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Table 2: Knowledge integration in algorithm design and automatic programming systems

tasks, which are accomplished in appropriate problem spaces. With
insufficient or conflicting knowledge. Soar reaches an impasse and
generates a subgoal to resolve it When subgoals are terminated.
Soar learns from the experience by building new productions,
chunks. The left-hand side of a chunk consists of generalized
conditions on the working memory elements used in producing the
results of the subgoaL If these conditions become true again, the
chunk will fire to automatically apply the knowledge from the
previous solution, and avoid the subgoaL Transfer of knowledge
occurs because the chunk's conditions abstract away from inessen-
tial features of the original situation.

tasks are given to Designer-Soar in terms of two sets of
problem spaces. One defines the computational model; its operators
are the primitives in which to express the algorithm. The other
defines the application domain of the algorithm. The desired be-
havior of the algorithm can be operationally specified by the system
knowing how to perform the task in the domain. Thus, Designer-
Soar understands sorting if it can sort sequences in the domain
space. The algorithm design task is to express sorting in the com-
putational model, which (for algorithm design, as opposed to pro-
gramming in a specific language) is a space that has abstract
operators that correspond to the capabilities of computers. The total
specification of the design task may require additional subspaces to
define the operators and additional operational knowledge about
how to work within the two main spaces. Additional constraints
may come from performance requirements on the algorithm or from
resource limitations on the design process itself.

This definition of the task of algorithm design separates the un-
derstanding of what the algorithm is to do from the creation of an
algorithm within some computational framework. If Designer-Soar
does not know how to sort at all, then it must first acquire that
understanding, which will occur as a capability within the domain
space for sorting, namely, a space of abstract sequences. Designer-

Soar designs the algorithm by working in the computational space
until it can perform the task (e.g., sorting) in a functionally equiv-
alent way to the domain-space algorithm, while satisfying the given
constraints. The chunks that are learned for the target computational
spaces implement an algorithm.

4. Knowledge Integration in Designer-Soar
We will discuss knowledge integration in Designer-Soar by the

example of designing insertion sort, which Designer-Soar syn-
thesizes in the same form as that created by Cypress [23] and
Cypress-Soar [25]. The algorithm is two divide-and-conquer al-
gorithms, one for the top level sort function and one for inserting an
element into an ordered sequence (the composition subprocedure).
Sort takes a sequence of elements to be sorted as input. If the
sequence is empty, it is returned directly as already sorted; otherwise
the sequence is split into its first element and the rest of the se-
quence. The first element is then inserted into the result of recur-
sively sorting the remainder of the sequence. Insert takes an ele-
ment and an ordered sequence as input If the sequence is empty,
the function returns a sequence containing only the element; other-
wise, a conditional subprogram is called to decompose the input into
smaller subproblems. The subprogram compares the value of the
element parameter to the value of first element of the sequence
parameter. If we assume XQ corresponds to the smaller element, Xj
to the larger element, and x^ to the remainder of the sequence, the
conditional returns a pair of the form <x^<x^^>>. The first
parameter is then prepended to the result of recursively calling the
insertion function on the second parameter (the nested pair).

The target computational model space has dataflow operators that
correspond to the conceptual building blocks for algorithms, such as
t e s t a data item for some predicate, and a p p l y some function to
data [11]. Algorithm schemes can be encoded procedurally as
higher-level operators that are implemented in terms of these build-
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ing blocks. For example, Designer-Soar has compose and
decompose operators that correspond to decomposing problems
into subproblems, and composing subproblems solutions to get the
answer to the original problem,. These are not implemented directly
by productions. When attempting to apply these operators in ex-
ecuting an algorithm, an impasse results, with a corresponding sub-
goal to acquire the knowledge to implement them. Designer-Soar
knows an algorithm when it can select and implement the ap-
propriate dataflow operators to compute the correct output given any
legal input. This uniform procedural representation of abstractions
at levels varying from algorithm schemes down to computational
primitives is crucial to knowledge integration in Designer-Soar.

The design of insertion sort is summarized in Table 3. Column 1
labels the design choice and gives the decision cycle at which the
choice occured. The decision cycle is the basic unit of problem
solving effort in Soar (the entire run takes 883 decision cycles,
requiring about 35 minutes on a Sun3/260). Column 2 summarizes
the design choices; column 3 gives Designer-Soar's reasons for
making the choice. Column 4 lists the types of knowledge used for
each choice. We describe the design process in more detail in the
following subsections.

