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Communicating With High-Levei Plans - Bonar and Liffick

1. Introduction

We discuss our experience with an interface that gives users the ability to directly represent and
manipulate goals at several levels of detail. The interface is built into Bridge, a tutorial environment
for novice programmers [Bonar88]. The name comes from our intended "bridge" between novice and
expert conceptions of programming. In order to understand student designs and partial programs,
Bridge provides languages that allow a student to talk about his or her high-level designs and partial
work. We call the vocabulary of these languages plans^. Plans are bundles of knowledge about the
standard subtasks in a domain, designed and organized based on a typical user's point of view.

Many intelligent interfaces monitor low-level user actions, attempting to infer higher level plans.
These inferences are typically implemented with partial matching schemes, based on a plan catalog
(see, for example, [Johnson86]). The inferences allow the system to complete user actions, correct
errors, or provide tutorial assistance. This approach to inference of user intentions is quite difficult.
We propose a different approach, designed to more effectively and accurately capture user intentions.

Our approach gives users a very high-level plan language. By "high-lever' we mean a language that is
informal, vague, contains much implicit information, and is designed to represent goals of interest to
a particular class of users. In particular, the plan language makes assumptions about the user's
background knowledge and overall intentions. This is consistent with our interest in providing
interfaces to professionals and domain experts who have no programming experience. We focus on
users who are experts in a particular task domain and are using a computer to extend or augment that
expertise. Our system must take such a user's specification and derive an implementation using the
primitives provided by a standard computer system.

Our notion of a high-level programming language - what we are calling a plan language - is quite
different than what is used in automatic programming research (see, for example, [Balzer85]). That
notion of high-level programming involves highly formal logical specifications. We, on the other
hand, are interested in the sort of heuristic, vague, and partially implicit specifications used by humans
with other humans.

hi the rest of the article we begin by developing a framework for approaching intelligent interfaces.
In particular, we discuss the dilemma of a very high-level programming language intended for use by
experts who are not programmers. The dilemma arises because interfaces for non-programmers should
be both:

• intuitive, that is, understandable based on previous experience, and

• suggest uses that go beyond the limited set of capabilities implicit in an expert's previous
experience in a domain.

These two goals seem to be contradictory.

After providing an overall framework, we describe the Bridge programming tutor and a specific
implementation of a high-level plan language as used in the Bridge programming tutor. We focus on a

'The word "plans" is used here in the sense of "a method for achieving an end; an often customary
method of doing something" [Websters75].
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representation scheme used to describe the plan language in Bridge. We conclude by discussing a new
system that provides a high-level plan language interface to a spreadsheet.

2. The Dilemma of Intelligent Interfaces

Upon first consideration, one would think to design an intelligent interface to present as intuitive a
task as possible to the user. The interface should present the computer system so as to allow the
human user to think in exactly the way he or she is used to thinking. Each feature of the system
should be presented using terms and conventions familiar from previous experience working without
the computer-based support. The advantages of this approach are obvious: the human user begins to
use the computer system with little or no training. The features of the computer system are exactly
as the user would expect - straightforwardly understandable by appealing to earlier experience.

While having appeal, the "intuitive" approach presented above has an obvious drawback. An interface
that merely matches the user's expectations is stuck with those expectations. In particular, the user
can never go beyond those expectations to use more powerful facilities than that expectation allows.
Consider, for example, implementing a word processor as an "computerized typewriter." Slavish
attention to this metaphor would give a word processing tool with little of the power we expect
from word processors. We would, for example, need to type <RETURN> at the end of every line, use
a special brush-like mouse cursor to "white out" mistakes, and need to insert a new diskette at the
end of every page. Similarly, if computer based spreadsheets merely provided a convenient grid for
laying out numbers - the role of manual spreadsheets - they would not be best selling personal
computer applications.

