concerns the regulation of performance

to conform with the assigned task. For example, when faced with the word RED in green

ink, the correct response depends on the task. Traditionally, of course, it has been

assumed that the role of attention is to determine which processes are to be performed.

Indeed, implicit in the notion of controlled processing is the idea that there is a controller.

The distinction between automatic and controlled processes implies that some processes

are less prone to control than others.

A dichotomous view of automaticity would treat controllability as all or none—that is,

automatic processes are not subject to control, while controlled processes are. However,

there are obvious problems with this view. As Neumann (1984) has noted, behaviors

relying on automatic processes must be subject to some form of control, otherwise they
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would occur as reflexes. This is apparent in the Stroop task, where subjects are able to

respond accurately to color stimuli (i.e., in the color naming task) even when conflicting

word information is available. This would not be possible if word reading—even though it

is automatic—were not subject to some form of control.

One way to reconcile automatic processing with the control of behavior is to differentiate

between control of the behavior required to accomplish a task and control of the individual

processes involved in that task. Thus, behavior in a task can be seen as consisting of

many component processes. Some of these processes may be automatic, and not

subject to control. Nevertheless, the control of behavior could occur when the results of

such automatic process are made available to other, controlled processes involved in the

task. Shiffrin suggests just such a view: "tasks as a whole are accomplished by complex

mixtures of automatic and attentive processes operating in concert" (Shiffrin, 1988, p.23).

In contrast to this view is the view that even individual automatic processes are subject to

control. Several theorists have argued along these lines (e.g., Kahneman & Treisman,

1984; Logan, 1980). Their arguments are supported by empirical evidence from the

Stroop task. For example, Kahneman and Henik (1981) have shown that the allocation of

attention can influence the degree to which word reading interferes with color naming.

They demonstrated this in a variant of the standard Stroop task in which they presented

two color word stimuli, one surrounded by a square and the other surrounded by a circle.

Subjects attended to a point midway between the two stimuli, and were then asked to

name the ink color of the word which appeared within one of these shapes. Interference

occurred only from the word in the attended shape, and not from the word in the non-

attended shape. According to traditional theories of automaticity the word in the non-
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attended shape should have produced interference because, on this view, word reading

is automatic and therefore independent of the allocation of attention.

On the basis of this and related findings, Kahneman and Treisman (1984) have argued

that automatic processes are in fact subject to control by attention, although individual

processes may differ in their degree of susceptibility to such control. This coincides

nicely with the view that the attributes of automaticity are continuous in nature. On this

view would be that control by attention is also an attribute of automaticity that varies by

degree. Furthermore, it seems natural to assume that the stronger a process is, the less

susceptible it is to control by attention. This can then explain the relationship between

strength of processing and interference effects. Thus, earlier we noted that the stronger

a process is, the greater will be its tendency to interfere with a competing processes. Now

we can say that this is because stronger processes are less subject to control, and can

occur more effectively in the absence of attention. From this it follows that increasing the

strength of a process will increase its tendency to interfere with other processes, even

when that process is not allocated attention.

In summary, we have argued that automaticity is a matter of degree, and reflects a gradual

strengthening process that varies continuously with practice. We turn now to a theoretical

framework in which it is possible to explore this view in greater detail, and to be specific

about the relationships that exist between processing, practice and attentional control.

The framework specifies a subclass of models within the more general parallel distributed

processing framework described by Rumelhart, Hinton and McClelland (1986); it shares

with many cognitive models the basic notion that processing occurs through the

propagation of activation through pathways of graded strength.
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The Processing Framework

Architectural characteristics. Processing takes place in a system of connected modules.

Each module consists of an ensemble of elementary processing units. Each unit is a

simple information processing device that accumulates inputs from other units and

adjusts its output in response to these inputs. All units are assumed to operate

continuously, adjusting their output in response to changes in their inputs.

Representation of information. Information is represented in the pattern of activation over

the units in a module. The activation of each unit is a real valued number varying between

a maximum and minimum value. Thus, information is represented in a graded fashion, and

can accumulate and dissipate with time.

Processing. Processing occurs by the propagation of signals (spread of activation) from

one module to another. This occurs via the connections that exist between the units in

different modules. In general, there may be connections within as well as between

modules, and connections may be bi-directional. However, for present purposes we

adopt the simplification that there is a unidirectional flow of processing, starting at

modules directly sensitive to sensory input and proceeding "forward" or "bottom-up" to

modules whose output governs the execution of overt responses.

Pathways and their strengths. In general a particular process is assumed to occur via a

sequence of connected modules that form what we will call a pathway. Performance of a

task requires that there be some processing pathway such that the pattern of activation in

the relevant sensory modules leads to an appropriate pattern of activation in the relevant

output modules. The speed and accuracy with which a task is performed depends on the
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speed and accuracy with which information flows along the appropriate processing

pathway. This, in turn, depends on the connections between the units that make up the

modules in that pathway. We will demonstrate this in simulations shortly. We refer to this

parameter as the strength of a pathway. Thus, the speed and accuracy of performing a

task depends on the strength of the pathway used in that task.

Interactions between processes. Inasmuch as individual modules can receive input from

and send information to several other modules, each can participate in several different

processing pathways. Interactions between processes arise in this system when two

different pathways rely on a common module—that is, when pathways intersect. If both

processes are active, and the patterns of activation that each would generate at their point

of intersection are dissimilar, then interference will occur within that module, and

processing will be impaired in one or both pathways. If the patterns of activation are very

similar, this will lead to facilitation.

The intersection between two pathways can occur at any point in processing after the

sensory stage. For example, interference at an intermediate stage is consistent with data

reported by Shaffer (1975) and by Allport, Antonis and Reynolds (1972). Interference at

the output stage would give rise to response competition, such as that observed in the

Stroop task (cf. Dyer, 1973). The general view that interference effects arise whenever

two processes rely on a common resource, or set of resources has been referred to as

the multiple resources view (e.g., Hirst & Kalmar, 1987; Navon & Gopher, 1979; Wickens,

1984). Logan (1985) summarizes this position succinctly: "different tasks may depend

on different resources, and dual-task interference occurs only when the tasks share

common resources. Thus, the interference a particular task produces will not be an
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invariant characteristic of that task; rather, it will depend on the nature of the tasks it is

combined with" (p.376). This point will be made explicit in the simulations we present

below.

Control. One way to avoid the interactions that occur at the intersection between two

pathways is to modulate the information arriving along one of them. This is one of the

primary functions of attention within this framework. This view of attention is consistent

with the views of several other authors (Kahneman & Treisman, 1984; Logan, 1980;

Treisman, 1960). In our system, modulation occurs by altering the responsiveness of the

processing units in a pathway. In this way, attention can be used to control individual

processes. However, this does not necessarily imply that attention requires a unique, or

even distinct component of processing. As we shall see, attention simply represents an

additional source of information which provides context for the processing of signals

within a selected pathway.

This framework can be used to account for many of the empirical phenomena associated

with learning and automaticity. Schneider (1985) has used a similar approach to explain

how performance in a category search task changes as a function of practice. Here, we

focus on the significance that this approach has for selective attention. In the following

section we describe a simulation model based on the processing principles discussed

above. Using the Stroop task as an exemplar, we present a series of six simulations that

demonstrate that this model is able to account for many of the empirical phenomena

associated with automaticity, and for their gradual emergence as a function of practice.

The first three simulations examine the basis for the attributes of automaticity evidenced

in the Stroop task (viz., speed of processing and interference effects). The remaining



Cohen, Dunbar & McClelland Control of Automatic Processes

18

simulations explore the relationship between processing and attention, and the nature of

capacity limitations in processing resources.

The Model

The model that we propose embodies the assumptions given above in a specific set of

modules and detailed processing assumptions suitable for capturing the Stroop

phenomenon and related findings such as those of MacLeod and Dunbar (1988) and of

Glaser and Glaser (1982).

Architecture and Representation of Information

The architecture of our model is depicted in Figure 2. The model consists of two

processing pathways—one for processing color information, and the other for processing

word information—both of which converge on a common response mechanism. Each
* »

pathway consists of a set of input units, a set of intermediate units, and a set of output

units. Each of the input units in a given pathway projects to all of the intermediate units in

that pathway. The intermediate units from both pathways project to all of the output units

in the model.



Cohen, Dunbar & McClelland

red green

INK COLOR

Control of Automatic Processes

19

RESPONSE

"red" 'green

Color
Naming

Word
Reading

TASK DEMAND

RED GREEN

WORD

Figure 2. Network architecture. Units at the bottom are input units, and
units at the top are the output (response) units.

Processing in this system is strictly feedforward. A stimulus is provided by activating units

at the input level of the network. Activation then passes to the intermediate units and,

gradually, to the output units. A response occurs when activation of one of the output

units exceeds a response threshold. Reaction time is assumed to be linearly related to

the number of processing cycles that it takes for this threshold to be exceeded (the

response mechanism will be discussed in greater detail below). In addition to the units just

described, there are also two task demand (or "attention") units—one for the color naming
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task and the other for the word reading task. Each of these is connected to the

intermediate units in the corresponding pathway. These are used to allocate attention to

information in one of the two processing pathways. Activation of a task demand unit

sensitizes processing in the corresponding pathway, as will be explained below.

Information is represented in the network in the following way. Individual stimuli and

responses have discrete representations. Each color and each word is represented

locally by the activation of a single input unit. Similarly, each output unit represents one

potential response. We chose local representations of this kind to keep the model as

simple and interpretable as possible. However, nothing in principle precludes the

possibility that either inputs or outputs could be distributed over many units. In fact,

preliminary investigations suggest that our findings using local representations generalize

to more complex systems using distributed representations.

