
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Nonlinear Problem Solving
Using Intelligent Casual-Commitment

Manuela M. Veloso

December 1989
CMU-CS-89-210^

School of Computer Science
Carnegie Mellon University

Pi t t sburgh, PA 15213

Abstract

Complex interactions among conjunctive (simultaneous) goals motivate the need for nonlinear planners.
Whereas the literature addresses least-commitment approaches that require breadth-first search and theorem
proving style-reasoning to seek a possible answer, we advocate a casual-commitment approach that finds
viable plans incrementally. In essence, all decision points (operator selections, goal orderings, backtrack­
ing points, etc.) are open to introspection and reconsideration. However, in the presence of background
knowledge - heuristic or definitive - only the most promising parts of the search space will be explored in
satisficing mode to produce a solution plan efficiently. In the limiting case, however, casual commitment can
backtrack, explore the entire space subsuming all goal orderings, and generate partial orders guaranteeing
synthesis of all possible plans including the optimal one. This paper reports on the full implementation of
the efficient, casual-commitment nonlinear problem solver of the PRODIGY architecture. The principles of
nonlinear planning are discussed, the algorithms in the implementation are described in some detail, and
the use of knowledge (if present) to focus search is considered.

This research was sponsored by the Defense Advanced Research Projects Agency (D O D) , A R P A Order No. 4976,
Amendment 20, under contract number F33615-87-C-1499, monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Aeronautical Systems Division (AFSC) , United States Air Force, Wright-Patterson A F B ,
Ohio 45433-6543.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the US Government.

C o n t e n t s

1. I n t r o d u c t i o n 1

2. M o t i v a t i o n 1

2.1 . Linear problem solving 1

2.1.1. An example on the non-optimal character of linear planning 2

2.1.2. An example on the incompleteness of linear planning 3

2.2. Nonlinear problem solving 5

2.2.1. Least-commitment and intelligent casual-commitment 6

2.2.2. Completeness 6

3 . N o L i m i t - T h e search a l g o r i t h m 7

3.1. An example: solving the ONE- WAY-ROCKET problem 9

3.2. Failing and backtracking 14

4. C o n t r o l k n o w l e d g e 15

5. Par t ia l a n d to ta l orders 16

5.1. Converting total orders into a set of partial orders 16

5.2. Generat ing total orders from a set of partial orders 18

6. C o n c l u s i o n 19

7. A c k n o w l e d g m e n t s 19

UNIVERSITY LIBRARIES
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213-3890

1. I n t r o d u c t i o n

A nonlinear problem solver is able to explore and exploit interactions among multiple conjunctive
goals, whereas a linear one must address each goal in sequence, independent of all the others.
Hence, nonlinear problem solving is desired when there are strong interactions among simultaneous
goals and subgoals in the problem space. We explore a method to solve problems nonlinearly,
tha t generates and tests different alternatives at the operator and at the goal ordering levels.
Commitments are made during the search process, in contrast to a least-commitment strategy
[8,10,12], where decisions are deferred until all possible interactions are recognized. This approach
has been implemented as the kernel of the P R O D I G Y architecture [6], and we refer to this system
as N o L i m i t , s tanding for Nonl inear problem solver using casual c o m m i t m e n t . NoLimit outputs a
set of partially ordered solutions assembled from totally ordered solutions produced by the search
process.

The paper is organized in six sections. In section 2 we motivate our approach with a discussion
on the issues tha t differentiate linear and nonlinear problem solving. Section 3 describes the
general search procedure used by NoLimit which we instant iate with a complete example. Section 4
discusses the use of control rules, heuristics to guide the search mechanism. In section 5 we present
the algorithms tha t t ranslate totally ordered solutions into partially ordered ones and vice versa.
Finally, in section 6, we draw conclusions and summarize the research contributions of NoLimit.
Throughout the paper the terms problem solving and planning are used interchangeably as are the
terms solution and plan.

2. M o t i v a t i o n

Consider the following idealized planning problem: given a formal description of an initial s ta te of
the world, a set of operators tha t can be executed to transition from one world s ta te to another ,
and a goal s ta tement , find a p lan , to transform the initial s ta te into a final s ta te in which the goal
s ta tement is t rue. Consider tha t the goal s ta tement is defined as a conjunction of goals. This raises
the issue of how to deal with possible interactions among the conjuncts [3]. A simple approach,
followed by early planners, such as STRIPS [4], is to solve one goal at a time. A final solution to
a problem with initial goals G\,... ,Gk is a sequence of complete subsolutions to each one of the
goals. Note tha t there is an underlying assumption of independence among the goals G x , . . . ,Gfc.
This approach can be slightly improved by allowing any permutat ion of the goals to be considered.
Thus , if the plan for Gj deletes G t , for j > i, then the planner will reorder G3 before G t . Another
level of improvement is obtained if the problem solver can reconsider a goal that was achieved
once and then deleted while working on a different goal. The planner reaches a solution when all
the goals G\y... ,Gk are t rue in some world s ta te . For now, we refer to this approach as l inear
planning. Later we return to this issue and try to identify what specific characteristics of this
approach have been identified with the term l inear planning.

2 . 1 . L inear p r o b l e m s o l v i n g

Linear planning suffers from both non-optimality and incompleteness: non-optimality in terms
of finding solutions that involve doing and undoing operators unnecessarily; incompleteness in
terms of missing a solution to problems when one exists. Both these problems are due to the fact,

1

mentioned above, tha t linear planning works on one goal at a t ime. We present two examples below
tha t i l lustrate these problems.

2 . 1 . 1 . A n e x a m p l e on t h e n o n - o p t i m a l charac ter of l inear p l a n n i n g

The problem described below is known as the Sussman anomaly as it was identified by Sussman in
[9]. Consider the blocks world with the following operator:

• MOVE(x,y,z) moves block x from the top of y to the top of z. y and z can be either the table
or another block. MOVE is applicable only if x and z are clear, and x is on y. The table
always has clear space. A block is clear if it does not have any other block on top of it.