The dilemma, then, is between usability and functionality. Intelligent interfaces should make an
application easier to use and understand. Merely applying the intelligence to anticipating and
matching every expectation of the user leaves the system doing no more than the user already expects
it to do. The question is: how can we build interfaces that allow graceful progression from what is
already known to more sophisticated use of a system?

3. Our Approach

We approach the intelligent interface dilemma by allowing a large, knowledge rich, and highly
specialized set of automated operations called plans. Each set of plans is customized to a particular
class of users - managers, secretaries, and statisticians, for example. A total beginner uses these plans
as black-boxes, with no understanding of their internal construction. This is possible because the
plans have been designed to be simple, intuitive, and directly applicable to particular tasks of interest
to that user.

For example, a manager might be given a set of plans that allow him or her to manage projects. For
each project, the plans would provide tools for representing subtasks, personnel, applicable resources,
deadlines, and etc. The plan set provides fixed capabilities for organizing the project elements,
modeling changed deadlines, and creating reports. The details of these capabilities are based on the
standard kinds of organizations, models, and reports used by that manager or organization.

Inevitably, the appeal of standard operations wears off. Our user may now be more sophisticated
through experience with the plan set. Many users are likely to be frustrated with the lack of
flexibility inherent in the fixed set of plans. This is the position of normal experienced users of most
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computer software - stuck with the system that was delivered. Even if the system was very well
designed, it cannot be tailored to the particular evolving needs of each user.

We propose a new mode of use. Consider that each of the plans provided to the manager is
constructed of a few slightly lower level, slightly less powerful plans. The icons that represent the
initial set of operations can literally be "opened up," presenting a small network of the lower-level
icons, connected together to describe the behavior of the icon that was opened (see Figure 1). If a user
is dissatisfied with a particular form of the high-level icon, he or she can easily open up the icon and
redesign it's behavior with the lower-level icons. Essentially, the user has just created a new
operation that is now available for his or her use. In the project management tool example, the
manager might modify the way project tasks are described, or how resources are allocated to a project.

Plan X

Plan P

Plan I Plan J PlanK

Figure 1. A schematic of the interface design approach advocated in this article.

The user need not do this sort of modification. It is only done when the user is sufficiently
dissatisfied with the current plan set to be willing to do the work required to understand the next
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level of complexity. If the plan sets are carefully designed, opening up an plan should correspond to
exactly one more level of flexibility and complexity. That is, there is exactly one new thing that
must be learned in order to master the lower level operations. In practice, there will be many levels
of plans defined by lower level plans. By providing many levels, we can give users a smooth
continuum from "easy to use" and intuitive to sophisticated and flexible. In essence, the user can
become as sophisticated a computer user as he or she desires.

An approach like this nicely meets the needs of novice and casual users. Few users are willing to sit
still to learn a sophisticated system. Fewer still are willing to start with the most basic
programming elements and build up solutions to real tasks from scratch. Our approach begins with
intuitive solutions to real world tasks and allows a user to learn only as much as is required to
customize those solutions to the user's needs.

The approach outlined above is sufficiently high-level and vague to evoke little disagreement.
Important questions like "how are plan contents determined?" and "how are the various plan links,
including the 'open up' link, implemented?" are not addressed. While we have no general answer to
those questions, the rest of the article presents two specific examples to illustrate how the system
might work. One example is drawn from an intelligent tutor to teach programming in Pascal. The
second example is drawn from an intelligent spreadsheet tutor currently being implemented in our
lab.

4. The Bridge Tutor

Research into how novices learn programming reveals that understanding the semantics of standard
programming languages is not the main difficulty of novice programmers. Instead, success with
programming seems to be tied to a novice's ability to recognize general goals in the description of a
task, and to translate those goals into actual program code (see, for example, [Eisenstadt81, Mayer79,
Soloway84].) In Bridge we built a programming environment that supports a novice in working
with plans that describe the goals and subgoals typical of programming tasks. By using plans that
describe programming goals, Bridge allows for initial novice conceptions of a problem solution that
are infonnal and sketchy. The Bridge environment features an iconic plan programming language with
an editor facilities to control execution and support debugging. A complete discussion of Bridge can
be found in [Bonar88].