Mechanisms Underlying Learning and the Time Course of Processing

The model is intended to provide an explanation of the relationship between learning and

the time course of the psychological processes involved in the Stroop task. To date, PDP

models which have addressed the time course of psychological processes have largely

been distinct from those which model learning and memory. For example, McClelland

(1979) presented a multilevel PDP system which provided an account of the time course

of psychological processes, however this system did not include a learning algorithm.

The back propagation algorithm described by Rumelhart, Hinton and Williams (1986) was

introduced as a general learning mechanism which can be used in multilevel networks.

However, PDP systems which have employed this algorithm have not generally simulated
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temporal phenomena such as reaction times. Here we describe each of these

mechanisms and their limitations in greater detail. We then show how they can be

brought together to provide a single system in which both learning and processing

dynamics can be examined.

McClelland's cascade model provides a mechanism for simulating the time course of

psychological processes. In this system, information is represented as the activation of

units in a multilevel, feedforward network. Input is presented as a pattern of activation

over units at the lowest level. Information gradually propagates upward, as units at each

level update their activations based on the input they are receiving from lower levels.

Eventually a pattern of activation develops over the units at the topmost level, where a

response is generated. Units in this network update their activations based on a weighted

sum of the input they receive from units at the previous level in the network. Specifically,

the net input at time (t) for unitj (at leveln) is calculated as:

netj(t) = V aj(t)wy (Equation 1)

where aj(t) is the activation of each unitj (at leveln-i) from which unitj receives input, and wy

is the weight of the connection from each unitj to unitj. The activation of a unit is simply a

running average of its net input over time:

aj(t) - netj(t) = Tnetj(t) + (1-T) netj(M) (Equation 2)

where net j(t) is the time-average of the net input to unitj, netj(t) is the net input to unitj at

time (t), and T is a rate constant. This time-averaging function is what establishes the time
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course of processing in this model. When T is small the unit's activation will change

slowly; with a larger I it will change more quickly. One feature of Equation 2 is that, if the

net input to a unit remains fixed, the unit's activation will approach an asymptotic value

which is equal to this net input. As a result, McClelland demonstrates that with a constant

input to the first layer in such a network, all of the units will approach an asymptotic

activation value. What is most important is that this value is determined strictly by the

pattern of the input to the network and the connections that exist between the units.

Thus, given a particular input pattern, and sufficient time to settle, the network will always

reach a stable state in which each unit has achieved a characteristic activation value. The

speed with which this occurs is determined in large measure by the strength of the

connections in the network.

One problem with the type of network used in the cascade model is that it is based on a

linear activation function. That is, the activation of a unit is simply a weighted sum of the

inputs it receives. It has been shown that networks which rely on linear update rules such

as this, even if they are composed of multiple layers, suffer from fundamental

computational limitations (cf. Rumelhart, Hinton, & McClelland, 1986 for a discussion).

Networks which are capable of solving the broad class of computational problems which

humans seem able to solve require at least one layer of units between input and output

that make use of a non-linear relation between input and output. Another problem with

the cascade model, especially within the current context, is that it lacks any mechanism for

learning. Both of these problems can be overcome if mechanisms are included which

have been used in recent PDP models of learning.
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The first step is to introduce non-linearity into processing. This has been done most

commonly using the logistic function. Typically this function has been used to calculate

the activation of a unit, based on its instantaneous net input:

aj(t) = logistic(netj(t)) = -net (t) (Equation 3)

where the netj(t) is given by Equation 1. The logistic function introduces non-linearity by

constraining the activation of units to be between the values of 0 and 1 (see Figure 3).

The difficulty with this formulation for us is that it does not exhibit a gradual buildup of

activation over time. The full response to a new input occurs in a single processing step at

each level, and so the effects of a new input can be propagated through the network in a

single sweep through all of its levels from input to output. However, we can reintroduce

the dynamic properties of the cascade model if we assume—as the cascade model did—

that the net input to a unit is averaged over time before the activation value is calculated

(see Equation 2). This gives us the following activation rule:

aj(t) » logistic( netj(t)) (Equation 4)

where net j(t) is defined as above. The only difference between this activation rule and

the one used in the cascade model is that the time-averaged net input to a unit is passed

through the logistic function to arrive at its activation. We are still assured that the

activation value will approach an asymptote which depends only on the input pattern and

the connection weights in the network. In fact, this asymptote is the same as the
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activation that the unit would achieve without the use of time-averaging (to see this,

consider the limiting case in which 1=1).

Learning in multilevel networks can be accomplished using the generalized delta rule, or

back propagation learning algorithm described by Rumelhart, Hinton and Williams (1986).

Learning occurs by adjusting the connection strengths so as to reduce the difference

between the output pattern produced by the network and the correct pattern that should

be produced for the current input. This difference is essentially a measure of the error in

the performance of the network. Error reduction occurs by repeatedly cycling through

the following steps: (a) presenting an input pattern to be learned; (b) allowing the network

to generate its asymptotic output pattern; (c) computing the difference between this

output pattern and the one desired; (d) propagating information derived from this

difference back to all of the intermediate units in the network; (e) allowing each unit to

adjust its connection strengths based on this error information. By repeatedly applying

this sequence of steps to each member of a set of input patterns, the network can be

trained to approximate the desired output pattern as closely as desired for each input.

The non-linearity of the activation update rule discussed above is compatible with the

back propagation algorithm, which only requires that the activation function be monotonic

and continuous (i.e., differentiate). The logistic function satisfies this constraint.

Furthermore, so long as units are allowed to reach their asymptotic activation values

before error information is computed at the output level, then learning in this system is no

different from systems which do not include a time-averaging component.
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Throughout training, the error signals represented the discrepancy between the actual

asymptotic activations of the output units and their "correct" target values. These were

taken to be 1.0 for the unit representing the correct response and 0.0 for all other

response units. Note, however, that response selection is assumed to occur based on

less extreme calculations (see below), and that the network is not actually able to

generate activations of 1.0 and 0.0 with finite inputs. Thus there is always some "error41

and therefore always some additional strengthening of connections that is possible, even

when response selection is perfectly correct.

Response Selection Mechanism

By combining the cascade model's assumption of time-averaged net input with the

logistic activation function and the back propagation learning algorithm, we are able to

explore the interaction between processing dynamics and learning within a single system.

However, in order to model reaction time data, a response selection mechanism must be

included. We assume that response selection is a competitive process which is

influenced by the activations of all of the available alternatives. To capture this

competition, we assume that the response strength of each possible output at a particular

time is equal to the ratio of its activation to the sum of the activations of all of the output

units at that time:

aj(t)
H(t) = j j j j (Equation 5)
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A response is assumed to occur when this value exceeds a specified threshold for one of

the output units. The response chosen is assumed to be the one that exceeds this

threshold.

The processing and response choice assumptions that we have made are deterministic;

these are simplifications. This means, for example, that the model in its present form does

not simulate error rates or reaction time distributions. Instead, it focuses on predictions for

mean reaction times. Detailed modeling of these other aspects of performance is under

investigation, but is beyond the scope of this paper.

Attention

The role of attention in the model is to select one of two competing processes on the

basis of the task instructions. In order for this to occur, one of two task demand

specifications must be provided as input to the model: "respond to color" or "respond to

word." We assume that this information is available as the output from some other system

which is involved in encoding and interpreting the task instructions, and which is outside

the scope of the current model. However, we assume that this information is available in a

form which is the same any other type of information in our model: as a pattern of

activation over a set of processing units. Accordingly, task information is introduced into

our system by activating one of the task demand units. This has the effect of driving units

in the appropriate pathway into a more responsive portion of their dynamic range. To see

how this occurs, let us first consider the activation function in greater detail.
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As described by Equation 4, the activation of a unit is determined by the logistic of its net

input. From Figure 3 it can be seen that the logistic function can be divided roughly into

three regions. In the middle region—when the net input is close to zero—the relationship

between net input and activation is more or less linear, with a slope close to 1. In this

region, the activation of a unit is very responsive to changes in its net input. That is,

changes in the net input will lead to significant changes in the unit's activation. In contrast,

at each end of the logistic function its slope is dramatically reduced. In these regions—

when the magnitude of the net input is large, either in a positive or a negative direction—

changes in the input to a unit have a small effect on it's activation.

10 r
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O 0.6
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0.2

0.0
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Net Input

Figure 3. The logistic function. Note that the slope of this function is
greatest when the net input is 0.0, and decreases when the net input is
large in either the positive or negative directions.
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In our model we assume that processing units have a large negative bias. This means

that, when they are at rest, their activation is near 0. In this range, units are relatively

unresponsive to input. However, the connections from each task demand unit to units in

the corresponding pathway are assumed to counteract this bias. Thus, activating a task

demand unit brings the activation of units at the intermediate level of the corresponding

pathway up to 0.5, placing them in the most responsive region of their dynamic range.

Simulations

We implemented the mechanisms described above in a specific model of the Stroop task.

In the following sections we describe how the model was used to simulate human

performance in this task. We start by describing some of the general methods used in

the simulations. We then describe three simulations which provide an explicit account of

the attributes of automaticity and how they relate to practice. These are followed by three

additional simulations which extend our consideration to issues concerning the

relationship between attention and automaticity.

Simulation Methods

All simulations involved two phases: a training phase and a test phase.