The problem is shown in Figure 1. Note that the goal s ta tement is expressed as a conjunction of
two literals. The goal s ta tement does not fully describe the final desired s ta te . Instead it specifies
only the conditions tha t must be met in order to consider the problem solved.

Initial s ta te:
(on B table)
(on A table)
(on C A)
(clear C)
(clear B)

X
A (Bl

Goal s ta tement :
(and

(on A B)
(on B C))

X
A

Figure 1 - The Sussman anomaly: Find a plan to transform
the initial s ta te to achieve the goal s ta tement .

In Figure 2 we show two plans generated by a linear planner augmented to consider different
permutat ions of the conjunctive goals, and work on a single goal more than once, i.e., admit t ing
that a goal might need to be reachieved. For both plans, the initial s ta te and the goal s ta tement
are the ones shown in Figure 1.

The two plans differ in the choice of the first goal considered. It is clear that both plans are
non-optimal, as both have actions tha t are done and undone unnecessarily. For example, in the
first plan, B is moved from the table to the top of C, to achieve the goal (on B C). It is then moved
back to the table to clear C so that the goal (on A B) may be achieved. These inefficiencies arise
because the linear planner forgets about the other goals while trying to achieve a particular goal
in the conjunctive set. More formally, this means tha t , if the goal s ta tement is the conjunction of
goals G i , . . . ,Gjt, the linear planner does not consider any of the goals Gj,j ^ i, when working on
goal G t . An optimal solution to the Sussman anomaly is the three-step plan: (MOVE C A table),
(MOVE B table Cj , (MOVE A table B).

2

Goal Step of the Plan State

HI 151

(on B C) (M O V E B table C)
\E
c
A

(on A B) (MOVE B C table)

(MOVE C A table)

(MOVE A table B)

H IS]

(on B C) (MOVE A B table)

(MOVE B table C)

| A | | C | | B |

(on A B) (MOVE A table B)
B "

c

Goal Step of the Plan State

51 I B I

(on A B) (MOVE C A table)

(MOVE A table B)

jAjcl i l

(on B C) (MOVE A B table)

(MOVE B table C)

[Ai[cpi

(on A B) (MOVE A table B)
B "

Figure 2 - T w o linear plans that solve the Sussman anomaly inefficiently.

Non-optimality is a problem tha t could, however, be overcome by a post-processing module
tha t removes unnecessary steps after the planning is completed [7]. It is not straightforward to
think of a general way to deal with arbitrary repetitions of the same goal and other suboptimal
plan steps. Detecting loops in the s ta te is not a guaranteed mechanism, as a situation could occur
where an operator would always change the s ta te but in irrelevant details regarding the goals. We
can say tha t in this particular example of the Sussman anomaly the linear planner is lucky to find a
solution, even if non-optimal, by working repeatedly on the same goals. In general, however, linear
planners may fail drastically, as we discuss below.

2 .1 .2 . A n e x a m p l e o n t h e i n c o m p l e t e n e s s of l inear p l a n n i n g

A much more serious problem occurs when a linear planner fails to solve a problem that could
be solved if goal interactions were properly considered through interleaving of subgoals. In the
example we show below, the linear planner fails to produce any solution at all. Consider the set
of operators given in Figure 3 tha t define the ONE-WAY-ROCKET domain. Variables in the
operators are represented by framing their name with the signs u < " and " > " . In this world, there
are variable objects and locations, and one constant R O C K E T . An object can be loaded into the
R O C K E T at any location by applying the operator LOAD-ROCKET. Similarly, an object can
be unloaded from the R O C K E T at any location by using the operator UNLOAD-ROCKET. The
operator M O V E - R O C K E T shows that the R O C K E T can move only from the constant location
locA to the constant location locB. Although NoLimit will solve much more complex and general
versions of this problem, the present minimal form suffices to illustrate the need for nonlinear
planning.

3

(LOAD-ROCKET
(preconds
(and
(at <obj> <loc>)
(at ROCKET <loc>)))

(ef fects
(add (inside <obj> ROCKET))
(del (at <obj> <loc>))))

(UHL0AD-ROCKET (MOVE-ROCKET
(preconds
(and
(inside <obj> ROCKET)
(at ROCKET <loc>)))

(effects
(add (at <obj> <loc>))
(del (inside <obj> ROCKET))))

(preconds
(at ROCKET locA))

(effects
(add (at ROCKET locB))
(del (at ROCKET locA))))

Figure 3 - The three operators defining the ONE- WA Y-ROCKET domain.

Initial s tate: Goal s ta tement :
(at ob j l locA) (and
(at obj2 locA) (at obj l locB)
(at R O C K E T locA) (at obj2 locB))

Figure 4 - A problem in the ONE- WA Y-ROCKET world.

The problem we want to solve consists in moving two given objects objl and obj2 from the
location locA to the location locB as expressed in Figure 4. In Figure 5 we show the two incomplete
plans that a linear planner produces before failing. The two possible permutat ions of the conjunctive
goals are tried without success. Accomplishing either goal individually inhibits the accomplishment
of the other goal as a precondition of the operator LOAD-ROCKET cannot be achieved. The
R O C K E T cannot be moved back to the object 's initial position. An example of a solution to
this problem is the following plan: (LOAD-ROCKET obj l locA), (L O A D - R O C K E T obj2 locA),
(M O V E - R O C K E T) , (UNLOAD-ROCKET obj l locB), (U N L O A D - R O C K E T obj2 locB).

Goal Plan
(at objl locB) (LOAD-ROCKET objl locA)

(MOVE-ROCKET)
(UNLOAD-ROCKET objl iocB)

(at obj2 locB) failure

Goal Plan
(at obj2 locB) (LOAD-ROCKET obj2 locA)

(MOVE-ROCKET)
(UNLOAD-ROCKET obj2 locB)

(at objl locB) failure

Figure 5 - Two failed linear plans for the ONE-WAY-ROCKET problem. The second conjunctive
goal cannot be achieved because the R O C K E T cannot return to pick up the remaining object.