Bridge supports a novice in the initial informal statement of a problem solution, subsequent
refinement of that solution, and final implementation of the solution as programming language code.
This is accomplished in three phases, discussed in detail in the rest of this section. To illustrate
Bridge use, we discuss a student working on the Ending Value Averaging problem:

Write a program which repeatedly reads in integers until it reads in the integer
99999. After seeing 99999, it should print out the CORRECT AVERAGE without
counting the final 99999.

Each of the phases is summarized, followed by a discussion of how that phase fits into the framework
presented in section 3.
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4.1 Bridge Phase I: Informal Natural Language Plans

The Grst phase of Bridge involves an informal statement and refinement of the goals for the code.
Empirical evidence [Bonar85, Kahney821 suggests that novice programmers bring a vocabulary of
programming-like plans from everyday experience with procedural specifications of activities
expressed in natural language. These plans come from experience with step-by-step instructions like
"check all the student scores and give me an average" or "see that hallway, if any doors are open close
them." These informal plans, however, are often extremely difficult for novices to reconcile with
the much more formal plans used in standard programming languages. Note, for example, that both
example phrases involve an iteration without any specific mention of a repeated action.

hi phase I we provide a plan language based on simple natural language phrases typically used when
people write step by step instructions for other people. For example, a student can construct the
phrase "... and so on ... until 99999 is seen." Figure 2 shows an example with several such phrases.
Such phrases represent the highest level at which a student can express intentions to the system.
Because of the ambiguity in such phrasings, Bridge must understand the student's intentions based on
several possible naive models of programming. For example, a common naive model of looping
allows a student to construct a loop with a description of the first iteration followed by the phrase
"and so on." Based on the particular phrasings constructed by the student, Bridge infers a particular
naive model.

English step-tiy-step Solution

Read in . . . each integer

Print.. .each integer

. . . And So On . . .

Until 99999 is seen

Figure 2. Phrases from a phase I Bridge solution.

Since Bridge's task is to teach programming, detection of such a naive model results in a tutorial
suggestion from Bridge. The architecture underlying Bridge could as easily respond to the user's naive
model directly without attempting to teach the user the "correct" specification. In this more
advisory mode, the system would insist on a more fully developed model only when the user's
specification was incomplete or lacking key details.

In terms of the multi-level plan approach discussed in section 3 and illustrated figure 1, the first
phase of Bridge is an implementation of the highest level of plans. Each plan stands for the kinds of
operations and mental models normally expressed in English language step-by-step specifications
written by non-programmers. These operations are vague and include significant implicit knowledge
about the objects being operated on. Only a limited set of links are possible between the plans:
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ordering and nesting. Data communication links between the plans are implicit, reflecting the
structure of natural language speciGcations.

4.2 Bridge Phase I I : Iconic Programming Plans

In the second phase of Bridge a programming student reflnes the informal description of phase 1 into a
series of semi-formal iconic programming plans. Figure 4 shows the Bridge screen as the student is
working in phase II. In this phase the plans are schema-like structures which describe how goals are
transformed into actual programming code (see [Soloway84] for a detailed discussion of these plans).

Hints
Done with program
Instructions
Run Program
Start Phase 2 Over

Sage Advice from Gworky (tm)

What vaJuedo you
want to print?