Training phase. During the training phase, the network was trained with each of several

input patterns. The network was trained on all of the patterns which included only input to

the relevant (attended) processing pathway, and none to the irrelevant pathway (see
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Table 2a). Thus, conflict and congruent stimuli were omitted from the training set: each

pattern was made up of a task specification and a single input to the corresponding

pathway. For example, one input pattern was "red-color-NULL," which activated the red

input unit in the color pathway, the "respond to color task demand unit, but did not

activate any word input units. The network was trained to activate the red output unit as its

response to this input pattern. The choice of training stimuli reflects the assumption that

in ordinary experience we rarely encounter the kind of conflict between word and color

that is introduced in the Stroop task.



Cohen, Dunbar & McClelland Control of Automatic Processes

30

Table 2a. Training Stimuli.

a)

b)

c)

d)

Task demand

color

color

word

word

Color input

red

green

Word input

RED

GREEN

Output

"red"

"green"

"red"

"green"

Table 2b. Test Stimuli.

Stimulus Type

Color naming:

task specification

control

conflict

congruent

Word reading:

task specification

control

conflict

congruent

Task demand

color

color

color

color

word

word

word

word

Color input

red

red

red

———-

green

red

Word input

———

GREEN

RED

RED

RED

RED

Only those stimuli for which "red" was the correct response are shown. The network was also
tested with the corresponding stimuli for which "green" was the correct response.
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A training trial consisted of the following steps. An input pattern was presented to the

network, and all of the units were allowed to reach their asymptotic values. Difference

terms were then computed by comparing the actual output of the network to the desired

output. These were used to back-propagate difference signals to units at earlier levels of

processing. Units used the error signals they received to calculate the change in

connection strengths that should be made to decrease this error. Changes to

connection strengths were summed over a series of stimulus presentations, and then

made at the end of each series.1 A series is called a training epoch: the composition of

each epoch is discussed below. All of the connections along the word and color

processing pathways were modifiable, and their values were set using the learning

procedure just described. However, the connections from the task demand units to the

intermediate units and the bias terms that establish the resting activations of these units

were assumed to be unmodifiable. Training proceeded until the network was capable of

correctly processing all of the test stimuli (see below: "Test Phase").

One of the purposes of the model is to demonstrate how the processing mechanisms it

employs can account for the relationship between practice effects and automaticity. In

the context of the Stroop task, it is commonly accepted that word reading is more highly

1 This method for changing connection strengths was used in order to eliminate any effect of

stimulus presentation order during training. It can be shown that if the learning rate is small

enough, this procedure is equivalent to a procedure in which stimuli are presented in random order

and connection strengths are updated after each stimulus presentation.
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practiced than color naming. In order to model this discrepancy, we gave the network

differential amounts of training on the word and color patterns. This was done by

modifying the frequency with which each type of pattern was presented: each of the

color patterns was presented with a probability of 0.6 in a given epoch, while all of the

word patterns were presented in every epoch. Thus, on average, the color patterns were

seen 3/5 as often as the word patterns, and at any given point during training, the network

had received a greater amount of practice on word patterns than color patterns.

Figure 4 displays the weights on all of the connections in the network at the end of

training. As expected, they are stronger in the word pathway than in the color pathway,

due to the greater frequency of word training.1

1 We focus on frequency of training as the primary difference between word reading and color

naming because this has been the emphasis in the literature. However, other differences between

these tasks might also be important. For example, it seems likely that word reading is also a more

consistently mapped task than color naming: a particular sequence of letters is almost invariably

associated with the word they represent (even if the word itself has an ambiguous meaning);

however colors are often associated with words other than their name (e.g., red is associated with

heat, embarrassment and "stop"). While this point has not been emphasized with regard to the

Stroop task, it is a well established finding that consistent mapping leads to the development of

automaticity, while variable mapping impedes it (e.g., Logan, 1979; Shiffrin & Schneider, 1977).

Our model captures this fact: the more consistently a stimulus is related to a particular response,

the stronger will be the connections for processing that stimulus. Although in this paper we will

focus on frequency (i.e., amount of practice) as a determinant of pathway strength, it should be

kept in mind that consistency of practice is an equally important variable that may be a significant

factor underlying the Stroop effect.
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"ret" 'green'

2.09

red green

INK COLOR Color
Naming

Word
Reading

RED GREEN

WORD

TASK DEMAND

Figure 4. Diagram of the network showing the value of the weights after
training on the word reading and color naming tasks.

Test phase. The network was tested on 12 input patterns which corresponded to all

possible stimuli in a Stroop task when there are two potential responses (i.e., "red" and

"green"): a control stimulus, a congruent stimulus, and a conflict stimulus for each of the

two inputs (red or green) in each of the two tasks (word reading and color naming) (see

Table 2b). Presentation of a particular pattern consisted of activating the appropriate

input unit(s) and task demand unit. For example, one of the conflict stimuli in the color
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naming task (the word GREEN in red ink) was presented by activating the red color input

unit, the "attend to color" task demand unit, and the GREEN word input unit.

A test trial consisted of the following sequence of events. First, the appropriate task

demand unit was activated, and activations were allowed to reach asymptote. This put the

network in a "ready" state corresponding to the appropriate task. At this point, the

intermediate units in the selected pathway had a resting activation level of 0.5 (that is,

they were in the middle of the logistic function), while units in the competing pathway

were quite inactive (activations of approximately 0.01). Once this ready state had been

achieved, the test pattern was presented, and the system was allowed to cycle until one

of the output units exceeded the response threshold. A value of 0.6 was used for the

response threshold in all of the simulations we report.1 The number of cycles required to

exceed this threshold was recorded as the "reaction time" to that input. The system was

then reset, and the next trial began.

Simulation 1. The Basic Stroop Effect

The purpose of the first simulation was to provide an account for the set of empirical

findings that comprise the basic Stroop effect. These are displayed in Figure 5a, and are

described below.

This was the lowest value that permitted a correct response to be generated in ail conditions of all
of our simulations.
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Word reading is faster than color naming. The time to read a color word is about

350-450 msec, whereas the time to name a color patch or a row of colored X's is

555-650 msec. Thus word reading is about 200 msec faster than color naming

(cf. Cattell, 1886; Dyer, 1973; Glaser& Glaser, 1982).

The ink color has virtually no effect on the amount of time that it takes to read the

word. That is, reaction times to read the word in the conflict and congruent

conditions are the same as in the control condition. This phenomenon was

originally discovered by Stroop (1935) and can be seen in the flat shape of the

graph for word reading in Figure 5a. This finding is extremely robust and has

been very difficult to disrupt. Even when the ink color appears before the word it

does not interfere with word reading (Glaser & Glaser, 1982). It is only when the

task is changed radically that the ink color will interfere with word reading (Dunbar

& MacLeod, 1984; Gumenik & Glass, 1970).

• The word can effect the time it takes to name the ink color. In the conflict

condition, the word interferes with ink naming producing a substantial increase

in reaction time relative to the control condition. The amount of interference is

variable, but is usually around 100 msec (e.g., Dunbar & MacLeod, 1984; Glaser

& Glaser, 1982; Kahneman & Chajczyk, 1982). This finding is also extremely

robust and nearly all subjects show the effect. Even when the word and the ink

color are presented in different spatial locations (e.g., the word is placed above a

color patch) the word still interferes with ink color naming (Gatti & Egeth, 1978;

Kahneman & Henik, 1981). In the congruent condition the word facilitates ink

naming, producing a decrease in reaction time relative to the control condition
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(Hintzman et al., 1972). The amount of facilitation can range from about 20 msec

(Regan, 1978) to about 50 msec (Kahneman & Chajczyk, 1982).

• The amount of facilitation is less than the amount of interference. Congruent

stimuli have not been used as extensively as conflict stimuli, but the general

finding is that the amount of facilitation obtained is much less than the amount of

interference (Dunbar & MacLeod, 1984).
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Figure 5. Performance data for the standard Stroop task. Panel A shows
data from an empirical study (after Dunbar & MacLeod, 1984). Panel B
shows the results of the model's simulation of this data.
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Figure 5a represents the findings in a standard Stroop experiment (Dunbar & MacLeod,

1984). Figure 5b presents the results of our simulation of this study. This figure shows

that the model reproduces all of the effects described above. By examining the

mechanisms which underlie its behavior, we can see how the model provides an

explanation for these effects.

Word reading was faster than color naming in the simulation because differential amounts

of training led to the development of a stronger pathway for the processing of word

information. The fact that the network was trained more extensively with word stimuli than

with colors meant that units in the word pathway had a greater number of trials in which to

increment their connection weights in the direction necessary to generate the correct

response. This resulted in stronger connections in the word pathway than the color

pathway (see Figure 4). As a consequence, activation could develop more rapidly in this

pathway, allowing a response to be generated in fewer cycles. Recall that the activation of

a unit depends on its net input. This, in turn, depends on the activation of each of the

other units to which it is connected times its strength of connection to those units (see

Equation 1). This means that stronger connections to a unit increase the magnitude of its

net input. A larger net input causes larger changes in activation to occur in each

processing cycle (see Equation 2) and therefore a more rapid change in activation. The

faster the correct response unit accumulates activation (and competing units become

inhibited), the faster the response threshold will be exceeded. Thus, strength of a

pathway determines speed of processing.

