
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

USING THE EXPERT'S DIAGRAMS
AS A SPECIFICATION OF EXPERTISE

Technical Report AIP - 50 >

Stephen Casner & Jeffrey Bonar

Learning Research & Development Center and
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, Pa. 15260

1 July 1988

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number N00014-86-K-0678. Reproduction in whole or in part
is permitted for purposes of the United States Government. Approved for public release;
distribution unlimited.

ft J

\j

Unclassified
OSSIFICATION Op THIS PAGE

REPORT DOCUMENTATION PAGE

1* . REPORT SECURITY CLASSIFICATION
Unclassified

2 J . SECURITY CLASSIFICATION AUTHORITY

2b. 0ECLASSIF1CATION/0OWNGRA0JNG SCHEDULE

1b. RESTRICTIVE MARKINGS

3 DISTRIBUTION/AVAILA8ILITY OF REPORT

Approved for public release;
Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AIP - 50

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Carnegie-Mellon University

6b. OFFICE SYMBOL
(if appiicabie)

7a NAME OF MONITORING ORGANIZATION
Computer Sciences Division
Office of Naval Research

6c AOORESS (Cry, SUte and ZIP Code)
Department or Psychology
Pittsburgh, Pennsylvania 15213

7b. ADORESS(Oty/ SUte. and ZIP Code)
800 N. Quincy Street
Arlington, Virginia 22217-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Same as Monitoring Organizatior

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-86-K-0678
8c AOORESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS p 4 0 0 0 u b 2 0 1 / 7 - 4 - 8 6

PROGRAM
ELEMENT NO

N/A

PROJECT
NO.

N/A

TASK
NO

N/A

WORK UNIT
ACCESSION NO

N/A
11 TITLE (Include Security Classification)

Using the Expert's Diagrams as a Specification of Expertise (Unclassified)

12. PERSONAL AUTHOR(S)
Casner, Stephen and Bonar, Jeffrey

13a. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM 86Septl5To91Sept.H

14 Of R£PORT {Year, Month, Oay)
July 1

15. PAGE COUNT
Z^+

16. SUPPLEMENTARY NOTATION

Proceedings of the 1988 Workshop on Visual Languages, October 10-13, Pittsburgh, PA

17 COSATI CODES
FIELD GROUP SU8-GROUP

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

Visual languages, Diagrams

19. ABSTRACT {Continue on reverse if necessary and identify by block number)

See reverse side

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

D UNCLASSIFIED/UNLIMITED g | SAME AS RPT D OTIC USERS
22a NAME OF RESPONSIBLE INDIVIDUAL

Dr. Alan L. Meyrowitz
DO FORM 1473,84 MAR

2\ A8STRACT SECURITY CLASSIFICATION

22b TELEPHONE (Include Area Cod*)
(202) 696-4302

83 APR edition may be used until exhausted.
All other editions are obsolete.

UNIVERSITY LIBRARIES
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213-3880*

:2c. OFFICE SYMBOL
N00014

SECURITY CLASSIFICATION OF THIS

Unclassified

This work explores the use of diagrams in generating executable specifications of expert
knowledge. We make the observation that experts frequently use diagrams as an efficient means
of communicating detailed information. For some types of information diagrams might offer the
expert an alternative to the high cost of understanding existing knowledge representation
formalisms. We are interested in accomplishing three things: 1) understanding the diagramming
techniques used by domain experts to encode detailed information in a restricted type of diagram
called a relational diagram; 2) characterizing a set of notions that experts frequently encode in
relational diagrams; 3) developing an environment that allows experts to partially construct a
formal specification of problem domain knowledge by drawing relational diagrams. We describe
BOS, a diagramming tool that allows domain experts to build a customized set of diagramming
conventions suitable to their problem domain. Diagrams drawn with BOS generate formal
specifications that reduce the need to establish the diagram's meaning through accompanying text
or verbal explanation. BOS is currently able to generate frames and rules from an interesting set of
relational diagrams that allow the use of spatial arrangement and connectivity to represent
notions about problem domain entities, part of relations, constraints, temporal ordering, and
procedural steps.

