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What kind of processing mechanism is the mind? Is it a sequential information processing machine,

like the von Neumann computer? Or is it a massively parallel processor? The fact that human thought

takes place in a device consisting of some tens of billions of neurons seems to support the parallel view.

Yet until recently, there has been little attention to this fact among those who study the higher mental

processes, and little convergence in the study of mind and brain.

Feldman (1981) has pointed out that the human brain places constraints on the methods that might be

used to implement human thought. Neurons are relatively sluggish, noisy processing devices, compared

to today's computers. Yet people can perceive a visual scene at a glance and recognize an object in

about half a second. Feldman estimates this leaves time for perhaps a hundred processing steps; but

sequential algorithms for perception generally require hundreds of thousands. The facts imply we exploit

the brain's obvious capacity for parallel processing.

In view of this, researchers have begun to work toward theories of mental processes that rely on these

parallel capabilities. These models are variously known as parallel distributed processing models, neural

models, or, perhaps most generally, connectionist models. Work is proceeding in several directions.

Cognitive scientists seeking to provide a characterization of the nature of human thought have turned to

building computational models in which a number of interconnected processors work in concert in

performing some information processing task. Meanwhile, neuroscientists seeking to understand the

functional properties of neural circuits are also building computational models; exploring the collective

properties of ensembles of neuron-like processing units. These enterprises often have somewhat

different goals; yet each informs and enriches the other, and each is pursued with the hope that someday

these two directions of research will converge upon a shared understanding of brain and mind.

In this paper I take primarily a cognitive perspective. First I review the connectionist framework,

stressing how basic aspects of cognition -- representation, processing, knowledge, and learning - are

captured in the connectionist framework. Part II applies the framework to fundamental questions about

the development of human thought, and illustrates some of the implications the framework has for basic

questions about cognition and development.



The Connectionist Framework
The term "connectionist models" was introduced by Feldman (1981; Feldman and Ballard, 1982). In

these papers, the term was used to refer to a class of models that compute by way of connections among

simple processing units. Another phrase often used to describe some connectionist models is Parallel

Distributed Processing or PDP models (Rumelhart, McClelland and the PDP Research Group, 1986;

McClelland, Rumelhart and the PDP Research Group, 1986). PDP models are instances of connectionist

models that stress the notion that processing activity results from the processing interactions occurring

among rather large numbers of processing units.

In this article I intend the phrase "the connectionist framework" to encompass all kinds of connectionist

models. The framework may be thought of as providing a set of general assumptions about basic

aspects of information processing, and a set of soft constraints on the range of specific assumptions that

might be made. In what follows I consider each of several aspects of an information processing system. I

describe the general assumptions connectionist models make about these aspects and I characterize

some of the specific assumptions that might be made. The presentation draws heavily on Rumelhart,

Hinton and McClelland (1986), which can be consulted for further details.

Primitives and Their Organization

Like all cognitive models, connectionist models must propose some building blocks and some

organization of these building blocks, In connectionist models, the primitives are units and connections.

Units are simple processing devices which take on activation values based on a weighted sum of their

inputs from the environment and from other units. Connections provide the medium whereby the units

interact with each other; they are weighted, and the weights may be positive or negative, so that a

particular input will tend to excite or inhibit the unit that receives it, depending on the sign of the weight

(we shall return to these matters when we consider the dynamics of processing below).

Any particular connectionist model will make assumptions about the number of units, their pattern of

connectivity to other units, and their interactions with the environment. These assumptions define the

architecture of a connectionist model. The set of units and their connections is typically called a network.

It should be noted that a very wide variety of architectures is possible. Two are shown in Figures 1 and

2. One of these, in Figure 1, (from the distributed model of memory examined by McClelland and



Figure 1 : A fully connected auto-associator network, with connections from each unit to every other
unit. Each unit receives input from outside the network, and sends output outside the
network. All connections may be either positive or negative in this very general formulation.
(From J. L. McClelland and D. E. Rumelhart, 1985, "Distributed Memory and the
Representation of General and Specific Information," Journal of Experimental Psychology:
General, 114, p. 162. Copyright 1985 by the American Psychological Association.
Reprinted by Permission).

Rumelhart, 1985) shows a set of completely interconnected units, each receiving input from the

environment, and each projecting back to the environment. In some sense, the network in this figure is

the most general possible connectionist architecture, in that all others involve restrictions of this general

case. For example, some units may receive no input from the environment; some may send no output

outside the net; and some of the interconnections among units in the network may be deleted. There

may, furthermore, be restrictions on the values of some of the connections. In the general case, each

may be positive or negative, but the architecture may prescribe, for example, that a certain group of units

have mutually inhibitory connections of fixed strength.

Figure 2 gives an example of a more restricted architecture, from the interactive activation model of

visual word recognition (McClelland and Rumelhart, 1981). In this model, units stand for hypotheses

about displays of letter strings at each of three levels of description: a feature level, a letter level, and a

word level. There are excitatory connections (in both directions) between mutually consistent units on

adjacent levels, and inhibitory connections between mutually inconsistent units within the same level.

Thus the unit for T in the first letter position excites and is excited by the units for features of the letter T,
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Figure 2: A sketch of the network used in the interactive activation model of visual word recognition
(McClelland and Rumelhart, 1981). Units within the same rectangle stand for incompatible
alternative hypotheses about an input pattern, and are mutually inhibitory. Bi-directional
excitatory connections between levels are indicated for one word and its constituents.
(From "Putting Knowledge in its Place: A Scheme for Programming Parallel Processing
Structures on the Fly" by J. L. McClelland, 1985, Cognitive Science, 9, p. 115. Copyright
1985 by Ablex Publishing. Reprinted by permission.)

as well as the units for words that begin with T. This unit also inhibits, and is inhibited by, units for other

letters in the same letter position.

Active Representation

Representations in connectionist models are patterns of activation over the units in the network. In

some ways, these kinds of patterns are similar to representations in other frameworks; after all,

representations in a computer are ultimately patterns of O's and 1 's. There are differences, however. For

one thing it is quite natural for connectionist representations to be graded, in the sense that each unit's

activation need not be one of two binary values. In some models, activations are restricted to binary or

some other number of discrete values, but more typically each unit may take on a continuous activation

value between some maximum and minimum. A more important difference is this. Connectionist

representations are truly active, in the sense that they give rise to further processing activity directly,

without any need for a central processor or production-matching-and-application mechanism that

examines them and takes action on the basis of the results of this examination.



Models differ in terms of the extent to which individual processing units can be identified with particular

conceptual objects, such as letters, words, concepts, etc. The models illustrated in Figures 1 and 2

represent endpoints on a continuum. In the distributed model of memory, each conceptual object is

thought of as a pattern of activation over a number of simple processing units. In the interactive

activation model of word perception, on the other hand, each unit stands for a primitive conceptual object,

such as a letter, a word, or a distinct visual feature. A large number of models lie between these two

extremes (See Hinton, McClelland, and Rumelhart, 1986 and Feldman, 1988 for general discussions of

the issue of distributed representation).

