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Modeling Human Syllogistic
Reasoning in Soar

Iliad A. Polk and Allen Newell

Department of Computer Science,
Carnegie Mellon University

Soar is an architecture for general intelligence, which has been shown to be capable of supporting a
wide variety of intelligent behavior involving problem-solving, learning, designing, planning, etc. (Laird,
Newell & Rosenbloom, 1987, Steier, et aL, 1987). Soar has also been put forth as a unified theory of
human cognition (Newell, 1987). We provide support for this by presenting a theory of syllogistic
reasoning based on Soar and some assumptions about subjects' knowledge and representation. The
resulting theory (and system, Syl-Soar/S88) is plausible in its details and accounts for existing data quite
well.

The Task

Syllogisms are reasoning tasks consisting of two premises and a conclusion (Figure 1, left). Each
premise relates two sets of objects (x and y) in one of four ways (Figure 1, middle), and they refer to a
common set (bowlers). A conclusion states a relation between the two sets of objects that are not
common (archers and canoeists) or that no valid conclusion exists. The three terms x,y,z can occur in
four different arrangements, called figures (Figure 1, right), producing 64 distinct syllogisms.

Premise 1: No archers are bowlers A: All x are y I P l x y l P l y x l
Premise 2: Some bowlers are canoeists I: Some x are y 1 P2 yzl P2 yz I
Conclusion: Some canoeists are not archers E: No x are y I PI xy I PI yx I

O: Some x are not y 1 P2zv IP2zv I

Figure 1: Syllogism task.

Syllogisms have been much studied (see Johnson-Laird 1983 for review). The essential problem has
been to understand why some syllogisms are so hard while others are so easy. However, the area is also
useful as a testbed for cognitive theories.

The Soar Theory of Syllogisms

The Soar architecture has the following features:
1. Problem spaces. All tasks, routine or difficult, are formulated as search in problem spaces.

Behavior is always occurring in some problem space.

2. Recognition memory. All long-term knowledge is held in an associative recognition
memory, realized as a production system.

3. Decision cycle. All available knowledge is accumulated about the acceptability and
desirability of problem spaces, states and operators for the current total context, and the best
alternative is chosen among those that are acceptable.

4. Impasse driven subgoals. Incomplete or conflicting knowledge at a decision cycle
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produces an impasse. The architecture creates a subgoal to resolve the impasse. Cascaded
impasses create a subgoal hierarchy.

5. Chunking. The experience in resolving impasses continually becomes new knowledge in
recognition memory, by means of constructed productions (chunks).

6. Annotated models. States are represented as annotated models (to model human
cognition).

Figure 2 indicates the structure of the system: the collection of problem spaces (triangles) with
operators and states. Subspaces arise from impasses, usually reflecting the need to implement operators
or satisfy operator preconditions. The task data structures occur in working memory and are continually
viewed by the recognition memory, which contains all task-implementation and search-control
knowledge. Relevant knowledge accumulates from this memory, pennitting steps to be taken in the
current space or, upon impasses, creating subgoals to be solved in subspaces, etc. The micromechanics
are beneath the level of detail of this paper, but drive the entire system, including learning.

LONG.TERM RECOGNITION MEMORY
(Productions)

WORKING MEMORY Syllogism ^ ^
S p a c e ^ " " ^

Comprehend ^ -̂̂ ^Z-—••"
Spice . ^ ^ S S - H l mbeotl ^ ^

Prop-to* prop ^^
Space ^ ^

H)pe«Oriinpi«««lo«

Opr. mpL ^^ î Build-conclusion
Space

>O

^ > Noopemor>K

Pnuwto^Bodel «o
Space < v

Modei-to-prop
Space

Figure 2: The structure of Soar.

