
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



The Cascade-Correlation Learning Architecture 

Scott E. Fahlman and Christ ian Lebiere 

February 14, 1990 

CMU-CS-90-100 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Abstract 

Cascade-Correlation is a new architecture and supervised learning algorithm for artificial neural networks. 
Instead of just adjusting the weights in a network of fixed topology, Cascade-Correlation begins with a 
minimal network, then automatically trains and adds new hidden units one by one, creating a multi-layer 
structure. Once a new hidden unit has been added to the network, its input-side weights are frozen. This unit 
then becomes a permanent feature-detector in the network, available for producing outputs or for creating 
other, more complex feature detectors. The Cascade-Correlation architecture has several advantages over 
existing algorithms: it learns very quickly, the network determines its own size and topology, it retains the 
structures it has built even if the training set changes, and it requires no back-propagation of error signals 
through the connections of the network. 

This research was sponsored in part by the National Science Foundation under Contract Number EET-8716324 and by the 
Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976 under Contract F33615-87-C-1499 and monitored 
by: Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson 
AFB, OH 45433-6543. 

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing 
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government. 



1 v 

< • 

Keywords: Learning algori thms, artificial neural networks. 



1. Why is Back-Propagation Learning So Slow? 

The Cascade-Correlation learning algorithm was developed in an attempt to overcome certain problems 
and limitations of the popular back-propagation (or "backprop") learning algorithm [Rumelhart, 1986]. The 
most important of these limitations is the slow pace at which backprop learns from examples. Even on 
simple benchmark problems, a back-propagation network may require many thousands of epochs to learn 
the desired behavior from examples. (An epoch is defined as one pass through the entire set of training 
examples.) We have attempted to analyze the reasons why backprop learning is so slow, and we have 
identified two major problems that contribute to the slowness. We call these the step-size problem and the 
moving target problem. There may, of course, be other contributing factors that we have not yet identified. 

1.1. The Step-Size Problem 

The step-size problem occurs because the standard back-propagation method computes only dE/cHv, the 
partial first derivative of the overall error function with respect to each weight in the network. Given these 
derivatives, we can perform a gradient descent in weight space, reducing the error with each step. It is 
straightforward to show that if we take infinitesimal steps down the gradient vector, running a new training 
epoch to recompute the gradient after each step, we will eventually reach a local minimum of the error 
function. Experience has shown that in most situations this local minimum will be a global minimum as 
well, or at least a "good enough" solution to the problem at hand. 

In a practical learning system, however, we do not want to take infinitesimal steps; for fast learning, we 
want to take the largest steps that we can. Unfortunately, if we choose a step size that is too large, the 
network will not reliably converge to a good solution. In order to choose a reasonable step size, we 
need to know not just the slope of the error function, but something about its higher-order derivatives—its 
curvature—in the vicinity of the current point in weight space. This information is not available in the 
standard back-propagation algorithm. 

A number of schemes have been proposed for dealing with the step-size problem. Some form of "momentum" 
[Rumelhart, 1986] is often used as a crude way of summarizing the slope of the error surface at earlier points 
in the computation. Conjugate gradient methods have been explored in the context of artificial neural 
networks by a number of researchers [Watrous, 1988, Lapedes, 1987, Kramer, 1989] with generally good 
results. Several schemes, for example [Franzini, 1987] and jacobs:dynamic, have been proposed that adjust 
the step-size dynamically, based on the change in gradient from one step to another. Becker and LeCun 
[Becker, 1988] explicitly compute an approximation to the second derivative of the error function at each 
step and use that information to guide the speed of descent. 

Fahlman's quickprop algorithm [Fahlman, 1988] is one of the more successful algorithms for handling 
the step-size problem in back-propagation systems. Quickprop computes the dE/dw values just as in 
standard backprop, but instead of simple gradient descent, Quickprop uses a second-order method, related 
to Newton's method, to update the weights. On the learning benchmarks we have collected, quickprop 
consistently out-performs other backprop-like algorithms, sometimes by a large factor. 

