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Abstract:

We describe a fast back-propagation algorithm for a linear array of processors. Results of an
implementation of this algorithm on Warp1, a ten processor, programmable systolic array computer,
are reviewed and compared with back-propagation implementations on other machines. Our current
Warp simulator is about 8 times faster at simulating the NETtalk text-to-speech network than the
fastest back-propagation simulator previously reported in the literature. This fast simulator on
Warp is being used routinely in a road recognition experiment for robot navigation at Carnegie
Mellon. Our results indicate that linear systolic array machines can be efficient neural network
simulators. Planned extensions and improvements to our current algorithm are discussed.
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Abstract:

We describe a fast back-propagation algorithm for a linear array of processors. Results of an
implementation of this algorithm on Warp1, a ten processor, programmable systolic array computer,
are reviewed and compared with back-propagation implementations on other machines. Our current
Warp simulator is about 8 times faster at simulating the NETtalk text-to-speech network than the
fastest back-propagation simulator previously reported in the literature. This fast simulator on
Warp is being used routinely in a road recognition experiment for robot navigation at Carnegie
Mellon. Our results indicate that linear systolic array machines can be efficient neural network
simulators. Planned extensions and improvements to our current algorithm are discussed.

1. Introduction

The application of neural networks to speech recognition [14], complex signal prediction [7], robotic
control [3], image processing [9], and natural language processing [8] requires huge amounts of com-
puting resources. Networks typically learn to perform these tasks by iterative error-minimization.
Research on scaling up these learning algorithms has been hampered by the slow speeds of today's
neural network simulators. One option to increase simulator power is to use a parallel machine.
This paper describes a parallel implementation of the back-propagation learning algorithm [10]
on the Warp systolic array computer. First we describe the architecture of the Warp and how
back-propagation can be mapped onto such an architecture. Then we compare the performance
of the Warp back-propagation simulator with that of other simulators. The Warp is eight times
faster at learning the NETtalk text-to-speech task [11] than Blelloch and Rosenberg's implemen-
tation of NETtalk on the Connection Machine model CM-1 [2]. Finally, planned extensions and
improvements to our current algorithm are discussed.

1 Warp is a service mark of Carnegie Mellon University.



 



2. Warp Architecture

The workhorse in the Warp machine is a programmable systolic array, called "Warp array.7* The
Warp array is composed of a linear array of processors, called "cells" (see Figure 1). Each cell has
a peak computation rate of 10 million floating-point operations per second (10 MFLOPS), giving
the current 10-cell machine a peak rate of 100 MFLOPS. More precisely, each cell has a 5 MFLOPS
adder chip, a 5 MFLOPS multiplier chip and a 10 MIPS integer ALU. Each is equipped with 32K
words of fast access data memory and can be programmed separately. Each cell is also capable of
very high bandwidth communication (80 Mbytes/sec) with its left and right neighbors in the linear
array. Communication between adjacent cells can be conducted in parallel over two independent
channels: a left-to-right X channel and a bidirectional Y channel.

The Warp array is not the only place where parallelism exists in the Warp machine. Two
cluster processors, an interface unit, and a support processor situated between the Warp array and
the host act in concert to provide efficient I/O between the processor array and the large cluster
memory. The interface unit is a single board processor which connects the cluster processors to the
Warp array. It contains a 1024-word queue for inputting and outputting data. This ensures that a
stream of input data is always available to the Warp array. The cluster processors are designed to
efficiently transfer data between the interface unit and the cluster memory, which can hold up to 39
Mbytes of data without extending the cabinet. Normally, one cluster processor feeds data into the
Warp array while the other transfers data from the array back to cluster memory. These functions
are software switchable via the interface unit, so either cluster processor can talk to either end of
the array for input or output. The support processor serves to synchronize communication between
the cluster processors and the host, a Sun 3/160.