English step-by-step Solution

Beginning of Loop

Read in . . . each integer

Coun t . . . each integer

Add, /.integer to running total
Continue steps. . . Unfl 99999 is

Compute.. . the average

Print . . . the average

Visual Solution

JT3L
New Value Controlled

Loop Plan

Plan to Get
New value

Input
Plan

Loop Tes>t
(•Jew v a lue

C&iirunt
99999

>

E -it When True Do Inside of Loop
r-7

Compute
Plan

I / j l u e I

Output
Plan
Print

r—» l fl i<rr

JTL

Counter
Plan

Increment

Runntag Total
Plan

•3IU&

_T7_

Figure 3. The Bridge system while a student is constructing a phase II solution, based on a
complete phase I solution.
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Plans have various elements that interrelate with the elements of other plans. So, for example, a
counter plan has initialize, increment, and use elements, each with a particular relationship to the loop
containing the counter. This interaction of elements often results in the plan implementation in
standard programming constructs being dispersed across the program. A running total, for example,
is implemented in Pascal with four statements, dispersed throughout a program: a variable
declaration, an initialization above a loop, an update inside that loop, and a use below the loop.
[Spohrer85] have shown that plan to code translation errors account for many student errors.

In the second phase of Bridge students focus on relating various plan elements, but without
compromising the fundamental plan structure and introducing the syntactic complexity required by
standard programming code. Figure 4 shows a typical phase II solution to the Ending Value
Averaging problem. Each plan is represented by a single icon. There are two kinds of links between
the plan elements. Control flow links are expressed by attaching puzzle tabs to puzzle slots. Data
flow links are expressed by moving the small tiles with "ears" from the data source to the data
destination. This is the way, for example, that the value of the Counter plan is associated with the
average computation in the Compute plan.
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New Value Controlled
Loop Plan

Plan to Get
New Value

Loop Test
New Value

99999
Constant

99999

Exit When True Do Inside of Loop

Compute
Plan
value

40

Value

1

V/.-avalue
40

Output
Plan
Print
value

40

Counter
Plan

Increment
Constant

\ y ./alue

Sunning Total
Plan

Update
Value

99999

Value
40

Figure 4. A typical phase II solution in Bridge.
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Where phase I of Bridge represents the highest level plans, closest to the understanding of a non-
programmer, phase II represents a lower level of plan. The transition from phase I to phase II, then,
represents an implementation of "opening up" top-level (phase I) plans. In the current Bridge system
the student must complete a phase I plan specification and then must "open up" that specification to
implement a phase II elaboration of the original specification. As the student works in phase II, links
back to phase I are always available. In a non-tutorial situation, the phase II plan language would
allow for refinement of the informal plans specified in phase I, but without requiring the complexity
of a specification of die actions actually performed by the machine. The links in phase II express
potential connections between elements of the plans, as described above.

4.3 Bridge Phase HI: Pascal Code

The third phase requires the Bridge student to translate the plan-based description of phase two into
actual Pascal code. Students are provided with a Pascal structure editor (much like that of
[Garlan84]), and an interpreter with a stepping mode. In this phase the uSer drops from the world of
plans into a standard programming language. In a non-tutorial version of the interface, this phase
would be omitted.

4.4 Diagnosis with Plans

Any intelligent interface needs to infer user intentions from user behavior. In particular, the system
must infer all mental activity from the actual actions performed by the user, hi tutoring
programming, for example, a standard intelligent tutor must reconstruct the student's entire mental
activity between seeing a program specification and actually entering code in the machine. Such a
reconstruction must account for both the correct and incorrect knowledge used by the student during
design and implementation.

A tutor's reconstruction of a student's program is based on at least two kinds of knowledge. First,
there must be a way for students to break the high-level goals of the problem statement into lower
level goals. Second, there must be knowledge about how to translate low level goals into program
code. Within the tutor we can represent these two kinds of knowledge as operators that transform
one kind of structure into another. In addition to correct versions of these operators, the tutor must
contain buggy versions representing common student misconceptions.

Using the knowledge base of correct and buggy operators a tutor can, in principle, use search
techniques to reconstruct plausible accounts for errorful and ambiguous student specifications. This
approach has been powerfully demonstrated in the programming tutor PROUST [Johnson86]. While
the approach works, it is very costly in terms of both search time and knowledge engineering. The
accomplishments of PROUST must be weighed against the large cost in knowledge engineering time -
several hundred hours per problem tutored [Johnson86bl. This knowledge engineering is particularly
cost ineffective because the student sees so little of the results. That is, almost all of the knowledge
engineering that has gone into capturing operators that describe how to apply programming knowledge
is never seen by the student. Inside of PROUST, these operators are optimized for the the search task.
They are not available in a form that could be presented to students, or used to assist students as they
work towards a solution.

