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The basic goal of a theorist in specifying a cognitve architecture is to specify the

mind's principles of operation and organization much like you would specify those of a

computer. Any cognitive phenomena should be derivative from these principles As this

conference gives witness, there are many cognitive architectures This paper will try to

make some claims about the role of architectures generally in psychological theory, but it

will do this by taking as examples three of the architectures which figure prominently at

Carnegie Mellon University. There is the Soar architecture of Laird, Newell, and

Rosenbloom (in press) my own ACT* architecture (Anderson. 1983), and the PDP

architecture of McClelland and Rumelhart (Rumelhart & McClelland, 1986; McClelland &

Rumelhart, 1986).

Now that there are numerous candidates for cognitive architectures, one is naturally

led to ask which might be the correct one or the most correct one. This is a particularly

difficult question to answer because these architectures are often quite removed from the

empirical phenomena which they are supposed to account for In actual practice one sees

proponents of a particular architecture arguing for that architecture by reference to what I

call signature phenomena. These are empirical phenomena which are particularly clear

manifestations of the purported underlying mechanisms. The claim is made that the

architecture provides particularly natural accounts for these phenomena and that these

phenomena are hard to account for in other architectures.

In this paper I will argue that the purported signature phenomena tell us very little

about what is inside the human head. Rather they tell us a lot about the world in which

the human lives. The majority of this paper will be devoted to making this point with

respect to examples from the SOAR, ACT*, and PDP architectures. At the end of the

paper I will turn to the issue of the consequences of this point for the role of cognitive

architectures.



14 July 1988 2

As a theorist who has been associated with the development of cognitive architectures

for 15 years I should say a little about how I came to be advocating this position I have

been strongly influenced by David Marr's (1982) metatheoretica! arguments in his book on

vision which are nicely summarized in the following quote:

An algorithm is likely to be understood more readily by understanding the nature
of the problem being solved than by examing the mechanism (and the hardware) in
which it is solved.

Marr made this point with respect to phenomena such as stereopsis where he argued

that one will come to an understanding of the phenomena by focusing on the problem of

how two two-dimensional views of the world contained enough information to enable one to

extract a three-dimensional interpretation of the world and not by focusing on the

mechanisms of stereopsis. He thought his viewpoint was appropriate to higher-level cognition

although he did not develop it for that application. As recent as a few years ago I could

not see how his viewpoint applied to higher-level cognition (Anderson, 1987). However, in

the last couple of years I have come to see how it would apply and have realized its

advantages. Before specifying its application let us briefly note three advantages of focusing

on the information-processing problem and not the information-processing mechanisms:

(1) As Marr emphasized, the understanding the nature of the problem offers strong

guidance in the proposal of possible mechanisms. If anything this is more important in the

case of higher-level cognition where we face a bewildering array of potential mechanisms

and an astronomical space of their possible combinations which we must search in trying to

identify the correct architecture.

(2) Again as Marr emphasized, this allows us a deeper level of understanding of

these mechanisms. We can understand why they compute in the way they do rather than

regarding them as random configurations of computational pieces.
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(3) Cognitive psychology faces fundamental indeterminacies such as that between

parallel and serial processing, the status of a separate short term memory, or the format of

internal representation. Focusing on the information-processing problem allows us a level of

abstraction that is above the level where we need to resolve these indeterminacies.

A Rational Analysis

The basic point of Marr's was that if there is an optimal way to use the information

at hand the system will use it. I have stated this as the following principle:

Principle of Rationality. The cognitive system optimizes the adaptation of the behavior

of the organism.

One can regard this principle as being handed to us from outside of psychology-as

a consequence of basic evolutionary principles. However, I do not want to endorse the

principle on such an evolutionary basis because there are many cases where evolution does

not optimize. Of course, there are many cases where it does (for a recent discussion see

Dupre, 1987). On one hand there are the moths of Manchester and on the other hand, as

Simon notes in his companion article, there are the fauna of Australia. It is an interesting

question just where and how we would expect evolution to produce optimization, but this is

an issue that I neither have space nor competence to get into. Rather, I view the principle

above as an empirical hypothesis to be judged by how well theories that embody the

principle of rationality do in predicting cognitive phenomena.

On the empirical front it might seem that the principle of rationality is headed for

sure disaster in accounting for human cognition. It is the current wisdom in psychology that

man is anything but rational. However. I think many of the purported irrationalities of man

disappear when we take a broader view of the human situation. Among the relevent

considerations are the following three:
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1 We have to bear in mind the cost of computing the behavior Many think that

the problem with the traditional rational man model of economics is that it ignores the cost

of computation. Thus we need something like Simons (1972) bounded rationality where one

includes computation cost in the function to be optimized. For instance, in principle a

rational person should be able to play a perfect game of chess told the rules of chess but

this ignores the prohibitive cost of a complete search of the game tree.