Processing

Processing in connectionist models occurs through the evolution of patterns of activation over time.

This process is governed by assumptions about the exact way in which the activations of units are

updated, as a function of their inputs. Updating can be synchronous (all units updated simultaneously) or

asynchronous (units updated in random order). Updating generally occurs as follows. First, a net Input Is

computed for each unit to be updated. The net input is the sum of the activations of all of the units that

project to it, with each contributing activation weighted by the weight on the connection from the

contributing unit to the receiving unit.1 The net input may also include a bias term associated with the

unit as well as a term for input arising from outside the network. Thus for unit /, its net input is given by:

net; = V wa- + biasi + input ̂
j

Her j runs over all the units with connections projecting to unit /. The net input can then be used to set

the new activation of the unit according to some monotonic but non-linear function like the one shown in

Figure 3. Alternatively, the net input can be used to set the activation of the unit probabilistically to one of

two discrete values (usually 1 or 0). Another possibility is that the net input may act as a force, tending to

drive the activation of the unit up or down a small amount in each time step.

It is typical to use some form of non-linear activation function, so that the activation of a unit is not

simply set equal to the net input or some weighted average of the net input and the previous activation of

the unit. Non-linearities are typically necessary for two reasons. 1) Linear networks are subject to

explosive growth of activation due to positive feedback loops unless the weights are severely constrained

1ln a sHghtfy more general formulation, the net input may be the sum of products of the activations of groups of contributing units.
In this formulation there is a weight associated with each product, rather than each individual contributing activation. These product
terms have no special computational significance, since the effects of multiplicative interactions among inputs can be accomplished
by extra layers of units; see Williams (1986).
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Figure 3: The logistic function, a smooth non-linear function that is frequently used in relating
activations of units to their net inputs. This function is often used to set the activation of a
unit to a value between 0 and 1, or to set the activation of the unit to 1 or 0 probabilistically,
with the probability determined by the value of the function.

(see Shrager, Hogg, and Huberman, 1987). 2) Many computations require a layer of non-linear units

between input and output. Without non-linearities, multiple layers of units add no additional

computational power over that offered by a single layer (See Rumelhart, Hinton, and McClelland, 1986 for

further explanation).

Knowledge

Crucial to the very idea of cognition is the notion that information processing is guided by knowledge.

We recognize the word THE as a definite article because of knowledge we have about the relation

between letter strings and linguistic forms. We infer that a spoon may have been used if we hear The

man stirred the coffee" because of knowledge we have about the kinds of instruments that are used for

stirring. In many models, these kinds of knowledge would be stored in tables. For example, information

about THE would be stored in a table called a lexicon, listing correspondences of letter strings and the

linguistic objects they represent.

In connectionist models, the knowledge is stored in the connections among the processing units. This

assumption works together with the assumptions connectionist models make about representations. An

active representation on a set of units, together with the knowledge stored in connections, will give rise to



new patterns of activation on the same or on other units.

Typically in connectionist models, connection strengths are real-valued. In models whose connections

are set by assumption, it is typical to assume homogeneity of connection strengths as much as possible,

to avoid excessive degrees of freedom. In models that learn, however, connection strengths are typically

allowed to take on whatever values the learning process gives them; parsimony arises from the use of a

homogeneous principle of learning.

Learning

If knowledge is in the connection weights, learning must occur through the adjustment of these

weights. This weight adjustment process is assumed to occur as a by-product of processing activity.

Some knowledge can in fact be built into connectionist models, in the form of initial connection strengths,

before there has been any learning, but it is common to explore the limits of what can be acquired

through connection strength adjustment with minimal pre-wiring. The initial architecture of the network

serves to impose constraints on the learning process; these can in many cases greatly facilitate learning

and generalization, if these constraints are appropriate to the problem the network is given to learn.

A wide variety of learning rules" for tuning connections has been proposed. A recent review is

provided by Hinton (1987). Generally, these rules state that the adjustment that is made to each

connection should be based on the product of a "pre-synaptic" term, associated with the unit sending

input through the connection, and a "post-synaptic" term, associated with the unit that is receiving input

through the connection. For example, the Hebb rule, as used by Anderson (1977), makes the change in

the strength of a connection proportional to the product of the activation of the sending unit and the

receiving unit.3 Learning through connection strength adjustment is very different from learning

processes in most other types of models. It is governed by simple mathematical expressions, and results

in knowledge that is completely implicit, in that it is embedded inextricably in the machinery of processing,

and is completely inaccessible to introspection or report. However, it should be noted, that while the

connection changes themselves are not accessible, the patterns of activation they make it possible to

construct can be accessible to other parts of the processing system.

Hebb Rule is about the simplest connectionist learning rule, and it is limited in what it can do, so it has recently been
somewhat less popular than other learning rules (but see Linsker, 1986a, b, and c). Three learning rules frequently used in current
connectionist models are the competitive learning rule, the deita rule or feast-mean-squared procedure, and the generalized delta
rule or back propagation procedure. See Hinton, 1987, for details.
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The Environment

Though it has been implicit in what I have said already, there is another aspect of connectionist models

that deserves comment, namely their environment The environment consists of an ensemble of possible

patterns that might be presented to the network. In most cases, these patterns are thought of as

separate events, each one presented when the network is in a resting state, then left on until processing

is complete. However, input patterns can have a richer temporal structure, or course; each event may

consist of a sequence of events, or of a graded progression of input activations.

For networks with fixed connections, the environment simply defines the domain of inputs on which the

network might be tested. For networks in which the connections are adjusted as a result of processing

experience, however, the environment plays a crucial role in determining exactly what is learned. Thus

models that aim to capture aspects of cognitive development through connectionist learning include

among their assumptions a specification of the details of the experience that gives rise to the resulting

developmental sequence. In many cases, these assumptions play a major role in determining the

success or failure of the modeling effort.

The Spirit of the Thing

The connectionist framework is cast, not as a list of specific detailed assumptions, but as a set of

general principles and some guidelines that provide weak constraints on the range of variants that fall

within the scope of these principles. Indeed, as Rumelhart, Hinton and McClelland (1986) noted, it is

possible to build a von Neumann computer out of connectionist primitives, if they are organized in

accordance with the von Neumann architecture. It thus becomes important to focus on the spirit of the

connectionist framework. Generally, connectionist models of cognitive processes have been constructed

expressly to exploit the capability for parallelism inherent in the approach, to make use of the graded

capabilities of patterns of activation, and to capture the inaemental nature of human learning in many

tasks through the adjustment of connection strengths based on signals arising in the course of

processing.

The Mlcrostructure of Cognition

Finally, it it worth pointing out that the connectionist framework is not incompatible with other levels of

description in cognitive science. Thus, there is nothing inconsistent with connectionist models in the claim



that a cognitive system may traverse a sequence of states in a temporally extended cognitive task such

as solving an arithmetic problem. According to the connectionist approach one would tend to view each

such step in the process of solving the problem as a new state of the processing network. Indeed,

Rumelhart, Smolensky, McClelland, and Hinton (1986) describe a network that performs a mental tic-tac-

toe simulation, settling into a sequence of states representing the results of the successive mentally-

simulated moves made by each player.