T h e failure presented is due to the irreversibility of the operator M O V E - R O C K E T , combined
with the linear strategy used. We introduce below a general categorization of operators with respect
to reversibility. Suppose tha t an operator O applies to a s ta te of the world S0id and produces a
new s ta te of the world S n c w .

e An operator is r evers ib le if there is a sequence of operators 0\ . . . Ok tha t produce the s ta te
Sold when applied to S n e w , i.e., Ok{Ok-i{... (Oi(Snew)...) = Sold.

- An operator is eas i ly revers ib l e if both the number k of operators and the cost of
applying the k operators are reasonable within an accepted metric. In the simplest case,
there exists a single operator Oj such that Oj(Sncw) = S0id.

4

- An operator is no t eas i ly revers ib le otherwise.

• An operator is i rrevers ib le if there is no sequence of operators that apply to the s ta te Snew

producing the s ta te 5 0 /^ again.

Linear planners may generate non-optimal solutions in the presence of reversible operators and may
fail to find solutions in the presence of irreversible operators. Planning with irreversible operators
requires special mechanisms to avoid artificial deadends. We will show later how NoLimit deals
with these problems due to its nonlinear character.

2 .2 . N o n l i n e a r p r o b l e m s o l v i n g

There has been some ambiguity in previous work in the use of the terms l inear and nonl inear
planning. Linear planning has been used in the context of planners tha t generate totally ordered
plans. We discuss below why we think total ordering is not specific to linear planners.

We claim tha t linear planning refers to the following interdependence characteristics:

• searching using a stack of goals, not allowing therefore interleaving of goals at different depths
of search,

• generating solutions as sequential concatenation of complete subsolutions for conjunctive
goals, and, recursively, for conjunctive subgoals.

The notion of nonlinear planning was motivated by recognizing problems like the Sussman
anomaly in a linear planner such as STRIPS [9], The approach proposed to face this anomaly
consisted of deferring taking decisions while building the plan [8]. The result of a planner tha t
follows this least-commitment strategy is a partially ordered plan as opposed to a totally ordered
one, and consequently the term nonlinear plan is used. However, the essence of the nonlinearity is
not in the fact that the plan is partially ordered, but in the fact that a plan need not be a linear
concatenation of complete subplans. NoLimit can generate totally ordered plans that are nonlinear,
i.e., they cannot be decomposed into a sequence of complete subplans for the conjunctive goal set.
Therefore generating totally ordered plans is not, per se, a true characteristic of a linear planner.
(In fact a totally ordered plan is itself a degenerate partially ordered one.)

Summarizing, we believe that nonlinear planning refers to the following characteristics:

• searching using a set of goals, allowing therefore interleaving of goals and subgoals at different
depths of search,

• generating solutions that are not necessarily a sequence of complete subsolutions for the
conjunctive goals.

In both linear and nonlinear planning, the final solution can be presented as a partially ordered
plan, as one can be built from a set of totally ordered plans. We present later in this paper the
algorithm tha t we use to accomplish this transformation and show how it supports this claim. To
conclude our general discussion about linear and nonlinear planning , we next discuss the complexity
of using a least-commitment s trategy and tha t of an intelligent casual-commitment one.

5

2 . 2 . 1 . L e a s t - c o m m i t m e n t and inte l l igent c a s u a l - c o m m i t m e n t

In a least-commitment planning strategy, decisions are deferred until forced by constraints. Typi­
cally what happens is tha t conjunctive goals are assumed to be independent and worked separately,
producing unordered sets of actions to achieve the goals. From time to t ime, the planner fires some
plan critics tha t check for interactions among the individual subplans. If conflicting interactions are
found, the planner commits to a specific partial ordering that avoids conflicts. There may be cases
for which actions stay unordered during the whole planning process, leading to a final partially
ordered plan. In this strategy, it is NP-hard [3] to determine if a given literal is true at a particular
instant of t ime while planning, when actions are dependent on the s ta te of the world, as all paths
through the part ial order must be verified. To avoid this combinatorial explosion, planners that
follow this least-commitment s trategy use heuristics to reduce the search space to determine the
t ru th of a proposition.

A casual-commitment strategy corresponds to searching for a solution by generating and testing
alternatives in both the ordering of goals and possible operators to apply. The planner commits
to the most promising goal order and operator selection, backtracking to test other orderings
and selections, if and only if a failure is reached. Using this approach, there is no problem in
determining the t ru th of a proposition at a certain time, as a mental s ta te of the world is kept
along the search. However, in the worst case, the method involves an exponential search over the
space of solutions. Like the previous approach, NoLimit uses heuristics to reduce this exponential
search. Smart heuristics, in this context, transform a simple casual-commitment strategy into an
intelligent casual-commitment one, leading to an intelligent exploration of the different alternatives.

In a nutshell, least commitment corresponds to breadth-first search over the space of possible
plans, and casual commitment corresponds to best-first heuristic search. The former derives some
benefit from s t ructure sharing among alternative plans (the partial order) and the lat ter benefits
from any intelligence tha t can be applied at decision points - and the direct computat ion of the
world s ta te when necessary.

2 .2 .2 . C o m p l e t e n e s s

We define the completeness of a planner along three different criteria:

1. Ability to reach a solution whenever one exists.

2. Ability to find the set of all possible solutions.

3. Ability to find the optimal solution.

We discuss these criteria in function of the specification of the search algorithms independently
of the corresponding computat ional tractability.

We showed before, through an example, tha t it is easy to write a domain theory in which there
are solvable problems tha t a linear planner cannot solve, even by searching its entire solution space.
The search space of a linear planner is only a subspace of the complete search space and therefore
linear planners are not complete according to the first criterion mentioned above.