Abstract

This work explores the use of diagrams in generating executable specifications of
expert knowledge. We make the observation that experts frequently use diagrams as
an efficient means of communicating detailed information. For some types of
information diagrams might offer the expert an alternative to the high cost of
understanding existing knowledge representation formalisms. We are interested in
accomplishing three things: 1) understanding the diagramming techniques used by
domain experts to encode detailed information in a restricted type of diagram called
a relational diagram; 2) characterizing a set of notions that experts frequently
encode in relational diagrams; 3) developing an environment that allows experts to
partially construct a formal specification of problem domain knowledge by drawing
relational diagrams. We describe BOS, a diagramming tool that allows domain
experts to build a customized set of diagramming conventions suitable to their
problem domain. Diagrams drawn with BOS generate formal specifications that
reduce the need to establish the diagram's meaning through accompanying text or
verbal explanation. BOS is currently able to generate frames and rules from an
interesting set of relational diagrams that allow the use of spatial arrangement and
connectivity to represent notions about problem domain entities, part of relations,
constraints, temporal ordering, and procedural steps.

Introduction

This work is concerned with the use of diagrams in
generating specifications of expert knowledge such as
those used by expert reasoning systems. It is well
understood that learning to use existing knowledge
representation languages is difficult [Anderson, 1984;
Zhang, 1987]. Previous work on diagrams characterizes
several psychological properties of diagrams that make
them an appealing medium of expression [Larkin and
Simon, 1987; Fitter and Green, 1979]. We observe that
in many problem domains experts frequently use
diagrams as an efficient means of communicating
detailed information. We would like to show that for
some types of information, diagrams offer an alternative
for expressing problem domain knowledge, and that
experts already have an established set of skills and
conventions for using diagrams.

The present work is restricted to a particular type of
diagram called a relational diagram. We define this
notion and. discuss two ways of graphically encoding
information in relational diagrams. We present a series
of textbook examples illustrating how diagramming
techniques are associated with problem domain concepts
to encode information in relational diagrams. We
describe BOS, a diagramming tool that allows users to
build simple executable specifications of problem domain
knowledge by implementing and using a set of
customized diagramming conventions suited to their
problem domain.

Relational Diagrams

Hegarty and Just (1988) distinguish two types of
diagrams that are commonly used to accompany text or
verbal explanations. Realistic diagrams depict the
subject matter similar to its appearance in real life and
preserve many of the details of its appearance.
Relational diagrams abstractly represent entities in a
domain, their properties, and relationships between
them. A relational diagram may contain a set of objects
and links between them. Graphical objects are used to
represent entities in the domain. Links can be drawn
between objects to specify relationships between objects.
Relational diagrams differ from simple graphs in that
connectivity is not the only way to express relationships
between entities. For instance, a spatial arrangement of
entities in a diagram can be used to encode information
about their relative physical positions, or importance
relationships between them.

Previous Work

Harel (1987) and Mackinlay (1986) describe visual
languages that capture some of these relational notions.
Harel's visual language allows interface designers to
build functional specifications of complex systems by
using a customized set of diagramming conventions.
These conventions are defined by creating visual ways of
expressing each of a set of constructs in a
non-diagrammatic formalism. A limitation of Harel's
system is that using the visual language still requires an
understanding of the complex formalism since it is
simply an alternative (visual) syntax for the same set of
complex notions.

Mackinlay's intelligent presentation tool defines a set of
graphical languages that can be assigned a variety of
interpretations when designing visual presentations of
relational information. The set of notions described in

Mackinlay's work is general and can be flexibly used to
encode many relational notions. However, for our
purposes it is not clear that domain practitioners would
be able to understand how these elegant notions must be
combined to arrive at the domain-specific concepts they
wish to express.

A basic point of both works is that visual presentations
can be defined as sentences in a formal visual language
that has a precise syntax and semantics. Our goal is to
enable the domain expert to define their own visual
language that allows them to use familiar diagramming
conventions to build specifications of knowledge by
drawing relational diagrams.

