
Constraint Reasoning and Planning
in Concurrent Design

V. Krishnan *
D. Navinchandra +

P. Rane *
J. R. Rinderle *

CMU-RI-TR-90-03E

Carnegie Mellon University
Kttsburgh, Pennsylvania 15213

28 February 1990

+ Robotics Institute, CMU

* Department of Mechanical Engineering, CMU

Table of Contents
1. Introduction: Concurrent Design 1

1.1 Representing Life-Cycle Concerns 1
12 Automation in Constraint Based Design 2
13 Context and Definitions 5
1.4 Monotonicity Analysis 6
1*5 Interval Methods 9
1.6 Conservativeness of Interval Calculations 10
1.7 Constraint Propagation in Design 11
1.8 Interval propagation 13
1.9 Necessary and Sufficient Intervals 13
1.10 Calculation using the Sufficiency Condition 15
1.11 Interval Criticality, Dominance, Activity 15
1.12 Global Optimization 17
1.13 Interval Variables Approach 19
1.14 Weldment Design using Interval Variables approach 20
1.15 Conclusions 22

2. Planning Constraint Solution Strategies 23
2.16 A Design Example 23

2.16.1 Ordering the constraints 25
2.17 Planning Algorithm for Serially Decomposable Constraint Sets 25

2.17.1 An Algorithm for Ordering Serially Decomposed Constraint Sets 26
2.18 Special Treatment of Serially Decomposable Constraint Sets 27
2.19 Ordering a Non-Decomposable Constraint Sets 31

2.19 J. Intuitive Explanation 31
2.19.2 The Complete Planning Algorithm 35

120 Breaking the Strong Components 35
2*20,1 Experiments with the Most-Dependent Heuristic 37

2*21 Handling Uni-Directional Constraints 37
2^L1 Intuitive Explanation 38
2.21.2 Ordering Algorithm for a Mixed, Explicit and Implicit constraint Sets 40

2*22 Related Work 41
References 42
APPENDIX A: Implementation Details 44

OMlYElSiTY LIBRARIES
CARNEGIE MELLON UNIVERSITY

fitTTSBURGH, PA 1S213.SE§0

Constraint Reasoning and Planning in Concurrent Design

Abstract

By concurrent design we mean, in part, concurrent consideration of a broad range of life-cycle constraints
concerning, for example manufacturing and maintenance. The multitude of constraints arising from these
considerations make it difficult to identify satisfactory designs. An alternative to explicitly considering
all constraints is to determine which of the constraints are relevant, redundant or inconsistent and to
consider only those which impact design decisions.

The proposed approach is based on two simple ideas: (1) Constraints provide a uniform representation for
a variety of life-cycle concerns, and (2) Interval methods applied to constraints can be used to identify
critical constraints, eliminate redundant constraints and to narrow the space of design alternatives.

The application of the necessary and sufficient intervals of constraints and constraint propagation
techniques are used to classify constraints in this way and to focus design activity. Regional monotinicity
properties are used to identify critical constraints.

A related aspect of concurrent design problems is the large number of complex constraints which have to

be satisfied to complete a design task. As it is impossible to guarantee the simultaneous solution of a large

set of design constraints, we have investigated algorithms for planning and simplifying such constraint

problems.

Chapter 1

Introduction: Concurrent Design

The practice of design is frequently sequential in nature. In the design of a jet engine turbine disk, for
example, the aerodynamic shape of the blade might first be determined, later modified to satisfy structural
constraints, and then further modified to satisfy manufacturability and maintenance considerations.

It is not surprising that such a situation exists, since there are few individuals capable of bringing a full
range of life-cycle concerns to bear during design. Nevertheless, the fact that manufacturing and
maintenance considerations are introduced only on an ad hoc basis during preliminary design gives rise to
fundamental design deficiencies. It is the purpose of concurrent engineering design to include a broad
range of functional and life-cycle concerns during preliminary design phases. While it is possible to
obtain an appearance of concurrence by rapidly iterating through the basic sequential design process, we
seek a greater degree of concurrency by attempting to identify critical life cycle concerns early and to use
those concerns to direct design decisions.

LI Representing Life-Cycle Concerns
Life-cycle concerns impose required relationships among features of the design to effect functionality,
manufacturability, reliability, and seivicibilty. In the context of engineering design, these required
relationships can be thought of as constraints among design features. Constraints may embody a design
objective (e.g. weight), a physical law (e.g. F ~ ma), geometric compatibility (e.g. mating of parts),
production requirements (e*g. no blind holes), or any other design requirement We express constraints as
algebraic relations among feature parameters (e.g. hole diameter, wall thickness, stress level).
Collectively, the constraints define what will be an acceptable design. Constraint based representations
provide a uniform representation for a variety of design considerations including function, geometry,
production and disposal. Because there is a single, uniform representation for all constraints there is no
differentiation between functional, geometrical, manufacturing, and other, so called, life-cycle constraints.
Methods used to refine the design by processing constraints are applied uniformly to all life-cycle
constraints: All constraints, whether they be behavioral, geometrical or those which have traditionally
been considered downstream, have equal impact on design decision making. It is for this very reason
thai our approach achieves concurrency.

Although constraints are a general mechanism to represent design considerations, it is net possible to
identify all design constraints at the time the design problem is first proposed. This is because the set of
relevant constraints depends on the design context If the geometry of the designed artifact is such that
casting is an appropriate manufacturing method, thai casting constraints are inquired Alternatively, a set
of machining constraints is necessary if the part is to be mmMxmL Similarly, there are constraints that

are dependent on material, assembly methods, and a host of other considerations. The relevant constraints
depend on the current design features. The features themselves may be completely defined aspects of a
detailed design or they may be partially specified characteristics of a general configuration. Because
constraints are required relationships among feature parameters they may be retracted, augmented or
refined as the design evolves. The design can be thought of as being complete when the set of constraints
stabilize and when all the constraints have been satisfied. If we assume for the remainder of this article
that constraints can be expressed as algebraic relationships among feature parameters, then we can say
that a design is complete when all variables have been assigned values and when all the constraints have
been satisfied simultaneously.

L2 Automation in Constraint Based Design
The design of certain small mechanical components can often be effectively accomplished by executing
an established design procedure. Automating such procedures is a common approach to automating the
design of components such as gears, however, as the complexity of the component itself, or the scope of
considerations increase, it is difficult to identify practical design procedures.