6

Other implemented nonlinear planners [8,9,10,12] are complete, in the sense tha t they are able
to explore interactions among conjunctive goals, and hence they reach a solution when there is one.
These systems generate one partially ordered plan tha t corresponds therefore to a set of individually
totally ordered executable solutions. However they reason about at most one partially ordered plan
(backtracking among different partial orders). This prevents these planners from being complete
in terms of the two last criteria referred above, as the set of all the solutions to a problem is, in the
general case, a set of partially ordered plans, not mergeable into a single one. Note, for instance,
tha t different solutions may contain al ternative instantiated operators which achieve successfully
the same goal. These cannot be merged into the same partial order, as a part ial order does not
express disjunctions.

NoLimit is complete with respect to all three criteria. Like the other classic nonlinear planners,
it reaches a solution whenever there is one. Furthermore, it reasons about a set of partially ordered
plans (see section 5), having therefore the ability to find the set of all the possible solutions to a
problem, including the optimal one.

Control knowledge is usually used to guide and eventually prune the search space to reduce
exponential explosion, allowing the implementations to be computationally t ractable. However, if
completeness is a desired characteristic of a nonlinear planner, special care has to be taken with
respect to the heuristics used. To guarantee completeness, in any of the three senses defined,
heuristics cannot be used to definitely eliminate portions of the search space unless there are prov-
ably no solutions in the discarded subspaces. In general, heuristics should be used to prefer some
alternatives or choices over others while still keeping the entire domain solution space as a fallback
position. On the other hand, if there are other priorities besides completeness (like speed, efficiency,
etc) , then control knowledge can and should reject parts of the search space. Completeness may be
desirable, but can also be very expensive. The ideal situation is to produce a nonlinear planning
architecture tha t is in the default complete - tha t exploits preferential heuristics when available -
and tha t accepts constraints and definite rule-out heuristics, if the user or application demands
their use for computat ional tractabili ty in large problem spaces.

3 . N o L i m i t - T h e search a l g o r i t h m

NoLimit is a nonlinear problem solver that uses means-ends analysis. The representation used to
define the domain theory is an extension of the P R O D I G Y description language [6,11] - a kind of
s t ructured first-order-logic with finite-extent metapredicates. For the purpose of this paper, one
can just assume tha t an operator is a simple conjunction of preconditions tha t s ta te the necessary
conditions to apply the operator, and a list of effects of the operator on the world, stated as
predicates to be added a n d / o r deleted. A basic means-ends analysis module tries to apply operators
tha t reduce the differences between the current world and the final desired goal s ta te (a partial
description of the world). Basically, in a backward chaining mode, given a goal predicate not true
in the current world, the planner selects one operator that adds (in case of a positive goal, or
deletes, in case of a negative goal) tha t goal to the world. We say tha t this operator is relevant to
the given goal. If the preconditions of the chosen operator are true, the operator can be applied.
If this is not the case, i.e., some preconditions are not t rue in the state, then these preconditions
become subgoals, i.e., new goals to be achieved.

NoLimit proceeds in this apparently simple way too. Its nonlinear character stems from working
with a s e t of goals in this cycle, as opposed to the top goal in a goal stack. The skeleton of NoLimit's

7

search algori thm is shown in Figure 6. The algorithm describes the basic cycle of a mental planner.
Applying an operator means executing it in the internal world of the problem solver, which we refer
to, simply by world or state. A more complete (and real) version of the algori thm can be obtained
by adding, to this basic cycle, the several details we discuss along the paper.

1. Check if the goal s ta tement is t rue in the current s ta te .

If yes, then show the formulated plan (and take appropriate action, namely stop or continue
searching).

else continue.

2. Compute the set of pending goals G, and the possible applicable operator A.

3. Choose a goal G from Q or select the operator A tha t is directly applicable.

4. If G has been chosen, then

• expand goal G, i.e., get the set O of relevant instantiated operators for the goal G,
• choose an operator O from 0 ,

• go to step 2.

5. If the operator A has been selected as directly applicable, then

• apply A,
• go to step L

Figure 6 - A skeleton of NoLimit's search algorithm.

In step 1 of the algorithm, we check whether the top level goal s ta tement is true in the current
s ta te . If this is the case, then we have reached a solution to the problem. We can run NoLimit in a
multiple-solutions mode that allows us to have the option of searching for more than one solution
to a problem. In this mode, NoLimit shows the solution found and continues searching for more
solutions, which it groups into buckets of solutions. Each bucket has different solutions tha t use
the same set of plan steps (instantiated operators) . The set of different totally ordered solutions
within a bucket form a potential partially ordered solution (see section 5).

We continue to step 2, in case the goal s ta tement is not yet t rue in the current s ta te . In step 2,
we compute the set of pending goals.

A goal is pending, iff it is a precondition of a chosen operator tha t is not t rue in the s tate .

Let's continue the subgoaling branch of the algorithm, by choosing, at step 3, a goal from the set
of pending goals. The problem solver expands this goal, by gett ing the set of instantiated operators
tha t are relevant to it (step 4). NoLimit now commits to a relevant operator. This means that the
goal just being expanded is to be achieved by applying this chosen operator.

At step 2, we further check for an applicable chosen operator.

An operator is app l i cab le , iff all its preconditions are true in the state.

8

The operator considered to be applicable is the last chosen operator not applied yet in the
current search pa th . Note tha t we can apply several operators in sequence by repeatedly choosing
step 5 in case there are applicable operators. The applying branch continues by choosing to apply
this operator a t s tep 3 , and applying it a t step 5, i.e., performing the effects of the operator into
the s ta te .

A search pa th is therefore defined by the following regular expression

(goal chosen-op applied-op*)m.

It is a sequence of a goal, followed by the selection of a relevant operator to this goal, followed by an
eventual sequence of applied operators. As an example, a path might be: (goall chosen-opl goal2
chosen-op2 applied-op2 applied-opl). The path (goall chosen-opl goal2 chosen-op2 applied-opl
applied-op2) is not possible as the operator opl is to be applied after the operator op2 according
to the commitments made at choice time. To get operator opl to be applied before operator op2
then the corresponding goals goall and goal2 should be interchanged. As NoLimit reasons with a
set of goals, this is easily realized, and is important in obtaining nonlinear behavior by interleaving
subgoal trees.