2. The adaptation of the behavior may be defined with respect to an environment

different than the one we are functioning in. For instance, one might wonder why human

learning mechanisms do so poorly at picking up knowledge in a school environment. I think

the answer is that it is not a school environment that they are adapted to.

3. One must recognize that traditional tests of human rationality typically involve

normative models that make no reference to the adaptiveness of the behavior. For instance,

normative models typically advocating maximizing wealth while the evidence is that there is a

negative correlation between wealth and number of surviving offspring (Vining, 1986). The

implication is that one must look critically at the functions which we are trying to optimize in

a rational analysis.

With these caveats it is my claim that one can use a rational approach as a

framework for deriving behavioral predictions. Developing a theory in a rational framework

involves the following 6 steps:

1. Precisely specify what the goals of the cognitive system are.

2. Develop a formal model of the environment that the system is adapted to (almost

certainly less structured than the experimental situation).

3. Make the minimal assumptions about computational costs.
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4 Derive the optima! behavioral function given (i)-(3)

5. Examine the empirical literatures to see if the predictions of the behavioral

function are confirmed

6. If predictions are off. iterate.

The theory in a rational approach resides in the assumptions in (1) - (3) from which

the predictions flow. I refer to these assumptions as the framing of the information

processing problem. Note this is a mechanism-free casting of a psychological theory. It

can be largely cast in terms of what is outside of the human head rather than inside. As

such it enjoys another advantage which is that its assumptions are potentially capable of

independent verification.

What I would like to do in the majority of the paper is to apply this rational analysis

to one signature phenomenon for each of the three architectures mentioned in the

introduction--SOAR, ACT*, and PDP.

SOAR-Power Law Learning

The signature phenomenon I would like to consider for the SOAR theory is power-law

learning which is referenced in many of the SOAR publications. Figure 1 illustrates data

from the Siebel (1963) task which Rosenbloom, Laird, & Newell (in press) have simulated

within SOAR. In this task subjects were presented with a panel of ten lights, some of

which were lit. They had to press the corresponding fingers on their hands. Subjects saw

all configurations of lights except the one in which no lights were lit. Figure 1 plots their

performance time against the amount of practice which they had. Both scales are

logarithmic. As can be seen the relationship is linear implying that the performance

measure is a power function of practice. As Newell and Rosenbloom (1981) discuss, such
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power functions are ubiquitous The effects can be quite extensive The data plotted by

Seibel covers 40.000 trials.

Insert Figure 1 about here

In the Soar model the power law falls out of the chunking learning mechanism plus

some critical auxiliary assumptions. Chunking refers to the collapsing of multiple production

firings into a single production firing that does the work of the set. In the Seibel task

subjects might chunk productions that will press subsets of lights simultaneously rather than

separately. It is assumed that each chunk produces a performance enhancement

proportional to the number of productions eliminated. Chunks are formed at a constant

rate-either on every opportunity or with equal probability on every opportunity. The final

critical assumption is that as chunks span larger and larger units the number of potential

chunks grows exponentially. This is fairly transparent in the Seibel task where there are 2n

productions needed to encode all chunks of n lights. As a consequence of the last

assumption, learning will progress even more slowly because it takes more experience to

encounter all of the larger chunks.

I have always had a number of haunting doubts about the SOAR explanation of the

Seibel task. Some of these were expressed in Anderson (1982 and 1983). One is that the

exponential growth in chunks does not seem true of simple memory experiments (such as

paired-associate learning) which produce beautiful power law learning functions. The second

is that the analysis has no place for forgetting effects which must be taking place. So we

know by the time of the 40.000 trial of the Seibel task the benefit of the first trial should

be fading. Third, the model has no provision for massing effects. We know that as many

trials are massed together they loose their effectiveness. Note that the massing effect and

forgetting effects are at odds with each other. One is optimized by massing the trials
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together and the other by spacing them apart.

I will offer a rational analysis of power law learning which will also explain the

forgetting arrd massing functions This will be part of a larger rational analysis of human

memory which is the topic of the next section

A Rational Analysis of Human Memory

The claim that human memory is rationally designed might strike one at least as

implausible as the general claim for the rationality of human cognition. Human memory is

always disparaged in comparison to computer memory-it is thought of as slow both in

storage and retrieval and terribly unreliable. However, such analyses of human memory fail

both to understand the task faced by human memory and the goals of memory. I think

human memory should be compared with information-retrieval systems such as the ones that

exist in computer science. According to Salton and McGill (1983) a generic information

retrieval system consists of four things:

(1) There is a data base of files such as book entries in a library system. In. the

human case these files are the various memories of things past.