An alternative to coding comprehensive design procedures is to Identify isolated procedures and to
determine sequences for executing the procedures until all design variables are established. Certain rule
based design systems ami some constraint propagation systems follow this paradigm. Each rule or
constraint can be thought of as a procedure indicating how some specific design decision or variable can
be determined once oilier design parameters are known. The rales, or constraints, can then be executed*
in sequence, until the design is complete. 'This method, which requires a dependence ordering or
topologies! sorting of constraints, is the basis for a family of commercM products. It is effective for
certain classes of designs, most notably when the degree of component interaction is small and when die
design is fundamentally serial in. nature. It is not effective when the description is fundamentally what
needs to be achieved ratner than means for achieving it Such t descriptive (rather than prescriptive)
approach to design specification is advantageous because the designer does not need to consider how a
specific constraint will be satisfied, thereby facilitating the inclusion of constrainis which cannot readily
be Inteipteied as procedures. Fuithermore, descriptive specification does not impose a causality ID the
constraints. For example, if a simple disk was constrained to weigh a specific ameimL, tie constrain:
itself could be inteipreted as a procedure to detennine diameter, or tfaicteess* or density given the other
two. In this way the ooDSfntintt imposed en a design serve as both t specification of the design and as a
set of procedures for determming design parameters, The design task* in affect* is lednced :o that of
satisfying tbe given constraints.

Gnstmins satisfaction however, is not easy. Design constraints are usually nu&eiDtiE, complex and
mm-Bnai. Satisfying a large set of aibitxarily complex equality aod inapaity constraints isf in
5, the non-linear frogmnmiiig problem and* in genemi, is not solvable* Although tbe general

problem csnxx be solved* much can be done to assist the designer, ft is possible to provide the desipicr
with iaKigbts abrnn aitical inieiitaiQns ajOM»g jGBStmeSt fwbimiai: nwpiitmoMa and i i xa i a^a i i a w Sucb
infonaMicm is tisefel to tbe designer cvoi if the constraints are ultimately solved numerically because a
ptHtly mmerioi aolution d c ^ not

A large body of research exists on solving constraint problems. The SKETCHPAD [Sutherland

83]system. was an early effort on solving constraints by propagation and relaxation. Mackworth

[Mackworth 77] introduced algorithms for maintaining consistency in a network of constraint relations.

The ThingLab research effort [Boming 79] lead to ideas on propagating constraints across part-whole

hierarchies of objects. A constraint representation formalism was introduced by Sussman and Steele

[Sussman 80]. Recently, Gosling [Gosling 83] presented a planning technique which, coupled with

propagation, helps solve algebraic constraints. Other relevant work on solving sets of algebraic equations

has come from Popplestone [Popplestone 80] and Serrano [Serrano 87]. These research efforts provide a

core of solution techniques for handling and propagating variables with exact values. Unfortunately,

many if not most of the engineering design constraints are expressed as inequalities. The very nature of

constraints is such that they often do not prescribe specific values for design parameters but rather

prescribe ranges for the values. To accomodate inequality constraints while maintaining uniformity of

representation, we choose to represent all feature parameters as interval values. Conventional parameter

assignment, e.g. L = l i i « . , can be expressed as assignment to a narrow interval, e.g. L= [1.495,1.505],

explicitely representing the scale of indifference or perhaps manufacturing tolerance. Inequality

constraints, e.g. L £ 10/h, may b e expressed as an open interval, e.g. L= [10, H 1 . making explicit the (as

yet) unbounded range for a parameter value. Interval specification is also convenient for expressing

constraints which are left implicit such as the positive value requiranent, e.g. L<> 10ft. -»L=[0 ,10] .

Relationships among feature parameter values are also conveniently expressed as interval assignments,

e.g. Lx £ ^ -» Lx-Lz*[0,oo].

The ideas presented in this paper are based on treating design parameters as intervals. The notion of
imerval arithmetic was developed by Moore [Moore 66, Moore 79]. The value of interval based methods
for design has also been recognized by Ward [Ward 89]. The interval representation of values generalizes
the notion of equality assignment, provides a mechanism to deal with tolerances and adds flexibility,
making it possible to capture incompleteness and uncertainty in a design.

A design which is not yet complete may have some parameters which have not been assigned exact
values and there may be some uncertainty about the final design characteristics. Intervals may be used to
express upper and lower bounds on parameter values, making it possible to estimate some properties of
the artifact before exact values are assigned. This information can sometimes be used to guide
preliminary design, augmenting the rules of thumb or back of the envelope calculations commonly
employed by designers. Furthermore, interval based representation is a convenient framework for
implementing and bounding order of magnitude analysis and default sizing. In this way many levels of
specificity may be used simultaneously at any point in the design process. By representing all levels of
specificity as intervals and using a uniform technique for propagating the intervals through the
constraints, we are able to evaluate the constraints on the design and provide the designer valuable
feedback about potential constraint violations.

"This m m open interval and should correctly be written as \y% -H») . Became the only open intervals which we consider mm
tnboiiniecl sod because the apparent mismatch in open interval dalirrdieis is often counting we have chtten to ignore tins fine

Interval Methods for Constraint Reasoning

Introduction
The desire to address a broad range of life cycle issues in a nonsequential fashion during the early design
stages introduces two main difficulties: 1) The multitude of constraints obscure the designer's
understanding of the design by increasing the dimensionality of the problem, and 2) The dimensionality
of the problem increases the complexity of finding a design solution. It is not clear to the designer which
constraints are important and which ones are irrelevant. There is a need to sift the model and identify

L The active constraints that decide where the solution lies.

2. The critical constraints that determine (he solution and preserve the integrity of the model,
and

3. The irrelevant constraints which can be deleted from the model.

Reasoning with a set of multi dimensional nonlinear constraints, is not only a formidable task to the
human designer but also a drudgery to his creative and flexible mind. However it is essential that the
trends and trade-ofls inherent in the physics of the device be available to the designer in the early stages
of the dromon making process. There is a need for a systematic methodology to

1. Identify the critical considerations that direct the design and

2. Reason with the constraint based design model to gamer insights about the model without
having to choose specific values for the design parameters*

One approach to identifying the relevant ami critical constraints is Monotomcity Analysis. Unfortunately
most engineering design constraints do not exhibit the global monotonicity required for the application of
Monotomcity Analysis. It is therefore necessary to exploit regional properties of functions and
reassemble the regional information to draw global inferences. We seek methods to

• Extract and iitflfy^ regional information

• Address constraint evaluation, and propagation of decisions in the preliminary stages of
design.