Bridge uses a different approach to reconstructing the student's intentions. Instead of attempting to
reconstruct a student's entire reasoning from problem statement to final code in one step, Bridge has
the student prepare intermediate solutions in plan languages that correspond to particular levels in the
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process of moving from problem specification to goals to code. This alleviates many of the
difficulties of the PROUST approach. The search is more manageable because it has been broken up
into a series of much smaller searches. In each of the smaller searches there are fewer relevant
operators to try and less reasoning "distance" to span between the user's surface behavior and the
solution the tutor is trying to reconstruct.

In addition, the Bridge approach simplifies the knowledge engineering. The fewer operators in each
search correspond to a smaller overall catalog of operators to be specified. In addition, the smaller
search spaces make it easier to tell when the space of possible correct and errorful versions has been
covered

5. Plan Language Design

In this section we detail a formal specification for Bridge phase II plans. This specification is not
implemented in the current version of Bridge. Instead, it is derived from the experience with Bridge.
It is our first attempt to create a plan language that formally captures vague, heuristic, and informal
plans. The plan language supplies a systematic semantics that describe how plans execute, how new
plans are designed, and how plans are translated into standard programming constructs.

5.1 Goals for the Plan Language

As detailed in the previous section, Bridge allows a student programmer to work by describing
successively more complex plan combinations. There are four main objectives for the plan languages
that express these combinations:

(1) The plan language should allow users to "connect" to their preconceptions about the
domain. Unless users can recognize how their own understanding of a task fits into the
planning language, they will find it impossible to formulate usable specifications.

(2) The plan language should support users in learning a "vocabulary'* of plans. Eventually,
the user would begin to think in terms of the plans themselves, not the informal plans.
Not only is there a catalog of plans, but students are able to create their own plans. This
learning will be transparent and effortless, primarily because the plans present a more
effective set of distinctions for dealing with a problem.

(3) When appropriate, the plan language should support novice users in learning how to
implement plans with lower level plans or actions closer to the primitives of the system
being interlaced. Note that we take as given that an intelligent interface will never be as
flexible as a user specifying actions directly.

(4) For those who are learning the primitives of the system being interlaced, the plan language
should support the use of plan-like composition. Plans can be seen as the essence of good
design: building blocks that are easily read and understood. We want the users of the
system to gain an appreciation for using these plans.
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5.2 Plan Representation

We begin with the iconic plan language shown in Figure 4. The figure shows a series of plan icons
connected together to produce the average of a series of numbers read from the user, stopping with the
value 99999. Each icon represents a single plan. Icons are constructed to suggest puzzle pieces,
connected together in a finished program. Control flow is suggested by connected pieces, moving in a
top to bottom order. Data flow is suggested by moving a "value" icon from the plan supplying a
value to the plan using that value. For example, in Figure 4 a value icon is moved from the Input
plan to the "update" slot of the Running Total plan. More details on the visual plan language appear
in [Bonar88b].

Our formalism is based on object-oriented programming. For each type of plan there is a class that
specifies the local data and operations of that plan. Instances of a plan class can then be created, each
with their own copy of the local data. The user organizes these instances into a particular execution
order. Figure 5 shows a piece of the formalism describing the iconic plans in Figure 4.

Running Total Plan

ParentClass
Loop Action Plan

Slots
Total: value
Addend:
Initial: initially 0

Initialization
Total <r- In i t ia l

Execution
Total <- Total + Addend

Constant Running Total Plan

ParentClass
Running Total Plan

Slots
Increment: class Integer, rename Addend

Counter Plan

ParentClass
Constant Running Total Plan

Slots
Count: rename Total
Increment: constant 1

Figure 5. A formal description of Running Total and Counter plans.