(2) The files are indexed by terms. In a library system the indexing terms might be

keywords in the book's abstract. In the human case the terms are presumably the concepts

and elements united in the memory. Thus, if the memory is seeing Willie Stargell hit a

home run the indexing terms might be Willie Stargell, home run. Three Rivers Stadium, etc.

(3) An information retrieval system is posed queries consisting of terms. In a library

system these are suggested keywords by the user. In the case of the human situation it is

whatever cues are presented by the environment such as when someone says to me "Think

of a home run at Three Rivers Stadium".
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(4) Finally there are a set of target files desired by which we can judge the success

of the information retrieval.

. One thing that is very clear in the literature on information retrieval systems is that

they cannot know the right files to retrieve given a query This is because the information

in a query does not completely determine what file is wanted. The best information retrieval

systems can do is assign probabilities to various files given the query. Let us denote the

probability that a particular file is a target by P[Aj.

In deciding what to do informational retrieval systems have to balance two costs.

One is what Salton an McGill call the precision cost and which I will denote Cp. This is

the cost associated with retrieving a file which is not a target. There must be a

corresponding cost in the human system. This is the one place where we will see a

computational cost appearing in our rational analysis of memory.

The other cost Salton and McGill call the recall cost and we will denote it CR. It is

the cost associated with failing to retrieve a target. Presumably in most cases it is much

larger than the precision cost for a single file or memory.

Given this framing of the information processing problem we can now proceed to

specify the optimal information processing behavior. This is to consider memories (or files)

in order of descending P[A] and stop when the expected cost associated with failing to

consider the next item is greater than the cost associated with considering it or when

P[A\CR < [\-P[A])Cp (1)

We now have a complete theory of human memory except for one major issue-how

should the system go about estimating P[A]. I propose that the system should use the

item's past history of usage and the elements in the current context to come up with a
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Bayesian estimate of that probability. A particularly transparent way of stating this is with

the Bayesian odds ration formula which we can state

P\AHA&Q) P\A HA) PU A)

Pi A H A & Q ) P \ A H A ) t*Q P \ i A)

where P(A)HA&Q) is the posterior probability that the memory is needed given its past history

and the cues in the current context. P(A!HA&Q) is 1-P(AjHA&Q). P(A|HA) is the posterior

probability given just the history. P(A|HA)= 1-P(A|HA), P(ilA) is the conditional probability that i

would be in the current context if A is needed, and P(i|A) is the conditional probability if A

is not needed.

This way of formulating the relationship nicely breaks up the need probability into the

product of a history factor P(A!HA)/P(A|HA) plus a context factor the product involving the

P(i|A)/P(i/A). Note that in this context factor we are assuming the individual cues are

independent of one another in order to obtain a product. I neither want to argue that this

is really true nor that the human system actually acts as if it is. I am only using this as

an approximation to get an indication of what the rational predictions are.

It should be pointed out that P[A] is the probability that A is needed, not the

probability that A will be recalled if needed which is presumably much higher. The basic

assumption in the discussion that follows is that the need probability will be monotonically

related to observed dependent variables such as probability of recall and latency of recall.

Elsewhere (Anderson, in press) I have developed detailed, and I think plausible, proposals

about how need probability is related to these dependent variables but the points I will

make here do not really depend on this level of detail.
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The History Factor

In investigating the implications of this rational analysis for the power-law learning

function we need to focus on the history factor in the above equation. In particular we

need to specify P(A HA» To determine this we need to know how the past history of usage

of a memory trace predicts whether it will be currently used. To determine this in a truly

valid objective way we would have to follow people around, determine when they use

particular facts, and induce what the empirical relationship is. It is nearly impossible to

imagine collecting such objective statistics in the human case but such statististics are

available for other information retrieval systems. For instance, there is data about how past

borrowings from a library predict future borrowings (Burrell, 1980; Burrell & Cane, 1982).

There is data about how past accesses to a file predict future accesses (Stritter, 1977).

The data for these different domains is quite similar in terms of the nature of the functional

relationship between past use and current use. I propose that these relationships are true

of all information retrieval systems including the human one.

The basic point of my argument might be lost in the mathematics that follows so let

me state it up front: I will show that an information retrieval system optimized in the sense

defined earlier and faced with the statistics of library borrowings or file usage would produce

the practice functions, retention functions, and spacing functions associated with human

memory. Thus, if we accept the premise that human memory faces the same statistics as

these objectively observable information-retrieval systems, we can predict its behavior with no

further assumptions. The power of this analysis is that the statistics of information

presentations are objectively observable and do not have to be postulated. This is in sharp

contrast to a mechanistic theory where the critical structures are unobservable.