There are important differences between conventional and connectionist models of sequential

behavior. In connectionist models, the states need not be so discrete as they generally are in other

models (Rumelhart and Norman, 1982; Jordan, 1986; Smolensky, 1986). Furthermore, the powerful

constraint-satisfaction characteristics inherent in the connectionist framework are not typically exploited

by conventional models of sequential processing. The idea that each step in a sequential process

involves a massively parallel constraint satisfaction process seems like a promising starting place for a

new way of thinking about the macro-structure of cognition.

The point that connectionist models characterize the microstructure of cognition applies not only with

respect to time, but also with respect to the structure of the processing system and with respect to the

description of the computational operations that the system is performing. Structurally, a processing

system may consist of many parts, and for some purposes it may be adequate to describe its structure in

terms of these parts and the flow of information between them. Computationally, too, it may often be

useful and illuminating to describe what function a part of such a system computes without referring

specifically to the role in this computation that is played by the specific units and connections. The claim

is, though, that it will be necessary to delve more deeply than this to provide a full description of the

mechanisms of cognition.

Are Connectionist Models Mere Implementations?

In allowing that there may be a macrostructure to thought, connectionists may seem to suggest that

their models merely describe the implementation details of a processing system that would be best

characterized more abstractly. However, we simply do not know exactly what level of description is the

appropriate one for characterizing many behavioral phenomena. Many who have turned to connectionist

models have done so because these models have seemed to provide exactly the right level of description

for characterizing certain kinds of cognitive processes. Just where the bounds of usefulness of the



10

connectionist framework may lie seems at this point to be one of the very open questions. Since there is

little in cognitive psychology that we understand perfectly at this point, we are not at present in a position

to say which aspects of cognition might be explainable without recourse to a model of the microstructure.

Connectionist Models and Cognitive Development
In the preceding part of this paper, I have tried to give an overview of the connectionist framework for

cognitive modeling. Here, I consider the question: Does the connectionist framework have any

implications for the answers that we give to basic questions about human cognition? I will argue that it

does. The questions are ones that arise within the field of cognitive development; they are motivated by

dramatic behavioral phenomena. Several different kinds of answers have been given to these questions.

We will see how the connectionist framework opens them anew and suggests what may be different

answers in many cases.

The Phenomena

The field of cognitive development is replete with examples of dramatic changes in children's thinking

as they grow older. Here I give three examples: 1) Failures of conservation and compensation, 2)

Progressive differentiation of knowledge about different kinds of things, 3) U-shaped learning curves in

language acquisition.

Failures of Conservation and Compensation

Perhaps the best known phenomena in cognitive development are the dramatic failures of conservation

that Piaget has reported in a wide range of different domains. One domain is the domain of liquid

quantity. A child of 3 is shown two glasses of water. The glasses are the same, and each contains the

same amount of water, and the child sees that the amount is the same. But when the contents of one of

the glasses is poured into a wider container, the child will say that there is less liquid in the wider

container.

It is typical to say that this answer that the young child gives reflects a failure to recognize two things:

1) That quantity is conserved under the transformation of pouring from one container to another; and 2)

that greater width can compensate for less height. Many tasks are specifically designed to tap into the

child's ability to cope with these kinds of compensation relations between variables.
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Figure 4: Balance beam of the kind first used by Inhelder and Piaget (1958), and later used
extensively by Siegler (1976; 1981; Siegler and Klahr, 1982). Reprinted from Siegler,
1976, Figure 1, with permission.

One such task developed by Inhelder and Piaget (1958), the so-called balance-beam task, is illustrated

in Figure 4. In this task, the child is shown a balance beam with pegs at evenly spaced intervals to the

left and right of a fulcrum. On one peg on the left are several weights; on one peg on the right are several

weights. The beam is immobilized, and the child is asked to judge which side will go down, or whether

they will balance. We will have occasion to examine performance in this task at length below; for now it

suffices to note that young children (up to about 6 or 7 in this case) typically respond as if the distance

from the fulcrum was completely irrelevant. They will say the beam should balance if the weight is the

same on both sides, regardless of distance. Otherwise they say the side with the greater weight will go

down. These children, then, appear to miss the fact that lesser weight can be compensated for by

greater distance. Typically by the age of 11 or so children have some appreciation for this trade off; the

details of the developmental progression are quite interesting, as we shall see below.

Progressive Differentiation of On to log leal Categories

Other researchers, studying different domains, have noticed other kinds of developmental

progressions. Keil (1979) studied children's judgements about whether you could say things like "A rabbit

is an hour long." He supposed such judgements tapped children's knowledge about different kinds of

things. In these judgements, Keil was interested not in whether the child saw a sentence as true or false,

but in whether the child felt that one could make certain kinds of predications (e.g., that something is an
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hour long) when the something is a member of a certain "ontological category" (e.g., living thing). Keil

found that children were much more permissive in their acceptance of statements than adults were, but

their permissiveness was not simply random. Rather, they would accept statements that over-extended

predicates to categories near the ones they typically apply to, but would not extend them further. Thus

some children will accept predications like The rock is asleep," but not "The rock is an hour long." It was

as though children's knowledge of what predicates apply to particular categories becomes progressively

more and more differentiated, as illustrated in Figure 5.

U-Shaped Learning Curves In Language Development

Early on children often get certain kinds of linguistic constructions correct which they later get wrong;

only later do they recover their former correct performance. One example is the passive construction,

applied to semantically biased materials, such as The man was bitten by the dog." (See Bever, 1970, for

a discussion of the development of the use of the passive construction.) Early in development, children

correctly interpret such sentences; they appear to be using information about what roles the different

nouns typically play in the action described by the verb, since they tend to be correct only when the

correct interpretation assigns the nouns to their typical roles. At an older age, children respond differently

to such sentences, treating the first noun-phrase as the subject; semantic constraints are over-ridden, and

there is a tendency to interpret The man was bitten by the dog" as meaning The man bit the dog."

Finally, children interpret the sentence correctly again, but for a different reason. It would appear that

they now know how to understand passives in general, since at this stage they can also interpret

semantically neutral and even reverse-biased sentences (such as "the dog was bitten by the man")

correctly.

The Questions

The phenomena reviewed above raise basic questions about cognitive development. Three of these

questions are:

• Are these different phenomena simply unrelated facts about development in different
domains?

• Are there principles that all of these phenomena exemplify?

• If there are principles, are they domain specific, or are they general principles about
development?