3 . 1 . A n e x a m p l e : s o l v i n g t h e ONE- WA Y-ROCKET p r o b l e m

We now show how NoLimit searches for a solution to the ONE- WA Y-ROCKET problem introduced
earlier (see Figures 3 and 4) following its subgoaling s tructure in the planning graph. The graph
is stored during the search process in an A N D / O R conceptual tree, for short ctree, s t ructured as
follows:

• A conceptual AND-node (AND-cnode) is a literal corresponding to an instant iated goal and
a conceptual OR-node (OP-cnode) is an instantiated operator.

• The children of an AND-cnode are OR-cnodes and the children of OR-cnodes are AND-
cnodes.

• An OR-cnode is an instant ia ted operator that is relevant to the goal at its parent AND-cnode.

• An AND-cnode is either the internal top-level goal (done) or is a precondition of its parent
OR-cnode.

For the sake of having a unique root in the conceptual tree, and following the same convention
used in the linear problem solver of P R O D I G Y [6], NoLimit has an internal goal (done) that is
added to the s ta te by an internal operator * finish* whose preconditions are set initially to the
externally provided goal s ta tement . This is an implementation detail, but has the nice effect of
transforming a forest of trees each rooted at a different user-given goal conjunct, into a unique tree
rooted at the goal (done). Note tha t the same goal or instantiated operator may be repeated in
several places in the conceptual tree, as the subgoaling s t ructure is really a graph.

Let us trace NoLimit in solving the ONE- WAY-ROCKET problem, given the conjunctive goal
(and (at objl locB) (at obj2 locB)). Figure 7 (a) shows the corresponding initial ctree. AND-cnodes
are represented as rectangles and OR-cnodes as ovals. Shaded nodes correspond to the choices to
which the problem solver has already committed.

9

Table 1 summarizes the search process as successful partial paths. We write operators in upper­
case when they are applied. In this table the search steps are directly related to the choices
identified in the search algorithm described above. The indentat ion captures roughly new search
cycles and operator applications. Changes in the s ta te are also represented when an operator is
applied. To follow the search cycling, the reader should follow the search steps in the sequence
presented in the table. The resulting ctree after each step is illustrated in the figure referred in
the corresponding column. T h e "choices left" at each step correspond to the figure referred in the
immediately previous s tep. As an example, consider the third search step in the table, i.e., where
the choice (at objl locB) is taken. The immediately previous ctree is the one in Figure 7 (a) , where
we can see that there is one choice left, namely the goal (at obj2 locB). Figure 7 (b) illustrates the
choices made at the third and fourth step in the table.

Search steps Choices left Figure State

(done) 7 (a) (at obj l locA)
(at obj2 locA)
(at rocket locA)

finish
7 (a) (at obj l locA)

(at obj2 locA)
(at rocket locA) (at ob j l locB) (at obj2 locB) 7 (b)

(at obj l locA)
(at obj2 locA)
(at rocket locA)

(unload-rocket ob j l locB)
7 (b)

(at obj l locA)
(at obj2 locA)
(at rocket locA)

(inside obj l rocket) (at rocket locB)
(at obj2 locB)

7 (c)

(at obj l locA)
(at obj2 locA)
(at rocket locA)

(load-rocket obj l locA) (load-rocket obj l locB)

7 (c)

(at obj l locA)
(at obj2 locA)
(at rocket locA)

(LOAD-ROCKET obj l locA) (at rocket locB)

7 (c)

(inside obj l rocket)
(at obj2 locA)
(at rocket locA)

(at obj2 locB) (at rocket locB) 7 (d)
(inside obj l rocket)
(at obj2 locA)
(at rocket locA) (unload-rocket obj2 locB)

7 (d)
(inside obj l rocket)
(at obj2 locA)
(at rocket locA)

(inside obj2 rocket) (at rocket locB) 7 (e)

(inside obj l rocket)
(at obj2 locA)
(at rocket locA)

(load-rocket obj2 locA) (load-rocket obj2 locB)
7 (e)

(inside obj l rocket)
(at obj2 locA)
(at rocket locA)

(LOAD-ROCKET obj2 locA) (at rocket locB)

7 (e)

(inside obj l rocket)
(inside obj2 rocket)
(at rocket locA)

(at rocket locB) 7 (f)
(inside obj l rocket)
(inside obj2 rocket)
(at rocket locA) (move-rocket)

7 (f)
(inside obj l rocket)
(inside obj2 rocket)
(at rocket locA)

(M O V E - R O C K E T)

7 (f)

(inside obj l rocket)
(inside obj2 rocket)
(at rocket locB)

(U N L O A D - R O C K E T obj2 locB)

7 (f)

(inside obj l rocket)
(at obj2 locB)
(at rocket locB)

(U N L O A D - R O C K E T obj l locB)

7 (f)

(at obj l locB)
(at obj2 locB)
(at rocket locB)

FINISH

7 (f)

(done)
(at obj l locB)
(at obj2 locB)
(at rocket locB)

Table 1 - Tracing NoLimit solving the ONE-WAY-ROCKET problem.

10

dor**

lat objl hcB lat obj2 iocB

(a)

don*

atobfttocB \at obj2 bcB

Inside objl ROCKET at ROCKET kxB

(b)

atobfl tocB

^Ap~ROCKETobi1~k>^>

lat ROCKET kxB

^AD-ROCKET objl toc^

latobjl foot tat ROCKET tocA

\atobj2locB

(C)
Figure 7 - Conceptual trees generated by NoLimit in successive planning steps

corresponding to Table 1 for the ONE- WAY-ROCKET problem.