We propose an Interval Analysis based methodology to accomplish these objectives.

in this chapter we explain the interval based methodology to reason with constraints. First, we describe
the conwpts of constraint activity^aciticality and dominance and lbs identification of these properties
using MaootDiiicify Analysis, Coodituxis under which monofooksty analysis succeeds and its limitations
also cone under this discussion. Secondly, we introduce interval methods to represent, manipulate and
propagate legiond. information and we briefly discuss the mathematics of interval methods along with
some problems associated with main. Thirdly* we discuss the utility of interval methods in handling
constrain! sets with mmy ineqtialtiesCas are common in design). We also address the refinement of
decisions through Interval propagation amonpt constraints iiercby detecting inconsistencies in the
pdimtaary safes. Fourthly , we describe the eobanceniatts ID Interval methods to detect regional
constraint dominance, activity tod criticality. Lastly, we delve cm the applications of interval methods to
global optifiilzMicHi problems.

5 •

13 Context and Definitions
Consider a stage of design when the concept and the configurations to meet the design requirements have

already been synthesized and studied, resulting in a set of constraints.2 This set of constraints is referred

to as a modeL A model in which all variables are restricted to physically realizable values is said to be

bounded?

The goal is to obtain a satisfactory design that optimally satisfies the design objective. The following

definitions are in order.

Let x be a vector = (x lf x^ xz,... x^, xh xk+v ..jcj where xv x^ -•** are the design variables.
A function f(xv x^. ..jcj is monotonically increasing with respect to x^ if an increase in Xj does not result

in a decrease in f.

A monotonic variable is one that is monotonic in every function in the model.

An active constraint is one whose presence influences the solution of the model. An active constraint is a

relevant constraint but need not be tight Le satisfied as an equality at the design solution.

Constraint 1 dominates Constraint 2 if the feasible region of constraint 1 is a subset of the feasible region

of constraint 2. Satisfaction of constraint 1 implies satisfaction of constraint 2.

An active constraint satisfied as an equality constraint at the design solution is called a critical constraint
A critical constraint is an active constraint, but an active constraint need not be critical.4

The following example clarifies these definitions.

T$y COTBminfis, we mesn, a. iwiared rslaiioisship among design objectives 2nd variables. We limit our discussion 10 &lgebnic
coostnozits*

TJI wrtfcsiln, design, variables should wot reach the values 0 or •• •

4Nc: ill tight comnliifs are critical. Consider Minimizing / = t>-5)2 , subject to x^25; Hie xommiuii is at 5 but is not
dimmed when L̂ e ccnsuaini Is removed. So Om eqiialirv cens^aint is net aciive- md ik^efore ix>c critical.

6 - .

4- •

2- -

Figure 1-1: Plot off to

cx m x-35 £ 0 and c2 » *-5.25£ 0

>The function/is monotonically increasing with respect to the design variable x in the region
x=2.0 to JC=S3.0. The unconstrained mininmm; occurs

- Now let the constraint q : ^ - 3 ^ £ 0 be introduced. The constrained minimum is atx=2.0;
Cj is an active constraint, as its presence influences the solutioa c1 is not a critical constraint
as it is not satisfied as a tight constraint at the design, solution

»The constraint cI dominates the constraint c2: x - 5.25 < 0f as satisfaction of cv means
satisfaction of c .̂ So ti^ dominated constraint Cj can be deleted from the model.

L4 Monotonicity Analysis
Monctcnicity analysis has been investigated by Wilde eL ai, [Papalambrcs and Mlde 88]. to verily and
simplify the fcrmulated. model. They argue that improper bounding usually arises from unnoticed
monotooicity in the niMhan^fcal fim^ic»s of the model and ocpouad a sec of principles that summarize
the boiondedness recoireinent of die mathematical model. Tnese tie the F t e and Second Monotomcity
pnrcipies, that can t^ used to :dendf}^ me oilical and ^levant camming in die model

Mcra^nidty Pdncipiel: In a well amstmned objective faction, wery nM)i»ttHiic variable in die

objective should be bounded by at least one active constraint.5

Monotonicity Principle2 : Every monotonic nonobjective variable in a well-bounded problem is either
1. Irrelevant and can be deleted from the problem together with all constraints in which it

occurs, or

2. Relevant and bounded by two critical constraints,6 one from above and one from below.

The utility of the Monotonicity Principles is in proving criticality and irrelevancy of constraints. This can
result in the deletion of constraints and reduction in size and complexity of the model if the variables are
globally monotonic. The Monotonicity Principles are used to solve the hydraulic cylinder problem given
below. [Papalambros and Wilde 88].

fsforce

wail
thickness

Hydraulic cylinder pressure

figure 1-2: Hydraulic Cylinder

Notations: do = outside dia.; dL = inside dia.; s = hoop stress; t = thickness;

Goal: To design the hydraulic cylinder so as to meet the following functional specifications

• F= Load Handling Capacity £ 22 pound wt(10 kgs)

• P=* Pressure £ 3.5 psi

Minimize , subject to the Constraint Set

5If a set of constrains bind the nioxtotDitic objective variable, the domiaistt constraint in tMs set is a cridcai constraint.

4 [ftgNdambKK «KI Wicie S8] use tie tarn **activew to m e n what we are calling ^crkkil-.

4. s £ S™, = SOOOfpsi) (Material Strength constraint)

P *<¥

6. r > 3 (mm) (Manufacturing constraint)

All the variables are monotonic in this modeL Reasoning using Monotonicity principles proceeds as
follows.

• Because the stress s does not appear in the objective, from Monotonicity Principle 2, if s is
relevant, then it must be bounded by one constraint from above and one from below .
Constraint 4 Muds s from above . The only other constraint in which s appears, constraint 3,
sliould binds from below. So constraint 3 becomes a directed equality, constraint 3 :-

thereby binding s from below.

• The objective variable d{ cannot be bounded from below by constraint 3, due to the
directionality on constraint 3 imposed by step 1. The only other constraint in which dt occurs,
constraint 4 , must be critical, Le satisfied as an equality.

• The criticality of constraint 4 makes F and p relevant variables* By Monotonicity Principle 2f

these relevant variables have to be bonneted by two critical constraints: one from above and
oee from below. So constraints 1 and 2 are critical yielding/?=3.5(psi) and F=22Qbs). >From
constraints, <£=72(mm).