A key assumption, developed strongly by Johnson-Laird (1983), is that humans represent the situations
presented in syllogisms as models. A pure model is a representation that satisfies the structure
correspondence condition: specified parts and relations of the representation data structure correspond to
parts and relations of the situation, without completeness (see also Levesque, 1986). A pure model
admits highly efficient match-like processing, but is limited in its representational power. An annotated
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model is a representation that makes principled exceptions to a pure model, which increase its
representational power, while preserving essential match-like processing. An annotation attaches to a
data-structure part, asserting a variant interpretation for the part (e.g., not asserts that the part is not to be
found in the situation where the correspondence mapping would otherwise locate it). The annotations
used for syllogisms are not, optional, many, target and source. Annotations can quantify, but are local
and do not admit unbounded processing. Figure 3 (left) indicates the models that might be built from two
premises. The line through the bowling pin indicates a not annotation.

Input premises:
PI Some archers are not bowlers
P2 All canoeists are bowlers Model of situation

Representation of premises

Syllogism Space read-premise, build-conclusion

Comprehend Space ail, some, no, cure, not, and one for
generic noun

Build-conclusion generate-quanttfier,
senerate-oredicate.
generate subject

Prop-to-prop

Model-to-prop

Prop-to-model

attend-to-prop, copy-subject,
copy-object*
copy-sign, copy-quantifier,
creaie-auxiliary

attend-to-object,
augment-proposition

attend-to-prop, augment-model

Figure 3: Annotated models, problem spaces and operators for syllogisms

Reasoning occurs by generating models to correspond to situations, inspecting the models for the
properties of the situation, and forming new propositions to assert the result Inspection is a power of the
recognition memory (production match). Since models are limited, some situations can be represented
only by a disjunctive set of models; reasoning then includes generating sets of models to test conjunctive
properties. Reasoning with multiple models occurs in humans and has been central to model-based
theories of syllogistic reasoning (Johnson-Laird, 1983, Inder, 1986), but the present theory includes only
reasoning with a single modeL

Six problem spaces are used in syllogistic reasoning (Figure 3 lists them, with operators. Figure 2
shows how they link together). Comprehend, Syllogism and Build-conclusion form the top-level path
between the presented premises and the response. The knowledge to form them comes from the
definition of the task, plus general skills in reading and writing. Comprehend is an expectation-based
scheme that associates both syntactic and semantic knowledge with individual words. It constructs an
initial (possibly incomplete) model; it also leaves as a byproduct a model of each premise as a
proposition, with parts subject* object and sign (the predicate), and quantifier. Prop-to-prop,
Model-to-prop, and Prop-to-model have operators required to manipulate models of situations and
models of propositions, as well as attention operators to instantiate the manipulations.
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The Behavior of the System

Figure 4 illustrates the system's behavior. (1) It starts in Syllogism and applies read-premise,
implemented in Comprehend, to the first and then the second premise. (2) This results in an initial
model, plus the two internal propositions. This encoding only extracts information about the subject of
the premise. (3) Since the overall task is to pioduce a conclusion, build-conclusion is applied. Its space
(Build-conclusion) puts together legal propositions. The task decomposes into discovering the subject,
predicate and quantifier of the conclusion. Task knowledge pennits determining some parts without other
parts being specified. Incomplete or incorrect knowledge leads to composing invalid conclusions.

Syllogism
Space

Span

Some
trchers are
canoeists

(boild
coodosion)

Impasse

Build-
conclusion
Space

P I (sublet) = £ > • (predkaie)
Archers

(quantifier)

Impasse
Prop-to-prop

(•n«nd)

•
(copy [ U +
quantifier)

IVoe)*4e*nHMiefl
Space • •

)

Figure 4: Behavior on Some archers are not bowlers. All canoeists are bowlers.