The difference in the strength of the two pathways also explains the difference in

interference effects between the two tasks. Let us first consider the lack of an effect of
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color information on word reading. In this task, activation of the word reading task demand

unit offsets the negative bias of the intermediate units in that pathway, so that information

flows vigorously along the word pathway. In contrast, because no attention is allocated to

the color pathway, units in this pathway remain in an unresponsive part of their dynamic

range, and the accumulation of information at the level of the intermediate units is

severely attenuated. Furthermore, because the weights from the intermediate units to

the output units are weaker in the color pathway, what information does accumulate is

transmitted to the output level more weakly than information flowing along the word

pathway. Both of these factors serve to diminish the impact that color information has on

the production of a response to a word. As such, reaction time in the word reading task is

only very slightly affected by the presence of either congruent or conflicting color input.

A very different pattern of results occurs when the task is color naming. In this task,

information does flow along the competing (word) pathway which affects the time to

respond. Attention is allocated to the color naming pathway, so that units in this pathway

are placed in a responsive part of their dynamic range, and information flows unattenuated

to the output level. It is now the units in the word pathway that are relatively

unresponsive. However, because of the larger weights in the word pathway, activation

does build up at the intermediate unit level. The amount of this accumulation is more than
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was the case for units in the color pathway.1 Furthermore, the weights are also larger from

the intermediate units to output units in the word pathway (as compared with the color

pathway), so that what information accumulates is partly amplified and transmitted to the

output level. Thus, some information flows along the word pathway even in the absence

of the allocation of attention. Although this flow of information is only partial, and is not

sufficient to determine the response, it is enough to affect the color naming process. The

fact that information is processed in the word pathway without the allocation of attention

accounts for the "involuntariness" of word reading, and it is this involuntariness that

underlies the interference and facilitation effects that are observed. All of these effects

are attributable to the fact that the word reading pathway is stronger (i.e., has greater

connection weights) than the color naming pathway.

The fourth finding that we mentioned above, and one that is a highly consistent in

standard Stroop experiments, is that the amount of interference is larger than the amount

of facilitation. Figure 5a shows that the model reproduces this effect (interference » 12,

facilitation = 5). While there are several factors in the model which contribute to this

1 As an example, consider the case in which the red word input unit is activated. This has an

excitatory connection to the leftmost hidden unit in the word pathway, with strength 2.38. In the

absence of input from the word reading task demand unit, this hidden unit receives a net input of

(2.38) + (-4 bias) • (-1.62). After passing this through the logistic function, we arrive at an

asymptotic activation of .13 for this hidden unit. This will be the amount contributed to the net input

of the red output unit. Now consider the situation for the color naming pathway. There, the

strength of the connection from the red input unit to the corresponding hidden unit is only 1.39. In

the absence of attention, the hidden unit will have a net input of -2.61 (1.39 -4 b,as) which, when

passed through the logistic function, amounts to an activation of 0.7. This is half the activation of

the corresponding word pathway unit.
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behavior, the most important one is the non-linearity of the activation function. This

imposes a ceiling on the activation of the correct response unit, which leads to an

asymmetry between the effects of the excitation it receives from the irrelevant pathway in

the congruent condition, and the inhibition it receives in the conflict condition. To see

this more clearly, consider the idealized situation depicted in Figure 6a.
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Figure 6. Mechanisms underlying the asymmetry between interference
and facilitation effects. Panel A shows the effects that equal amounts of
excitation (E) and inhibition (I) from a competing pathway have on the
asymptotic activation of an output unit. Panel B shows the effects that
these different asymptotic levels of activation have on the time to reach a
particular level of activation (F = facilitation; I = interference).

In this figure, the activation function for the correct response unit is shown. Its asymptotic

activation is plotted for each of the three experimental conditions in a color naming trial.

Note that its activation is highest in the congruent condition and lowest in the conflict

condition. This is because in the congruent condition, the competing pathway

contributes activation to the response unit, increasing its net input. In the conflict

condition, the competing pathway inhibits the unit, decreasing its net input. Note that,
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although the net input is incremented and decremented by equal amounts, the effects

that these influences have on the activation of the response unit are not symmetric:

inhibition has a greater effect than excitation. This is because the activation of this unit is

in a non-linear region of the logistic function. In this region, increasing the net input has

less of an effect on activation than decreasing it.1

The activation values plotted in Figure 6a represent the asymptotic levels approached by

the response unit in each of the three conditions. Figure 6b plots the rise in activation,

over time, of the response unit toward each of these asymptotic values. It can be seen

that, with respect the number of cycles required to reach a particular level of activation, the

difference between the control and conflict conditions is substantially greater than the

difference between the control and congruent conditions. Thus, the non-linearity of the

logistic function, and its interaction with the dynamics of processing help to produce the

observed asymmetry between the size of the interference and facilitation effects.

The logistic function was not included in the model specifically to produce this asymmetry.
* »

Rather, it was included in order to introduce non-linearity into processing for fundamental

computational reasons (see above: "The Mechanisms Underlying Learning and the Time

1 The reason that output activations fall in this region has to do with the nature of representations

and training in this system. It can be seen from the logistic function that, at rest (i.e., with net input

• 0), units have an activation of 0.5. If the correct response to a particular input pattern requires

that an output unit have an activation value of 1.0, then learning will progressively adjust its

connections such that its activation shifts from 0.5 to a value closer to 1.0 when that input pattern

is present. The region between 0.5 and 1.0 (for units whose output should be 1.0) is precisely the

region of the logistic function that produces the asymmetry between interference and facilitation

observed in our simulations.
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Course of Processing"), and to allow attention to modulate the responsiveness of units in

the processing pathways. The fact that this lead to an asymmetry between interference

and facilitation is one that we discovered only in the course of conducting simulations.

It is worth noting that most theories have been unable to account for this asymmetry in

terms of a single processing mechanism. In fact, several authors have argued that

separate processing mechanisms are responsible for interference and facilitation effects

(e.g., Glaser & Glaser, 1982; MacLeod & Dunbar, 1988). Although this remains a logical

possibility, our model demonstrates that this is not necessarily the case. We believe that

the failure of previous theories to account for this asymmetry in terms of a single

mechanism has been due to their reliance, either explicitly or implicitly, on linear

processing mechanisms.

Simulation 2. Stimulus Onset Asynchrony Effects: Speed of Processing

versus Pathway Strength

The results of the previous simulation demonstrate that strength of a pathway determines

both the speed with which processing occurs, and whether or not one process will

influence (interfere with or facilitate) another. In this simulation we demonstrate that it is

pathway strength and not speed of processing per se that underlies interference and

facilitation effects.

As we discussed in the introduction, there is empirical evidence which contradicts the

simple speed of processing account. Thus, consider an account of the Stroop effect in

which it is the faster finishing time of the word reading process that is assumed to be
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responsible for the asymmetry of interference effects. On such an account, it should be

possible to reverse the Stroop effect by presenting color information before the word

(this requires spatial separation of color and word stimuli, but this does not eliminate the

effect in and of itself—see Gatti & Egeth, 1978). Glaser and Glaser (1982) tested this

assumption and found no support for it: color information failed to interfere with word

reading even when color information preceded the word by 400 msec. Indeed, they

found no effect of colors on words over stimulus onset asynchronies ranging from -400

msec (color preceding word) to 400 msec (word preceding color). This is shown in Figure

7a, which presents data from the word reading condition of one of their experiments.
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Figure 7. Effects of varying SOA between word and color stimuli on time
to read the word. Panel A shows data from the empirical study (after
Glaser & Glaser, 1982). Panel B shows the results of the model's
simulation of these effects.
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We simulated their experiment by activating the color input unit before and after the word

input unit with various SOA's. The results of this simulation are presented in Figure 7b

Neither in the empirical study nor in our simulation did presenting the color at any SOA

prior to or after the word have any effect on word reading. The model explains this finding

by attributing interference effects to the pathway strength rather than to the speed of

processing. That is, when no attention is allocated to the weaker pathway, it is simply

unable to produce sufficient information at the output level to have an influence on the

timing of a response generated through the stronger pathway. According to the model,

then, differential speed of processing is not itself the cause of interference. Speed is

associated with interference only insofar as both result from the strength of the pathway

involved. Processes relying on stronger pathways are both faster and have a stronger

tendency to produce interference.

We want to emphasize that stronger pathways have a tendency to produce interference,

but that this is not absolute. Rather, the relative strength of a pathways, in comparison to

a competing one, is an important factor in determining the kinds of effects that are

observed. This is demonstrated in the next simulation.

Simulation 3. Practice Effects: Relative Strength of Pathways

This simulation was conducted to explore, in greater detail, the relationship between

training and the effects observed in Simulation 1. In empirical studies, MacLeod and

Dunbar (1988) have shown that both speed of processing and the ability of one process

to interfere with (or facilitate) another is affected by the relative amounts of training that

subjects have received on each. In their experiments, subjects were taught to associate a
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different color name to each of four different shapes (see Figure 1). During the training

phase, the shapes were all presented in a neutral color (white) and subjects received

extensive practice at naming the shapes. After 1, 5, and 20 days of practice with shape

naming the subjects were given a set of test stimuli to respond to. In this test phase,

subjects were presented with the following types of stimuli: (a) shapes in a neutral color

(control condition), (b) shapes in a color that was inconsistent with the shape name

(conflict condition) and, (c) shapes in a color that was consistent with the shape name

(congruent condition). The results they obtained are shown in Figure 9a, and can be

summarized as follows:

After 1 day (288 trials) of practice on shape naming, this was still more than 100

msec slower than color naming. The shapes had no effect on the time to name

the ink colors. However, the ink colors produced both interference and

facilitation in the shape naming task. The amount of interference was greater

than the amount of facilitation.