Encoding information in relational diagrams

This part of the work focuses on identifying a set of
available techniques for graphically encoding
information in the human-computer interface (a
diagram syntax), and characterizing a set of useful
notions the domain expert wishes to express (a diagram
semantics). Bertin (1983) describes a set of techniques
that includes spatial arrangement, connectivity, color,
shape, texture, size, and animation. The work described
here focuses on the use of spatial arrangement and
connnectivity. The series of examples that follows is
intended to convey two points: 1) spatial arrangement
and connectivity can be used to encode a variety of
problem domain notions in relational diagrams; and 2)
an understanding of these conventions can be used to
guide the design of a diagramming tool that allows
domain experts to implement familiar sets of
diagramming conventions and use them to build formal
specifications of domain knowledge through
diagramming.

Spatial
Arrangement Diagrams frequently relate the spatial arrangement of

objects to the meaning of the diagram. For example,
spatial arrangement can be used to represent the notion
of physical location in the real world. This
representation also encodes information about distance
and orientation that can be quickly retrieved from the
diagram.

Spatial arrangement is also used to describe properties
or attributes of entities.

Engineering
Manager

Works
Manager

Factory
Manager

Inspection
Superintendent

Plant
Services

Coordinator

Production
Manager

Figure 1: Spatial Arrangement

In Figure 1, the author ties the notion of "rank" to the
use of the spatial arrangement. For instance, the
placement of the Inspection Superintendent above the
Plant Services Coordinator indicates that he/she has
higher rank.

Spatial arrangement might also be used to convey
notions of temporal order. For example, placing one
"event" object to the right of another might indicate that
the first is to occur before the second. Football diagrams
use spatial arrangement to represent information about
situations, procedures, and strategy.

An understanding of the use of spatial arrangement
suggests a strategy for its implementation. Mackinlay
(1986) characterizes two primitive graphical languages,
HorzPos and VertPos, based on the location of an object
along the horizontal and vertical axes. We can assign an
interpretation to the diagram given in Figure 1 by
imposing a vertical axis (VertPos) on the diagram.
Using the axis we can associate a scalar value with some
attribute of every entity represented in the diagram by
simply determining its position along the vertical axis.
In Figure 1 the scalar value represents that each
manager's rank.

An important problem must be solved before we can
implement these conventions. There must be some way
of allowing the expert to indicate whether or not the
spatial arrangement convention is being used, and what
it is being used to signify. In the diagramming tool
described below, the meanings assigned to the use of
spatial arrangement is collaboratively defined by the
domain expert and programmer to match a
diagramming convention familiar to the domain expert.

Connectivity
(links)

Relational diagrams use links to indicate that two or
more entities exist in some relationship. In Figure 2,
links are used to represent constraints on generating an
acceptable employee work schedule for a retail store.
That is, links depict the allowable relationships between
employees, jobs, and time slots.

8

Sales

Security

Fred

Barney

Wilma

Betty

Figure 2: Constraint Diagram

Figure 2 uses links to indicate the constraint
relationships. The meaning of links are pre-established
in an accompanying text, through verbal explanation, or
through a shared understanding between those who use
the diagram. A problem with implementing links in a
formal language is that we need a way of indicating how
the links are to be interpreted.

Gantt charts are a second example of diagrams that use
links. Gantt charts are used in the business planning
domain to represent sequences of decisions and events.
The following Gantt chart depicts a simple marketing
plan for AI products:

AI
Hardware

Sales
Predictions

good

bad
\
J

Design
AI

Development
Machine

Integrate
AI

Products
into
PC

Market

then do
/
AI

Software
Market

Predictions

good bad

Knowledge
Based

Systems
Development

Support

Established
Software

Engineering
Support

Figure 3: Procedural Steps Diagram

The links used in Figure 3 carry names that
mnemonically suggests their meaning. Of course, this
convention relies on the individual's understanding of
the mnemonic name and we still require a way of
allowing the user to attach a formal interpretation to
them.

BOS: Toward a relational diagram language for
specifying expert knowledge

We have built a diagramming tool called BOS
(pronounced "boz') to apply the analyses from the
previous section to the design of a diagramming tool that
enables the expert to define customized diagramming
conventions and use them to build specifications of
problem domain knowledge.