4.1. Acquiring the specification and a plan (Cl - C2)
The goal of algorithm design is to be able to know what to do to

execute the algorithm on any valid input. Designer-Soar makes
design choices while repeatedly executing both the domain proce-

Tabie 3: Insertion-sort design in Designer-Soar

dure and the partially designed algorithm at varying levels of
abstraction. The results of the executions are used to detect
problems and opportunities that guide the design, so that the design
process can be characterized more as means-ends-analysis than as
strict top-down refinement

Designer-Soar first attempts to execute the insertion-sort algo-
rithm (which doesn't exist yet) to see what needs to be done. An
impasse is generated because Designer-Soar has not yet learned how
to select between the computational operators it could apply as a
first step. While resolving this impasse, Designer-Soar learns that
the algorithm should have the functionality of the high-level domain
operator " s o r t a sequence into nondecreasing order." Designer-
Soar already has the knowledge to implement s o r t in domain
spaces, but acquires the knowledge to select the s o r t operator for
this run by translating an external task description into an internal
description of the operator selection knowledge, and then inter-
preting this description to build a procedural representation of the
knowledge as an operator selection chunk [29].

Knowledge that the algorithm must sort is used to select an
operator to apply in the computational space. The operator selected
implements the first step of divide-and-conquer: a test to check if the
input is decomposable. The operator is selected according to the
results of a subgoal to evaluate the choice by lookahead, i.e., irving
out the operator to see if it leads to a final state. The exact lest for
decomposability is not yet known, and no concrete example has
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Abstract
Designing algorithms requires diverse knowledge about general

problem-solving, algorithm design, implementation techniques, and
the application domain. The knowledge can come from a variety of
sources, including previous design experience, and the ability to
integrate knowledge from such diverse sources appears critical to
the success of human algorithm designers. Such integration is
feasible in an automatic design system, especially when supported
by the general problem-solving and learning mechanisms in the Soar
architecture. Our system, Designer-Soar, now designs several
simple generate-and-test and divide-and-conquer algorithms. The
system already uses several levels of abstraction, generalizes from
examples, and learns from experience, transferring knowledge ac-
quired during the design of one algorithm to aid in the design of
others.

1. Introduction
The frontier of artificial intelligence research has recently been

described as "figuring out how to bring more kinds of knowledge to
bear [18]'*. This paper addresses the question of how to bring more
kinds of knowledge to bear in an automatic algorithm design system.
A designer should be able to use knowledge about general problem-
solving, algorithm design, implementation techniques, the applica-
tion domain and prior experience. We describe a system, Designer-
Soar, that both applies knowledge from these different sources and
acquires knowledge for transfer to future problems. We adapt and
extend techniques used in Designer [9], an initial implementation of
an algorithm design system, and exploit the special properties of the
Soar architecture [13].

The focus of this research is on the design of algorithms, rather
than their implementation. We define algorithm design to be the
process of sketching a computationally feasible technique for ac-
complishing a specified behavior [9]. Given such a sketch, a
programmer may then proceed to an efficient implementation of the
algorithm. Although we focus on the early design stages of the total
programming process, we expect similar issues of multiple
knowledge sources to arise in later stages as well.

2. The Need for Knowledge Integration in Algorithm
Design
By knowledge we mean the information about some domain,

abstracted from the representation used to encode it and the process-

lThii research was sponsored by the Defense Advanced Research Projects Agency
(DOD), ARPA Order No. 4976 under contract F33615-87-C-1499, and monitored by
the Air Force Avionics Laboratory. The research was also supported in part under a
Schlumberger Graduate Fellowship to David Sleier. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, Schlumberger, or the U.S. Government.

ing required to make it available [20]. A knowledge source is a
system that provides access to a body of knowledge. A knowledge
source has a specific representation of the knowledge, comprising
both symbolic structures and the means for interpreting them to
influence actions, when appropriate. The problem of integration of
multiple sources of knowledge arises from the diversity of represen-
tations of the sources, each of which may differ from the represen-
tation used to select actions to attain the goals of the system. It is
always much easier to design a system with a single source of
knowledge, where the representation for action selection can be
directly adapted to it

The kinds of knowledge relevant to algorithm design are
described below. Table 1 gives typical processes in design systems
that apply this knowledge.