Different kinds of developmental theorists have answered such questions in very different ways. To
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Figure 5: Four different "predictability trees" illustrating the progressive differentiation of concepts as a
function of age. Terms in capitals at internal nodes in the trees represent predicates, and
terms in lower case at terminal nodes in the trees represent concepts that are spanned by
all the predicates written on nodes that dominate the terminal. A predicate spans a concept
if the child reports that it is not silly to apply either the predicate or its negation or both to
the concept. Thus the first tree indicates that the child will accept "The girl is (not) alive,"
and "The chair is (not) tall" but will not accept The chair is (not) alive." Parentheses
indicate uncertainty about the application of a predicate. Redrawn from Keil, 1979,
Appendix C, with permission.
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Piaget, each failure of compensation or conservation reflected a single common developmental stage; the

phenomena were intrinsically related by the characteristics of the stage, and these characteristics

provided the basis for explanation.

Others have taken a very different approach. Keil (1979), following Chomsky's analogous argument for

language, argued for domain specific principles of development. His view is that each cognitive domain

has its own laws that provide constraints on what can be learned. These constraints limit the hypotheses

that the child can entertain, thereby making it dramatically easier for the child to acquire adult abilities in

the face of the impoverished information that is provided by experience with the world.

The main thrust of the remainder of this paper is to argue that recent developments in connectionist

learning procedures suggest a dramatic alternative to these kinds of views. The alternative is simply the

hypothesis that these diverse developmental phenomena all reflect the operation of a single basic

learning principle, operating in different tasks and different parts of the cognitive system.

The Learning Principle

The principle can be stated in fairly abstract terms as follows:

Adjust the parameters of the mind in proportion to the extent to which their adjustment can produce a
reduction in the discrepancy between expected and observed events.

This principle is not new. It might well be seen as capturing the residue of Piagefs accomodation

process, in that accomodation involves an adjustment of mental structures in response to discrepancies.

(See Flavell, 1963, for a discussion of Piagefs theory.) It is also very similar to the principle that governs

learning in the Rescoria-Wagner model of classical conditioning (Rescoria and Wagner, 1972). What is

new is that there exists a learning procedure for multi-layer connectionist networks that implements this

principle. Here, the parameters of the mind are the connections among the units in the network, and the

procedure is the back propagation procedure of Rumelhart, Hinton, and Williams (1986; see Hinton, this

volume).

The learning principle lies at the heart of a number of connectionist models that learn how to do various

different kinds of information processing tasks, and that have applications to phenomena in cognitive

and/or language development. Perhaps the simplest such model is the past-tense model of Rumelhart

and McClelland (1986). The development of that model predated the discovery of the back propagation
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learning procedure, thereby forcing certain simplifications for the sake of developing an illustration of the

basic point that lawful behavior might emerge from the application of a simple principle of learning to a

connectionist network. Subsequent models have used back propagation to overcome some of these

limitations. Included in this class are NETtalk (Sejnowski and Rosenberg, 1987) and a more recent model

of word reading (Seidenberg, Patterson, and McClelland, this volume). The present effort grew out of two

observations of similarities between the developmental courses seen in models embodying this principle,

and the courses of development seen in children: First, the course of learning in a recent model of

concept learning by Rumelhart (in preparation) is similar to aspects of the progressive differentiation of

concepts reflected in Kail's (1979) studies of predictability. Second, the course of learning in a recent

model of sentence comprehension by St. John and McClelland (1988) mirrors aspects of the progression

from reliance on semantic constraints, to reliance on word order, to, finally, reliance on complex syntactic

patterning such as the passive voice. I do not mean to claim that the models in question are fully

adequate models of the developmental progression in either case; I only mean to claim that they seemed

suggestive: They raised the possibility that part of the explanation of these and other developmental

phenomena might be found in the operation of the learning principle as it adjusts connection strengths in

a network subjected to patterns arising in its environment.

The remainder of this paper presents an experiment assessing the applicability of this conjecture to

another developmental phenomenon, namely the acquisition of the ability to take both weight and

distance into account in the balance beam task described above. The task has been studied extensively

by Siegler and his colleagues (Siegler, 1976, 1981; Siegler and Klahr, 1982), and quite a bit is known

about it. I will first review the developmental findings. Then I will describe a connectionist model that

captures these phenomena by applying the learning principle stated above.

Development of Judgements off Balance

In an important monograph, Siegler (1981) studied children's performance in the balance beam task

and three other tasks in which two cues had to be taken into account for correct performance. In all

cases, as in the balance beam task, the correct procedure requires multiplication. For example, in the

balance beam task, to determine which side will go down, one must multiply the amount of weight on a

given side of the beam times the distance of that weight from the fulcrum. The side with the greater

product will go down; when the products are the same, the beam will balance.
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Siegler studied children in several age groups, as well as young adults. Each child was asked to judge

24 balance problems. In each case, the beam was immobilized so that there was no feedback. The 24

problems could be divided into four of each of six types:

• Balance. In this class of problem, the weight is the same on both sides of the beam and the
weight is the same distance from the fulcrum on both sides.

• Weight. In these problems, the weights differ but distance from the fulcrum is the same on
both sides.

• Distance. Here the weight is the same on both sides, but the distance from the fulcrum
differs.

• Conflict. Here both weight and distance differ and are in conflict, in that the weight is
greater on one side but the distance from the fulcrum is greater on the other. There are
three types of conflict problems:

• Conflict-weight. In these cases, the side with the greater weight has the greater
torque (that is, the greater value of the product of weight times distance).

• Conflict-distance. In these cases, the side with the greater distance has the greater
torque.

• Conflict-balance. Here the torques are the same one both sides.

Siegler's analysis of children's performance assumed that children use rule-governed procedures.

Four such procedures or rules as Siegler called them are shown in Figure 6. Each of these rules

corresponds to a distinct pattern of performance over the six problem types. For example, children using

Rule 1 should say the side with the greater weight will go down in weight problems and in all three types

of conflict problems. They should think the beam will balance on balance problems and distance

problems. In general, the mapping from the rules to expected performance is extremely straightforward.

The only point that needs explication is the instruction muddle through when weight and distance conflict

in Rule 3. In practice it is assumed to mean "guess randomly among the alternatives," so that 1/3 of the

responses would be left-side-down; 1/3 right-side-down, and 1/3 balance.

Siegler compared the performance of each child tested with each rule, and counted discrepancies from

predicted performance based on the rule. Children who scored less than 4 discrepancies from a given

rule were scored as using that rule.

For our purposes, there are four basic findings that emerge from Siegler's analysis:

1. Lawful behavior. In general, performance of children over the age of 5 is extremely
regular in the balance beam task. Overall about 90% of children tested conform to one of
the four rules.

2. Developmental progression. As children get older, they appear to progress through the
use of the different rules. The progression from Rule 1 to Rule 3 can be thought of as a
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progression in which at first the weight cue is relied on exclusively, while at the end distance
and weight are both taken into account. In between (Rule 2), distance is taken into account
only if it does not conflict with the weight cue. Children aged 5 to 7 typically use Rule 1, and
college students typically use rules 3 or 4. Many college students do not have explicit
knowledge of the torque principle. Children younger than age 5 tend not to be scorable
strictly in terms of one of the rules; however, they appear to show an increasing tendency to
behave in accordance with Rule 1.