After 5 days (2,304 trials) of practice, shape naming was significantly faster than on

day 1. In addition, the shapes now interfered with color naming, although they

did not produce facilitation. The colors continued to produce both interference

and facilitation in shape naming.

After 20 days (10,656 trials) of practice, shape naming was slightly faster than ink

naming. The shapes produced a large amount of interference and a small

amount of facilitation in naming colors. The colors now produced much smaller

amounts of facilitation and interference in shape naming.
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MacLeod and Dunbar argued that these data contradict the idea that the attributes of

automaticity are all or none. Rather, they argued for a continuum of automaticity, in which

it is the relative amount of training on two tasks that determines the nature of the

interactions between them. Our model captures this idea.

To simulate the MacLeod and Dunbar experiments, we preserved the network from the

previous simulations (which had been trained on color naming and word reading), and

added a new pathway which was used for shape naming. This pathway was identical in all

respects to the two pre-existing ones, except that it had not received any training (see

Figure 8).

*gr««n'

red gr—n

INK COLOR
Color

Naming

RED GREEN

WORD
Word

Reading SHAPE
Sh«p«

Naming

Figure 8. The network architecture used to simulate the shape naming
experiments conducted by MacLeod and Dunbar (1988).
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This arrangement allowed us to compare performance on a novel task—at various points

in training—with one that had already received a moderate amount of training (color

naming). No stimuli were presented to the word pathway in this simulation. All other

parameters of the model (including the attention weights) were the same as in Simulation

1.

The simulation involved a series of alternating phases of training and testing, as occurred

in the empirical study. During each training phase, the network was presented with only

the two control shape patterns. Both these patterns were presented in every training

epoch. The network did not receive any further training in the color pathway. In all other

respects training epochs were identical to those in Simulation 1. After every 10 epochs of

training, the network was tested on the 12 relevant test patterns: three for each of the two

shape names (control, conflict and congruent) and three for each of the two colors.
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Figure 9. Interference and facilitation in the shape naming and color
naming tasks after varying amounts of training on shape naming. Panel A
shows the results obtained in MacLeod and Dunbar's Experiment No. 3
(1988), after subjects had received 1, 5, and 20 sessions of practice.
Panel B shows the simulation results at three different points in training.

Figure 9a depicts the data of Expe Tient 4 from MacLeod and Dunbar (1988). Figure 9b

presents the results of our simulation at each of three points in training on shapes. The
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initial point represents the point at which the model first began to perform accurately in the

shape naming task. The second point was chosen to represent an intermediate stage of

training, corresponding to the fifth day of shape naming practice in the MacLeod and

Dunbar experiment. Finally, the network was tested after the amount of shape training

had exceeded the amount of color training in Simulation 1.

These figures reveal an overall correspondence between the behavior of the human

subjects and of our model at the initial and final stages of training. In both cases, shape

naming is much slower than color naming at the first point in training. Shape naming also

shows interference and facilitation from colors at this point, while color naming is not

affected by shapes. At the final point in training, the relationship between the two

processes has been reversed: shape naming has become the faster process, and is

much less sensitive to interference, while it is able to produce interference with color

naming. The reason why shape naming starts out as the slower process is because, early

in training, the size of the weights in this pathway are still much smaller than those in the

color pathway. The relationship between the two processes at this point is directly

analogous to the relationship between word reading and color naming in Simulation 1.

Note, however, that in this simulation color naming has switched roles: it is now the

process which is insensitive to interference or facilitation, and which is able to produce

these effects. This switch in roles occurred without any change in the strength of the

color pathway. This makes it clear that it is not just the absolute strength (i.e., magnitude

of the weights ) of a pathway, but also its relative strength compared with a competing

pathway that determine whether or not a process will produce, or be subject to

interference in a Stroop-like task. This claim is further substantiated by the patterns of
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performance at the end of training in the simulation. At this point, shape naming has

improved to the point where it is slightly faster than color naming. Accordingly, shape

naming is now insensitive to colors, while shapes have come to produce both facilitation

and interference in color naming.

Based on their data, MacLeod and Dunbar suggested that the Stroop effect can be

understood in terms of the relative position of competing tasks along a continuum of

automaticity, and that the position of the tasks along this continuum can be influenced by

training. The results of our simulation are consistent with this view, and demonstrate that

the observed effects are explained by increases in pathway strength that accompany

training.

However, there are some aspects of human performance which this simulation does not

capture. In our simulation, the network required an extended period of initial training

before it was able to respond correctly to the full set of test stimuli.1 In contrast, human

subjects are able to perform accurately on a novel task such as shape naming after just a

small number of practice trials. We will return to this issue in the general discussion. For

present purposes, we simply point out that the model focuses on processes that have

received moderate to large amounts of training. This is consistent with the empirical

paradigm, in which subjects received a considerable amount of practice (more than 250

trials) before they were first tested on the "novel" shape naming task.

Approximately 500, although the exact number of epochs is dependent on the learning rate
parameter, and the number and type of patterns that must be learned.
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There is also another respect in which the behavior of our model differs qualitatively from

that of human subjects. This can be seen by examining performance at the intermediate

stage of training. At this point, the empirical data show that each task interferes with the

other. In the simulation, however, shape naming produced only a small amount of

interference for color naming, despite the fact that shape naming showed overall

improvement (reaction times were faster in all conditions). This turned out to be a robust

property of the model: we were unable to get a process in a weaker pathway to interfere

with a process using a stronger one without sacrificing other aspects of performance. It is

not clear at this time whether this represents an inherent limitation of our approach, or of

the particular model we have implemented.

Simulation 4. Attention and Processing

The first three simulations point out that speed of processing and interference effects all

vary continuously with practice, as a result of changes which occur in the strength of the

underlying processing pathways. Speed of processing and interference effects have

played a central role in empirical research on automaticity. At the theoretical level,

however, discussions have focused largely on the extent to which attention can influence

or control processing. Automatic processes have been distinguished from controlled

processes by their independence from requirements for attention. To the extent that

automaticity has been treated as if it were all or none, this has implied that automatic

processes are not influenced by attention whatsoever. However, as we pointed out in

the introduction, there is a growing body of evidence which indicates that automatic
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processes are, in fact, subject to some degree of control by attention. Our model is

entirely consistent with this view.

While the simulations we have presented so far show how processing can occur in

absence of attention—capturing the "involuntariness" of automatic processes—it is clear

that all of the processes in the model are nevertheless influenced by attention. Although

processing in the absence of attention was able, under some conditions, to produce

interference, in no case was it able to determine a response. That is, even the strongest

processes required the allocation of attention in order to occur successfully.

In the following set of brief simulations, we directly examine the requirements that

different processes have for the allocation of attention, and the factors which affect these

requirements. Like the other attributes of automaticity that we have discussed,

requirements for attention are found to depend on the strength of processing in a

pathway, as well as the strength of a competing pathway.

First we examined the requirements that different processes had for attention when they

were not in competition with another process. Requirements were considered in terms of

the minimum amount of activation that was needed on the task demand unit in order for a

process to generate an overt response, regardless of reaction time.1 As expected,

stronger pathways required less attention than weaker pathways. Thus, for example,

Of course, this will depend to a large extent on the response criterion (see above: "The Response

Selection Mechanism." For example, lowering the response criterion will lower the requirement for

attention. The value that was used in these simulations was the same as the one used in ail other

simulations-see earlier note.
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successful word reading required that the word reading task demand unit have a minimum

activation of 0.11, whereas color naming required a task demand activation of at least

0.48. Note, however, that although stronger pathways require less attention for

successful processing, they still exhibit a requirement for attention. Without any

activation of the task demand unit, even the word reading pathway was unable generate a

response. Indeed, the fact that even processing in stronger pathways is controlled by

attention is what allows the model to perform a task using the weaker of two competing

pathways. If, for example, word reading had been unaffected by the withdrawal of

attention, then the model would not have been able to perform in the conflict condition of

the color naming task: the word information would always have overridden information in

the color pathway.

Requirements for attention are not a simple function of the absolute strength of a

pathway. They are also affected by the circumstances under which a process occurs. In

an additional set of simulations, we tested the attentional requirements of processes

when conflicting information was present in a competing pathway. In this condition, the

attentional requirements of a process were significantly affected by the strength of the

competing pathway. For example, color naming in the presence of conflicting shape

information (when this pathway was still the weaker one) required that the activation on

the color task demand unit be increased from 0.48 to 0.52. However, the minimum

activation was substantially higher (0.74) when color naming had to compete with

information in the much stronger word reading pathway. Thus, like the other attributes of

automaticity we have discussed, the requirements for attention that a process exhibits

depend heavily on the context in which the process occurs.
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Thus, the model shows that, although processing can occur in the absence of attention,

all processes are influenced by, and exhibit requirements for the allocation of attention.

Like the other attributes of automaticity, requirements for attention vary according to the

strength of the underlying pathway, and the context in which the process occurs.

Simulation 5. Response Set Effects: Allocation of Attention at the

Response Level

In the preceding simulations, we focused on the role that attention plays in selecting

information from one of two competing pathways. Attentional selection occurred at the

level of the intermediate units, where information in the two pathways was still separate.

However, the mechanism we used for the allocation of attention is a general one, and can

be applied to other levels of processing as well. In the next simulation we demonstrate

how this mechanism can be used for the selection of a particular set of responses at the

output level of the network, and how this accounts for response set effects that have

been observed in empirical studies. Before we describe this simulation, let us first

consider the empirical findings.