Burrell (1985) developed a model for library borrowings which provides a good

analytical starting point. There are three basic assumptions in Burrell's model. The first is
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that the items in a system vary in their desirability Burrell assumes that the distribution of

desirability is a gamma distribution with parameter b and index v. He is able to basically

show such a distribution of borrowings in the case of a library system The second

assumption that Burrell makes is that there is an aging process such that items will decay

in their borrowing rate with the passage of time Again he can empirically validate that

such an aging process does occur. This means that if we take an item from the gamma

distribution with initial desirability A its desirability after time t will be Xr(t) where r(t)

describes the rate of decay. Burrell uses a simple exponential decay in rate of the form.

The third assumption of Burrell is that borrowings are a Poisson process and that times until

next borrowing are exponentially distributed with rate Xr(t).

With these assumptions we can derive what I call the recency-frequency function

RF(n,t) which is the probability that an item introduced t time units ago and used n times

over that period will be needed in the current time unit. It has the form:

rtt) 131
M\t)+ b

where n is the number of borrowings in the past and M(t) is defined

• 1Mit)= \ r\s)ds (4)

This gives us a linear relationship between number of uses, n, and need probability.

This is a special case of a power function where the exponent is 1. Newell & Rosenbloom

(1981) note that such hyperbolic functions give reasonable fits to human practice functions.

Under the transformation from need probability to latency proposed in Anderson (in press)

the power function relationship remains although there are a family of functions with different

exponents.
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To account for the spacing effect I have found it necessary to augment Burrell's

model with two further assumptions both of which can be verified in the case of library

systems but which were unimportant for Burrell's concerns. One is that there is variation m

rate of decay In the library system this is the distinction between the classics and the

flash-in-the-pans. The second assumption is that items undergo periodic revivals in which

they return to their original rate of usage. At Carnegie-Mellon, for instance, this happens

when a course is offered which the book is relevent to. In my modelling I have simply

assumed that there was an exponential distribution in decay rates and that revivals were

also a Poisson process. Unlike Burrell's original assumptions I have no evidence that these

forms are accurate for library systems or any other information retrieval system. Therefore,

these additional assumptions must be viewed as approximate.

These additional assumptions eliminate the simple closed form solutions of Equation 3

but do not upset the prediction of power-function practice. Figures 2 illustrate the results

derived from the more complex model. In addition to the practice function, it is also the

case that the theory predicts typical retention functions. Despite the fact the decay process,

r(t), is exponential, the effect of the revival component is to slow down the forgetting

function to approximate the power-function relationship that is typically obtained between

delay and retention. These figures illustrate the predictions for the dependent variables of

probability (Figure 2) and (Figure 3) but similar functions are obtained if we look at the

underlying need probability.

Insert Figures 2 & 3 about here

With these assumptions in hand I tried to model the classic data of Glenberg (1976)

on the spacing effect. He varied the interval between two presentations of an item and

looked at the effect on the recall of the item. He showed that the effect of the spacing
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interval interacted with the time between the second study and test His data and the

predictions of the theory are shown in Figure 4 In both cases at short test lags there is a

negative relationship between spacing and recall while at long test lags there is the more

common positive relationship (Glenberg s data is a little strangely behaved at 0 and 1

study lags apparently because of inattentiveness)

Insert Figure 4 about here

Thus, we have shown that power law learning, forgetting, and the spacing (or

massing) effect can all be predicted from a single rational perspective which sees human

memory as adapting to the statistics of information use. Thus, it is what is outside the

human head not what is inside that is controlling the memory performance. I should

emphasize that this does not deny that chunking may be one of the mechanisms the mind

uses to achieve this adaption. However, the argument is that the real explanation is in the

outside world and not in the internal mechanisms.

ACT'-The Fan Effect

Now I would like to turn to the second architecture, ACT*, and consider a signature

phenomenon which has played a key role in its development. This is the fan effect

(Anderson, 1983). The fan effect has been most typically studied in a sentence recognition

experiment where the subject is asked to study a set of sentences such as the following:

1. The doctor is in the bank (1-1)
2. The fireman is in the park (1-2)
3. The lawyer is in the church (2-1)
4. The lawyer is in the park (2-2)

In these materials we are manipulating the number of facts studied about the person

and the location. Each sentence above is followed by two numbers giving its classification

according to number of facts associated with subject and location.
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Figure 5 shows the network representation that we assume in the ACT' theory that

the subject sets up to encode this material There are proposition nodes which are

connected by labelled associations to each of the concepts. Note that as we increase the

number of facts associated with a concept we increase the number or fan of arrows leading

from the concept.