• Fxom Monotonicity Principle lf one of the two constraints, 4 or 6 has to be critical to bind t
from below. Using 5=8000(psi), and results from step 3, constraint 4 becomes r>0.015(mm),
Therefore constraint 6 becomes critical and :=3/nm.(since satisfying constraint 6 implies
satisfaction of constraint 4 but not otherwise.)

• Tte Solution: p=$5(p$i), F=22(lbs)f t = %mm\ dt» 72(mm).

Thus Monoionici^ Analysis was able to pitmde a closed fc mi solution to the hydraulic cylinder problem
due to the global monotonicities of objective a d constraints with respect to the design variables.

if such global nicnorcnicities do not exist, it is not possible to obtain a dosed form solution
Principles. Consider the design of the cylinder for a Mgb Pressure ^plication wiicxe

the cylinder mast be tfaick waOed Then the maximum iioop sness for a thick-wailed cylinder^ at the irmer
r¥ is given bye

ince do - dp-11 we have:

s _(di+2t)2+d?

P~ p2

we use Al alloy A96061 with Syp=8000(psi) and p=4000 (psi) then the s S Syp yields,yp=8000(psi) and p=4000 (psi) then the s S Syp

P P
id therefore

(d&2if+d?

hich becomes 4 r2 + 4 ^ * - 2<if
2£0.0. This resultant constraint is not globally monotonic with respect to

easoning using Monotonicity Principles will not work because di is not a globally monotonic variable.

lthougfa the newly introduced constraint was not globally monotonic* it still is monotonic in the regions
< d{ and r > <if. If r > d{ is unreasonable in the domain of application, then the solution can be obtained
y solving the problem in one region. Else, the problem is solved separately in the two regions, and the
)lution assembled to obtain the global solution. Most design objectives are too complicated to be
lobally monotonic, but do vary monotonically over regions. Similarly in real design problems, different
Dnstraints may become active and dominant in different regions; hence great leverage can be obtained by
cploting regional information. We need means for representing, abstracting and manipulating regional
rfbmation. The need is met by the application of Interval methods.

.5 Interval Methods
itervai Methods provide a convenient framework to characterize regional properties of objectives and

rastraints. An interval is a set [a, b] such that all real numbers between a and b are included in the set

itervals can be operated on by set theoretic operators such as intersection, union and subset An interval

f a function provides upper and lower bounds for the range of the function, when its arguments span an

itervai. For eg. the interval of the function (x1 + y) for the interval x = [1,4] y = [5,10] is [6,26]. This

nplies that all the values taken by the function Cx^+y) for the given range of arguments are above 6 and

iterva! arithmetic is used as the basis for evaluating algebraic relations containing interval variables,

ielding interval results. Interval arithmetic operators are defined on the upper and lower bounds of me

poands. The interval on (jr 4-v) in tbe above example, was determined by expanding the square

peraior and applying tbe following interval arithmetic formulae, [Mooie 66]

] + [c9d] = [a + c. b + d] (1)
] - led] = [a - df b - c] (2)
] x [c9d] = [mintac9ad,bc9bd)9 mm{ac,ad»bebd)} (3)

10

[a,b] I [c ,d] = [o , d] x [l A U / c] 7 (4)

By using Interval methods, we can characterize regional monotonicities, regional feasibilities etc. of
design constraints. For example consider the newly introduced constraint in the hydraulic cylinder
problem:

c =

M. 4,-44

In the region HP, 10] and <*=[35,40],

• The interval on the partial of c is calculated by using the principles of interval arithmetic to
be » [—148,-100] < 0.0 So the constraint is monotonically decreasing with respect to the
inner diameter, (^.(Regional Monotonicity)

• The interval of the function c itself in this region a [-2744, -450] < 0; So the constraint is
violated in the whole of this region. (Regional infeasibiiity).

We shall see in a later section how the properties, regional constraint activity, criticaiity and dominancy
can be redefined through intervals.

1.6 Conservativeness of Interval Calculations
The four basic arithmetic operators, are monotonic with re^pea to «u^ of thrir arguments. Furthermore,
the sum and difference operators have known monotonicities and therefore it is possible to determine a
priori which combinations of interval endpoints must be evaluated to determine the maximum and

inteval of the function. The multiplication operator however, may have a. strictly increasing or
decresdngmonotonidty depending on whether or not the argument In this case
we must evaluate the multiplicatioii function at each combination of interval end points and select the
minimim and maximum to determine the interval. Nevertheless, these basic operators compute intervals
whieh are predsefy the interval that occurs.

Although the four basic arithmetic operators produce exact intervals, the representation of higher level
function m terms of mes^ Consider the function of
3^(xHZ)2 over ihe interval x=[0, 10]* The function itsdf is not moootooic over that intervaL Since
subdivision into monotonic intervals would require in the general case difficult solution procedures we
prefer to expessiie ftmction in terms of the monotonic anthinetic operators, Le, 3̂ = (x»2)(>:-2). In
this case the square operator has been replaced with multiplication, however, implicit in the definition of
iitcrral mmtipilcmon is thai the ^ c wtgumems may vary independentiy. This is clearly not the case for
the square foncticn which we are discussmg, however, since ±t independence of the arguments is lass
.re-stneuve. me wmM of applying the conventional interval arlutmedc wil result In an inxer/ai on v which
is ccxtservative in ±t sense thai the actual interval m the rdncnen will He within the computed inoraL
to this cam the interval compiled using intewai arithmetic is [-16,64] which includes the actual interval

hnm dMiioa c^mw is wsc ?aM wbrn die aterwi of itecfi?»wriirioih«w»

11

of [0,64]. The conservative interval calculation destroys the one to one correspondence between intervals

on arguments and intervals on functions. This is important in the context of design because it is often

necessary to determine what range of arguments will satisfy a range on the function itself. The extent to

which the computed interval deviates from the actual interval is critical to the degree to which strong

inferences can be made regarding intervals on variables.

There are some specific techniques intended to mediate against the expansion of intervals. One such

approach is the centered form of functions based on a fourier expansion of the intervals and is described

in [Moore 79]. Other heuristics, for example, to deal with even exponents are also useful. There are

several ad-hoc methods to obtain less conservative intervals, often exact intervals. Since the computation

of intervals is not the focus of our research, it will not be discussed at greater length here.

1.7 Constraint Propagation in Design
Intervals can be effective for representing and reasoning about design parameter values. It is also possible

to propagate interval values through a set of constraints and detect potential constraint violations. By

propagating design decisions through constraints it is possible to determine how the various design

parameters affect one another. In the process, redundant constraints are identified and eliminated. The

intervals of the various parameters are also refined in this process.