Response set effects reflect the fact that information related to a potential response leads

to more interference (and facilitation) than information which unrelated to the task. In the

standard Stroop experiment, information in the irrelevant dimension always supports a

potential response—that is, one which is appropriate for some of the trials in the

experiment. Potential responses are said to make up a "response set." For example, in

the color naming task, when the word RED is written in green ink, although "red" is an

incorrect response in that particular trial, it will be a correct response on other trials (e.g.,
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when the word GREEN is written in red ink). Thus, both "red" and "green" are in the

response set. However, a word such as DOG is not in the response set, since it is never a

response in this task. Several studies have shown that stimuli such as this produce less

interference and facilitation than those which are in the response set (e.g., Dunbar, 1985;

Klein, 1964). An explanation that is commonly offered for this effect is that members of

the response set are primed, either directly by instructions for the task (i.e, by informing

the subjects of the stimuli they will have to respond to) or through direct experience with

the stimuli in the course of the task itself (e.g., Kahneman & Treisman, 1984). Our model

provides a related account of response set effects, in terms of the general mechanism

that it uses for the allocation of attention.

The same mechanism that we used to allocate attention to a particular pathway in previous

simulations can also be used to allocate attention to a particular response or set of

responses at the output level. In the previous simulations, allocation of attention to a

processing pathway placed the intermediate units in that pathway on a more responsive

part of their activation curve. This occurred through the activation of a task demand unit

which offset the negative bias on intermediate units in that pathway. The same

mechanism can be implemented at the response level, by adding a negative bias to each
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of the output units, and having the allocation of attention to a response offset the

negative bias on the appropriate output unit.1

To demonstrate how this mechanism can account for empirically observed response set

effects, we extended the model used for Simulation 1 in the following ways. First, we

added three new units to the word pathway at each level of processing (see Figure 10).

One of these represented an additional member of the response set (YELLOW). The

remaining two were used to represent stimuli and responses that were not part of the

response set. These stimuli were labelled DOG and TABLE. We also added three units

to each level of the color naming pathway. As with the word naming pathway, one of

these represented an additional member of the response set (yellow). However, we did

not assign any meaning to the other two units (i.e., those corresponding to DOG and

TABLE in the word pathway). These were used strictly to maintain symmetry between the

two pathways in the network, so differences in processing between them could not be

attributed to architectural asymmetries.

1 In fact, this mechanism was implicit at the output level in the first two simulations. To see this,

imagine that a negative bias was associated with each of the output units, just as it was with the

intermediate units. However, because both output units were always in the response set, we can

assume that attention was maximally allocated to each. This would offset the negative bias on

both of them. That is, the bias terms on the output units would always be equal to zero. For

simplicity, we simply omitted the bias terms at this level of the network.
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Figure 10. The network used to simulate response set effects and the
dilution effect. The numbers that appear with each output unit are the
bias terms that were assigned to these units during testing (see text for
an explanation).

The new network was trained in a way that was analogous to training in Simulation 1. Both

pathways were trained on all five of their inputs, with stimuli in the color pathway receiving

0.6 the amount of training received by those in the word pathway. During training, none

of the five response units was given a negative bias. That is, we assumed that during

training attention was maximally allocated to all responses.1 During testing, however, the

1 The activation required to offset the negative biases was assumed to come from a set of units

which represented subjects1 explicit or implicit knowledge about the composition of the response

(note continued on next page)
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non-response set units ("dog" and "table") were given a partial negative bias (-1.0). This

corresponded to the hypothesis that, during testing, subjects allocate attention maximally

to relevant responses and disattend to irrelevant responses, though not completely (cf.

Deutsch, 1977; Kahneman & Treisman, 1984).

Table 3 presents data from an empirical study that examined response set effects

(Dunbar, 1985) as well as the results of our simulation. In both cases, stimuli that were not

in the response set produced less interference (and facilitation) than response set stimuli.

In the model, this difference was due to the partial negative bias on the non-response set

output units, which simulated failure to maximally attend to corresponding responses.

This negative bias led to partial inhibition of these units, reducing the degree to which

they were activated by input stimuli. As a result, these units could not compete as

effectively with the correct response unit (e.g., HredM) as could output units that were in

the response set (e.g., "green" or "yellow").

set. These units would be analogous to the task demand units used to allocate attention to the

intermediate units in the color and word pathways. For the sake of computational efficiency, we

chose not to actually implement these "response selection units" (and their connections to the

output units). The results that we report are identical to those that would have occurred if we had

included these units, and allowed them to remain active throughout the simulation.
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Condition

Conflict

Related

Unrelated

Control

Congruent

Dunbar (1985)

781

748

721

657

634

Simulation

61

49

45

43

33

It is important to note, here, that the model does not explain how potential responses

come to be primed and irrelevant ones do not, in just the way that it did not explain how

attention comes to be allocated to one pathway and not the other in our previous

simulations. In both cases, mechanisms are involved which are sensitive to subjects'

knowledge about the overall demands of the task. We have not modelled these

mechanisms, but simply assumed that their output is available in a form that can be used

to allocate attention in our model: i.e., as a pattern of activation over a set of units. What

the model is able to explain—in terms of a single attentional mechanism applied to two

different levels of processing—is how the allocation of attention can affect the patterns of

interference that arise from competing processes.
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Simulation 6. The Dilution Effect: Interference Within a Pathway

In general, interference arises in our model when two different sources of information

provide conflicting input to a single module. This is because the two inputs lead to

competing representations within the module (i.e., different patterns of activation). From

this point of view, the informational capacity of a module is limited. That is, there is a trade-

off between the number of disparate signals that can be processed at once and how

effective the processing will be for each (see Schneider, 1985 and Schneider &

Detweiler, 1987 for related arguments). In the simulations described above, we observed

Stroop-like interference when competing signals arose in different pathways and

converged at the response level of processing. However, there is no reason why the

same kind of interference could not occur at other stages of processing. For example,

within the word reading pathway, activating more than one input unit should lead to

interference at the intermediate unit level, and thereby reduce the effectiveness of

processing in that pathway.

This is consistent with an empirical effect reported by Kahneman and Chajczyk (1983).

They used a modified form of the Stroop experiment in which words were printed

immediately above and/or below a color patch. With this technique, they were able to

reproduce the pattern of interference and facilitation obtained when standard, integrated

stimuli are used (i.e., words printed in colored ink). However, when two words were

presented (a color word and a neutral non-color word), there was a consistent reduction in

both the amounts of interference and facilitation produced by words. They referred to

this as a dilution effect, because the presence of the neutral word "diluted" the impact of

the color word on the color naming task. The implication of this finding was that the
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presence of an additional word decreased the effectiveness with which the color word

was processed. Our model suggests that one source of this effect is interference

between the two inputs within the word processing pathway. To demonstrate this, we

conducted a simulation of Kahneman and Chajczyk's main experiment.

For our simulation of this experiment, we used the network that was developed for

Simulation 5 (see Figure 10). There were five input units and five intermediate units in

each of the two processing pathways, with both pathways converging on a set of five

response units. Three of the response units were used for colors ("red", "green" and

"yellow") which corresponded to the color-related inputs in each of the two pathways.

The two additional input units in the word reading pathway were used to represent neutral

stimuli. Kahneman and Chajczyk used the term neutral to refer to words which were not in

the response set; that is, word which were not related to any of the responses involved in

the color naming task. We used the same method described in Simulation 5 to

differentiate response set items from neutral (nonresponse-set) items: we added a partial

negative bias to the output units associated With the neutral stimuli. As in Simulation 5,

the two additional units in the color naming pathway were included only to maintain

symmetry between the two pathways, and were not used during the simulation.

Connection weights were also the same as those in Simulation 5. Each trial consisted of

turning on a color input unit, the task demand unit for color naming, and various

combinations of input units in the word pathway. For example, one of the trials

corresponding to Kahneman and Chajczyk's conflict-neutral (CN) condition consisted of

turning on the red color unit, the "attend to color" task demand unit, and the GREEN and

DOG word units. As in previous simulations, reaction time was the number of cycles
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required for an output unit to exceed the response threshold. In all cases, the network

was able to produce the correct response (e.g., "red" in the example above).

Table 4 presents the results of Kahneman and Chajczyk's main experiment (Experiment

1, Kahneman & Chajczyk, 1983) and the results of our simulation. From this table it can

be seen that the model produces a dilution effect which is qualitatively similar to the

empirical effect. The addition of a neutral word reduced both the amount of interference

produced by a conflicting color word and the amount of facilitation produced by a

congruent word. The cause of this effect has to do with interactions that occur within the

word processing pathway. Note that each input unit has an excitatory connection to a

corresponding intermediate unit, and inhibitory connections to the intermediate unit for

other inputs. As a result, inputs can interfere with one another: when two input units are

activated, each inhibits the intermediate units for the other. This mutual inhibition reduces

the amount of information that arrives at the output level from the word pathway, thereby

reducing the impact that word information has on the color naming process.
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Table 4. The Dilution Effect.

Condition

Conflict

Conflict-Neutral

Dual Neutral

Neutral

Congruent-Neutral

Congruent

Kahneman & Chajczyk (1983)

Experiment 1

682

650

614

610

585

561

Simulation

48

39

35

35

29

26

The match between our simulation results and the empirical data is not perfect. The

dilution effect we obtained was larger than that observed by Kahneman and Chajczyk.