BOS's
Capabilities

10

BOS allows the user to define customized diagramming
conventions by assigning interpretations to the use of
spatial arrangement and links. To suit the problem
domain described in the example below, we have
implemented the following interpretations: temporal
order, part of relationships, constraints, and procedural
steps. Each of the interpretations has a formal definition
associated with it. BOS allows the expert to draw simple
relational diagrams using the defined conventions from
which it then builds a knowledge base expressed in
frames and rules [Winston and Horn, 1984], For every
object and link placed in the diagram a frame template is
inserted in the knowledge base. The frames are filled in
with the interpretations attached to the use of spatial
arrangement and links. For example, for the diagram in
Figure 1, each time a new object is placed in the diagram
a "rank" attribute is added to the framce corresponding
to that object and the appropriate value is filled in. A
knowledge base is extended as new objects and links are
added to the diagram. The additions to the knowledge
base are not reflected in the diagram in any way, and the
expert need not necessarily be concerned with their
existence nor their relationship to the diagram. The set
of diagram conventions is the only specification
language the expert must understand.

An example: Building a simple critic for novices'
Pascal while loops

The following example illustrates BOS's current set of
features. The example problem domain is debugging
simple Pascal While loops. We want to use diagrams to
express some of the processes involved when an
instructor (an expert programmer) views and identifies
bugs in a novice's Pascal loop. The example shows that
diagrams can be used to build a knowledge base

11

consisting of a set of frames and rules that comprise a
simple specification of the instructor's debugging
strategies. The example was generated cooperatively
with an expert Pascal programmer who has no
experience with frames or rule-based knowledge
representation techniques.

The example presented here is restricted to the task of
identifying a few common bugs frequently found in
novices1 looping constructs. The example only considers
simple Read/Process looping problems such as:

Read in a list of numbers until 99999 is encountered
and report the sum of the numbers.

To accomplish this we would like a set of diagramming
conventions that allows us to encode the following
things:

1) the main entities in a simple read/process Pascal loop such as
the primer read, the variable being read, the condition test, the
variable being tested, etc.

2) the order in which the parts of the loop occur (i.e., the
"condition" part comes before the "read next" part).

3) a set of part of relationships to indicate that certain
variables or statements are associated with the main parts of
the loop (i.e., the variable "count" is part of the condition
statement).

4) a set of constraints that hold among the parts of the loop.
The diagram contains constraint links that indicate that, in
order for the loop to be correct, various parts of the loop must
agree with, or relate to, other parts in some specified way.

5) a set of procedural steps links indicating how the constraints
should be applied in debugging a particular loop.

12

Diagramming
the Parts of
a Typical Loop

We defined a customized set of diagramming
conventions as follows. The use of vertical arrangement
is associated with the notion of temporal order. That is,
whenever an object is placed above another object, that
means the first objects occurs before the second. We
defined a set of links that are associated with formal
definitions of part of relations, constraints, and
conditionals. For each new node and link added to the
diagram, BOS inserts the associated definition in the
frames in the knowledge base. The frames are shown to
the reader throughout the example as the diagram and
knowledge base become more complex.

In our session with the expert, we started by specifying a
prototypical Pascal loop. The diagram below contains
objects to represent some of the major components of the
loop. The expert may use the default "box" object or elect
to draw an icon to represent the object. The expert is also
asked to provide a name for each object. In our example,
we drew an icon for the "loop" node and used the default
for the other objects.

13

A Simple Whie L

onmer-read

A Simple
Whil<? Loop condition

process

re&d-next

| Link

For each object in the loop diagram, BOS places a frame
in the knowledge base to represent that diagram object.
We can view this frame by selecting the
EditKnowledge option from the diagram object menu.
Here we view the frame associated with the c o n d i t i o n
part of the loop:

14

A Simpfe White Loop

A Simple
While loop

Move
-jlnstall
jLooklnside
^•Instantiate

EditKnowledge

condition

DEcSt of variable frame

process

read-n<»xt

ii1. i ?n
POSITION (VALUE (7?

[HodeH

0
0

, •,

/) out
Undo
Find

Edit
EditCcm

Break

Note that the cond i t ion frame contains only one slot
at this point. This is because we have not yet specified
any other information about cond i t ion , such as
attributes it may have, or how it is related to other parts
of the loop. The cond i t ion frame is gradually extended
as more links are included indicating how it relates to
other parts, of the loop. The order slot represents the
association of the object's position in the diagram with
the notion of temporal order.