Consider, for example, a DC motor. The torque (T in-oz) is related to speed (o rad/sec) as shown in

Figure 3 and as given by the constraint:

r « ioo - i a

Assume that the torque must be at least 30 in-oz (.21 N-m) and must not exceed 75 in-oz (.53 N-m) and
that the speed may assume any value between 150 and 400 rad/sec. The given interval, [30,75 in-oz],8 in
conjunction with the motor characteristics imposes upper and lower bounds on speed of 125 and 350
rad/sec as shown in Figure 3. Intersecting this interval with the original interval we obtain a refined
interval on speed, [150, 350 rad/sec]. This new interval is propagated through the constraint, once again,
to find upper and lower bounds on torque, [30,70 rad/sec]. This interval on torque and the corresponding
interval on speed indicate that the original specifications requiring torque to be less than 75 in-oz and
speed to be less than 400 rad/sec were not necessary. By propagating intervals it was possible to identify
redundancies and therefore simplify the design task without making specific commitments about any of
the design parameters.

The process of propagating intervals through constraints can be continued through long chains of

constraints. The process provides a means for determining bounds on design variables thereby delimiting

a feasible space for the final design. Propagation can be dene through chains of constraints resulting in a

suceesave narrowing of parameter intervals. Continuing our example* assume the power of the motor

(given by Powers mT) is required to be less than or equal to 85GG in-oz/second (60 W), thai is, in the

sTtie SX units are not generally repeated in. the interval notation to mmwd confusion.

12

75

50
\

\

m o o o
CM U) U> O

- CM CO U>

w

figure 1*3: Torque Speed Characteristics of a D.C Motor

interval [0, 8500]. Holding the interval on Power ami propagating T and co through the two constraints
yields the interval [222,252] for the speed and the interval [30,382] for torque. This narrowing requires
about 20 iterations. By propagating intervals successively, any variable can affect any other variable as
long as thane is a chain of constraints connecting than. Propagation can occur in any direction; it is not
the case that one variable in a constraint must be selected, a priori* as being dependent while all others are
regarded as independent As constraints are propagated and as intervals narrow, specifications may be
found to be inconsistent with other constraints thereby identifying violations9 and redundancies before
specific design decisions are made. Interval propagation makes it possible to gain insight about a design
without having to choose specific values for the design parameters.

Working with irtiwais, in this way, allows one to simultaneously consider a wide range of alternatives
and to examine Interactions among design parameters before the design is completed The example also
shows tow it is possible to narrow design choices without actually committing to any single operating
point. We believe that the ability to draw important inferences about a design problem, early in the
process is important in concurrent engineering. Later in this paper, we show how interval based
propagation rneihods o n be used to provide a designer feedback about the likdy violation of life-cycle
oooitnanii, even when the design is ̂ complete* We believe t i n m a viable way of achieving cowaineiicy
in design.

T::s ,i, ; , ^ - : - r ^ i :• - :xec :: a :«J. Ee:,

13

1,8 Interval propagation
In this section we delve in more detail on the propagation of intervals through a set of constraints and the
evaluation of intervals through necessary and sufficient conditions. Consider the evaluation of intervals
using the basic interval arithmetic operations. For example, let V3 be an interval calculated from the
equation Vx op V2 = V3 . Where, op is one of the four basic interval arithmetic operators. This operation
guarantees that for any value in the intervals Vx and V2 the result of applying op will be in V3. In other
words, the result is necessarily in the interval V3.

After a constraint expression is evaluated the new interval is propagated. For example, when a new
interval is determined for a variable, that variable's current interval is updated by intersecting it with the
calculated necessary interval. If the intersection is null, then the original interval or the constraint is said
to be inconsistent This kind of propagation can be carried through complex equations using the interval
arithmetic operators. The process guarantees the result will necessarily be in the calculated interval.

In the DC-motor example, we have the equation Power » &T. Assume we know the interval on Power
[8000,25000] (inch-oz/sec) and Torque [30, 75] (inch-oz). We seek an interval on G> such that, for any
values of power and torque (within tbrir intervals) the speed* a>, falls within the interval. In other words,
we seek an interval in which G> has to necessarily be in. As shown in Figure 4 , the speed must fall
between a and b. The interval may be computed using the basic interval arithmetic to evaluate the

Power f8000 250001
constraint, expressed terms of the variable in question: ca = —«— = f *751 = [106,833].

L9 Necessary and Sufficient Intervals
The fact that a variable falls within a necessary interval does not guarantee that all constraints can be
satisfied, Le, necessary does not imply sufficient. Consider for example the situation depicted in Figure 4.
Although co[lO6, 833 rad/sec] is necessary, an arbitrary value in this interval is not sufficient to satisfy the
power requirement for arbitrary values of allowable torque since the rectangle of valid torques and speeds
extends beyond die bounding power curves. Even when we know that both torque and speed fall within
the necessary intervals it is still necessary to check that the power constraint is satisfied. There may,
however, be an interval on speed which guarantees that the power requirement will be satisfied whenever
torque requirements are met. We say that such an interval is sufficient to satisfy the constraint For
example, the interval on speed sufficient to satisfy the power requirement is shown in Figure 4. For any
value of torque and speed in their respective intervals, the power will always be between 8000 and 25000
in-oz/sec.

The concept of necessary and sufficient intervals can be very useful to the designer. If two constraints
each have associated with them a necessary interval on the same argument and those necessary intervals
do not overlap it is not possible to simultaneously satisfy both constraints. The ability to identify a
constraint contradiction of this sort early in the design cycle makes it possible for the designer to
determine appropriate relaxations of these constraints.

The interval of some variable, sufficient to satisfy a constraint insures thM a constraint wil be satisfied
whenever all of the otter variables fall within their necessary intervals* Therefore, if the necessary

14

interval of one constraint falls completely within the sufficient interval of a second constraint, then that
second constraint will be unconditionally satisfied whenever the first is and therefore the second
constraint does not need to be considered explicitly. Identifying a redundant constraint of this sort is
similarly useful to the design since only those constraints which are truly binding need be considered.