Insert Figure 5 about here

A typical experiment is focused on the subject's ability to recognize these sentences

after they have been learned. A subject might have to recognize these sentence when

mixed in with distractors like "The doctor is in the church". According to ACT*, upon being

presented with a sentence such as "The lawyer is in the park" the subject activates the

concepts in the sentence such as lawyer, in. and park. Activation spreads from these

concepts along various network paths. The time to recognize a sentence is a function of

the amount of activation reaching the proposition node. The critical additional assumption in

the ACT* theory is that the amount of activation that can spread out of a node is fixed and

that the more paths emanating out of a concept the less activation can go to any one

proposition and so the slower recognition will be. Table 1 shows some data confirming this

prediction. There we have data classified according to the fan associated with subject and

with location.

Insert Table 1 about here

A Rational Analysis of the Fan Effect

We can extend our rational analysis of memory to accomodate the fan effect. Here

we will be interested in analyzing the context factor rather than the history factor since we

are manipulating properties of the memory cues that we presented to subjects. That is we
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want to focus on the quantities P(i A)/P(i A). We can rewrite these as

P\i\A) P\A\i)PU)IP\A)

P\i A) P\A i)P\i)/P\A\

The P(i) drop out. Since P(A) must be near one (there are millions of traces and no

one can be very probable) it can also be ignored. To an approximation we can also ignore

P(AII). This is a good approximation to the extent that the probability of needing a trace

remains low even in the presence of a predictive cue. If we allow this approximation we

get the following which is very easy to analyze:

PU\A) P\A\i)

P\i\A) P{A)

(5)

Our claims do not depend on making this approximation. It is just that they are a lot

easier to see with the approximation.

In our experiments P(A) is basically constant for all items and so the critical factor

turns out to be the probability that the trace is relevent given a particular cue. This is

precisely what is manipulated by fan in a typical experiment. The more facts associated with

a particular concept the less likely any one is given the concept. Basically if the fan is n

the probability is 1/n. Anderson (1976) did an experiment that decorrelated fan and

probability by manipulating the probability of testing various facts associated with a particular

concept. That experiment showed conclusively that the critical factor is probability and not

fan.

Thus, the fan effect is a consequence of memory using the correlation between cues

and a memory's relevence to predict when the memory is needed. It may be that

spreading activation is one of the mechanisms that the mind uses to compute the

correlation. However, for current purposes the critical fact is that once again the



14 July 1988 16

explanation of the phenomena lies in what is outside of the human head and not what is

inside.

PDP -- Categorization

PDP models involve representing knowledge in a distributed form where specific

experiences do not have specific encodings. On the other hand PDP models do learning

locally such that changes in strengths of connection between specific elements must underlie

these distributed encodings. This leads PDP models to naturally produce generalization

phenomena such that they extract central tendencies out of the experience of specific

instances. In introducing PDP models, McClelland, Rumelhart, & Hinton (1986) give a lot of

play to categorization phenomena which is the identification of common categories in a set

of tendencies. It receives more page space in their article than any other phenomena.

There is a substantial literature in cognitive psychology on categorization behavior.

McClelland et al. do not actually simulate any specific experiment in this literature but rather

offer a simulation of the extraction of the characteristics of the members of two gangs (the

jets and the sharks) as a prototype of the experiments in the literature.

To develop a rational analysis of categorization behavior the first thing we need to

ask is what are the goals of the cognitive system in forming categories. In much of the

experimental literature on categorization one gets the feeling that the driving force behind

categorization is some sort of social conformity-that we need to learn to use the same

labels to describe objects as do other people. However, this clearly cannot be all of the

picture, particularly because people can learn to identify categories in the absence of any

labels. I think the real function of categorization is to maximize the systems ability to

predict properties of objects including their labels. Clearly, a system that can make

accurate predictions will be in a position to maximize its goals.



14 July 1988 17

The reason people form categories to maximize prediction is because of the nature

of objects in the external world. Formally, the following is the characterization that I will

assume in my rational derivations. I will assume that the world seen so far has consisted

of n objects which are partitioned into s disjoint sets or categories. Each object can be

classified according to some r dimensions (for simplicity I will only consider cardinal

dimensions) where each dimension i has some rrv values. The members of a category

belong in that category by virtue of possessing theoretical probabilities p.. that they will

display value j on dimension i. These probabilities provide the intensional definition of a

category in contrast to its extensional definition which can be gotten simply by listing the

category members.