Quickprop's weight-update procedure depends on two approximations: first, that small changes in one 
weight have relatively little effect on the error gradient observed at other weights; second, that the error 
function with respect to each weight is locally quadratic. For each weight, quickprop keeps a copy of 

UNIVERSITY LIBRARIES 
1 CARNEGIE MELLON UNIVERSITY 

PITTSBURGH, PA 15213-3890 



dE/dw(t — 1), the slope computed during the previous training cycle, as well as dE/dw(t), the current 
slope. It also retains Aw(t — 1), the change it made in this weight on the last update cycle. For each 
weight, independently, the two slopes and the step between them are used to define a parabola; we then 
jump to the minimum point of this curve. Because of the approximations noted above, this new point will 
probably not be precisely the minimum we are seeking. As a single step in an iterative process, however, 
this algorithm seems to work very well. (In practice, some complications must be added to the simplified 
algorithm presented here; see [Fahlman, 1988] for details.) 

1.2. The Moving Target Problem 

A second source of inefficiency in back-propagation learning is what we call the moving target problem. 
Briefly stated, the problem is that each unit in the interior of the network is trying to evolve into a feature 
detector that will play some useful role in the network's overall computation, but its task is greatly complicated 
by the fact that all the other units are changing at the same time. The hidden units in a given layer of the net 
cannot communicate with one another directly; each unit sees only its inputs and the error signal propagated 
back to it from the network's outputs. The error signal defines the problem that the unit is trying to solve, 
but this problem changes constantly. Instead of a situation in which each unit moves quickly and directly to 
assume some useful role, we see a complex dance among all the units that takes a long time to settle down. 

Many experimenters have reported that backprop learning slows down dramatically (perhaps exponentially) 
as we increase the number of hidden layers in the network. In part, this slowdown is due to an attenuation 
and dilution of the error signal as it propagates backward through the layers of the network. We believe that 
another part of this slowdown is due to the moving-target effect. Units in the interior layers of the net see a 
constantly shifting picture as both the upstream and downstream units evolve, and this makes it impossible 
for such units to move decisively toward a good solution. 

One common manifestion of the moving-target problem is what we call the herd effect. Suppose we have 
two separate computational sub-tasks, A and B, that must be performed by the hidden units in a network. 
Suppose that we have a number of hidden units, any one of which could handle either of the two tasks. 
Since the units cannot communicate with one another, each unit must decide independently which of the 
two problems it will tackle. If task A generates a larger or more coherent error signal than task B, there is 
a tendency for all the units to concentrate on A and ignore B. Once problem A is solved, redundantly, the 
units can then see task B as the only remaining source of error. However, if they all begin to move toward B 
at once, problem A reappears. In most cases, the "herd" of units will eventually split up and deal with both 
of the sub-tasks at once, but there may be a long period of indecision before this occurs. The weights in a 
backprop network are given random initial values to prevent all of the units from behaving identically, but 
this initial variability tends to dissipate as the network is trained. 

One way to combat the moving-target problem is to allow only a few of the weights or units in the network to 
change at once, holding the rest constant. The cascade-correlation algorithm uses an extreme version of this 
technique, allowing only one hidden unit to evolve at any given time. It might seem that by holding most 
of the network constant most of the time we would slow down the learning, but in the cases we have tested 
this strategy actually allows the network to learn faster. Once the moving-taiget effect is eliminated, any 
unit that is not frozen can quickly choose some useful role in the overall solution and then move decisively 
to fill that role. 

2 



2. Description of Cascade-Correlation 

Cascade-Correlation combines two key ideas: The first is the cascade architecture, in which hidden units 
are added to the network one at a time and do not change after they have been added. The second is the 
learning algorithm, which creates and installs the new hidden units. For each new hidden unit, we attempt 
to maximize the magnitude of the correlation between the new unit's output and the residual error signal we 
are trying to eliminate. 

The cascade architecture is illustrated in Figure 1. It begins with some inputs and one or more output units, 
but with no hidden units. The number of inputs and outputs is dictated by the problem and by the I/O 
representation the experimenter has chosen. Every input is connected to every output unit by a connection 
with an adjustable weight. There is also a bias input, permanently set to +1 . 