3. Generality. The same four rules appear to be adequate to characterize performance in all
three of the domains that Siegler studied. Though the developmental progression was not
identical in across cases, there was in all cases a trend from simpler to more complex rules
with development.

4. Lack of correlation between domains. Even though children seem to progress through
the same rules in different domains, they do not do so in lock-step; the correlation across
domains is low, particularly in terms of the higher-numbered rules, so that children who are
showing Rule 3 behavior in one task may be showing Rule 1 behavior in another and Rule
4 in a third.

The Simulation Model

The model I have developed to capture Siegler's findings is sketched in Figure 7.4Of course, the model

is a drastic oversimplification of the human mind and of the task; but as we shall see it allows us to

capture the essence of Siegler's findings, and to see them emerge from the operation of the learning

principle described above.

The model consists of a set of input units, to which balance problems can be presented as patterns of

inputs; a set of output units, to over which the answer to each problem can be represented; and a set of

hidden units, between the input and the output. Connections run from input units to hidden units and from

hidden units to output units.

The input units can be divided into two groups of 10. One group is used to represent information about

weight and the other is used to represent information about distance. In each case I have chosen to use

an input representation that imposes as little structure as possible on the input patterns. Each possible

value of weight or distance from the fulcrum is assigned a separate unit. The ordering of values from low

to high is not given in this representation; the network will have to learn this ordering. For the

convenience of the reader, the units are arranged in rows according to which side of the beam they are

from, and within each row they are arranged from left to right in order of increasing weight or distance

from the fulcrum; but this ordering is unknown to the model before it is trained, as we shall see.

4Thls model builds on an earlier model of stage transitions in the balance beam task by Jenkins (1986). I am indebted to Eric for
indicating the applicability of connectionist models to cognitive development.
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Figure 7: The network used in the simulation of the development of performance in the balance beam
task.

Though the two dimensions are not intrinsically structured for the model, the design of the network

does impose a separate analysis of each dimension. This separation turns out to be critical; I will

consider the implications of this architectural simplification below. The separation is implemented as

follows: there are separate pairs of hidden units for each dimension. Two hidden units receive input from

the weight input units and two receive input from the distance input units.

Each of the four hidden units projects to each of the two output units. The left output unit can be

thought of as a "left side down" unit, and the right one as a "right side down unit." Thus a correct network

for the task would turn on the output unit corresponding to the side with the greater torque, and would tum

off the unit for the other side. For balance problems, I assume that the network should tum both units on
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half-way. Note that this coding of the output patterns does tell the network that balance is between left

side down and right side down.

Processing. Balance problems of the kind studied by Siegler can be processed by the network by

simply turning on (i.e., setting to 1) the input units corresponding to a particular problem and turning off

(i.e., setting to 0) all other input units. The input from the problem illustrated in Figure 7 is shown by using

black to indicate those input units whose activations are 1.0, and white for the units whose activations are

0.

The inputs are propagated forward to the hidden units. Each hidden unit simply computes a net input:

Here j ranges over the input units. Each hidden unit then sets its activation according to the logistic

function:
1

a: =

In these equations, wtj is the strength of the connection to hidden unit i from input unit;, a is the

activation of input unit;, and biasi is the modifiable bias of hidden unit /. This bias is equivalent to a

weight to unit / from a special unit that is always on.

Once activations of the hidden units are determined, the activations of the output units are determined

by the same procedure. That is, the net input to each output unit is determined based on the activations

of the hidden units, the weights from the hidden units to the output units, and the biases of the output

units. Then the activations of the output units are determined using the logistic function.

Responses. The activations of the output units are real numbers between 0 and 1; to relate its

performance to the balance beam task, these real-valued outputs must be translated into discrete

responses. I used the following simple translation: If the activation of one output unit exceeded the

activation of the other by .333, I took the answer to be "more active side down." Otherwise, the answer

was assumed to be "both sides equal."

Learning. Before training begins, the strengths of these connections from input to hidden units and

from hidden to output units are initialized to random values uniformly distributed between +.5 and -.5. In

this state, inputs lead to random patterns of activity over both the hidden and output units. The

activations of the output units fluctuate approximately randomly between about .4 and .6 for different input
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patterns. The network comes to respond correctly only as a result of training. Conceptually, training is

thought of as occurring as a result of a series of experiences in which the network is shown a balance

problem as input; computes activations of output patterns based on its existing connection weights; and is

then shown the correct answer. The signal that drives learning is the difference between the obtained

activation of each output unit and the correct or target activation for that unit. The back-propagation

procedure of Rumelhart, Hinton, and Williams (1986) is then used to determine how each connection

strength in the network should be adjusted to reduce these differences. The procedure is described in

Hinton's chapter in this volume, and it would be redundant to describe it here. Suffice it to say that it

exactly implements the learning principle stated above, and restated here in network terminology:

Adjust each weight in the network in proportion to the extent to which its adjustment can produce a
reduction in the discrepancy between the expected event and the observed event, in the present context.

Here the "expected event" is the pattern of activation over the output units that is computed by the

network, the observed event is the pattern of activation the environment indicates these units have, and

the present context is the pattern of activation over the input units. Note that the direction of change to a

connection (positive or negative) is simply the direction than tends to reduce the discrepancy between

computed output and the correct or target output.

Environment. As I pointed out in part 1 of this paper, the environment in which a network learns plays

a very strong role in determining what it learns, and particularly the developmental course of learning.

The simulations reported here were based on the assumption that the environment for learning about

balance problems consists of experiences that vary more frequently on the weight dimension than they do

on the distance dimension. Of course, I do not mean to suggest that all the learning that children do that

is relevant to their understanding of balance takes the form of explicit balance problems of the kind my

network sees. Rather, my assumption that the experience on balance problems is dominated by

problems in which there is no variability in weight is meant as a proxy for the more general assumption

that children generally have more experiences with weight than with distance as a factor in determining

the relative heaviness of something.5 The specific assumptions about the sequence of learning

experiences were as follows. The environment consisted of a list of training examples containing the full

5An alternative assumption which might account for the developmental data just as well is the assumption that the weight
dimension is pre-structured before the child comes to consider balance problems, while the distance dimension is not. The
assumption that distance varies less frequently than weight but that neither dimension is initially structured allows us to observe the
structuring process for both dimensions.
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set of 625 possible problems involving 25 combinations of possible weights (1 to 5 on the left crossed with

1 to 5 on the right) crossed with 25 combinations of possible distances (1 to 5 steps from the fulcrum on

the left crossed with 1 to 5 steps from the fulcrum on the right). Two corpuses were set up. Problems in

which the distance from the fulcrum was the same on both sides were listed 5 times each in one corpus,

and 10 times each in the other corpus. Other problems were listed only once in each corpus.