These assumptions are intended as descriptions of the external world not just of the

perception of the world in the human head. One can ask why the objects in the world

should partition themselves in disjoint partitions defined by conjunctions of features. I

cannot say I know the total answer but there are some obvious things to point at. For

instance there is the genetic phenomenon of species which enforces a disjoint (no

crossbreeding) partitioning of conjunctively defined categories (the common genetic code

within a species). Other types of objects like physical elements and tools tend to produce

similar disjoint partitionings of conjunctively defined categories. One can also question the

probabilistic definition of category membership since this is in contradiction to the tradition in

the artificial intelligence work on categories. However, I think it is indisputable that category

members do display their features with only certain probabilities. Most labradors are black

and have four legs but neither feature is displayed universally.

An Ideal Algorithm for Categorization

Given the formalization above we can go to characterizing what the ideal algorithm

would be for categorization ignoring computational costs. Our basic situation is that the
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system has observed n objects and their features and is presented with a n+1 st object

with at least one feature missing and must predict the probability that it will display value j

on dimension i The following equation is the obvious one for that prediction

Predu = ^ T P\X F) Piii X) ,6)
x

where the summation is over all partitions X of the n +1 objects into categories. P(X F) is

the probability of that partition given the observed features of the n + 1 objects, and P(ij X) is

the probability that the n-Mst object will display value j on dimension i if X is the

partitioning.

The problem with this ideal solution is the number of partitions grows exponentially

with n. I have not been able to find the closed form expression but the number of

partitions is approximately (n+ 2)!/(3'2n). Thus, for instance, there are the following 15

partitions of the 4 objects abed: (abed) (a,bed) (b,acd) (cabd) (d.abc) (ab,cd) (acbd)

(ad.be) (a.b.cd) (ab,c,d) (a.c.bd) (ac.b.d) (a,d,bc) (ad.b.c) (a,bed).

It is entirely unreasonable to suppose that the human system could correspond with

the prescriptions of this algorithm if that meant computing the value exactly. The human

system may have some way of approximating the ideal algorithm. I have no proof that

computing the quantity in Equation 6 is np-complete. For all I know there is an equivalent

calculation which is computationally tractible.

An Iterative Algorithm for Categorization

Despite the lingering possibility that the ideal algorithm may have attractable form,

research in machine learning has failed to find such an algorithm and the new trend is for

iterative algorithms (e.g.. Lebowitz, 1987; Fisher, 1987). I have worked with the following

iterative algorithm:

1. Initialize the partitioning to be the empty set.
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2 Given a partitioning of the first m objects calculate for each category K the

probability Pk that the m + 1st object comes from category K. (Let Pn be the probability that

the object comes from a new category )

3. Create a partitioning of the first m + ist objects with the object assigned to the

category with the maximum probability.

4. To predict value j on dimension i for the n + 1st object

Pred}J =
K

To apply this algorithm we need to derive rational formulas for PK and P(ij|K). The

latter is involved in the former so I will simply present a rational analysis of PK. Again we

can derive a Bayesian analysis of this quantity:

P[K)P\F7n+{K)

(8)PK = P\K\Fm^ ) =

where P(K|Fm + 1) is the probability that the m + ist

object belongs to category K
given that it has feature
structure F.m + 1'

where P(K) is the prior probability that
the object comes from category K

is the probability of feature

structure F(T) + 1 given the object

comes from category K

In deriving P(K) we are interested in the prior probability that two objects will be in

the same category in advance of information about their features. A reasonable constraint

to place on any formula for P(K) is that the probability that two objects find themselves in
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the same category be independent of the the total number of objects to be categorized.

Let this be the coupling probability which we will call c It can be shown that there is only

one formula satisfying this constraint and this is

PIK) =
(l-c)+ cm

where c is a coupling probability
nK is the number of objects in category K

m is the total number of objects

In addition, we need the following formula for P(0) the probability that the m + 1st

object comes from an entirely new category

1-c

PiO) =
U-c)+ cm

(10)

The remaining quantity to specify is the conditional probability P(Fm + 1|K) that the

m + 1st object will display its feature structure given that it comes from category K. In

developing an analysis of this quantity we will assume as an approximation that the

probability of displaying a value on one dimension is independent of the probability on

another dimension. If so we can have the following mathematical development:

P\Fm+{\K) = Y[ P\ij\K) (11)

where P(ij|K) is the probability of displaying value j on dimension i. This turns on

our assumptions about the joint density function f.(x r x2 xm) which is the probability

density that P j1 = x r p j2 = x2 pm = xm.