The output units may just produce a linear sum of their weighted inputs, or they may employ some non-linear 
activation function. In the experiments we have run so far, we use a symmetric sigmoidal activation function 
(hyperbolic tangent) whose output range is -1.0 to +1.0. For problems in which a precise analog output is 
desired, instead of a binary classification, linear output units might be the best choice, but we have not yet 
studied any problems of this kind. 

We add hidden units to the network one by one. Each new hidden unit receives a connection from each of 
the network's original inputs and also from every pre-existing hidden unit. The hidden unit's input weights 
are frozen at the time the unit is added to the net; only the output connections are trained repeatedly. Each 
new unit therefore adds a new one-unit "layer" to the network, unless some of its incoming weights happen 
to be zero. This leads to the creation of very powerful high-order feature detectors; it also may lead to very 
deep networks and high fan-in to the hidden units. There are a number of possible strategies for minimizing 
the network depth and fan-in as new units are added. We are currently exploring some of these strategies. 

The learning algorithm begins with no hidden units. The direct input-output connections are trained as well 
as possible over the entire training set. With no need to back-propagate through hidden units, we can use 
the Widrow-Hoff or "delta" rule, the Perceptron learning algorithm, or any of the other well-known learning 
algorithms for single-layer networks. In our simulations, we use the quickprop algorithm, described earlier, 
to train the output weights. With no hidden units, quickprop acts essentially like the delta rule, except that 
it converges much faster. 

At some point, this training will approach an asymptote. When no significant error reduction has occurred 
after a certain number of training cycles (controlled by a "patience" parameter set by the user), we run the 
network one last time over the entire training set to measure the error. If we are satisfied with the network's 
performance, we stop; if not, there must be some residual error that we want to reduce further. We attempt to 
achieve this by adding a new hidden unit to the network, using the unit-creation algorithm described below. 
The new unit is added to the net, its input weights are frozen, and all the output weights are once again 
trained using quickprop. This cycle repeats until the error is acceptably small (or until we give up). 

To create a new hidden unit, we begin with a candidate unit that receives trainable input connections from 
all of the network's external inputs and from all pre-existing hidden units. The output of this candidate unit 
is not yet connected to the active network. We run a number of passes over the examples of the training set, 
adjusting the candidate unit's input weights after each pass. The goal of this adjustment is to maximize 5, 

3 



Initial State 

No Hidden Units 

Outputs 

71 \7 

Inputs o-

+1 

Add 

Hidden Unit 1 

Outputs 

L 1 

o 
InpUtS çy 

+ 1 

S\ U 

Inputs o-

+1 

Add 
Hidden Unit 2 

Outputs 

71 Lr 

s 

Figure 1: The Cascade architecture, initial state and after adding two hidden units. The vertical lines sum 
all incoming activation. Boxed connections are frozen, X connections are trained repeatedly. 

4 



the sum over all output units o of the magnitude of the correlation 1 between V, the candidate unit's value, 
and E01 the residual output error observed at unit o. We define S as 

where o is the network output at which the error is measured and p is the training pattern. The quantities V 
and TT0 are the values of V and EQ averaged over all patterns. 

In order to maximize 5, we must compute dS/dwi, the partial derivative of S with respect to each of the 
candidate unit's incoming weights, w,-. In a manner very similar to the derivation of the back-propagation 
rule in [Rumelhart, 1986], we can expand and differentiate the formula for 5 to get 

OS/dwi = ]T a0(EPi0 - EQ)fp IitP 

where aQ is the sign of the correlation between the candidate's value and output otfp is the derivative for 
pattern p of the candidate unit's activation function with respect to the sum of its inputs, and is the input 
the candidate unit receives from unit / for pattern p . 

After computing OS/dwi for each incoming connection, we can perform a gradient ascent to maximize S. 
Once again we are training only a single layer of weights. Once again we use the quickprop update rule for 
faster convergence. When S stops improving, we install the new candidate as a unit in the active network, 
freeze its input weights, and continue the cycle as described above. 