A object can be designated as a part of another object by
using the PART-OF link we defined for our problem
domain.

15

A Simple While Loop

A Simple
7/hile Loop condition

process

read-next

?on<lition-t»?st-var

process-variables

read-variable

Node>t I

We can inspect the frame that is associated with these
objects as well. Here we choose the EditKnowledge
option for the condi t i o n - t e s t - v a r object:

A Simple While Loop

prtmer-read

A iimple
While Loop

Move
Install
Looklnside

pnmerre1lnstantiate
EditKnowledge

Dtdt off variable frame

process

r<?ad next

- P O S I T I O N (V A L U E C 1 2 7 1 3 4) -)
i P A R T - O F (V A L U E (O ' J O T E C O n d 1 '. 1 On)) >)

CdHOps

C*I A

C Dm

£> -it

16

Specifying
Constraints

Note that adding the PART-OF link has inserted an
appropriate slot in the c o n d i t i o n - t e s t - v a r frame.

Constraints are drawn to indicate that some part of the
loop must exist in some relationship with other parts.
For example, constraints can be used to indicate that
some variable must have a particular value, or be equal
to another variable. Recall we defined a set of constraint
links for our problem domain. The following diagram
includes some simple constraints that the While loop
must obey in order to be correct:

A Simple While loop

PttT-OF r

i |TM'j iT'Vv *rT
1 2 3 4

usin?-read-vir

primer-read primer-read-var

A Simple
While Loop condition-Tesr-var

alt*rin?-cr»rt<1-vsr
read-next read-variable

1 2

[Node*]

The EQUAL constraint link specifies that the variable
read before the loop should be the same variable read
inside the loop body.

The uppermost MEMBER link states that the variable
that is tested in the condition should be modified
somewhere in the body of the loop, if the loop is to
terminate.

17

The lower MEMBER link specifies that the variable read
in the loop body should somehow be used in the "process"
part of the loop.

As part of our formulation of the constraint definition,
for each constraint drawn in the diagram, BOS does two
things. First, the frames corresponding to each of the
constrained entities are extended to include this new
aspect of their definition. For instance, the frame
associated with the r e a d - v a r i a b l e object now
includes a slot called EQUAL thai is assigned the value
p r i m e r - r e a d - v a r . Second, BOS makes the following
inference:

Since a constraint has been added to the diagram indicating
that some entity must obey some constraint, insert a rule in
the knowledge base that checks to see if this constraint is
obeyed.

The knowledge base now has one piece of procedural
knowledge that can be used to diagnose a buggy loop.
Given an example of a While loop, the knowledge base
now has a rule for checking to see that the loop obeys this
constraint. Diagrammatic representations of these rules
are also added to the diagram. These are the "ruler"
icons in the diagram. The expert is asked to give each
rule a name. The screen above contains three rules that
correspond to the constraints: us i n g - r e a d - v a r ,
a l t e r i n g - c o n d - v a r , a n d r e a d - v a r s - e q u a l .

Rules are a variation of a typical production rule. Rules
have three parts: IF, THEN, and ELSE. For each

constraint placed in the diagram, an IF clause of a rule is
filled in. The IF clause describes the condition that must
be met in order for the constraint to be satisfied.
EditKnowledge can be selected from any of the rules to

18

view the description that has been inserted in the
knowledge base by BOS:

A Simpfe WMe Loop

A Simple
While Loop

primer-read pr

1
imer-re**-.

1 2 3 4

condition condition-rest-var

OEdit of variable frame EcftOps

(POSITION (VALUE ' L42 . 139)))
(IF (EQUAL (fcjet # fpr imer-read

pnmer - read-var VALUE)

r e a d - v a n a o l e VALUE)))
(THEN (EVAL a l r ,enng-cond-v* r))
(ELSE (EVAL adv ise -use r)))

:: |Liflk>|

After
Before
Delete

Peoiacel X
Switch

v) out
Undo
Fine*
Swap

Pepnnt
Edit

EaitCom
Break

Exit

1 2 3

Move
Install
Looklnside
Instantiate

altenn^-cond-

Note that only the IF part of the rule has been specified.
The constraint only specifies the condition that must be
met in order for the constraint to be satisfied. It says
nothing about how or when the rule should be applied, in
what order, or what action is to be taken if the rule fires.