•

(4) Generating the subject is tried first, which uses Prop-to-prop because the propositions, not the
model, distinguish between subjects and objects. (5) Attcnd-to-prop selects the first proposition and
copy-subject creates the subject of the conclusion {archers). (6) Next, generate-predicate is selected,
which uses Modei-to-prop, because the propositions contain no useful information about the predicate.
(7) The attend-to-object operator applies, but no others, because the model is incomplete. This leads to
augmenting the model, using Prop-to-model. (8) Attend-to-prop selects premises to extract more
information, but neither premise yields anything. (9) Create-auxiliary produces a new proposition in
Prop-to-prop. It attends to the second premise and applies operators which convert it, creating the new
premise All bowlers are canoeists. (10) This allows solving in Prop-to-model to resume, by focusing
attention on this new proposition and using it to augment the model. (11) The model now suggests a
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predicate, so solving is able to continue in Model-to-prop to obtain the predicate for the conclusion (are
canoeists). (12) All that remains in Build-conclusion is to generate the quantifier. The model does not
represent quantifiers, so Prop-to-prop is used again. (13) It attends to the first premise and copies its
quantifier (some), finally obtaining, Some archers are canoeists. This is incorrect, but many humans fail
this syllogism as welL Correctness depends on knowledge being available at many local choices.

Human Data and Soar Performance

Figure 5 presents data from (Johnson-Laird & Bara, 1984) by 20 University of Milan students on all 64
syllogisms (with unlimited time) and also the responses by Soar. The four sections of the chart
correspond to the four figures (Figure 1,right). Each row corresponds to one of the 9 legal responses.
The top number in each cell indicates the number of subjects giving that response to a particular
syllogism. Some archers are not bowlers and All canoeists are bowlers (Figure 4) is abbreviated
Oxy,Azy, and occurs in the lower left quadrant, where we see that 8 subjects responded Ixz (Some
archers are canoeists), 7 responded Oxz (Some archers are not canoeists), 3 responded NVC (no valid
conclusion) and 2 subjects gave illegal responses. Valid responses are shaded (Oxz for 7/20 correct).
Only 38% percent of all responses were correct and 7 syllogisms were solved by no one.

Individual humans behave differently from each other and from themselves over time, due to learning
and other factors. The data of Figure 5 are a composite, as shown by multiple responses. A family of
Soar systems is required to correspond to this human variation. We varied the theory along 3 dimensions:
(1) whether auxiliary propositions are created, as in our example (2 choices); (2) how premises augment
objects with not annotations (3 choices); and (3) whether premises about some x augment objects about x
(2 choices). The first dimension is one of reasoning power, the other two involve the semantics of
interpreting premises. These dimensions form a family of 12 variants.

This small family accounts for 980 out of 1154 (85%) observed legal responses (126/1280 responses
were illegal and not recorded) by covering 131 out of the 193 ceils (68%) that contain 1 or more
responses (all cells with more than 6 subjects are predicted with one exception [Oyx, Ayz = Izx]). Only
one response is predicted that is not given by any subject [Oyx, Ayz = Ozx]. Frequencies were assigned
to the different members of the family to produce the fit shown in parentheses in Figure 5 (15/20 subjects
were assumed in the family since 23% of responses, many illegal, were unpredicted). No simple measure
of fit is available, but the correlation between subjects and systems is .37.

The theory produces the classical effects, such as the atmosphere effect (Woodwoith & Sells, 1935), the
conversion hypothesis (Chapman & Chapman, 1959) and thefigural effect (Johnson-Laird, 1983). Space
does not permit showing the analysis, but they need only be traced out in Figure 5. The atmosphere and
figural effects arise because the syntactic form of the premises serves as search control in the construction
of the conclusion. The conversion effect arises when this search control is insufficient and a new
proposition is created.

According to the theory, there are three main sources of difficulty: (1) making unwarranted
assumptions about the premises; (2) failing to consider all the implicit ramifications of the premises; and
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Figure 5: Data (from Johnson-Laird & Bara, 1984) and Soar predictions in () .