T=75

T=30

266 333

Sufficient interval
calculation

Power*25000

Power=80G0

w

Power=25000

a b w
Necessary Interval Evaluation

Figure 1-4: Constant Power Quves for a D.C Motor

In the DC-motor example, where Power*©^suppose that the interval on Power is prescribed as:
[8000,25000] (indi-02/sec) and Torque [60,70] (incfa-ozX The sufficient interval on CD is [133,357].
Suppose tbe Torque-Speed characteristics of the dx motor are given as before:

try interval due to

T * 100 - i ©

The interval on co necessary in light of torque, is [150,200] (rad/sec). Since the
the Torque Speed characteristics constraint is a subset of the sufficient interval mi the power constraint
me Torque speed characteristics constraini dominates the power constraint This is one way of showing
constraint dominance. We shall provide a suonge: necessary condition that dominant constraints obey in
a later section.

The .ry and sufficient intervals are of course r.ot imique.
• Any sab-Initfval of t $uflBdcnt interval is mo a sufficient interval

• A super-ir::erv:>3i of my necessary interval is also a imxmry inte^ai.

saffidcn intervals tmcciiaiaxi in any WBCmsa

15

1.10 Calculation using the Sufficiency Condition
In this section we present a method to evaluate the intervals on a variable based on a sufficient condition.

Our goal is as follows: Given the constraint Vx op V2 = Vv to determine V2 such that for any value in
given V^the application of op yields a result in specified V3. In other words, what should V2 be so that for
any value in Vx, Vx op V2 lies in the specified interval V3?

To obtain the unknown interval V2% we express the relation Vx op V2 = V3 in terms of the interval we
want to be within : in this case Vv Assume V2 = [v^, v ^], where v^ and v ^ are the values we seek.
Now consider the relation Vx op V2 = V3 . The left hand side can be evaluated in terms of the unknowns
V21 and v2u by applying the interval operators. These two unknowns can be found by solving the interval
equation, as demonstrated by the following example : Consider the D.C motor case in which Power is
required to be in the interval [8000, 25000] and the interval on Torque is given to be [30,75]. Our goal is
to find an interval on a> such that Power = (0 T is satisfied for all co and T in their respective intervals.
Following the above procedure: Let co = [<D/f coj. Applying the equation Power = ©J; substitute the
intervals for Power, Torque and co we get [8000, 25000] = [o>/f a>J [30, 75] from which it follows that
[8000, 25000] = [30 cty/75 ©J, since torque and speed are known to be positive definite. Equating the
upper and lower limits of the interval equation, 8000= a>r 30 gives <Dj= 266 and 25000 = (ou 75 gives <au=
333. These limits on speed give the sufficient interval.

Now consider the dual case, that of finding an interval on speed sufficient to satisfy the torque
requirement of [30,75] given that power falls within the stated interval of [8000, 25000]. Now, V3 is
Torque and Vx is Power. Expressing the equation in terms of Torque, Torque = Power/©; we get [30,75]
= [8000, 25000]/ [<fy <oj, from where it follows that 30 = 8000/a>M and 75 = 25000% The limits on
speed are hence: cou = 266 and 0); = 333 , which is a nonsense interval. There is no interval on speed
sufficient to guarantee that there is some valid torque for any power in the stated interval

This example not only demonstrates the simple methodology to evaluate sufficient intervals but also
illustates the asymmetric nature of sufficiency intervals and their conditional existence. The existence of a
sufficient intervals has an impact on the design decision making. For example, if we are designing a d.c
motor, the existence of a sufficient interval means the ability to accomodate any motor in the given torque
range or the need to use a particular motor in the given torque range. Conditions for existence of
sufficient intervals, resolutions and retractions needed for their existence arc topics of current research.

L l l Interval CritkaBty, Dominance, Activity
Constraints in design may not be globally monotonic, globally active, dominant or critical, but certainly
are regionally. The concepts of constraint criticality, dominance and activity, defined over regions, are
therefore, more effective in identifying the critical constraints ami pruning the insignificant ones. Interval
Methods, with which we represented and manipulated regional information in the previous sections, can
again be used to characterize dominant, critical and active constraints regionally.

Interval Dominance Constraint cx <0 dominates constraint c2<0 in the interval I, if the interval

16

is necessarily <0.

Constraint q dominates c2, if the feasible region of cx is a subset of the feasible region of c2. In particular
if c2

<ci» then Cj dominates c2, since satisfaction of Cj < 0, implies that c2 <0. So if c2-Cj<0, then
constraint c1 dominates c2. Regionally, this becomes interval (c^-Ci) is necessarily <0 ,for dominance of

Interval criticality An inequality constraint that is satisfied as a tight constraint for a variable xi$ over
the interval I is termed Interval Critical,10.

Interval Activity A constraint that influences the solution within the interval I is termed Interval Active.

Hie interval dominance conditions stated in this section are stronger conditions than the ones stated using
necessary and sufficient conditions in Section 5.11. Consider the application of the interval dominance
conditions to the dx motor problem where the following constraints apply:-

cv.« Power = ®T<25$0Q;
and the motor Torque-speed characteristic constraint

c2... T = 100 - io>

with Toitpie constrained to be in the interval [30,75];
The sufficient interval from ct m m is [0333], while the necessary interval on <D using c2 is [125,350].
Since the necessary interval from c2 is not a subset of the sufficient interval from cv dominance of c2

cannot be proved by the theory of necessary and sufficient intervals*

However if we used the interval dominance conditions stated in this section,
the Interval (^-c^) »Imerval(eT-25,000 • Q5-Q2®)}
sslr«erval((T+&2)m-25,025) is necessarily <0 form < 333;
Intersecting with the necessary internl on m frcm c2 we get, m »[125333]; in this Interval, constraint 2
dominates constraint L

Let us consider the utility of these properties in solving the hydraulic cylinder problem.

Hydraulic Cylinder Revfaited The two constraints invdviiig thickness were:

I. Cj 412*4df-

2. c2 t> 3»(̂ iffft};(&«n a manufacraring consideration)
One of these two constraints must be crincal, according to Mcnotcnitity Principle 1. Suppose that for

h.eavy load application, :>di m inapplicable, Tbm in the inie^ai t<d.: the new constraint is

IflOvcr t legion* t nodal if i^cizwkily Ixndid by *• MC co^ntei^ defining iw i^ko. Sc » mexwrni cxitt»i ocnstrntt

ioiar?il « i » ^ n » a^ixxw iro saffi^tt cexxtiofts* b-: nc: wsi^wry ccnciror^, m ±ey sie l^ml «i

17

monotonically decreasing; the new constraint cannot bind dt from below. The monotonic objective
variable is again bound from below by the relationship between force and dp and so
d=72(mm),F=4490Q0(lbs) p=4000 (psf).
The Constraint cx becomes 4 r2 + 2881 -10368 £ 0.0;

c2 - cv» 10365 - 2 8 7 * - 4th

interval[C2-cx] for t=[3, t j

=[10365- 287 tu-4tu
2

t 10365-287^-4^]

which is necessarily > 0 for tu £ llmnu

So in the interval [3, 27] constraint 1 dominates constraint 2.
At t = 21(mm\ constraint cx becomes tight and dominates c2-
The solution is f=27 (mm), df = 72 (mm) and do = 126 (mm), for this is the smallest value of t for which
both constraints are satisfied.