Warp programs are written in a high level Pascal-like language called W2, which is supported by
an optimizing compiler written in Common Lisp. W2 programs are developed in a sophisticated,
Lisp-based programming environment supporting interactive program development and debugging.
A C or Lisp program can call a W2 program from any UNIX host on the local area network.

•»
Warp was originally developed at Carnegie Mellon with support from DARPA, and it is now

manufactured and sold commercially by General Electric. A complete ten-cell system costs about
$350,000. For more details on systolic machines and Warp in particular, see [4,5].

3. Initial Warp Back-Propagation Algorithm: Network Partitioning

Since we started working on the neural network simulation on Warp in September 1987, we have
devised several algorithms. Our first back-propagation algorithm implemented on Warp was based
on network partitioning. Each cell in the 10-cell Warp array simulated one tenth of the units in
every layer. Cells contained the weights for all the connections originating from the units they
simulated. This partitioning scheme is illustrated in Figure 2.

During the forward pass of this back-propagation algorithm, each cell calculated the contribution
its layer i units made to the net input of units in layer i + 1. Each cell also received the partial
net inputs calculated by its left neighbor for all units in layer t + 1. Each cell then sent to its right
neighbor the summed net input for all units in layer t + 1. At the end of this sending and summing
process, the tenth cell contained the total net input for all units in layer t + 1. The tenth cell then
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Figure 1: The Warp architecture.

sent the net inputs for each unit of the t + 1st layer back to the cell that simulated it. Finally, each
cell calculated the new activation level for its layer t + 1 units. The process was then repeated for
the next higher layer.

During the backward pass, each cell calculated the error signal for the units it simulated in level
t. These error values were broadcast to all cells, so every cell contained the error value for all units
in layer t. Each cell used these error values and the activation levels of the units it simulated in
layer i - 1 to calculate the weight changes to the connections originating at its t — 1st layer units.
This information was also used by each cell to calculate error values for the units in layer t — 1.
The process was then repeated to propagate error backward through the next layer.

4. Improved Warp Back-Propagation Algorithm: Data Partitioning

After the above algorithm was implemented and operational on Warp, we became more ambitious.
We wanted to simulate larger and arbitrarily connected networks with faster speed. The above
algorithm used the cells to store all weights. This imposed two limitations. First, the total number
of weights was limited by the total size of the cell memories in the Warp array. Second, because
of the additional memory access each cell needed to obtain the weights, the cell's execution speed
was limited by the cell memory bandwidth. In addition, the network partition scheme used by the
above algorithm made load balancing difficult for arbitrarily connected networks.

In March 1988 we started implementing an improved algorithm, which exploits the fact that
weight-updates are usually small compared to the magnitude of the weight. Thus, we can run
several simulations with fixed weights before updating them. Consequently several simulations can
be performed in parallel on different training patterns. Whereas the initial algorithm partitioned
the network into ten disjoint pieces, the improved algorithm uses a data partitioning approach
where each cell simulates the entire network on a different set of training patterns. The first nine
cells perform the forward and backward pass for a number of input/output pattern pairs, while the
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Figure 2: Data distribution for the network partitioning algorithm.

tenth cell is reserved for computing weight updates. Weights are no longer partitioned among the
cells' local memories; instead they are pumped through the array from the cluster memory, which
can presently hold up to 39 Mbytes. See Figure 3. Cells store only the activation levels of the units.
This allows us to simulate much larger networks. Since each cell has multiple training patterns,
each weight sent in to the cell is used multiple times, one for each training pattern. For these
operations no memory access is needed for accessing the weight, as it can be stored in a register.
Thus the local memory bandwidth no longer represents a performance bottleneck; the execution
rate of each cell is substantially increased. Furthermore, this improved scheme is automatically
load balanced for any arbitrarily connected network, because each cell simulates exactly the same
network.
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Figure 3: Information flow in the data partitioning algorithm.