Recall that p.. is the theoretical probability that an item in a category will display

value j on dimension i. If we assume a uniform density.
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r.,+ 1

PUfK) =

where nK is the number of objects in category K

c( is the number of objects in category K with

the same value as the object to be classified

m. are the number of dimensions on dimension i

IlLM

It turns out the iterative algorithm so defined does a very credible job of

categorization. It does a good job of classifying the 630 soybeans diseases of Michalski

and Chilausky (1980) which have been a standard test case in artificial intelligence. Table

2 illustrates a simpler example structure which it has been applied to. Here we have 20

animals classified according to 10 binary dimensions. The values were made up by me and

in retrospect they have some errors. Nonetheless, depending on the values set for c it

merges all 20 into one category, breaks the 20 into two sets of the 10 mammals and 10

birds, further subdivides whales, humans, and seals as a subcategory of animals (by

accident and mistake I gave these three mammals the same binary feature description), or

divides the objects into 20 separate categories.

Insert Table 2 about here

Psychological Accuracy

Of more interest than how this does as an artificial intelligence algorithm is the

question of how well it does as a model of human categorization behavior. I have applied

it to the now classic data of Medin and Schaffer (1978) where it did better than their

original model using only a single parameter, c, rather than their many. I have also applied

it to the long series of experiments involving the Posner and Keele (1968) stimuli using an

encoding of these materials developed by Hintzman. It accounts for all the phenomena that
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Hintzman lists for these materials I have also successfully predicted the results of a

complicated experiment of Elio and Anderson (1981) which no model before Hintzman's was

able to account for.

Rather than discussing the specific experiments in detail it is worthwhile listing some

of the major phenomena that are known about human categorization and explaining how the

model accounts for each:

1. Clearly the research indicates that, to a degree, people extract the central

tendency of a set of instances in that their behavior is a function of the distance from that

central tendency. This simply reflects a sensitivity to the statistical correlation between

features and category identity which amounts to using conditional probabilities in a Bayesian

analysis.

2. In addition to distance from a central tendency the literature has found an effect

of distance from specific examples (e.g., Medin & Schaffer. 1978). This is produced by the

tendency of the model to break diverse categories into subcategories where the features

cluster together. The reason for this is that predictive power is gained by such

decomposition.

3. It has shown that when a category has multiple central tendencies subjects can

pick this up (Neumann, 1977). As with point (2) this is produced by the tendency to break

a large diverse category into smaller categories that increase predictability.

4. Research such as that of Medin & Schaffer has shown that categorization is a

non-linear function of similarity-that the increase in performance as we go from two to three

matching features is greater than the increase in going from one to two. This can be

traced back to equation (11) where probabilities (measuring similarity) multiply rather than



14 July 1988 23

add

5. There is an effect of category size as was discussed with respect to the Posner

& Keele task. This is simply a sensitivity to base rates.

6. Rosch. Mervis. Gray. Johnson, & Boyes-Braem (1976) have documented the many

circumstances in which there appear to basic level categories The existance of such

categories in our framework is simply a consequence of the fact that these categories

maximize the predictability of the world-which is basically Rosch's original point.

7. It is not necessary for feedback on category membership to be given in order for

categories to emerge (Fried & Holyoak, 1984). Categories will emerge any time they

increase the predictability of the universe. However, by applying category labels we increase

the amount of structure that can be predicted and so enhance the value of category

membership. So, labels should enhance categorization but are not essential.

8. The more things that can be predicted from category membership the more likely

a category is to be formed even though this means one has to learn more about a

category (Billman. 1983).

Thus it seems that categorization phenomena can be again explained from a rational

perspective assuming that the controlling factor is the structure of the world and not the

structure in the human head. Note again this analysis does not deny that PDF mechanisms

may be the way that the mind implements this rational analysis. However, it denies that

PDF models provide an adequate explanation of the phenomena.
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Conclusions

In summary we have looked at three cognitive architectures. For each we have have

taken a signature phenomenon and developed a reasonable model of the world in which

that phenomenon occurs and the goals of humans operating in that world. We have made

a few assumptions about computational costs which are not at all mechanism specific. We

have derived the signature phenomena as solutions to the optimization problems we defined.

In each case this rational analysis led to an account that was as accurate or more accurate

than the original mechanistic account.

Now we come to the hard question of what the implications are of these

demonstrations. I am not really sure what the implications are but I will hazard two

guesses. However before I do I want to forestall misunderstanding by disavowing two

possible interpretations of the point of this paper.

One possible reaction to the relative good showing of the rational analysis might be

renewed effort to develop a better cognitive architecture. There is a tendency to view this

rational analysis as a first-order approximation which any self-respecting architecture ought to

do better than. These results might be thus be taken as damning the three architectures

we considered rather than praising rational analysis. However, I think simply looking for a

better architecture really misses the point. First it does not deal with the fundamental

identifiability problems that haunt our search for such mental mechanisms. More important it

looses the essential insight that it is no accident that architectures which correspond to

human behavior compute in the way they do. They do so because this is in fact what is

optimal given the world in which they reside.