Communicating With High-Level Plans - Bonar and Liffick 12

Each plan is represented with up to four parts:

PARENTCLASS - this section provides a link indicating a hierarchical relationship among plans
for purposes of taxonomy and inheritance. If this section is missing, there is only
the default parent class to the plan.

SLOTS - each plan can have zero or more slots, which specify data or plan links. One data slot
can be distinguished as the "value" slot for this plan. A plan's value can be used
by other plans. So, for example, the value slot of the running total plan is used in
the computation of an average. The slots provide a method for referring to other
plans. Slots are used, for example, to refer to the plans executed in the body of a
loop.

INITIALIZATION - this section contains executable code that is performed once when control
first flows through the plan. As a special condition, when control flows through
a loop plan, it fires its initialization section and the initialization sections of all
plans contained in its body.

EXECUTION - this section contains executable code that is performed whenever control flows
through the plan.

The code given in the INITIALIZATION and EXECUTION sections is expressed in a simple pseudo-
code. This code can easily be translated into a standard programming language given the plan
representations and the pseudo-code. The user can have access to this code, allowing them to examine
the way a plan is implemented in a standard programming language.

5.3 Inheritance

Each plan must specify a parent class explicitly. This provides a linkage for the inheritance
mechanism. Slots are inherited from all predecessors, but may be renamed or redefined. Note in the
example given in Figure 5 that the COUNTER plan has inherited (and renamed) the TOTAL slot from
the RUNNING TOTAL plan, although the intervening plan (CONSTANT RUNNING TOTAL) does
not explicitly reference it. In addition, the COUNTER plan inherits TOTAL'S designation as the
distinguished value of the RUNNING TOTAL plan. Note that the CONSTANT RUNNING TOTAL
plan has also redefined the inherited ADDEND slot (ADDEND.INCREMENT) to specify a constant.
The COUNTER plan further constrains this plan to default to the value 1.

The INITIALIZATION and EXECUTION sections can also be inherited. In this case, both are
inherited by successors of the RUNNING TOTAL plan. The renaming and redefining mechanisms
specify that the COUNTER plan will inherit

COUNT <r- COUNT + 1

without explicitly defining it this way. In addition, it allows us in conversation with the user to
describe the "1" as an ''increment" rather than as an "addend."
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A More Complex Example

Figure 6 shows the representation of the ENDING VALUE AVERAGING LOOP (EVAL) plan and
its components. This plan is used to calculate the average of a series of values entered by the user.

Ending Value Averaging Loop Plan

Slots
Loop use Sentinel Loop Plan
Body use Running Total P\an(import Total),

use Counter P\an(import Count)
Average use Average(^rport Total,Count, import Average)
Output use Output P\an(export Average)

V

Execution
Execute = $ > Loop
Execute => Average
Execute => Output

Sentinel Loop Plan

ParentClass
New Value Controlled Loop Plan

Slots
New Value use Input P\an(import)
Sentinel class Integer
Test use Test P\zn(export NewValue, Sentinel, NotEquals, import)

New Value Controlled Loop Plan

Slots
NewValue
Test
Body

Execution
loop
Execute => NewValue
Execute => Test
if not Test then exit
Execute => Body
endloop

Figure 6. A formal description of the loop in the Ending Value Averaging problem.

In this example, the LOOP, BODY, AVERAGE, and OUTPUT slots contain links to other plans,
using a procedure header style mechanism for referring to other plans. Note that it is possible to pass
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values to linked plans. For instance, in the AVERAGE slot, the AVERAGE plan is passed the values
of TOTAL and COUNT with which the AVERAGE plan will compute a value for the slot. The
OUTPUT slot sends this average to the OUTPUT plan.

The EXECUTION section of the EVAL plan shows how slots can be executed by sending them an
EXECUTE message. The meaning of this code is that the slots identified are to be executed
sequentially.