11

file:///atobj2locB

C^^OAO-ROCKETobffkxB

Inside objl ROCKET [at ROCKET kxB

<gAp-ROCKETabi1 (gAD-ROCKET objl too

atobjt locA lot ROCKET kxA \atobj1 tocfl far ROCKET locB

BtoblftoeB atobptoeB

CVNUMD-RQCKETobp bcjr^>

ynsida obj2 ROCKET [at ROCKET kxB

(d)

CUNLDAD-ROCKETobjl kxB

[at ROCKETtocfl inside obJ2 ROCKET lat ROCKET bcB

\atobj1 tocA [at ROCKET kxA lat objl hcB lat ROCKET kxB

atobj2)ocA lat ROCKET tocA lat obj2 kxB [at ROCKET hcB

(e)

Figure 7 - (continued)

12

file:///atobj1
file:///atobj1

Figure 7 (e) shows the complete conceptual tree for the successful pa th traced in Table 1.
The numbers at the operator nodes refer to the final plan steps in chronological order. NoLimit
therefore ou tpu ts the plan: (LOAD-ROCKET ob j l locA), (LOAD-ROCKET obj2 locA), (MOVE-
R O C K E T) , (U N L O A D - R O C K E T obj2 locB), (UNLOAD-ROCKET obj l locB). NoLimit solves
this problem, where linear planners fail, because it switches a t tent ion to the conjunctive goal
(at obj2 locB) before completing the first conjunct (at objl locB). This is shown in Figure 7 (e) by
noting tha t , after the plan step 1 where the operator (L O A D - R O C K E T obj l locA) is applied as
relevant to a subgoal of the top-level goal (at objl locB), NoLimit changes its focus of at tent ion
to the other top-level goal and applies, at plan step 2, the operator (LOAD-ROCKET obj2 locA)
which is relevant to a subgoal of the goal (at obj2 locB). Therefore the complete subplans for the
each of those goals are interleaved and cannot be organized in strict linear sequence.

dorm

latobftbcB

<^fLOAD^OCKEToti1 bcB^

atobjl locA \
at ROCKET fee*

atobjl kxB

latROCKETbcB

atROCKETbcB

atobpbcA \
at ROCKET tocA

^AD-ROCKET obj2loc^

atobpkxB

atROCKETbcB

atROCKETkxA at ROCKET bcA

(f)

Figure 7 - (continued) The complete conceptual tree for a successful solution path.
T h e numbers a t the nodes show the execution order of the plan steps.

Shaded nodes correspond to the choices to which the problem solver committed.

13

NoLimit can find all the possible solutions to planning problems. In this case the other three
possible plans are obtained quite easily by NoLimit, without necessitating three more complete
searches. Instead it tries successfully to vary the solution found, considering the alternatives left
unexplored. By using the algorithm described in section 5 to convert a set of totally ordered plans
into a set of partially ordered ones that cover it, NoLimit is also able to propose different solutions
tha t are then simply tested. In this particular case, NoLimit returns the part ial order represented
in Figure 8.

L O A D - R O C K E T obj l locA U N L O A D - R O C K E T obj l locB

M O V E - R O C K E T

L O A D - R O C K E T obj2 locA U N L O A D - R O C K E T obj2 locB

Figure 8 - Partially ordered plan for the ONE-WAY-ROCKET problem,
corresponding to the four totally ordered plans consistent with the partial order.

3 . 2 . Fai l ing a n d backtrack ing

The only true cause for failure is reaching a subgoal that is unachievable for lack of any relevant
operators , in which case the path fails and is abandoned.

NoLimit has several other heuristics that propose suspending a pa th , under various conditions
when a pa th becomes unpromising. The two main ones follow:

• Goal loop - If a subgoal is generated that is still pending earlier in the pa th , then a goal loop
is recognized.

• Sta te loop - If applying an operator generates a s ta te in the world that was previously visited,
then a s ta te loop is recognized. Note that suspending processing on state-loop detection is
truly a heuristic - progress could still be made working for instance, on other goals first. A
complete planner cannot totally abandon search in this si tuation.

Upon failure, NoLimit backtracks chronologically to the previous choice points. However it has
the ability to call backtracking control rules (see section below) that accept (or reject) a particular
backtracking point as a good (or bad) one, thus performing more intelligent allocation of resources
and permit t ing dependency-directed backtracking or other disciplines tha t override the chrono­
logical backtracking default. When a backtracking choice point is found, the next choice left is
considered and the search proceeds through another path exploring a new alternative.

14

4. C o n t r o l k n o w l e d g e

The search algori thm described in the previous section involves several choice points, to wit:

• Wha t operator to choose to achieve a particular goal?

• Wha t bindings to choose in order to instant ia te the chosen operator?

• Wha t goal to select from the set of pending goals and subgoals?

• Apply an applicable operator or continue subgoaling?

• Should the search pa th being explored be suspended?

• Upon failure, what al ternative instantiated operator to choose to achieve a pending goal?

• Upon failure, what al ternative goal to subgoal on?

• Upon failure, apply an applicable goal or subgoal on a goal left to work on?

• Upon exhaustion of alternatives, what suspended path to consider for further search?

Decisions at all these choices are taken based on user-given or learned control rules to guide
the casual commitment search. Control rules can select, reject, prefer, or decide alternatives [11].
They guide the search process and help to reduce the exponential explosion in the size of the search
space. All these choice points have been largely recognized as the crucial decisions in the problem
solving paradigms. Previous work in the linear planner of P R O D I G Y used explanation based
learning techniques [5] to extract from a problem solving trace the explanation chain responsible
for a success or failure and compile search control rules therefrom. We are now developing a
case-based approach that consists in storing individual problems solved in the past to guide the
several decision choice points [1,2] when solving similar new problems. The machine learning and
knowledge acquisition work supports the NoLimit casual-commitment method, as it assumes there
is intelligent control knowledge, exterior to its search cycle, that it can rely upon to take decisions.

For a complete description of the syntax and functionality of control rules, the reader is referred
to [11]. For illustrative purposes, here we show a simple example of a backtracking control rule
using a pseudo-code language. Failure occurs, when the problem solver encounters a goal tha t
cannot be achieved, i.e., a goal that does not have any relevant operators. It then makes sense
to backtrack to a node where the operator tha t has this goal as a precondition was chosen and
select an al ternat ive operator (ra ther than exploring another path requiring the same operator,
and guaranteed to fail for the same reason).