A second reaction might be to take this as an indictment of mechanistic accounts of

mind and a call for a retreat to behaviorism. After all, the argument might go, we have
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shown that human behavior can be predicted by reference to the environment without

reference to what is in the head. However, to retreat back to behaviorism would be to

leave us with the same computationally inadequate models of mind that we abandoned 30

years ago The simple fact is that the optimal behavior is often going to be computationally

complex and mechanistic accounts give us a way of expressing that complexity and simple

stimulus-response associations do not.

While I am confident that the above two are the wrong reactions I am less certain

about the positive proposals I have to make, but here they are: My first guess is that

cognitive architectures should be viewed as notations for expressing the behavioral functions

that emerge as the solutions to the optimization problems in a rational analysis. The real

theory lies in the assumptions made in the statement of the optimization problem-i.e., the

assumptions about the goals, the world, and the computational limitations. These

assumptions do not have the same identifiability problems that the mechanistic models do

and lead to a much deeper explanation of the phenomena at hand. However, something

computationally powerful like a Turing-equivalent architecture is necessary if we are going to

be able to express the solution to these optimization problems.

Thus the theory is in the framing of the information processing problem and the

architectures provide notation for expressing the solutions to the optimization problems. I

see a one-to-many mapping between framings and architectures. That is, one can take a

single framing and for every architecture find some configuration of its mechanisms that

enable the optimal behavior to be computed. Choice among architectures is then not to be

determined by veracity of empirical predictions. Rather it is to be determined by how easy

it is to work out the optimal behavior in that architecture. Ease of use is the classic

criterion for selecting among notations. Empirical veracity is reserved for theories.
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My second guess (which is a variation on the first guess) is that architectures in

some form may play a role in actually framing the optimization problem. Recall earlier that

step (3) in developing a rational analysis was to make some assumptions about

computational cost. In the case of memory, the assumption was that there was a retrieval

cost. In the case of categorization the assumption was that a certain function was not

computable and another was These were relatively bland assumptions but they do reflect

the architecture. It is possible in other applications of a rational analysis, the computational

assumptions might be richer. On this view, much of the detail we associate with an

architecture might be just theoretical notation, but there may be some core, contentful

assumptions. This view would encourage us to sift the notation from the content in our

architectures, using relevence to rational analysis as a basis for making that discrimination.

Basically, architecture would define the bounds on optimization in a rational analysis or, in

Simon's hillclimbing metaphor, define the contours of the surface on which the local

optimization takes place.



Table 1
Person Location Experimenl (A hippie is in the park)—Mean Verification Times and Error Rates for Trues and Falses

Trues
Number of propositions

per person

Falses
Number of propositions

per person •

I

Number of
proposilions
per location

Mean
1.144
(.059)

1.202
(.048)

1.267
(.054)

Mean

1.169
(.046)

1.196
(.060)

1.248
(.054)

1.204
(.053)

I

Mean

1.197
(019)

1.250
(014)

1.262
(.042)

1.221
(042)

1.356
(037)

1.471
(.079)

1.264
(.030)

1.291
(.044)

1.465
(.051)

1.236
(.025)

1.349
(.053)

1.340
(042)

Mear

1.22
(.031

l.29(

(.0321

1.399
(057;

1.308
(.040)
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WHALES 0 0 0 0 1 0 0

SEALS 0 0 0 0 1 0

DOGS 0 0 0 1 0

CATS 0 0 0 0 1 0

HORSES 0 0 0 1 0

BEARS 0 0 0 1 0

BATS 0 0 0 1 0 0 0

HUMANS 0 0 0 0 1 0 0

MICE 0 0 0 0 0

PLATYPUS 0 0 0

CHICKENS 0 0 0 0 0 0 0

PENGUINS 0

ROBINS 0 0 1 0 0 0

OSTRICHES 0 0 0 1 0

CROWS 0 0 1 0 0 0

PARROTS 0 0 0 0 0

SPARROWS 0 0 0 1 0 0

EAGLES 0 0 0 1 1 0

HAWKS 0 0 0 1 0 0

SEAGULLS
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Figure Captions

Figure 1 Data from Siebel (1963) plotting time to respond against amount of practice

Figure 2 Relationship between probability of recall and retention interval (a) and
practice (b)

Figure 3 Relationship between latency of recall and retention interval (a) and practice
(b). These are log-log plots to show the characteristic power functions.

Figure 4 (a) Glenberg s data showing the interaction between retention interval and
study log: (b) Predictions of the theory for Glenberg's experiment.

Figure 5 ACT* propositional network representation of the fan material.
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