Specifying
Procedural
Steps

In the customized diagram language we specified for our
domain, specifying procedural steps is how the THEN and
ELSE parts of the rules are filled in. The partially
specified rules are used to formulate a procedure that
says how the rules are to be applied in debugging a
Pascal loop. This is done by using the procedural step
links provided by BOS. BOS currently implements
three: IF-YES, IF-NO, and SEQUENCE. An IF-YES link
between two rules indicates that if the first rule fires, the
second rule should be tried. An IF-NO link indicates that

19

the second rule should be tried if the first rule fails to
fire. A SEQUENCE link between two rule icons indicates
that both rules are to be tried in sequential order.

For purposes of organization, BOS allows multiple
diagrams to be created. Parts of any diagram can be
moved or copied to any other diagram. In this case we
create a separate diagram for specifying the procedural
steps. Our procedure specification looks like:

A PWT-OF 1-

pnmer-read primer-re&d-v&r

A Simple
While Loop condition Debug loop

process

PfltfT-QF

1 2 3 4

usm^-read-v&r
j

E9

1 2 3 4 1 2 3 4

try-loop r»4d-vars-equal

(US
advise-user

1 2 3 4

iltenn^-cond-var

Note that we have added an additional rule, t ry-1 oop,
that initially runs the loop to see if it is correct (BOS
allows rules to be inserted "manually" as well). We can
select EditKnowledge on the r e a d - v a r s - e q u a l rule
and see that the THEN and ELSE clauses of the rule have
been filled in to reflect the specification of the procedural
sequence:

20

A Simpfer While-Lootr

primer-read

PflftT-Of] -

primer-read-var

A iimpie
While Loop rendition Debug Loop

rrocess

read-next

JNcde? JLTnk

I f * l | « V l f ' V | " r ' 4 * 1

1 2 3 4

try-loop

OEdit of variable frame

(POSITION (VALUE (UC 1:9)))
[IF < E^UAL (f get

VALUE)
(fget

VALUE)))
(THEN (EVAL aUenrg-cono-var))
'ELSE '. £/AL aavise-user)))

This rule states:

IF the variables are the same
THEN try another rule (this isn't the problem)
ELSE advise user that the variables must be the same

EtftOps

refcre i X
0| Delete
u|P«olacelX

Switch
O

<)out

Swap

Edit
EditCom

Exit

The
Knowledge
Base

The Appendix shows the entire knowledge base that
BOS produces from the diagram. The code generated
follows the frame implementation found in Winston and
Horn (1984). In order to run the program, it remains to
encode an example loop in list notation, indicate that
t ry- loop is to be applied to it, and fill in the messages
that are to be reported to the user when bugs are found
(advise-user).

21

Discussion

Our example suggests that, for some types of problem
domain knowledge, diagrams offer a plausible
alternative for building executable specifications of
expert knowledge. There appear to be two obstacles to
processing a wider variety of relational diagrams. First,
we need to better understand a more complete set of
graphical techniques for encoding information in
diagrams in the human-computer interface. Second, a
better understanding of the types of notions that domain
experts express with diagrams would benefit from a
detailed study of the use of diagrams in
diagram-intensive domains. The first author is
presently undertaking a study of the use of diagramming
in VLSI design and football.

Diagrammatically representing procedural steps in the
manner described above becomes problematic when
procedures become larger. Some procedures might
involve hundreds or even thousands of rules. Clearly, it
would be impractical to attempt to place all rules and
links in one diagram, hence, we must develop an
alternative strategy for managing this complexity.

In the context of knowledge engineering, it appears that
diagrams may provide a medium of expression that
enables the expert to take a more participative role in
designing the knowledge base without having to
understanding all of the details of the knowledge
representation scheme being used. We are also
exploring other possible benefits of using diagrams such
as a means of improving the expert's recall for domain
concepts and relations.