Kl. Weak methods: Designing algorithms requires solving
problems. Human problem solvers (but generally not automatic
systems) usually manage to make some progress, even if they don't
have all the knowledge necessary in the form of powerful domain
specific techniques. They resort to weak methods, such as generat-
ing and testing many solutions, depth-first search, etc. Human
algorithm designers show particularly heavy use of means-ends
analysis [11]. They work to reduce the differences between the
current state and the goal state, resulting in problem solving driven
by difficulties and opportunities detected.

K2. High-level algorithm schemes: Algorithm designers usually
begin to attack a problem using design schemes. A common ex-
ample is divide-and-conquer: splitting a problem into subproblems,
solving the subproblems separately, and merging the solutions to
solve the original problem [24].

K3. Transformations: Once some procedural representation of
the algorithm exists, other knowledge suggests ways to reformulate
and refine the procedure into a better solution. One generally
applicable transformation is recursion formation as used in [15].
Transformations more specific to particular situations have been
collected in libraries of rules [3] or programming overlays that show
correspondences between plans [21].

K4. Correctness: Knowledge suggesting transformations to apply
is complemented by other knowledge asserting the application of a
transformation will satisfy some design goals. Particularly in



General area Knowledge

Problem solving K1. Weak methods

Algorithm design K2. High-level algorithm schemes
and implementation

FC3. Transformations

K4. Correctness

K5. Efficiency

K6. Target language and architecture

Application domain K7. Domain definitions

Past experience K9. Learned knowledge (Kl - K8)

Typical processes
for applying knowledge

Predefined search procedure

Instantiation of design templates
•

Application of transformation rules

Testing designs, proofs

Performance analysis

Application of selection rules

Inference from domain axioms

Generalization from examples

Derivational analogy

Table 1: Knowledge sources in algorithm design

derivation systems developed by the program transformation com-
munity, transformations are known to preserve desired semantic
properties in program descriptions. But sometimes there is no
knowledge that any known transformations preserve the desired
property. One way to acquire this knowledge is to prove the trans-
formation correct; another is to apply a transformation and test the
results by executing the resulting design [26].

K5. Efficiency: Knowledge about efficiency may take several
forms. It is useful to know that extra effort devoted to finding a
divide-and-conquer algorithm may ultimately yield a more efficient
algorithm than a generate-and-test scheme [9]. The balancing
principle, which applies specifically to divide-and-conquer al-
gorithms, state that the optimal divide step produces subproblems of
equal size.

K6. Target language and architecture: Knowledge about the
intended target language and architecture is mainly important in the
later (coding) stages of program synthesis [3, 4]. However, the
availability of certain language features (eg., bit operations) may
influence the choice of algorithm used; architectural features (e.g.,
parallelism) may create opportunities for using algorithms that
would be otherwise impossible.

K7. Domain definitions: As with programming in general [4],
algorithm specification and design require domain knowledge. For
example, in specifying a sorting algorithm, Clark and Darlington use
logical axioms and lemmas to give the semantics of the terms
ordered and permutation [5]. Other types of domain knowledge
provide performance constraints, input data characteristics, etc.

K& Domain procedures: Human designers invariably under-
stand the algorithm specifications procedurally. No one designs a
sorting algorithm who does not know how to sort Novice LISP
programmers often solve sample problems by hand, and then map
the structure of their hand solution onto LISP [1]. Using examples
provides a focus of attention for reasoning, excluding irrelevant
attributes and unrealistic situations that might result from exclusive
use of an abstract domain theory [17].

K9. Learned knowledge (Kl - K8): Human designers learn from
experience, acquiring knowledge ranging from specific sub-
procedures to general design techniques. The importance of reuse
for automation of programming is commonly recognized
[2,6,7, 19], but we are only beginning to understand how

automatic programming systems can learn [8, 25].