Training and testing regime. Four simulation runs were carried out, two with each of the two corpora

just described. In each run, training consisted of a series of epochs. In each epoch, 100 patterns were

chosen randomly from the full list of patterns in the corpus. In each epoch, weight increments were

accumulated over the 100 training trials and then added into the weights at the end of the epoch,

according to the momentum method described in Rumelhart, Hinton, and Williams, 1986 (p. 330;

parameters were t|=0.075, a=.9).

After weight updating at the end of each epoch, the network was given a 24 item test, containing 4

problems of each of the six types described above, taken from an experiment of Siegler's. (A few of the

examples had to be modified since Siegler's experiment had used up to 6 pegs.)

A Comment on the Simulation Model

The model described above obviously simplifies the task that the learner faces and structures it for him

to some degree. In particular, it embodies two principal assumptions which are crucial to the successful

simulations we will consider below:

Environment Assumption: The model assumes that the environment is biased, so that one

dimension - in this case weight - is more frequently available as a basis for predicting outcome than the

other.

Architecture Assumption: The model assumes that the weight and distance dimensions are

analyzed separately, before information about the two dimensions is combined.

Both of these assumptions are crucial to the success of the model. In an unbiased environment, both

cues would be learned equally rapidly. Effects of combining the cues from the start as prescribed by the

architecture assumption are more complex, but suffice it to say for now that the apparent stageiike

character of performance is much less dear unless this assumption is adopted.

An important topic for further research will be to examine what variants of these assumptions might still
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allow the model to be successful. For example, regarding the environment, differences in salience (i.e.,

strength of input activations) and structuredness of the dimensions might also produce similar results.

The issue of structuredness of the dimensions is a key point that needs to be considered as it relates to

the present simulation. For both dimensions, the input representations encode different weights and

distances from the fulcrum using distinct units. This means that different values are distinguishable by the

model, but they are not structured for it; for example the input itself provides no indication that a distance

or weight of 3 is between 2 and 4. The network must learn to represent the weights and distances in

structured ways in order to solve the balance problem. We will see that it does this below.

Results

In general performance of the model conformed to one of the four rules described by Siegler. Over the

four runs, the model fit the criteria of one of Siegler's four rules on 85% of the occasions, not counting an

initial, pre Rule 1 period discussed below (In Siegler, 1981, the conformity figure is about 90%). Of

course, the model was not consulting these rules or following the step-by-step procedures indicated in

them; rather its behavior was simply scorable by Siegler's criteria as consistent with the succession of

rules. Excluding the initial period, failures to fit the rules were of three types: Cases in which a rule fit

except for a position bias that gave difficulty on balance problems, cases in which performance was

borderline between Rules I and II, and combinations of these two problems. (Siegler (personal

communication) does find some borderline cases between Rule 1 and Rule 2, but the position bias cases

are not typical of children's performance.)

Overall Developmental Trends. Epoch by epoch performance in each of the four runs in shown in

Figures 8 and 9. One generally observes the expected developmental progression. Each simulation run

is slightly different, due to differences in the random starting weights and the sequence of actual training

experiences, but there are dear common trends. Over the first 10 epochs or so, the output of the model

was dose to .5 on all test patterns; by our scoring criteria, all of these outputs count as "balance"

responses, but of course they really represent a stage in which neither weight nor distance governs

performance. The next few epochs represent a transition to Rule 1, in that in this phase the model is

showing some tendency to activate the output unit on the side with the greater weight, but this tendency

is variable across patterns and the discrepancy between the activations of the output units is not reliably

greater than .33 when the weights differ.
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After this brief transition, performance of the model has generally reached the point where it was

responding consistently to the weight cue while systematically ignoring the distance dimension. This

pattern continued for several more epochs. There was a brief transitional period, in which the model

behaved inconsistantty on the distance problems crucial to distinguishing between Rule 1 and Rule 2

behavior. After several epochs in this phase, use of the distance cue reached the point where

performance on all types of conflict problems became variable. The model generally continued in this

phase indefinitely, sometimes reaching the point where its performance was generally scorable as fitting

Rule 4 and sometimes not.

The variability in the model's performance from epoch to epoch is actually quite consistent with test-

retest data reported in Siegler (1981). Rule 2 behavior is highly unstable, and there is some instability of

behavior in other rules as well.

Performance In each phase. Seigler's criteria for conformity to his rules allow for some deviations

from perfect conformity; in fact only 83% of test problems must be scorable as consistent with the rule.

Given this, it is interesting to see whether the discrepancies from the rules that are exhibited by the model

are consistent with human subject's performance. In general, they seem to be quite consistent, as Figure

10 indicates. Each panel shows percent correct performance by the model averaged over the tests on

which the model scored in accordance with one of the four rules. Also shown are data from two groups of

human subjects as well as the pattern of performance that would be expected from a perfect rule user.

For Rule 1, the model differs very little from humans. For Rule 2, again the correspondence to human

data is very close. Both the model and the humans show some slight tendency to get conflict-distance

problems correct, and to occasionally miss distance and balance problems. For both Rule 1 and Rule 2,

the tendency to miss balance problems is slightly greater in the model than in the children's data. For

Rule 3, the model exaggerates a tendency seen in the human data to be correct on conflict-weight

problems more often than on conflict-distance problems. The major discrepancy from the data is that the

model is too accurate on conflict-balance problems. For Rule 4, the model again exaggerates a tendency

seen in the human data to have residual difficulties with conflict problems.

With the exception of the conflict-balance problems in Rule 3, the human data seem to fall about

half-way between the model and perfect correspondence to the rules. It is tempting to speculate that

some human subjects - particularly Rule 4 subjects - may in fact use explicit rules like the torque rule
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problem type were calculated averaging over children or simulation tests falling into each
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some of the time. It is, indeed, easy for the adult subjects who contribute to the Rule 4 results to follow

the torque rule if instructed specifically in this rule. However, it is evident that the subjects who fall under

the Rule 4 scoring criteria do not in fact adhere exactly to the rule. Perhaps this group includes some

individuals performing on the basis of implicit knowledge of the trade-off of weight and distance as well as

some who explicitly use the torque rule, and perhaps some individuals use a mixture of the two strategies.

Further correspondences between the model and child development. So far we have seen that

the balance beam model captures the pattern of development seen in the studies of Seigler (1976,1981).

There are two further aspects of the developmental data which are consistent with the gradual buildup of

strength on the distance dimension that we see in the model:

1. Wilkening and Anderson (in press) present subjects with one side of a balance beam, and
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allow them to adjust the weight on the other side at a fixed distance from the fulcrum to
make the beam balance. Over the age range of 9 to 20, in which children are generally
progressing from late Rule 1 or Rule 2 to Rule 3 or Rule 4 according to Siegler's methods,
they find an increasing sensitivity to the distance cue. Unfortunately ft is difficult to be sure
whether this reflects different numbers of subjects relying on the distance cue, or (as we
see in the model) differences in degree of reliance among those who show some sensitivity
to the distance cue.