Thus, despite the absence of global monotonicities, the design solution was achieved by combining
regional information. This suggests tliat one could use interval methods not only for constraint reasoning
but also for optimizing the objectives. In fact interval methods guarantee that the resultant interval
obtained is an inclusion, i.e. the result includes and binds all values of the function in this region. Interval
Methods based algorithms use this assuredness property of intervals to obtain the global optimum. In the
next few sections we will investigate the application of interval based methods to

• Obtaining the globally optimum solution and

• Combining constraint reasoning with global optimization.

1.12 Global Optimization
Global Optimization of a nonlinear, nonconvex objective subject to nonlinear constraints is yet an
unsolved problem. There is no single best method to accomplish this goal of attaining the global
optimum. The problem with most traditional nonlinear programming techniques is that they are local
methods. They can get stuck in local valleys, and there is no guarantee that the solution is globally
optimum. Under strong assumptions about the function involved, like convexity etc. the solution can be
assured to be globally optimum.

Interval methods have been used to solve the global optimization problem [Ratschek and Rokne 88]. The
rationale behind these approaches for unconstrained optimization is as follows:

• Use interval methods to represent regional information.

• Exploit the bounds provided by the interval method as a part of a branch and bound search
strategy.

• Combine with a subdivisioning procedure, that helps accelerate the search, by yielding tigjiter
bounds. f

To solve the constrained optimization problem, these methods subdivide the constrained design space into
halves* until they get a part of the space wMdi satisfies all the constraints. Due to the the extreme

18

conservativeness of interval calculations, and the non linearity of the constraints, it is very difficult to
obtain a region that satisfies all the constraints through interval calulations.
Consider the two constraints^ £ (x-2)(x-3) andf2 £ Sx-625-x1. as shown in Figure 5.

-0.05-•

-O.I-•

-0.15-'

-0.2-•

-0.25-•

Figure 1-5: fx » (x-2)(x-3) and
f2 = Sx-625-x1.

Consider the small window represented by x=[2.4,2.6] and y» [-0.21,-0.18]. Although the rectangle
shown is dearly feasible, doing interval analysis on this rectangle cannot show that this rectangle is
feasible.
Interval[(x-2)(x-3)] forx=[2A2.6] = [-0.36,-0.16].
Y- Interval[Cc-2)(x-3)] for JC=[2.4, 2.6] = [-0.05,0.18], which is not necessarily greater than zero. So
according to interval analysis, this region may not be complexly feasible.
Despite subdividing the originally available region to very small regions we cannot prove that the small
region is going to satisfy both to cormraints, although in reality it do«. So the region which satisfies all
constraints is going to be difficult to obtain, and may be too small to be of any engineering use.

On the other hand it is not necessary that each and every constraint be satisfied a priori in every region
through interval calculations. A large portion of the constraints are dominated in some regions and can be
deleted from that region. So great gains may accrue if constraints are reasoned within each of the regions*
and model simplified, before optimizing in that region.
Combining constraint reasoning with internal based methods for global optimization, results in me
Interval Variable approach for global optimization*

19

1.13 Interval Variables Approach
Unlike conventional interval algorithms which keep sub-dividing the design space until all constraints are
satisfied, the Interval variables approach simplifies the model regionally by reasoning from a variable
point of view. The interval dominancy, criticality and activity conditions, as defined in an earlier section,
are used to reason from the variable point of view. The Interval Variable approach, by itself, may not be
able to solve all the problems completely. In such cases it may be used as a pre-processor that simplifies
themodeL

Interval Variables approach

1. Form the adjacency matrix for the model.12

2. Consider nonobjective variables first, giving preference to those variables that figure in the
least number of constraints.

• If the variable occurs in only one constraint, and is regionally monotonic in that
constraint, eliminate the constraint and the variable.

• If the variable occurs in several constraints, and is regionally monotonic with respect
to each of the constraints, then call these constraints, nonobjective conditionally
critical,(exactly one constraint in this group is critical). Apply Interval Dominance
conditions to all pairs of constraints in this conditionally critical set to identify the
critical constraint While considering the various pairs, dominance relations are
propagatedie. If A dominates B, and B dominates C, then A dominates C; The pair
A,C need not be tested for dominance.

• If the nonobjective variable is not monotonic subdivide the design space further, to
obtain desired monotonicities.

Consider monotonic objective variables, starting first with variables that occur in the least number of

constraints. For each variable,

• Partition design space to obtain desired monotonicities.

• l ist all the constraints with the desired monotonicities under an objective conditionally
critical set

• Test for interval dominancy of constraints.

• Delete the dominated constraints. Apply Monotonicity Principle 1 to obtain the constraint
which is regionally critical.

In a larger sense, the interval variable approach is similar to active set strategies, as it tries to solve the

problem by finding out the critical constraints. However instead of expecting a few constraints to be

critical throughout the design space, the interval variables approach looks for regional criticality. In

highly nonlinear situations, such as design constraints and objectives, we believe this results in significant

benefits.

Ad|mmcy nutrix lists the mantes of the constrains and fbft variables tha: occur m each of th* catmnintt. It is described m.

20

1.14 Weldment Design using Interval Variables approach

Figure 1-6: Design of Bar Weldment

The rectangular bar supporting a vertical force on one end is to be welded at die other end to a metal
column. [Ragsdell and Philips 76]. The distance ofthe metal column to the force F is denoted by L. The
four design variables in the problem are weld length /, weld rod thickness h, bar width b and bar depth t.
The objective to be minimized is the sum of weld, stub and bar costs

where Cx * 1.1047 ; C2 = 0.6735 ; C3 = 0.04811. subject to
-hi + 1.5211 £ 0.0
-b? + 16.8 £ 0.0
-b + h £ 0.0
-b? + 9.08 £0.0
0.094f + (O.Q2776/d30
-h + 0.125 50.0

0.0

... shear stress
.. bending stress in bar

. weld width < bar width
.. end deflection

..budding
..weld width's lower bound.