Each type of knowledge has been incorporated into at least one
system for automating algorithm design or other phases of program-
ming. Table 2 indicates the degree to which such systems
(including Designer-Soar) integrate multiple sources of knowledge.
The top half of the table lists systems that emphasize algorithm
design: Designer-Soar, Designer [10], Cypress [24], Cypress-Soar2

[25], MEDUSA [16], and STRATA [14]. The second half of the
table lists systems that emphasize other parts of programming:
DEDALUS [15], PSI/SYN [12], Glitter [7], fc^ [4], KBEMACS
[28] and DRACO [19].

The table shows that no single system integrates all the sources of
knowledge. Weak methods, domain procedures, and learned
knowledge are used most infrequently. As expected, the systems
that emphasize algorithm design use less knowledge of the target
language and architecture than the other systems. Also, those sys-
tems most strongly driven to handle difficult real-world problems
are the ones that incorporate (or plan to incorporate) the most types
of knowledge. This is particularly true of ^ i ^ . which is intended
to produce usable oil well logging software, and DRACO, which has
been used for the analysis of domains such as real-time tactical
display systems.

3. The Task of Algorithm Design in Designer-Soar
The problem-solving architecture is critical to a system that per-

mits integrating multiple, diverse knowledge sources. The Soar
architecture [13] appears to have the requisite generality. Soar sys-
tems have solved problems and learned in domains ranging from the
traditional AI toy problems such as the eight-puzzle to more com-
plex knowledge-intensive tasks, such as part of the VAX configura-
tion performed by the Rl expert system [22]. Soar also provides a
way to explore transfer of learned knowledge both within a design
and between designs.

Soar represents tasks as search in problem spaces: sets of states,
with operators that move from state to state, and the free ability to
search within the space for a desired state that represents task
accomplishment. Knowledge is embodied in productions, which are
used to select problem spaces, states, and operators. Productions
also implement simple operators* complex operators being treated as

Cypress-Soar and Designer-Scar aie both Soar-based algorithm designers. Cypi
Soar assumes the use of a deductive engine to formally derive divide-and-conquer
algorithms, while Designer-Sow designs these and other algonthms without such a
deductive engine, relying heavily on the use of examples as a source of Tcnowledge.



been produced to refine it. Therefore, the lookahead takes place in
an abstracted version of the computational space, in which the
operators can be applied without knowing the missing details3. Cur-
rently, Designer-Soar only uses type knowledge in abstracted execu-
tion, but we expect to propagate efficiency constraints as well.

4.2. Designing the top level sort (C3 - C6)
Given the decision to execute a divide-and-conquer algorithm,

Designer-Soar attempts to apply the first step, testing for decom-
posability. The test is not known, but the system knows that execu-
tion on concrete examples is useful for refining tests, so a new
execution pass is begun. An example of the input required, a
sequence of integers, is incrementally generated by adding elements
to an initially empty sequence until it has two elements. Designer-
Soar knows that sequences with two or more elements will probably
not be boundary cases (in contrast to zero or one elements). To find
the test for decomposability, Designer-Soar looks ahead for a pos-
sible decomposition operator. We have told the system to select the
F i r s t Rest operator for decomposition in this case (which leads to
insertion sort rather than other sorting algorithms), splitting off the
first element from the sequence containing the second element The
precondition for applying F i r s t R e s t — that the sequence has at
least one element — is used as the test for decomposability.

The subproblems from this decomposition are then solved. The
first subproblem is an element rather than a sortabie sequence, and is
passed to the composition as is. The remaining subproblem is a
sequence, and test-case execution is recursively invoked to sort it It
is decomposed into an element and an empty sequence. The test for
decomposability applied to the empty sequence returns false, so it
must be sorted directly. Applying the domain operator to sort the
empty sequence shows that the computational space operator Id
(identity) operator has the necessary functionality.

43. Designing the insertion algorithm (C7 - CIO)
While making these selection and implementation choices,

Designer-Soar learns chunks. Because of the execution paths fol-
lowed so far, the chunks learned encode the entire structure of the
top level of the insertion sorting algorithm. However, an impasse
arises when the system tries to combine the element and the sorted
remaining sequence, because it does not know how to implement the
necessary Compose operator. It decides to implement the operator
by divide-and-conquer, making the selection by the same abstract
lookahead planning used for the higher level algorithm; indeed some
of the chunks learned then now apply, speeding up the problem-
solving, showing the integration of learned knowledge. To refine
the insertion subalgohthm further, the 2-element example from the
higher-level execution context is used again. We told the system to
assume the decomposition for insertion would have to be custom
designed and that the composition would be selected from simple
known operators. In fact, decompose need not be applied for the
current input, which is an element and an empty sequence. The
check for the empty sequence is made into a test for decom-
posability. A comparison to results of execution in domain space
shows that the operator Cons suffices to insert an element into an
empty sequence.