Because of the absolute value in the formula for 5, a candidate unit cares only about the magnitude of its 
correlation with the error at a given output, and not about the sign of the correlation. As a rule, if a hidden 
unit correlates positively with the error at a given unit, it will develop a negative connection weight to that 
unit, attempting to cancel some of the error, if the correlation is negative, the output weight will be positive. 
Since a unit's weights to different outputs may be of mixed sign, a unit can sometimes serve two purposes 
by developing a positive correlation with the error at one output and a negative correlation with the error at 
another. 

Instead of a single candidate unit, it is possible to use a pool of candidate units, each with a different set of 
random initial weights. All receive the same input signals and see the same residual error for each training 
pattern. Because they do not interact with one another or affect the active network during training, all of 
these candidate units can be trained in parallel; whenever we decide that no further progress is being made, 
we install the candidate whose correlation score is the best. 

The use of this pool of candidates is beneficial in two ways: it greatly reduces the chance that a useless unit 
will be permanently installed because an individual candidate got stuck during training, and (on a parallel 
machine) it can speed up the training because many parts of weight-space can be explored simultaneously. 
In the simulations we have run, we have typically used rather small pools with four to eight candidate units; 
this was enough to ensure that we had several good candidates (almost equally good) in each pool. 

Strictly speaking, S is a covariance, not a true correlation, because the formula leaves out some normalization terms. Early 
versions of our system used a true correlation, but the version of 5 given here worked better in most situations. 

5 



Figure 2: Training points for the two-spirals problem, and output pattern for one network trained with 
Cascade-Correlation. 

The hidden and candidate units may all be of the same type, for example with a sigmoid activation function. 
Alternatively, we might create a pool of candidate units with a mixture of nonlinear activation functions— 
some sigmoid, some Gaussian, some with radial activation functions, and so on—and let them compete to 
be chosen for addition to the active network. The resulting networks, with a mixture of unit-types adapted 
specifically to the problem at hand, may lead to more compact and elegant solutions than are possible in 
homogeneous networks. To date, we have explored the all-sigmoid and all-Gaussian cases, but we do not 
yet have extensive simulation data on networks with mixed unit-types. 

One final note on the implementation of this algorithm: While the weights in the output layer are being 
trained, the other weights in the active network are frozen. While the candidate weights are being trained, 
none of the weights in the active network are changed. In a machine with plenty of memory, it is possible to 
record the unit-values and the output errors for an entire epoch, and then to use these cached values repeatedly 
during training, rather than recomputing them for each training case. This can result in a tremendous speedup, 
especially for large networks. 

3. Benchmark Results 

3.1. The Two-Spirals Problem 

The "two-spirals" benchmark was chosen as the primary benchmark for this study because it is an extremely 
hard problem for algorithms of the back-propagation family to solve. It was first proposed by Alexis Wieland 
of MITRE Corp. The net has two continuous-valued inputs and a single output. The training set consists 
of 194 X-Y values, half of which are to produce a +1 output and half a -1 output. These training points are 
arranged in two interlocking spirals that go around the origin three times, as shown in Figure 2a. The goal is 
to develop a feed-forward network with sigmoid units that properly classifies all 194 training cases. Some 
hidden units are obviously needed, since a single linear separator cannot divide two sets twisted together in 
this way. 

6 



Wieland (unpublished) reported that a modified version of backprop in use at MITRE required 150,000 to 
200,000 epochs to solve this problem, and that they had never obtained a solution using standard backprop. 
Lang and Witbrock [Lang, 1988] tried the problem using a 2-5-5-5-1 network (three hidden layers of five 
units each). Their network was unusual in that it provided "shortcut" connections: each unit received 
incoming connections from every unit in every earlier layer, not just from the immediately preceding layer. 
With this architecture, standard backprop was able to solve the problem in 20,000 epochs, backprop with 
a modified error function required 12,000 epochs, and quickprop required 8000 epochs. This was the best 
two-spirals performance reported to date. Lang and Witbrock also report obtaining a solution with a 2-5-5-1 
net (only ten hidden units in all), it required 60,000 quickprop epochs to train this network. 