Acknowledgements

22

This research was sponsored by the Office of Naval
Research, University Research Initiative, Contract No
N00014-86-K-0678. We are grateful to Stellan Ohlsson'
William Oliver, and Leila Wallace for helpful ideas'
about relational diagrams. Clayton Lewis' early ideas
about "representations" of expert knowledge inspire me
to pursue diagrams. Robert Cunningham's
programming expertise enabled some of the finer points
of BOS's interface.

23

References

Anderson, John R., Farrell, R., and R. Sauers, "Learning to program
in LISP," Cognitive Science 8, 87-129.

Bertin, Jacques, Semiology of Graphics, W. J. Berg, Transl.,
University of Wisconsin Press, Milwaukee, WI, 1983.

Fitter, M. and T. R. G. Green, "When do diagrams make good
computer languages," International Journal of Man-Machine
Studies (1979) 11,235-261.

Harel, David, "On visual formalisms," Carnegie-Mellon Technical
Report CMU-CS-87-126, 1987.

Hegarty, Mary, and Marcel Just, "Understanding machines from
text and diagrams," to appear in H. Mandl and J. Levin (Eds.)
Knowledge Acquisition from Text and Picture, Amsterdam: North
Holland.

Larkin, J, and Simon, H, "Why a diagram is sometimes worth
10,000 words," Cognitive Science 11,1987, pp. 65-99.

Mackinlay, " Jock, "Automating the design of graphical
presentations of relational information," ACM Transactions on
Graphics 5 (2), April 1986, 110-141.

Winston, P.H., and B. Horn, Lisp, Reading, MA: Addison-Wesley,
1984.

Zhang, Guo-Jun, "Learning to program in OPS5," unpublished PhD
Thesis, Carnegie-Mellon University, 1987.

APPENDIX: KNOWLEDGE BASE GENERATED BY DIAGRAM

(primer-read
(POSITION (VALUE (79 . 258)))
(PART (VALUE (QUOTE primer-read-var))))

(condition
(POSITION (VALUE (79 . 184)))
(PART (VALUE (QUOTE condition-test-var))))

(process
(POSITION (VALUE (79 . 112)))
(PART (VALUE (QUOTE process-variables))))

(read-next
(POSITION (VALUE (79 . 39)))
(PART (VALUE (QUOTE read-variable))))

(primer-read-var
(POSITION (VALUE (228 . 258)))
(PART-OF (VALUE (QUOTE primer-read)))
(EQUAL (VALUE (QUOTE read-variable))))

(condition-test-var
POSITION (VALUE (228 . 184)))
PART-OF (VALUE (QUOTE condition)))
MEMBER (VALUE (QUOTE process-variables))))

(process-variables
POSITION (VALUE (228 . 112)))
PART-OF (VALUE (QUOTE process)))
CONTAINS (VALUE (QUOTE condition-test-var)))
CONTAINS (VALUE (QUOTE read-variable))))

(read-variable
POSITION (VALUE (228 . 39)))
PART-OF (VALUE (QUOTE read-next)))
EQUAL (VALUE (QUOTE primer-read-var)))
MEMBER (VALUE (QUOTE process-variables))))

(debug-loop
(POSITION NIL)
(EVAL try-loop))

(try-loop
POSITION (VALUE (4 . 144)))
IF (EVAL loop))
THEN (PRIN1 "works just fine"))
ELSE (EVAL using-read-var)))

(using-read-var
(POSITION (VALUE (142 . 236)))
(IF (MEMBER (fget #$read-next read-variable VALUE)

(fget #$process process-variables VALUE)))
(THEN (EVAL read-vars-equal))
(ELSE (EVAL advise-user)))

(read-vars-equal
(POSITION (VALUE (142 . 139)))
(IF (EQUAL (fget #$primer-read primer-read-var VALUE)

(fget *$read-next read-variable VALUE)))
(THEN (EVAL altering-cond-var))
(ELSE (EVAL advise-user)))

(altering-cond-var
(POSITION (VALUE (144 . 56)))
(IF (MEMBER (fget #$condition condition-test-var)

(fget #$process process-variables)))
(THEN NIL)
(ELSE (EVAL advise-user)))

(advise-user
(POSITION (VALUE (313 . 136))))