We also found a dilution effect when two conflicting color words were presented (e.g.,

GREEN and YELLOW when the correct response was "red"), which did not appear in the

empirical data (CC condition, Experiment 4).

These discrepancies require further explanation. Nevertheless, our results suggest that

an important cause of the dilution effect may be interference between different sources

of information within the word processing pathway. This interference is directly analogous

to the Stroop interference that occurs at the response level of the network when

conflicting information arrives from the color and word pathways. As we pointed out

earlier, these interference effects arise due to limitations in the informational capacity of

the processing modules involved. In this view, then, both Stroop interference and the



Cohen, Dunbar & McClelland Control of Automatic Processes

66

dilution effect are due to capacity limitations of "local" resources—i.e., modules which are

more or less specific to the processing pathways involved in the particular task. This view

is closely akin to the notion of multiple resources, which we will discuss more fully below.

This can be contrasted with an alternative account, in which interference is seen to arise

from the capacity limitations of a more general, central processing mechanism. On this

view, the dilution effect would be explained by assuming that word processing relies on

the processing capacity of this central mechanism, and that dilution arises as a

consequence of the extra demands placed on this mechanism when two or more words

are processed at once. Our model does not rule out this possibility. Interestingly,

however, the model suggests that the same general principles which govern capacity

limitations in local resources, such as the modules within the word processing pathway,

may also apply to capacity limitations in more central mechanisms. This idea will be

explained more fully in the general discussion below.

General Discussion

We have shown that a simple network-based account can capture many of the empirical

phenomena associated with the Stroop effect. Among these are the fact that

interference effects are typically larger than facilitation effects (Dunbar & MacLeod, 1984);

that presenting the color before the word does not succeed in producing interference in

word reading (Glaser & Glaser, 1982); that words which are not in the response set

produce less interference with color naming than words which are (Dunbar, 1985; Klein,
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1964); and that the presence of additional words in the display can reduce the amount of

interference produced in color naming (Kahneman & Chajczyk, 1983).

The model provides a common explanation—in terms of pathway strength—for the

properties most frequently associated with automaticity: speed of processing, resistance

to interference, the ability to produce interference, and the ability of processing to occur

without the allocation of attention. Our account of these phenomena goes beyond many

other theories of automaticity by describing an explicit set of processing mechanisms from

which these phenomena are shown to arise. These mechanisms provide a basis for

learning, the time course of processing, and the allocation of attention. Several important

features of automaticity emerge from this account, including the fact that the properties of

automaticity are continuous, and that their emergence depends largely on the strength of

the pathway underlying a process relative to the strengths of the pathways used by

competing processes.

The model we have presented is not perfect in its present form. For example, it falls short

of precise quantitative predictions regarding some of the response set effects and the

dilution effect discussed above. In addition, it is does not capture the fact that weaker

processes seem, at times, to be able to interfere with stronger ones, as evidenced by the

performance of MacLeod and Dunbar's (1988) subjects at the intermediate point in

training on the shape naming task. The model also fails to capture performance early in

training on a novel task. Some of these shortcomings may be due to the fact that the

model does not include mechanisms for the processing of strategic components in a task

(e.g., interpretation of task demands, or evaluation of the response set). Further research

and development are needed in order to capture these and other aspects of
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performance. Nevertheless, the successes of the model to date impress us with the

usefulness of the general approach. In the remainder of this discussion we consider the

implications of the approach for issues beyond those directly addressed in our

simulations.

Redefining Controlled and Automatic Processing

A theme which runs through most research on controlled versus automatic processing is

that continued practice leads to automaticity. Thus, Bryan and Hatter (1899), Shiffrin and

Schneider (1977), Logan (1980) and others have provided evidence that performance

on novel tasks often exhibits the attributes of controlled processing, while highly

practiced performance (in consistently mapped tasks) appears to be automatic. Our

model provides a set of mechanisms which account for the link between practice effects

and the attributes of automaticity. Put simply, practice results in an increase in connection

strengths, which lead to faster processing as well as many of the other attributes of

automaticity. The model shows how these attributes develop gradually with training,

reflecting an underlying continuum of automaticity.

However, at the extreme low end of the automaticity continuum, where there is no pre-

existing pathway to perform a task, it is clear that processing must occur in a very different

way. To be concrete, consider a subject who is told to say wredM when a particular random

figure is presented, and to say MgreenM, "blue", etc. for each of several other shapes.

While the details could be quibbled with, something like the following is probably

happening when the subject is initially asked to perform this task. Early in training, the

subject will simply lack the relevant connections for performing the task. Under these
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circumstances, the task might at first be performed with the assistance of feedback

provided by the experimenter (i.e., by being reminded of the color word that corresponds

to the shape on the screen). The subject might try to learn each correspondence as she

goes along, using verbal associations to the shapes (e.g., orange is the name of the

shape that looks like Florida) or other mnemonics, as well as by getting feedback

regarding her response. As this process proceeds, our assumption is that the subject

would also be starting to build up connections in a pathway that will ultimately allow the

shape to directly activate an internal representation corresponding to the desired

response, without recourse to verbal and/or mnemonic mediation.

At some point in this process—let us say, after the feedback from the experimenter is no

longer needed, but perhaps before the mnemonics have been dispensed with—the

subject can respond correctly. At this point, the subject will be able to perform the task,

but the pathway that will ultimately be sufficient—here called the direct pathway—will not.

During this phase, we suppose that the activation of a response would be based on the

combination of information from both sources, with the relative importance of the

contribution of the direct pathway growing steadily over trials, and the relative importance

of the other source diminishing. In summary, what we see during the early phases of

practice is a gradual transition from what we might call indirect to direct performance.

There is a partial correspondence between our indirect/direct distinction and the

traditional distinction between controlled and automatic. We imagine that initial, indirect

performance would have all the earmarks of what is typically called a controlled process; it

would be slow, it would consist of a series of more or less discrete steps which were

subject to disruption or interference, and it would tend to depend on declarative (verbal)
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memory (e.g., "Florida is orange"), requiring the allocation of attention. At high extremes

of practice, direct performance would closely correspond to what has typically been called

automatic; processing would be faster, less susceptible to interference, more capable of

producing interference, and less influenced by the allocation of attention. In between,

however, the correspondence between these distinctions breaks down. As we have

seen in our simulations, a process which is completely direct can—under some

circumstances—evidence all the usual criteria for being a controlled process. For

example, color naming was simulated as a direct process in our model. However, when

competing with word reading, it was found to be a slower process, susceptible to

interference, unable to produce interference, and to have a greater requirement for the

allocation of attention. Thus, we propose that processes which have previously been

classified as controlled might more profitably be segregated into those which are direct

and those which are indirect. Within the range of direct processes, there would be a

continuous spectrum of pathway strengths which would span the range of different

degrees of automaticity. Table 5 illustrates the correspondence between traditional

usage and the terms we propose here.
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Table 5. Types of Processing.

Novel Tasks

Indirect

Controlled

(Indirect with
very weak direct)

Hiahlv Practiced Tasks

Weak Direct Direct

Controlled Automatic

Whether a direct process exhibits the traditional attributes of automaticity or of controlled

processing depends upon the context in which it occurs. If it must compete with a

process occurring in a stronger pathway, it will appear to be controlled; if it competes with

processing in a weaker pathway, it will appear to be automatic. This view suggests that the

criteria traditionally used to distinguish between controlled and automatic processes—

speed of processing and interference effects—may not always represent qualitative

differences in processing. While two tasks may show radically different performance

using these criteria, the same type of processing may underlie the performance of each.

Thus, the criteria of speed of processing and interference effects cannot be used as

evidence for qualitatively different types of processing. In terms of our distinction

between direct and indirect processes, differences in performance according to these

criteria do not tell us whether a process is direct or indirect.
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Our model provides an explicit account of direct processes, and shows how changes in

the strength of these processes—which result from practice—can lead to seemingly

qualitative changes in performance. However, the model does not provide mechanisms

for indirect processing, nor does it describe in any detail the evolution of a process from

direct to indirect processing. As we have suggested, this may explain our inability to

model performance during the early stages of training, as well as our inability to capture

some of the strategic effects that are associated with performance in the Stroop task (e.g.,

the decision processes which direct the allocation of attention). We should note,

however, that others have begun to address these issues using PDP techniques (e.g.,

Schneider, 1985; Schneider and Detweiler, 1987; Hinton & Plaut, 1987).

Attention and the Control of Processing

We have pointed out that an important difference between our direct/indirect distinction

and the traditional dichotomy between controlled and automatic processing is that in our

distinction, processes of either type can exhibit performance characteristics traditionally

associated with controlled processing—such as slower speed and susceptibility to

interference. The same difference can be found between these two approaches

concerning their claims about the attentional control of processing.