We ran the problem 100 times with the Cascade-Correlation algorithm using a sigmoidal activation function 
for both the output and hidden units and a pool of 8 candidate units. All trials were successful, requiring 
1700 epochs on the average. (This number counts both the epochs used to train output weights and the 
epochs used to train candidate units.) The number of hidden units built into the net varied from 12 to 19, 
with an average of 15.2 and a median of 15. Here is a histogram of the number of hidden units created: 

Hidden 
Units 

12 
13 
14 
15 
16 
17 
18 
19 

Number of 
Trials 

" u It It 11 It Tf 

In terms of training epochs, Cascade-Correlation beats quickprop by a factor of 5 and standard backprop 
by a factor of 10, while building a network of about the same complexity (15 hidden units). In terms of 
actual computation on a serial machine, however, the speedup is much greater than these numbers suggest, 
for three reasons: 

• In backprop and quickprop, each training case requires a forward and a backward pass through all the 
connections in the network; Cascade-Correlation requires only a forward pass. 

• In Cascade-Correlation, many of the training epochs are run while the network is much smaller than 
its final size. 

• The cacheing strategy described above makes it possible to avoid repeatedly re-computing the unit 
values for parts of the network that are not changing. 

Suppose that instead of epochs, we measure learning time in connection crossings, defined as the number of 
multiply-accumulate steps necessary to propagate activation values forward through the network and error 
values backward. This measure leaves out some computational steps, such as the sigmoid computations, but 
it is a reasonably accurate measure of relative computational cost—much more accurate than comparingd 
comparing epochs of different sizes or comparing runtimes on different machines. 

7 



Figure 3: Evolution of a 12-hidden-unit solution to the two-spirals problem. 

8 



9 



The Lang and Witbrock result of 20,000 backprop epochs requires about 1.1 billion connection crossings. 
Their solution using 8000 quickprop epochs on the same network requires about 438 million crossings. An 
average Cascade-Correlation run with a pool of 8 candidate units requires about 19 million crossings—a 
23-fold speedup over quickprop and a 50-fold speedup over standard backprop. With a smaller pool of 
candidate units the speedup (on a serial machine) would be even greater, but the resulting networks might 
be somewhat larger. 

Figure 2b shows the output of a 12-hidden-unit network built by Cascade-Correlation as the input is scanned 
over the X-Y field. This network properly classifies all 194 training points. We can see that it interpolates 
smoothly for about the first 1.5 turns of the spiral, but becomes a bit lumpy farther out, where the training 
points are farther apart. This "receptive field" diagram is similar to that obtained by Lang and Witbrock 
using backprop, but is somewhat smoother. 

Figures 3 and 4 show the evolution of this 12-hidden-unit network as new units are added one by one. Each 
pair of pictures shows the output of the network built so far, just prior to the addition of a new unit, and 
then the receptive field of the unit that is added. The black areas indicate that the network or unit is strongly 
negative, the white areas are strongly positive, and the gray areas indicate an intermediate output , close to 
zero. 

The first six units follow the first 1.5 turns of the spirals in a very smooth and regular manner. Each new 
unit builds upon the earlier ones to create a receptive field that wraps farther around the origin. This very 
regular progression breaks down for the later units, which opportunistically grab chunks of the remaining 
error, though some wrapping-around of the receptive field is still visible. 

3.2. N-Input Pari ty 

Since parity has been a popular benchmark among other researchers, we ran Cascade-Correlation on N-input 
parity problems with N ranging from 2 to 8. The best results were obtained with a sigmoid output unit 
and hidden units whose output is a Gaussian function of the sum of weighted inputs. (These should not be 
confused with the spherical or ellipsoidal Gaussian units used by some other researchers.) Based on five 
trials for each value of N, our results were as follows: 

N Cases Hidden Average 
Units Epochs 

2 4 1 24 
3 8 1 32 
4 16 2 66 
5 32 2-3 142 
6 64 3 161 
7 128 4-5 292 
8 256 4 -5 357 

For a rough comparison, Tesauro and Janssens [Tesauro, 1988] report that standard backprop takes about 
2000 epochs for 8-input parity. Quickprop can do it in about 86 epochs. However, both of these results 
were obtained in a network with 16 hidden units; cascade-correlation builds a much more compact network 
by making effective use of shortcut connections. 