Note that the LOOP slot contains a reference to the SENTINEL LOOP plan. This SENTINEL LOOP
plan is a child class of the NEW VALUE CONTROLLED LOOP plan. The SENTINEL LOOP plan
does not have any executable sections, but does define three new slots that are used during execution.

Finally, note that the code for performing the actual looping action appears only in the NEW
VALUE CONTROLLED LOOP plan. The EVAL plan and the SENTINEL LOOP plan leave this
detail to another level so that it can been hidden from the user to some extent. In this case, this
executable code is inherited by the SENTINEL LOOP plan, where the values given in its slots (which
are references to other plans) are used to "fill in the blanks'* of the code. In this way, a child class
plan can redefine slots that have been originally defined in its parent plan.

The BODY of the loop in the executable code given in the NEW VALUE CONTROLLED LOOP plan
actually comes from the ENDING VALUE AVERAGING LOOP plan. In this way, the actual
contents of the loop body can be customized to fit the requirements of particular plans. In this case,
it is the EVAL plan that should define that the body of the loop contains a RUNNING TOTAL and a
COUNTER. The SENTINEL LOOP plan is not responsible for this detail, since its only concern
should be how to construct a loop that repeats until some sentinel value is reached.

5.5 Using the Plans

Initially we intend that a novice would use plans at the highest possible level, coastructing programs
by selecting from a menu of plan icons, and connecting the icons together to produce a problem
solution. However, it is intended that students examine the plans themselves, either through
curiosity or need. Eventually, the student will wish to modify existing plans, creating customized
versions for his/her own needs.

This is all consistent with the goals expressed above. In addition, such manipulation of the
environment is supported by the representation of plans already outlined. The user can navigate the
hierarchy of plans in two distinctly different ways. Figure 7 shows a graphical representation of the
ENDING VALUE AVERAGING LOOP plan and its components, as derived fioin the formal plan
descriptioas. The student is able to navigate such a structure and, as his/her ability grows, modify the
contents of the plans identified.

A second way that the plans might be navigated, changing to a different poinl of view, KS through «he
class hierarchy. Figure 8 shows how this might also be represented graphically. By navigating this
representation, the user moves from more specific levels (such as the COUNTER plan) to more
general ones (up to, for instance, the RUNNING TOTAL plan). He/she can also examine how slots
have been renamed or redefined (as in the case of the ADDEND.INCREMENT slot).

The hierarchy of Figure 7 can be considered as orthogonal to the one shown in Figure 8. It represents
additional detail that the user can explore for a deeper understanding of programming plans.
Traversing these levels also lets users explore the plan taxonomy. In this way the user gains a more
sophisticated view of the programming environment and available programming tools.
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6. A Spreadsheet Plan Language

We are generalizing the Bridge Plan system to address issues in the development of a spreadsheet
tutor. With the spreadsheet system we are attempting to build a plan based intelligent interface
whose focus is not on teaching, but on intelligent support for a expert who is not experienced with
spreadsheets.

Traditionally, a spreadsheet is an oversized piece of paper made up of rows and columns intersecting to
form boxes which contain words or numbers. Functionally, the spreadsheet serves as a structure for
performing financial calculations, testing assumptions, and analyzing the results. Electronic
spreadsheets also consist of intersecting rows and columns, but stored and displayed on a computer.
Certain cells are defined with a formula that references other cells. The cell displays the value
computed by the formula. Any change in a cell referenced in the formula causes the formula to be
recomputed and the new value displayed. Computer based spreadsheets allow for effortless changes.
When one number on the spreadsheet is changed, either to make a correction or perform some analytic
forecasting function, many other values might depend upon it and therefore also need to be changed.
What would be a very tedious job by hand can be done with speed, accuracy, and ease on a computer.