2. For children who exhibit Rule 3 on Siegler's 24-item test, careful assessment with a larger
number of conflict problems indicates the use of cue compensation strategies, rather than
random guessing (Ferretti, Butterfield, Cahn, and Kerkman, 1985). Thus children are not
simply totally confused about conflict problems during this stage but have some sensitivity
of relative magnitudes of cues, as does the model. The exact degree of correspondence of
the model's performance and human performance on these larger tests remains to be
explored.

The mechanism for developmental change. Given the generally close correspondence between

model and data, it is important to understand just how the model performs, and how its performance

changes. To do this, it is helpful to examine the connections in the network at several different points in

the learning process. Figure 11 displays the connections from the run that produced the results shown in

the top panel of Figure 9, at 4 different points during learning: At epoch 0, before any learning; at epoch

20, early in the Rule 1 phase; at epoch 40, at the end of the Rule 1 phase; and at epoch 100, when the

simulation was terminated. Each of the four sub-rectangles in each panel shows the weights coming into

and out of one of the four hidden units. The two on the left receive input from the weight dimension, and

the two on the right receive input from the distance dimension.

In the first panel, before learning begins, all the connection strengths have small random values. In

this situation, the output of the hidden units is not systematically related to magnitudes of the weights or

distances, and is therefore of no use in predicting the correct output. At this point, the hidden units are

not encoding either relative weight or relative distance, and are therefore providing no information that

would be useful for predicting whether the left or right side should go down.

The first phase of learning consists of the gradual organization of the connections that process the

amount of weight on each side of the balance beam. Recall that the network receives problems in which

the distance cue varies much less frequently than problems in which the weight cue varies. Learning to

rely on the weight cue proceeds more quickly than learning to rely on the distance cue as a simple result

of this fact. The rate of learning with respect to each type of cue is relatively gradual at first, but then

speeds up, for reasons that we will explore below. The relatively rapid transition from virtually

unresponsive output to fairly strong reliance on the weight cue represents the brief transition to Rule 1
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responding. The result of this phase, in the second panel of the figure, is a set of connections that allow

the hidden units on the left to reflect the relative amount of weight on the left vs. the right side of the

balance beam. The leftmost hidden unit is most strongly excited by large weights on the left and small

weights on the right, and most strongly inhibited by large weights on the right and small weights on the

left. The activation of this unit, then, ranges from near 0 to near 1 as the relative magnitude of weight

ranges from much more on the right to much more on the left. Correspondingly, this unit has an

excitatory connection to the left-side-down output unit, and an inhibitory connection to the right-side-down

output unit. The second hidden unit mirrors these relationships in reverse. At this point, then, the hidden

units can be said to have learned to represent something they were not representing before, namely the
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relative magnitude of the inputs. Note that this information is not explicitly contained in the input, which

simply distinguish but do not order the different possible values of weight on the two sides of the balance

beam.

At this point, the connection strengths in the distance part of the network remain virtually unchanged;

thus, at the hidden unit level, the network has not yet learned to encode the distance dimension.

Over the next 20 epochs, connections get much stronger on the weight dimension, and we begin to

see some organization of the distance dimension. While this is going on, the overt behavior of the

network remains Rule 1 behavior. The network is getting ready for the relatively rapid transition to Rule 2

and then to Rule 3 which occurs over the next several epochs of training (as shown in the top panel of

Figure 9), but at epoch 40, the end of the Rule 1 phase, the distance connections are still not quite strong

enough that they do not yet push activations of the output units out of the balance range. With further

learning, the distance cue becomes stronger and stronger; this first causes the distance cue to govern

performance when the weights are in balance, giving rise to Rule 2 behavior. Further strengthening

causes the distance cue to win out in some conflict problems, giving rise to behavior consistent with Rules

3 and 4. At epoch 100 of this particular run, the weight dimension maintains a slight ascendancy, so that

with the conflict-balance problem illustrated, the model actives the most the left side down unit,

corresponding to the side with the greater weight.

A couple of aspects of the developmental progression deserve comment. Learning is slow at first and

then accelerates, as shown in Figure 12.

As the figure illustrates, the connection strengths are largely insensitive to differences early on, then go

through a fairly rapid transition in sensitivity and then level off again. The acceleration seen in learning is

a result of an inherent characteristic of the gradient descent learning procedure coupled with the

architecture of the network. The procedure adjusts each connection in proportion to the magnitude of the

effect that adjusting it will have on the discrepancy between correct and actual output. But the effect of a

given connection depends on the strengths of other connections. Consider the connection coming into a

hidden unit from one of the input units. An adjustment of the strength of this input connection will have a

small effect on the output if the connections from the hidden unit to the output units are weak. In this

case, the input connection will only receive a small adjustment. If however, the connections from the

hidden units to the output units are strong, an adjustment of the strength of the input connection will have
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a much larger effect; consequently the learning procedure makes a much larger adjustment in this case.

A slightly different story applies to the connections from the hidden units to the output units. When the

connections from the input to the hidden units are weak and random, the activations of the hidden units

are only weakly related to the correct output. Under these circumstances, the adjustments made to the

output weights tend to cancel each other out, and progress of learning is very slow. It is only after the

input weights become organized that learning can proceed efficiently on the output side of the hidden

units.

The story I am telling would be a very sad one, were it not for the fact that it is not all or none. It is not

that there is no learning at all at first; if there were, there would be no gradual change to the point where

learning becomes more rapid. Rather, it is simply that initially learning is simply very gradual; so gradual

that it does not show up in overt behavior. Gradually though this initially slow learning accellerates,

producing an increasing readiness to learn.

This differential readiness to learn allows the model to account for the results of an experiment

described in Siegler and Klahr (1982), on the effects of training for young vs. old Rule 1 children. They

showed 5- and 8-year-old Rule 1 children a series of conflict problems. The children were allowed to try

to predict which side would go down, and were then shown what actually happens. The results were

striking. The older Rule-1 children were very likely to exhibit Rule 2 behavior on a post-test. The younger

children either continued to behave in accordance with Rule 1 or became inconsistent in their responding.

In further experiments on early Rule 1 children, Siegler and Klahr reported that these children do not

represent the distance dimension correctly: when asked to reproduce a balance beam configuration, they

could usually get the number of weights correct, but could rarely place them on the correct pegs. These

findings are in complete conformity with the model: As we have seen, the model does not represent

distance information early in Rule 1. Further simulations reported in McClelland and Jenkins (in

preparation) show that the model can profit from conflict training of the sort used by Siegler and Klahr at

the end of the Rule 1 phase but not at the beginning.

Shortcomings of the Model

The model exhibits a striking correspondence with many aspects of the developmental facts, but does

have a few shortcomings. Three failures to fit aspects of Siegier's data must be acknowledged: First, the

model can never actually master Rule IV, though some subjects clearly do. Second, it's behavior during

Rule 3 is slightly different from humans (though it should be noted that the "human" Rule 3 pattern is
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actually a mixture of different strategies according to Klahr and Siegler, 1978). Third, it can exhibit

position biases which are uncharacteristic of humans, who seem (at least, from the age of 5 on) to "know"

that there is no reason to prefer left over right.