10 



As a test of generalization, we ran a few trials of Cascade-Correlation on the 10-input parity problem, 
training on either 50% or 25% of the 1024 patterns and testing on the rest. Note that the nearest-neighbor 
algorithm will do very poorly on this test, generally getting all the test cases wrong. Once again we used 
Gaussian hidden units. The results of these individual trials were as follows: 

Train Test Hidden Train Test % 
Cases Cases Units Epochs Errs Errs 

512 512 4 282 9 1.8% 
512 512 7 551 30 5.8% 
512 512 7 491 32 6.2% 
512 512 5 409 14 2.7% 
256 768 4 382 111 14.4% 
256 768 4 362 90 11.7% 
256 768 4 276 55 7.2% 
256 768 4 311 49 6.4% 

4. Discussion 

We believe that that Cascade-Correlation algorithm offers the following advantages over network learning 
algorithms currently in use: 

• There is no need to guess the size, depth, and connectivity pattern of the network in advance. A 
reasonably small (though not optimal) net is built automatically. It may be possible to build networks 
with a mixture of nonlinear unit-types. 

• Cascade-Correlation learns fast. In backprop, the hidden units engage in a complex dance before they 
settle into distinct useful roles; in Cascade-Correlation, each unit sees a fixed problem and can move 
decisively to solve that problem. For the problems we have investigated to date, the learning time in 
epochs grows very roughly as NlogN, where N is the number of hidden units ultimately needed to 
solve the problem. 

• Cascade-Correlation can build deep nets (high-order feature detectors) without the dramatic slowdown 
we see in back-propagation networks with more than one or two hidden layers. 

• Cascade-Correlation is useful for incremental learning, in which new information is added to an 
already-trained net. Once built, a feature detector is never cannibalized. It is available from that time 
on for producing outputs or more complex features. Training on a new set of examples may alter a 
network's output weights, but these are quickly restored if we return to the original problem. 

• At any given time, we train only one layer of weights in the network. The rest of the network is not 
changing, so results can be cached. 

• There is never any need to propagate error signals backwards through the network connections. A 
single residual error signal can be broadcast to all candidates. The weighted connections transmit 
signals in only one direction, eliminating one troublesome difference between backprop connections 
and biological synapses. 

11 



• The candidate units do not interact with one another, except to pick a winner. Each candidate sees the 
same inputs and error signals at the same time. This limited communication makes the architecture 
attractive for parallel implementation. 

5. Relation To Other Work 

The principal differences between Cascade-Correlation and older learning architectures are the dynamic 
creation of hidden units, the way we stack the new units in multiple layers (with a fixed output layer), the 
freezing of units as we add them to the net, and the way we train new units by hill-climbing to maximize the 
candidate unit's correlation with the residual error. The most interesting discovery is that by training one unit 
at a time instead of training the whole network at once, we can speed up the learning process considerably, 
while still creating a reasonably small net that generalizes well. 

A number of researchers [Ash, 1989, Moody, 1989] have investigated networks that add new units or 
receptive fields within a single layer in the course of learning. While single-layer systems are well-suited 
for some problems, these systems are incapable of creating higher-order feature detectors that combine 
the outputs of existing units. For some kinds of problems, the use of higher-order features may be very 
advantageous. 

The idea of building feature detectors and then freezing them was inspired in part by the work of Waibel 
on modular neural networks for speech [Waibel, 1989], but in Waibel's model the size and structure of each 
sub-network must be fixed by the experimenter before learning begins. 