(3) failing to consider all the possible conclusions based on a (possibly correct) model. Syllogisms are
difficult to the extent they present oppoitunities for these processing difficulties (e.g., have implicit
ramifications relevant to the conclusions). This predicts that better subjects will extraa more information
from the premises without making unwarranted assumptions or that they will search for conclusions more
extensively.

We designed a family of systems based on 10 parameters, which inrtmlrs the current 3-parameter
family, with the values (mostly binary) of each parameter being independently ordered by validity (so that
better values correspond to more powerful and correct ways of building models). When ail parameters
take on their optimal values, perfect performance should occur. Better solvers should occur within this
space with interpretable parameter settings. To test this, we analyzed another set of 20 subjects 58% of
whose responses were correct (Johnson-Laird & Steedman, 1978). We implemented a small sub-family
(24 variants including the 12) that covered 87% of the responses and 67% of the cells; it did however
predict 11 responses not given by any subjects. The parameter settings of the modal system for the new
distribution are better (higher in validity ordering) than those of the old distribution's modal system on 3
parameters and the same on the other 7.
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The explanatory power of this theory appears better than existing theories. Their predictions are less
accurate in that they predict a large number of responses that were not observed in any subjects and they
do not make strong frequency predictions. Most theories only explain highly aggregate data. However,
the data used here (Figure 5) is still aggregated over subjects, and nothing has yet been done with timing
and protocol data. So ample opportunity remains to challenge and improve the present theory.

prcdii
premises to try to extract more information. Its spaces (especially executive ones) are substantially less
arbitrary than prior simulations (e.g., Comprehend embodies a theory of elementary language
comprehension). Although not reported on here, the present theory involves a theory of learning, which
is an essential part of any general account of human cognitive behavior. These attributes and others arise
primarily from this theory of syllogism being embedded in Soar as a unified theory of cognition.

Acknowledgements

We thank the members of the Soar project for support and criticism, especially Rick Lewis who is
working on Comprehend; also Nonna Pribadi for making the beautiful figures and Phil Johnson-Laird
for comments on this theory. This research was supported by the Information Sciences Division of the
Office of Naval Research under Contract N00014-86-K-0678 and also by the NSF under the Engineering
Research Center Program, Contract CDR-8522616. The views expressed in this paper are those of the
authors and do not necessarily reflect those of the supporting agencies. Reproduction in whole or in part
is permitted for any purpose of the United States government Approved for public release; distribution
unlimited

References

Chapman, L J., & Chapman, J. P. (1959). Atmostphere effects re-examined. Journal of Experimental
Psychology, 58,220-226.

Inder, R. (1986). Modeling syllogistic reasoning using simple mental models. In Cohn, A. G., &
Thomas, J. R. (Eds.), Artificial Intelligence and its Applications. New York: Wiley.

Johnson-Laird, P. (1983). Mental Models. Cambridge, MA: Harvard.
Johnson-Laiid, P. N., & Bara, B. G. (1984). Syllogistic inference. Cognition, 16, 1-61.
Johnson-Laiid, P. N., & Steedman, M. (1978). The psychology of syllogisms. Cognitive Psychology, 70,

64-99.
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar An architecture for general intelligence.

Artificial Intelligence, 33, 1-64.
Levesque, H. J. (1986). Making believers out of computers. Artificial Intelligence, 30, 81-108.
Newell, A. (1987). Unified Theories of Cognition. The William James Lectures. Harvard University,

Spring 1987. (Available in vidocassette from Harvard Psychology Department).
Steier, D. E., Laird, J. E., Newell, A., Rosenbloom, P. S., Flynn, R. A., Golding, A., Polk, T. A., Shivers,

0. G., Unruh, A. & Yost, G. R. (1987). Varieties of Learning in Soar 1987. In Proceedings of the
Fourth International Workshop on Machine Learning. Los Altos, CA: Morgan Kaufinan.

Woodworth, R. S., & Sells, S. B. (1935). An atmosphere effea in formal syllogistic reasoning. Journal
of Experimental Psychology, 18,451-460.