In more detail, each of the first nine cells initially reads in a set of input patterns (currently
ten per cell) from the host. In the forward pass, the weights from the tth layer units to t + 1st
layer units are sent in from the host one after another. As a cell receives a weight, it sends it on
to the next cell and also uses it to calculate the contribution of the corresponding tth layer unit
to the i + 1st layer unit in each of the ten patterns it is simulating. After all the tth to t + 1st
layer weights are passed through the cells, each cell contains the net input to the t + 1st layer
units for the ten patterns it is simulating. Each cell performs the sigmoid calculation to determine
the activation level for the t + 1st layer units in its ten patterns. This procedure is repeated to



 



propagate activation from each layer to the next higher.

To propagate error during the backward pass, each of the first nine cells reads in its ten output
patterns from the host and then calculates the error values for the output units for each pattern.
The weights between the output layer (layer i) and the last hidden layer (layer t - 1) are again
pumped through the first nine cells. Each cell uses the error values for the ith layer and the
incoming weights to calculate the error values for the t - 1st layer units in its ten patterns. Each
cell also uses to the tth layer error values and the activation levels for the t - 1st layer units to
calculate the changes to the weights between these layers. These weight change values are summed
across the ten patterns on each cell, then summed across the nine cells simulating patterns and
finally added to the current weights by the tenth cell. The same procedure is used to propagate
error backwards from the last hidden layer to subsequent lower layers.

5. Speed Comparisons with Other Machines

Speed measurements for the Warp back-propagation simulator have been performed using Sejnowski
and Rosenberg's NETtalk task as a benchmark [11]. NET talk learns to transform written English
text to a phonetic representation; thus, it "learns to read aloud." The network architecture consists
of three layers. The input layer has 203 units divided into 7 groups of 29; the hidden layer has
60 units, and the output layer has 26 units. During training, each input group represents a single
character from among 29 possibilities (26 letters plus 3 punctuation symbols.) The 26 output units,
which stand for phonetic features, form a distributed representation of a phoneme. Following
Blelloch and Rosenberg [2], the 60 hidden units are fully interconnected to both the input and
output units, meaning there are a total of 12,180 connections between the input and hidden layers,
1560 between the hidden and output layers, and 86 connections to the true unit for thresholds.
The total number of connections is thus 13,826.

Our current implementation performs a single learning trial (one forward and one backward
pass) in 0.82 milliseconds. This corresponds to a simulation rate of approximately 17 million
connections per second (MCPS). This includes the computation time and all the overheads, i.e.,
the time required to read in the input pattern, propagate activation forward through the network,
read in the correct output pattern, propagate the error signal backward through the network,
compute weight changes and accumulate error values for each unit. Time spent in each of these
phases is listed below.

• Forward pass 40.3% - time spent propagating activation forward through the network.

• Backward pass 50.6% - time spent propagating error backward through the network.

• Other 9.1% - time spent reading in the input and output activations, computing error statistics
and actually updating weights (done concurrently on the last cell).

Table 1 illustrates the speed of the Warp back-propagation simulator in comparison with simu-
lators for other machines. The Warp simulator is 340 times faster than Sejnowski and Rosenberg's
original implementation of NETtalk on a Ridge 32, which ran at 0.05 MCPS and required 275 msec
per trial [12]. The Ridge is said to be comparable in performance to a Vax-11/780 with FPA [11].
After the initial loading of the weights, a 16K processor CM-1 Connection Machine can simulate



 



Machine

Ridge 32
Convex C-l
16K CM-1
Warp

MCPS

0.05
1.8
2.6

17.0

Relative Speed

1
36
52

340

Table 1: Simulator speed comparison for various machines. Speed for Convex C-l is from [6]

this network at a speed of approximately 2.6 MCPS in the steady-state [2]. Counting the initial
startup I/O, the total time required by the CM-1 implementation is about 8 minutes [1]. Since the
total time required by the Warp implementation is under 1 minute, Warp is eight times faster.