We know of only a few attempts to build up multi-layer networks in the course of training. Our decision 
to look at models in which each unit can see all pre-existing units was inspired to some extent by work 
on progressively deepening threshold-logic models by Merrick Furst and Jeff Jackson at Carnegie Mellon. 
(They are not actively pursuing this line at present.) Gallant [Gallant, 1986] briefly mentions a progressively 
deepening perceptron model (his "inverted pyramid" model) in which units are frozen after being installed. 
However, he has concentrated most of his research effort on models in which new hidden units are generated 
at random rather than by a deliberate training process. The SONN model of Tcnorio and Lee [Tenorio, 1989] 
builds a multiple-layer topology to suit the problem at hand. Their algorithm places new two-input units at 
randomly selected locations, using a simulated annealing search to keep only the most useful ones—a very 
different approach from ours. 

Acknowledgments 

We would like to thank Merrick Furst, Paul Gleichauf, and David Touretzky for asking good questions that 
helped to shape this work. 

References 

[Ash, 1989] Ash, T. (1989) "Dynamic Node Creation in Back-Propagation Networks", Technical 
Report 8901, Institute for Cognitive Science, University of California, San Diego. 

12 



[Becker, 1988] 

[Fahlman, 1988] 

[Franzini, 1987] 

[Gallant, 1986] 

[Jacobs, 1987] 

[Kramer, 1989] 

Becker, S. and leCun, Y. (1988) "Improving the Convergence of Back-Propagation 
Learning with Second-Order Methods" in Proceedings of the 1988 Connectionist Models 
Summer School, Morgan Kaufmann. 

Fahlman, S. E. (1988) "Faster-Learning Variations on Back-Propagation: An Empirical 
Study" in Proceedings of the 1988 Connectionist Models Summer School, Morgan 
Kaufmann. 

Franzini, M. A. (1987) "Speech Recognition with Back-Propagation", Proceedings, 9th 
Annual Conference of IEEE Engineering in Medicine and Biology Society. 

Gallant, S. I. (1986) "Three Constructive Algorithms for Network Learning" in Proceed­
ings, 8th Annual Conference of the Cognitive Science Society. 

Jacobs, R. A. (1987) "Increased Rates of Convergence Through Learning-Rate Adapta­
tion", Tech Report COINS TR 87-117, University of Massachusetts at Amherst, Dept. 
of CIS. 

Kramer, A. H. and Sangiovanni-Vincentclli, A. (1989) "Efficient Parallel Learning Al­
gorithms for Neural Networks" in D. S. Touretzky (ed.), Advances in Neural Information 
Processing Systems 1, Morgan Kaufmann. 

[Lang, 1988] 

[Lapedes, 1987] 

[Moody, 1989] 

[Rumelhart, 1986] 

[Tenorio, 1989] 

[Tesauro, 1988] 

[Waibel, 1989] 

[Watrous, 1988] 

Lang, K. J. and Witbrock, M. J. (1988) "Learning to Tell Two Spirals Apart" in Pro­
ceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann. 

Lapedes, A. and Farber, R (1987) "Nonlinear Signal Prediction and System Modelling", 
Los Alamos National Laboratory Technical Report LA-UR-87-2662. 

Moody, J. (1989) "Fast Learning in Multi-Resolution Hierarchies" in D. S. Touretzky 
(ed.), Advances in Neural Information Processing Systems 1, Morgan Kaufmann. 

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) "Learning Internal Rep­
resentations by Error Propagation" in Rumelhart, D. E. and McClelland, J. L.JParallel 
Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press. 

Tenorio, M. F., and Lee, W. T. (1989) "Self-Organizing Neural Nets for the Identification 
Problem" in D. S. Touretzky (ed.), Advances in Neural Information Processing Systems 
1, Morgan Kaufmann. 

Tesauro, G. and Janssens, B. (1988) "Scaling Relations in Back-Propagation Learning" 
in Complex Systems 2 39-44. 

Waibel, A. (1989) "Consonant Recognition by Modular Construction of Large Phonemic 
Time-Delay Neural Networks" in D. S. Touretzky (ed.), Advances in Neural Information 
Processing Systems 1, Morgan Kaufmann. 

Watrous, R. L. (1988) "Learning Algorithms for Connectionist Networks: Applied 
Gradient Methods of Nonlinear Optimization's, Tech Report MS-CIS-88-62, University 
of Pennsylvania, Dept. of CIS. 

13 