(CONTROL-RULE
(preconditions (and (is-failure-reason 'no-relevant-operators)

(was-working-for-goal <goal>)
(is-precondition-at <the-current-node> <goal>)))

(effects (select for-backtracking <the-current-node>)))

The system has the ability to consider all the coexisting control rules and take action as soon
as some control knowledge applies. T h e control rule shown above is domain independent. For
examples on domain dependent control rules see [5,6,11].

15

5. P a r t i a l a n d to ta l orders

A partially ordered graph is convenient to represent the ordering constraints t ha t exist among the
steps of the plan. Consider the partial order as a directed graph (V, E), where V, the set of vertices,
is the set steps (instant ia ted operators) of the plan, and E is the set of edges (temporal constraints)
in the part ial order. Let V = {i>oi t > 2 , . . . , v n - i } - We represent the graph as a square array P , where
P[i,j] = 1, if there is an edge from vertex v t to vertex VJ. There is an edge from v t to Vj, if the
operator corresponding to v, must be executed be fore the one corresponding to Vj, referred from
now on as simply v j . We say tha t V{ p r e c e d e s Vj and denote it as V{ < v:. The inverse of this
s ta tement does not necessarily hold, i.e. there may be the case tha t u t -< Vj and there is not an
edge from Vi to Vj. This is due to the fact tha t the relation -< is the transitive closure of the relation
represented in the part ial order. We show a simple example of a partial order in Figure 9. Wi thout
loss of generality consider operators VQ and v n _ i of any plan to be the fictitious operators named
start and finish, represented in Figure 9 as s and / .

Legal orderings are, for example, (s , v i , v 2 y v 3 y v 4 , v 5 , t ; 6 , /) , or (s, v\, v$y v 2 , v 6 , t>3, v 4 , /) , or -
(s , vi,t75,V3,*>2, *>6, u 4 , /) . The ordering (s , U5, v$, v 3 , v 2 , v 4 , v\, f) is not legal as vx has to come
before v 2 , V3, and v4. We can enumerate all the total orders that can be generated from a partial
order. We say tha t a set of part ial orders V covers a set of total orders T if every element of T
can be generated from at least one element of V. If the complete set of total orders generated from
V is equal to T , then we say that V covers e x a c t l y T .

5 . 1 . C o n v e r t i n g t o t a l orders in to a s e t o f part ia l orders

NoLimit internally generates totally ordered plans. It can generate as many solutions as we want
until the search space is exhausted. The complete set of solutions is a s e t of partially ordered
solutions. Note tha t in general a set of total orders c a n n o t be represented by a single part ial order
(as assumed in least-commitment planning) but rather by a (smaller) set of partial orders. Further
note tha t a total order is itself a degenerate partial order. We are interested however in generating
a better set of partial orders than the enumerat ion of ail the total orders. We now present the
algorithm tha t NoLimit uses to create the set of partial orders that covers a set of total orders. As
an initial case consider tha t the set of total orders given is covered exactly by o n e partial order.
Let T be this set of total orders, T = {7 \ , T 2 , . . . ,T)t}. Each total order T{ is a plan, i.e., a sequence
of n instant ia ted operators from a set V = { 3 , v\,..., v n - 2 > / } • Then the algorithm described below
in Figure 10 builds the partial order by first creating a graph with the transit ive edges also present,

Figure 9 - An example of a partially ordered plan.

16

and then removing all edges tha t can be generated by the transitive closure of the remaining ones.

1. Create a square array V of size n, where V[i,j] = 1, iff Va 6 { 1 , . . . , k} vx < v3 in Ta.

2. Remove transit ive edges in V in the following way: set V[i, j] = 0, iff V[iy j] = 1, and there is
a path to go from V{ to v3 that does not use the edge (i , j) .

Figure 10 - Algorithm to generate one partial order covering a set of total orders.

In Figure 11 we illustrate this algorithm with a simple example.

(s,vi,v2,v3,f)
(s,vuv3,v2,f)
(s,v3,vuv2,f)

step 1 step

Figure 11 - Converting a complete set of total orders into one partial order.

Consider now the case where we are given a complete set of total orders that is covered by a
s e t of partial orders. In this case the algorithm, as shown in Figure 10, overgeneralizes and returns
one partial order tha t covers a super set of the given set of total orders. We rewrite the algorithm
to be able to generate a set of partial orders that covers exactly a given set of total orders (see
Figure 12). Let again T be the set of total orders, T = {7 \ , T2,..., 7*} . Each total order T, is some
sequence of n operators from a >et V = , f n - 2 > / } - The set of partial orders returned is

1. Create a square array V of size n, where V[i,j] = 1, iff Va G { 1 , . . . , k} V{ -< Vj in Ta.

2. Remove transitive edges in V in the following way: set V[i, j] = 0, iff V[i,j] = 1, and there is
a path to go from V{ to v3 that does not use the edge (i, j).

3. Set V = {V}.

4. Calculate the set T ' of the total orders generated by V. Compare T' with T .

• If V = T then return V.

• If T C T\ go to step 5. Assume Tt 6 (Tf - T) .

• If T D T ' , then go to step 6. Let V = T - T'.

5. Let Vj cover the total order T t . Break Vj into the union of two partial orders V\,V2, such
tha t Ti is not covered by VxuV2. Set V = (V - Vj) U Vx U V2. Go to step 4.

6. Calculate V tha t covers the set T " by running the algorithm with input set T " . Return
V = VuV'.

Figure 12 - Algorithm to generate a set of partial orders covering a set of total orders.

17

In Figure 13 we il lustrate the new version of the algorithm with an example.