There are other shortcomings at well. Perhaps the most serious is in the input representations, that

use distinct units to represent different amounts of weight and distance. This representation was chosen

because it does not inherently encode the structure of each dimension, thereby forcing the network to

discover the ordering of each dimension. But it has the drawback that it prevents the network from

extrapolating or even interpolating beyond the range of the discrete values that it has experienced.

Finally, Siegler has reported protocol data that indicates that subjects are often able to describe what

they are doing verbally in ways that correspond fairly well to their actual performance. It is not true that all

subject's verbalizations correctly characterize the Rule they are using, but it is true, for example, that

subjects who are sensitive to the distance cue mention that they are using this cue and those who are not

tend not to mention it. The model is of course completely mute.

What are we to make of these shortcomings in light of the overall success of the model? Obviously, we

cannot take it as the final word on development of ability to perform the balance scale task. I would

suggest that the model's shortcomings may lie in two places: First, in details of the encoding of inputs

and of the network architecture; and second, in the fact that the model only deals with acquisition of

implicit knowledge.

Regarding the first point, it would be reasonable to allow the input to encode similarity on each

dimension by using input representations in which each unit responded to a range of similar values so

that neighboring weights and distances produced overlapping input representations; furthermore, the

inputs could well make use of a relative code of magnitude to keep values within a fixed range. This

would probably overcome the interpolation and extrapolation problems (I have no stand on whether such

codings are learned or pre-wired).

These kinds of fixes would not allow the model to truly master Rule 4 and I think rightly so, since I

believe Rule 4 (unlike the other rules) can only be adhered to strictly as an explicit (arithmetic) rule.

Indeed, it must be acknowledged that there is a conscious, verbally accessible component to the problem

solving activity that children and adults engage in when they confront a problem like the balance beam
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problem. The model does not address this activity itself. However, it is tempting to suggest that the

model captures the gradual acquisition mechanisms which establish the possible contents of these

conscious processes. One can view the model as making available representations of differing salience

as a function of experience; these representations might serve as the raw material used by the more

explicit reasoning processes that appear to play a role. This is of course sheer speculation at this point.

It will be an important part of the business of my ongoing exploration of cognitive development to make

these speculations explicit and testable.

Implications of the Balance Simulation

The model captures several of the more intriguing aspects of cognitive development. It captures its

stage-like character, while at the same time exhibiting an underlying continuity which accounts for gradual

change in readiness to move on to the next stage. It captures that fact that behavior can often seem very

much to be under the control of very simple and narrow rules (e.g., Rule 1), yet exhibit symptoms of

gradedness and continuity when tested in different ways. It captures the fact that development in a large

number of different domains, progresses from an initial over-focussing on the most salient dimension of a

task or problem - to the point where other dimensions are not even encoded - followed by a sequence of

further steps in which the reliance on the initially unattended dimension gradually increases.

As mentioned previously, the model can be seen as implementing the accomodation process that lies

at the heart of Piaget's theory of developmental change. Accomodation essentially amounts to adjusting

mental structures to reduce the discrepancy between observed events and expectations derived from the

existing mental structures. According to Flavell (1963), Piaget stressed the continuity of the

accomodation process, in spite of the overtly stage-like character of development, though he never gave

a particularly clear account of how stages arise from continuous learning (see Flavell, 1963, pp. 244-249

for a description of one attempt). The model provides such a description: it shows dearly how a

continuous accomodation-like process can lead to a stage-like progression in development.

Changes In representation and attention through the course of development. When a balance

beam problem is presented to the model, it sees it in different ways, depending on its developmental

state. At all times, information is in some sense present in the input for determining what is the correct

response. However, at first this information produces no real impression; weak, random activations occur

at the hidden level and these make weak, random impressions at the output level. At the beginning of the
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Rule 1 behavioral phase, the model has learned to represent relative amount of weight. The pattern of

activation over the hidden units captures relative weight, since one unit will be more activated if there is

more weight to the right, and the other will be more activated if there is more weight to the left; both units

take on intermediate activations when the weights balance. At this point, we can see the model as

encoding weight, but not distance information. Indeed, as we have seen at this point the network could

be said to be ignoring the distance cue; it makes little impact on activation, and learning about distance is

very slow at this point. At the end of the Rule 1 phase, in spite of its lack of impact on overt behavior, the

network has learned to represent relative distances; at this point it is extremely sensitive to feedback

about distance; it is ready to slip over the fairly sharp boundary in performance between Rule 1 and Rule

2. Thus, we can see the Rule 1 stage as one in which overt behavior fails to mirror a gradual

developmental progression that carries the model from extreme unreadiness to learn about distance at

the beginning of this phase to a high degree of readiness at the end.

This developmental progression seems to resolve the apparent paradoxical relation between observed

stage-like behavioral development and assumed continuity of learning. To me this is the most impressive

achievement of the model; it provides a simple, explicit alternative to maturational accounts of stage-like

progression in development.

It must be noted, however, that the success of the model depends crucially on its structure. In fact the

results are less compelling if either of the following changes are made: a) if balance is treated as a

separate category, rather than being treated as the intermediate case between left-side-down and right-

side-down; b) if the connections from input to hidden units are not restricted as they are here so that

weight is processed separately from distance before the two are combined.

More generally, it is becoming dear that architectural restrictions on connectionist networks are crucial

if they are to discover the regularities we humans discover from a limited range of experiences (Denker,

Schwartz, Wlttner, Solla, Hopfield, Howard, and Jackel, 1987; Rumelhart, in preparation). This

observation underscores that fact that the learning principle, in itself, is not the only principle that needs to

be taken into account. There probably are additional principles that are exploited by the brain to facilitate

learning and generalization. Just what these additional principles are and the extent to which they are

domain specific remains to be understood in more detail.

Extending this observation a step further, we can see the connectionist framework as a new paradigm
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which to explore basic questions about the relations of nature and nurture. We may find that

successful simulation of developmental processes depends on building in domain specific constraints in

considerable detail; if so this would support a more nativist view of the basis of domain-specific skills. On

the other hand, it may turn out that a few other general principles in addition to the learning principle are

sufficient to allow us to capture a wide range of developmental phenomena. In this case we would be led

toward a much more experience-based description of development. In either case, it seems very likely

that connectionist models will help us take a new look at these important basic questions.

Conclusions

The exploration of connectionist models of human cognition and development is still at an early stage.

Yet already these models have begun to capture a new way of thinking about processing, about learning

and, I hope the present paper shows, about development. Several further challenges lie ahead. One of

these is to build stronger bridges between what might be called cognitive-level models and our evolving

understanding of the details of neuronal computation. Another will be to develop more fully the

application of cognitive models to higher-level aspects of cognition. The hope is that the attempt to meet

these and other challenges will continue to lead to new discoveries about the mechanisms of human

thought and the principles that govern their operation and adaptation to experience.
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