We must make two cautionary notes about our comparison with the Connection Machine. First,
the reported speed is for a CM-1 model because there is currently no back propagation simulator
for the more powerful CM-2. Also, the performance figure of 2.6 MCPS assumes a 16K processor
machine instead of the 64K maximum, because more than 16K processors can't be used effectively
for the NETtalk task. In the current CM back-propagation implementation, each processor simu-
lates a weight and there are fewer than 16K weights in this network. For a 64K processor machine
on a larger network, Blelloch and Rosenberg indicate their CM-1 simulator can run at 13 MCPS.
A ten-cell Warp is still about 25 percent faster. The Warp architecture is trivial to extend to in-
clude more cells. A 20-cell Warp is currently being assembled, which should yield about 32 MCPS
on networks as small as NETtalk, since the speedup of the Warp back-propagation algorithm is
approximately linear in the number of processors provided that the network is large enough.

6. Limitations and On-going Work

The only major limitation to the current algorithm is that we always simulate fully interconnected
networks. As pointed out before, our algorithm can potentially simulate general networks with
any number of layers and arbitrary connectivity - with no significant performance sacrifice. The
basic idea is that for each floating-point weight that is sent into the Warp array, two integers
are sent in pointing to the source and destination unit for the connection. Since we are storing
several input patterns in the cell's memory, we can perform many floating-point operations with
each weight while the integer ALU deals with the weight indices. Thus, execution time will not be
limited by I/O bandwidth. This new simulator capable of handling arbitrary connectivity is being
implemented.

In addition to increasing simulator flexibility, current work with the Warp includes an explo-
ration of neural network road following algorithms for the Autonomous Land Vehicle project. The
NAVLAB, a modified Chevy van with a Warp, a video camera, and a laser rangefinder fitted inside,
serves as a testbed for the project [13]. Our Warp back-propagation simulator speed makes it pos-
sible for simulating the large network necessary for this vision application in less than a day. The
three-layered network currently being used for the road following task contains 1125 input units
representing gray-scale image and depth values, 84 hidden units, and 126 output units representing



 



road position information. Each layer is fully connected to the one above, so the network has a
total of 105,084 connections. During training, we have been routinely cycling through 40 epochs
of approximately 50,000 different simulated road images. Our current simulator runs at about
17 MCPS on this network, which corresponds to approximately 3.5 hours of Warp CPU time for
training. Including time for generating the simulated roads and downloading them to the Warp
host, the network requires about 5 hours to train, which is easily accomplished overnight.

7. Conclusions

Understanding the nature of an application and the architecture of the underlying machine is
important in deriving an efficient mapping between the two. By exploiting the fact that weight
updating need not be done frequently, we devised the data partitioning algorithm, which for the
Warp architecture is much more efficient and flexible than the network partitioning algorithm.
Several architectural features of Warp have contributed to its effectiveness in the data-partitioning
implementation. High-bandwidth inter-cell communication allowed for the weights to be stored in
cluster memory and pumped through the array when they were needed. Both a floating-point adder
and multiplier enabled the computationally expensive parts in the algorithm to be done quickly and
with full resource utilization. Because each cell has its separate program control, cells do not have
to execute the same program at the same time; this allows for example the tenth cell to execute
a different program from the other cells. Finally, an optimizing Warp compiler produces efficient
code and eliminates the need to program in assembly language to achieve peak speed.

We can conclude that a one-dimensional systolic array can be very cost-effective for fast simu-
lations of neural networks. A second generation Warp computer, called iWarp, is currently being
co-developed by Carnegie Mellon and Intel. Each cell in the iWarp will be a custom VLSI chip
capable of 20 MFLOPS. With a total 72 cells, iWarp will have a peak rate of 1.44 GFLOPS. Thus,
upon its scheduled completion in 1990 the iWarp should provide at least another order of magnitude
speedup for neural network simulations.
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