At the heart of the theoretical distinction between controlled and automatic processing

are two basic assumptions: controlled processing depends on the allocation of attention;

automatic processing occurs independently of attention. Kahneman and Treisman

(1984) refer to the latter of these two assumptions as the "strong automaticity" claim—that

is, that automatic processes are not influenced by the allocation of attention. In dispute of
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this claim, they and their colleagues (e.g., Kahneman & Henik, 1981; Kahneman &

Chajczyk, 1983; Treisman, 1960) have reported a large body of data which suggest that

few processes, if any, can be considered to be entirely independent of attention. For

example, as we mentioned in the introduction, Kahneman and Henik have demonstrated

that the amount of interference produced by an automatic process such as word reading

is reduced when attention is not allocated to this process. This indicates that attention

does affect processes that are putatively automatic. Our model is consistent with this

viewpoint: it shows that direct processes are subject to control by attention. In the

simulations we presented, even the strongest pathways—in which processing exhibited

all of the other attributes of automaticity—processing was affected by the allocation of

attention. For example, although processing in the word pathway occurred without the

allocation of attention—leading to interference with color naming—this processing was

only partial, and was insufficient to determine the response. Indeed, as we pointed out in

Simulation 4, if word reading had not been degraded by the lack of attention, the color

naming task could not have been performed.
• *

We should distinguish our claim from similar, but non-identical claims. Others (e.g.,

Shiffrin, 1988) have attempted to explain the fact that automatic processing tasks such as

word reading are subject to attentional control by arguing that behavior relies on

numerous processes, some of which are automatic, and some of which may be

controlled. In this view, control over the performance of a task could be explained by the

allocation or withdrawal of attention from the controlled processes involved, preserving

the independence of the automatic processes from the effects of attention. While we do

not dispute the claim that behavior is composed of many component processes, our



Cohen, Dunbar & McClelland

74

Control of Automatic Processes

model asserts that all of these processes are subject—in varying degrees—to control by

attention.

Attention as the Modulation of Processing

As we have argued above, all processes can be subject to attentional control. However,

the question arises as to how this control is achieved. Attention is implemented in the

model as the modulation of processing in a pathway. This occurs by shifting the

responsiveness of units in a processing pathway. When attention is allocated to a

particular pathway, that pathway becomes more responsive to incoming information. The

change in the responsiveness of a pathway is due to input from the attention (task

demand) units.

It is worth noting, in this context, that the implementation of attention in our model uses

exactly the same processing mechanisms as all of the other components of the model.

The connections from the attention units to the units in a processing pathway are no

different than the connections within the pathway itself, and attentional information is

represented like any other information in the network: as a pattern of activation over a set

of units. As such, the input that a pathway receives from the attention units is qualitatively

identical to the input received from any other source of information in the network.

Attention can be viewed simply as an additional source of information which provides a

sustained context for the processing of signals within a particular pathway. Thus,

attentional mechanisms are not given special status in the model and, in general, an

attentional module can be thought of as any module which has a set of connections that

allow it to modulate processing in another pathway. There may be many such modules
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within a system, a given module may modulate one or many pathways, and It might even

participate directly in one set of processing pathways, while it serves to modulate others.

The notion of attention as a modulator, together with the idea that processing is

continuous and that the resulting activations are graded in strength, has a long history in

the attention literature; the idea is essentially the same as that suggested by Treisman

(1960). Treisman claimed that messages outside of the focus of attention were not

completely shut out; rather, the idea was that the flow of information was simply

"attenuated" on the unattended channel. This is exactly what happens in our model.

Indeed, the very same mechanisms of pathway modulation that we have used to

implement task selection in the Stroop task (color or word) can be used to implement

channel selection in dichotic listening or other selective attention tasks.

Continuous Nature of Processing

The assumptions that we make that information is graded and is propagated continuously

from one level to the next are worth examining in their own right. With respect to these

assumptions, our model differs significantly from discrete stage models, in which

processing must be complete at one stage before information becomes available to

others. In the model we have presented, information at one level is continuously available

to subsequent levels. As such, a process need not be completed in order for it to affect

performance. It is precisely the partial processing of information in the stronger of two

pathways that produces interference and facilitation effects.
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In this respect our model is similar to one proposed by Logan (1980). Both models make

use of continuous processing mechanisms, and explain interference (and facilitation)

effects in terms of the relative strength of the pathways used by competing processes.

According to Logan's model, "evidence is assumed to accumulate over time in some

composite decision process until a threshold is exceeded and a response is emitted1* (p.

528, Logan, 1980). Different sources of evidence (e.g., different stimuli, or different

stimulus dimensions) are weighted so that evidence accumulates from each at different

rates. This model accounts for the Stroop effect by assigning stronger weights to word

reading than to color naming. The strength of the connections in a pathway in our model

are analogous to the weights assigned to a process in Logan's model. In both models,

attention acts by modulating the effectiveness with which information accumulates from

each process in a manner that is responsive to the demands of the current situation.

However, our model differs from Logan's in several important respects, some of which

lead to significant differences in performance. First, Logan's model is a linear model, with

respect to the way in which information accumulates both as a function of time and as a

function of pathway strength. The processing mechanisms in our model are non-linear in

both of these respects. This allows it to account for the asymmetry between interference

and facilitation. Logan's model can not account for this finding. However, perhaps the

most important difference between the two models is that Logan's model does not

include any mechanisms for learning. The weights associated with automatic processes

are fixed. We consider it to be one of the primary strengths of our model that it can directly

address the relationship between training and automaticity in terms of an integrated set of

learning and processing mechanisms.
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Resources and Capacity

A final issue that we would like to address concerns the notions of processing resources

and capacity limitations. The perspective that we offer on these issues is very similar to

the "multiple resources" view that has been expressed by others (e.g., Allport, 1982;

Logan, 1985; Navon and Gopher, 1979; Wickens, 1984), and to the notion of functional

cerebral distance described by Kinsbourne and Hicks (1978). These theories share the

view that performance of a task typically involves a number of different processes, which

in turn depend on a multiplicity resources. They predict that two behaviors will compete

for processing capacity, and may interfere with one another to the extent that they rely on

the same resources for different purposes. Our approach suggests ways in which we can

begin to think, in more specific terms, about the nature of these resources, and how

limitations in their capacity can affect performance. Thus, the modules which make up

processing pathways can be thought of as a set of resources within the system. These

resources are shared by two or more processes to the extent that their pathways

intersect—that is, they rely on a common set of modules. We have noted that when two

signals to be processed by a particular module are disparate (i.e, they involve different

patterns of activation), they will compete for representation within that module. In this

sense, the processing capacity of that module, or resource can be thought of as being

limited—that is, it cannot fully support the processing of both signals at once. Schneider

(1985) has presented a very similar view of limitations in processing capacity (also see

Schneider & Detweiler, 1987).

Although we have not pursued a quantitative analysis of capacity in this paper (see

Rosenfeld & Touretsky, 1987 for an example of how this can be done in PDP systems),
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the model has allowed us to consider some of the qualitative effects that might be

attributed to capacity limitations. For example, our simulation of the dilution effect

(Simulation 6) showed that interference can arise when two stimuli (e.g. two words) are

processed concurrently within the same pathway. A similar argument could be made with

respect to the Stroop effect. In this case, interference would be attributed to capacity

limitations with the module shared by the word reading and color naming pathways (i.e.,

the response module in our network).

Like the multiple resources view, our account of interference effects focuses on capacity

limitations that are more or less specific to particular processing pathways. However, the

model also suggests ways in which to think about the capacity limitations of other

components of processing. Earlier (in our discussion of Simulation 6) we mentioned that

limitations in the capacity of more central, general purpose processing mechanisms are

often used to explain interference effects, rather than attributing these to capacity

limitations in "local" resources. The attention module in our network might be thought of

as one kind of central mechanism. Simulation 4 showed that all of the processes in our

model relied on the allocation of attention in order to be performed successfully.

Allocation of attention to a pathway required that a particular pattern of activation be

present in the attention module. To the extent that this pattern is different for different

pathways, then the situation could arise in which these patterns come into competition

with one another. From this perspective, the capacity of the attention module can be

thought of as being limited—it may not always be possible to allocate attention maximally

to all processes at once. Because stronger processes have weaker requirements for the
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allocation of. attention (see Simulation 4), such processes may be less susceptible to

capacity limitations in the attention module.

The significance of different sources of capacity limitations (e.g., those arising within a

particular pathway, or within a more central, attentional module) are in need of further

clarification, both theoretically and empirically. However, we would like to re-emphasize, in

this context, that attentional information is not qualitatively different from any other

information in our framework. The competition between patterns of activation within the

attentional module (that are required for the allocation of attention to particular pathways)

is analogous to the competition that can occur between patterns of activation in any other

module. This suggests that some central resources, such as the attentional module in

our model, may be governed by the same sorts of principles and constraints that govern

more local resources within the system.

Conclusion

The model that we have presented provides not only an account of the empirical data on

the Stroop effect, but also a more general model of processing in highly practiced tasks

and its relation to attention. Like other theorists (e.g., Kahneman & Treisman, 1984;

Logan, 1980; Schneider, 1985), we have noted that there are many problems with the

traditional views of automatic and controlled processing. Our model suggests that a more

useful way to consider tasks is in terms of a continuum of automaticity based on strength

of processing. We have outlined a set of mechanisms that can produce gradual and

continuous strengthening, and we have shown how these mechanisms can account for a

variety of empirical phenomena that are difficult to explain using the controlled/automatic



Cohen, Dunbar & McClelland Control of Automatic Processes

80

distinction. In particular, these mechanisms capture the continuum that appears to exist in

the attributes of automaticity, and relate this continuum directly to the effects of practice.

Differences in practice lead to differences in the strength of processing, and this makes it

possible to capture asymmetries of performance such as those observed in the Stroop

task. The model also suggests ways in which it may be possible to characterize the notion

of capacity in greater detail than has been possible up to now.

The mechanisms used in this model show how the principles of continuous processing—

expressed in terms of the PDP framework—can be applied to the study of attention and

the control of automatic processes. A problem for our model, however, and for the PDP

approach in general is to characterize the mechanisms underlying indirect processing.

We see this as an important challenge for future research.
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