(a , V l , V2y t>3 , /)

(5 , l > l , V 3 , V 2 , /)

(3 , r 3 , v i , v 2 , /)

(S , t > 3 , V 2 , V l , /)

after
step

V 2 , V 3 , /)

(s , V i , t 7 3 , l > 2 , /)

(5 , V 3 , V i , V2,f)

(* » V 3 , » 2 , V i , /)
after
step 4

after
step &

(5 , V 2 , V 3 , V i , /)

Figure 13 - Converting a set of total orders into a set of part ial orders.

The method used in step 5 of breaking a partial order into a set of part ial orders does not
guarantee that the final set of partial orders is the m i n i m a l set of partial orders that covers the
given set of total orders. This is acceptable within the context of our work. If t and n are the
cardinalities of the sets T and V respectively, then the algorithm runs in the worst case in 0(tn2).

5.2 . G e n e r a t i n g t o t a l orders from a se t o f part ia l orders

Step 4 of the algorithm presented in Figure 12 requires calculating the set of total orders generated
from a set of partial orders. Th? algorithm to achieve this, works by commit t ing to a particular
branch, and recursively considering the partial order that results from this commitment .

As an illustration, consider the partial order of Figure 14. T h e algorithm commits to both
possible branches out of the vertex 3. Commit t ing to vi leads to (s,v\) followed by the total
orders of the part ial order in Figure 15 (a) . Commit t ing to v3 leads to (3 , v3) followed by the total
orders of the partial order in Figure 15 (b) . This process goes on recursively until exhaustion of
the al ternat ive branches. The final set of total orders in this case is the expected (3 , ^ 1 , ^ 2 , ^ 3 , /) ,

(s,vi,v3,v2,f), and (3 , v 3 , v u v2, /).

Figure 14 - An example of a partial order from which we generate the corresponding total orders.

18

The algori thm described above in Figure 12 is very useful due to its inherent overgeneralization.
The process of creating a totally ordered solution has an associated cost due to the search process,
a l though the cost may be less than complete replanning if the full search tree is kept to explore
untried al ternatives. Wi th this algorithm, from a small set of totally ordered solutions, we can
create a set of part ial orders tha t covers more than the total orders given. Then NoLimit simply
tests the new total orders implicit in the partial order instead of searching for them. The search
effort is then balanced through the generation of a super-covering partial order and subsequent
testing of individual solutions generated by this partial order.

6. C o n c l u s i o n

NoLimit is a completely implemented nonlinear planner tha t uses an intelligent casual-commitment
s trategy to guide its search process. The casual-commitment method used to achieve its nonlinear
character is in marked contrast to the least-commitment strategy used in other nonlinear plan­
ners. NoLimit has the ability to call user-given or automatically learned control rules in all its
choice points. Work in progress includes: combining hierarchical planning with NoLimit 's search
mechanism, and making NoLimit able to replay previous traces of solutions.

The system has additional features not reported here, such as a sophisticated TMS that enables
deduction and control of beliefs, and a type hierarchy to organize the objects of the world. The
reader is referred to [11] for a complete description of NoLimit 's implementat ion and additional
features.

7. A c k n o w l e d g m e n t s

The au thor would like to thank Ja ime Carbonell for motivation and continuous helpful discussions
on problem solving in general, and nonlinear planning in particular that culminated in this work.
The au thor is also in debt to Steve Minton and Craig Knoblock in several ways, namely, for early
discussions on the fundamental characteristics of linear and nonlinear problem solving, and for
detailed descriptions of the implementation of the linear planner of the P R O D I G Y architecture.
Daniel Sleator and Ravi Kannan provided important suggestions on how to address the equivalence
of partial and total orders. In particular, the first algorithm described in section 5 resulted from
a fruitful discussion with Daniel Sleator. My special thanks to Daniel Borrajo for a major part of
the underlying implementat ion. Without him, it would have been very difficult to include many
powerful features in NoLimit. Craig Knoblock, Robert Frederking, Alicia Perez, Yolanda Gil, and
Daniel Borrajo provided numerous comments on early versions of this paper. Ja ime Carbonell
assisted with the final revision. Finally the author thanks the whole P R O D I G Y research group for
constantly providing helpful suggestions during the implementation process.

19

R e f e r e n c e s

[1] J . G. Carbonell. Derivational analogy: a theory of reconstructive problem solving and expertise
acquisition. In Machine Learning, An Artificial Intelligence Approach, Volume II, Morgan
Kaufman, 1986.

[2] J. G. Carbonell and M. M. Veloso. Integrating derivational analogy into a general problem
solving architecture. In Proceedings of the First Workshop on Case-Based Reasoning, Morgan
Kaufmann, May 1988.

[3] D. Chapman . Planning for conjunctive goals. Artificial Intelligence, 32:333-378, 1987.

[4] R. E. Fikes and N. J. Nilsson. Strips: a new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189-208, 1971.

[5] S. Minton. Learning Effective Search Control Knowledge: An Explanation-Based Approach.
PhD thesis, Computer Science Depar tment , Carnegie Mellon University, 1988.

[6] S. Minton, C. A. Knoblock, D. R. Kuokka, Y. Gil, and J. G. Carbonell . PRODIGY 2.0:
The Manual and Tutorial. Technical Report CMU-CS-89-146, School of Computer Science,
Carnegie Mellon University, 1989.

[7] E. Rich. Artificial Intelligence. McGraw-Hill Inc., 1983.

[8] E. D. Sacerdoti. The nonlinear nature of plans. In Proceedings of IJCAI-75, pages 206-213,
1975.

[9] G. J . Sussman. A Computational Model of Skill Acquisition. Technical Report AI-TR-297,
Artificial Intelligence Laboratory, MIT, 1973.

[10] A. Tate . Generat ing project networks. In Proceedings of IJCAI-11, pages 888-893, 1977.

[11] M. Veloso, D. Borrajo, and A. Perez. NoLimit - The nonlinear problem solver for Prodigy:
User's and programmer's manual. Technical Report , School of Computer Science, Carnegie
Mellon University, 1990.

[12] D. E. Wilkins. Can AI Planners Solve Practical Problems? Technical Note 468R, SRI Inter­
national, 1989.

20