4.4. Designing the decomposition of the insertion
algorithm (Cll - C15)

Though Designer-Soar has solved the problem of insertion for the

current example, it knows that the purpose of the execution is not
only to obtain the answer, but also to exercise the execution paths so
that it learns the algorithm. In finding that the test for decom-
posability returns false, it remembers it must come back to find out
what happens when a test returns true. It generates a new example
to force the execution down the untried path, adding an element to
the sequence to make it decomposable.

In processing the new example and looking at the results of
domain execution, the system discovers that it needs to handle
several cases separately for the decomposition. This leads to a
conditional algorithm, where inputs are an element and an ordered
sequence. Another execution pass refines the predicate of the con-
ditional to compare the value of the element to the value of the first
element of the sequence, and also refines the true branch to ensure
that the smaller of the two elements is moved to the front. Some of
the knowledge learned in refining the true branch is used together
with a new example to refine the false branch analogously. While
finishing the design, the composition operation of the insertion is
refined to Cons the element (known to be smallest) to the front.

4.5. Learning
Prior experience is a significant source of knowledge for design.

Soar's learning mechanism, chunking, is so tightly integrated into
Designer-Soar that the boundary between problem-solving and
learning has disappeared: designing an algorithm is equivalent to
learning to execute it and the current Designer-Soar requires that
chunking be on to run. However, a slightly earlier version of
Designer-Soar did permit no-chunking runs so as to isolate the
effects of learning. Figure 4-1 shows the cumulative problem-
solving effort needed to design two simple algorithms in sequence,
with and without chunking. On the left, the first algorithm finds the
subset of elements satisfying a given predicate in a given set, the
second finds the intersection of two sets. On the right, the two
algorithms are insertion sort and merge sort There is a significant
savings from learning in both pairs of algorithms: 28% for the set
algorithms and 69% for the sorting algorithms, illustrating that the
benefits of learning increase as the designs get more complex. Fur-
thermore, the slope of the learning graph decreases during the design
of the second algorithm in each pair, suggesting transfer across, as
well as within, the similar designs. We found that without the
chunks from the design of insertion sort, the learning run for merge
sort takes 860 decision cycles, an increase of 56% over the 551
needed with those chunks.

S $00*. 6000-

4000 -

2000 -

Intersection

1 2
Algorithm* designed

Iscrapn sort Mcriy sort
1 2

Algorithms designed

3 A similar use of abstraction in Soar has been described for a partial reimplcmen-
tation of Rl , the VAX configuration expert system [27].

Figure 4-1: Effects of learning in Designer-Soar

5. Summary
Returning to our list of knowledge sources, we summarize ihe

mechanisms used for integrating each source into Designer-Soar.
The Soar architecture directly supports access and use of two of the
knowledge sources: weak method search (Kl) results from Soar's
default behavior in knowledge-lean situations, and learned



knowledge (K9) is applied when chunks fire. The problem spaces
that are specific to Designer-Soar support integration of the other
sources. Knowledge of the high-level algorithm schemes (K2) and
of possible transformations (K3) is encoded in the operators in the
computational spaces. Similarly, knowledge about application
domain definitions and procedures (K7 and K8) is embodied in the
structure of the domain spaces. Concerns of correctness (K4) are
addressed by execution in both computational and domain spaces,
and means-ends analysis on the results. Though we have not yet
focused on knowledge about efficiency (K5) or the target language
and architecture (K6), there is a clear role for integrating these
sources in terms of selection knowledge in the computational space,
or even computational spaces with different functional operators.

Currently, Designer-Soar designs bom generate-and-test and
divide-and-conquer algorithms, but only simple instances of each.
We are now reorganizing Designer-Soar to give it greater generality
and robustness. We expect that the results we obtain in integration
of multiple knowledge sources, including learning, will have im-
plications not only for algorithm design, but for other applications as
well.
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