The typical user of a spreadsheet is an expert in some domain, typically a business or engineering
specialty, and a novice computer user. This strikes us as a very common class of users and a crucial
application for intelligent interfaces. The "dilemma of intelligent interfaces" is particularly relevant
in this situation:

• To a certain extent, an intelligent spreadsheet wouldn't look like a spreadsheet at all, since
the expert has only particular situations and tasks to be accomplished with the spreadsheet.
Instead, the system would present a set of basic calculations and capabilities corresponding
to these situations and tasks. These could be selected and pieced together.

• On the other hand, we do not want to limit our experts ind would like to give them ways
to understand and use the full functionality inherent in u spreadsheet.

Spreadsheets are an interesting domain for reasons other than their typical user. A recent study gave
six experienced spreadsheet designers four spreadsheet tasks of moderate complexity (2-6 hours).
Forty-three percent of the resulting spreadsheets bad serious errors in the results pa^dicted by the
spreadsheet. This is a troubling result, suggesting that standard spreadsheet languages are too low-
level and error prone for reliable use with tasks of even moderate complexity. The plan-based
approach to intelligent interfaces discussed in this article can address this problem. For most
spreadsheet tasks being done by typical spreadsheet users, it woutd not be necessary to build law level
formula and links. Instead, a series of spreadsheet plans would be assembled. As the plans are
assembled, they would compile themselves iolo standard spreadsheet formulas and load themselves
into an actual spreadsheet. Where someone cared to fidiHe with details, or was forced by an unusual
problem to specify a particular detail, they could interact with the spreadsheet directly, but only in a
very local and particular context.

For such a scheme to work, it is necessary that we actually find spreadsheet plans of sufficient
generality to apply to the task. To do this, we examined several "how to" book on using spreadsheets
in business (for example, [Anderson87, Clark86J). We studied many spreadsheets used for business
tasks like income statements, checkbook accounting, sales summary, purchase summary, operating
expeases summary, cash flow summary. The study yielded surprisingly few plans in use. The most
common plans are summarized in Figure 9. That figure shows a set of plans, grouped dt the highest
level as Input Table plans, Output Table plans, or Output Report plans.
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Spreadsheet Plans
Input Table

Labels

Time Sequence
Participant List
Subproject List
Main - Fixed Cells
Horizontal - Fixed Cells
Vertical - Fixed Cells

Records
Horizontal - Fixed Cells
Vertical — Fixed Cells

Parameters
Labels
Values - Variable Cells

Output Table
Input Table augmented with horizontal and vertical extensions —

Variable Cells
Output Report

Computed Values — Variable Cells
Records

Horizontal - Fixed Cells
Vertical - Fixed Cells

Labels
Time Sequence
Participant List
Subproject List
Main - Fixed Cells
Horizontal - Fixed Cells
Vertical - Fixed Cells

Figure 9. Outline of spreadsheet plans and plan components in use in common business
spreadsheets.

The chart in figure 9 shows the plans and plan components found in common business world
spreadsheet plans. For example, almost all spreadsheets had an Input Table plan, with axis based on a
time sequence, sequence of names, or sequence of subprojects.

Currently, the spreadsheet interface has a crude interface to these plans and allows the user to design a
spreadsheet by selecting components off a menu.

7. Related Work

The most notable work in the development of a plan formalism is the plan calculus used in the
Programmer's Apprentice [Rich8l, Shrobe79, Waters78]. The main emphasis of this formalism is the
"analysis, synthesis, and verification of programs" [Rich81|. While these are important issues, they
are not the concern of our own system. There is little to suggest that the plan calculus can be used
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effectively by novice programmers to construct their own plans, to modify available plans, or to
understand programming plans themselves.

8. Conclusion

We have sketched a formalism that allows novice programmers to program with plaas. The
formalism neatly specifies the behavior of a high level visual plan language. In addition, the
formalism allows students to connect plans to their informal experience, implement plaas in a
conventional programming language, and define new plans based on previously defined plans. The
formalism provides a scheme for realizing a high-level planning language for use as an intelligent
interface.
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