[Papalambros and Wilde 88] used the variable transformation a = bt, where a is the vertical cross-
sectional area of the bar. They rfimfm^ b using the transformation and obtain the following set of
constraints.

j ' s z C^hrl + C<2jta + C%a
The constraints become
gl » -hi + 1.5211 £ 0.0
gl • -at + 16.8 £ 0.0
gS » -a + ht £ OJ0
g4 » -«J2 + 9.O8 £0.0
#5 * -1+0.02776* + (0.094Aa3) £ 0.0
«6 • -A+ 0.125 £0.0

21

Start with the following intervals:-
h = [0.1,1]
' = [1 , 3]
b = [3,10]
/ = [3 ,30]

Step 1 Select the only nonobjective variable, t , for consideration. The constraints in which it appears
are as follows:-

gl = -at + 16.8 <> 0.0
gi = - a + ht £ 0.0
g4 = - a * 2 + 9.08 £0.0
g5 « -1+0.02776* + (0.094 Aa3) £ 0.0 and the set constraints

rfcl.0, t £ 3.0

On grouping the constraints into those that bind the variable t from above and those that bind from below,
we obtain
Set A(binds t from above)

gi = -a+ ht & 0.0
g5 = -1+0.02776*+ (0.094 Aa3) £ 0.0 and

*-3.0 £ 0.0

Set B(constraints providing lower bounds)
gl = -ar + 16.8 i 0.0
g4 = - a ^ + 9.08 s a O

-r+1 S 0.0

Because r is a monotonic nonobjective variable, it has to be bounded by two critical constraints, one from
above and one from below. So exactly one constraint from each set must be critical.
By Interval Dominance we can show that the set constraint r—3.0 £ 0.0 dominates the other two
constraints in set A. So it is critical and t = 3.0;
This makes sure that - r+1 £ 0.0 is not critical. Using 1=3.0 and the interval dominance condition we can
show that
g2 as —at + 16.8 ^ 0.0 dominates
g4 « - a * 2 + 9.08 £0.0 over the specified interval of a.
g4 can be deleted and g2 is critical resulting in a=(16.8/3>=5.6;

h is bounded from below by two constraints. Tte set constraint htOA ami
tte constraint g6 = • -A + 0.125 £0.0 ;
Obviously g6 dominates the set constraint and so h= 0.125;
Thus the solution in this region of the design space is h » 0.125, a = 5.6, t = 3M« b = L9.

22

1*15 Conclusions
In this chapter the utility of interval methods to reason with constraints was presented. Intervals help
abstract, represent and manipulate regional infonnation. They also help characterize regional properties.
They can easily describe incomplete designs and can accomodate any level of specificity in the values of
the variables. Furthermore, their assuredness property, makes thorn useful candidates for a methodology
to be used in global optimization.

23

Chapter 2

Planning Constraint Solution Strategies

In concurrent design problems we often have large numbers of complex constraints which have to be
satisfied to complete a design task. As it is impossible to guarantee the simultaneous solution of a large
set of design constraints, we have investigated algorithms for planning and simplifying such constraint
problems.

Satisfying a large number of constraints does not imply that all the constraints be solved simultaneously.
Often, some parts of the design tend to be more coupled than others. This chapter presents algorithms for
finding the coupled constraints and for developing a solution strategy which minimizes simultenaety.

The simplest type of constraint sets are those which do not need any simultaneous solution of constraints.
Such constraint sets are said to be Serially Decomposable. The constraints can be solved serially, yielding
the value of one new variable for each constraint evaluation. We present algorithms to detect serial
decomposabiiity and for ordering the solution sequence of such constraint sets. When a constraint set is
not serially decomposable, the constraints have to be solved for simultaneously. Instead of trying to solve
the entire constraint set simultaneously, we would like to isolate and identify subsets of the entire
constraint set which necessarily have to be solved simultaneously. This chapter presents algorithms for
achieving this.

One of the assumptions we make in ordering algebraic constraints is that they are invertible. That is, for
any function F(X)9 one can find the value of any variable xi in X if the values of all the otter variables are
known. Not all constraints are explicit and not all constraints are invertible. For example, a Finite Element
package, unlike an algebraic relation, takes inputs and produces outputs. One cannot determine the inputs
from the outputs. Such constraints have to be handled in a special way. We present an algorithm for
ordering constraint sets which contain both reversible and irreversible constraints.

2.16 A Design Example
Before embarking on discussions about graph theory and algorithms, let us examine the major ideas of
this chapter with the aid of a simple* but illustrative example. We will be using this example throughout
this chapter.

Consider the design of a friction-type disc dutch shown in Figure 2-7. This example is taken from
[Hlndhede, ELaL 83]. The problem is to find the size of the dutch plate (D^ and the inner diameter of

the lining (Din)t to safely transmit 32 HP at 3000 ipm.

Here are several design equations relating the known and unknown dutch parameters. We treat these

24

Lining

Fa
Tnominal

Dout

Fa

Figure 2-7: Clutch Example

equations as constraints. In other words, the equations axe used both as procedures for calculating

unknowns and also as relations among parameters. These relations have to be satisfied in the final design.

For the dutch example, we will be using the following seven constraints:

where,

' design

< * * *

(5)

Design Torque (Km)
Actuating Force (N)
Effective Diameter (mm)
Coefficient of friction

The effective friction radius is the average radius

(6)

The actuating force depends on the allowable contact pr

clutch plates

Fa =

of the materials chosen for the

(7)

The nominal torque (XM^^ is increased to the design torque (J^^) using a service factor (JQ. The
service factor depends on the type of load, drive and starting mode [Gagne S3]. We will assume

K9 * 23,

(8)

The nominal torque is given in terms of power to be transmitted (Power) and the speed (co)

Power m

Based on past experience, the ratio of inner and outer diameters (&„„£ is fixed at 1.5

'ratw (10)

Finally, we would like to check the centrifugal hoop stress S ^ ^ on the dutch.

25

(11)

The design task is to find values for the unknown variables such that the above constraints are all satisfied

simultaneously.

2.16.1 Ordering the constraints
Instead of trying to solve all the above equations simultaneously, one can try to identify a reasonable
strategy to solve the equations. The algorithm presented in this paper produces the following strategy:

Step 1: Calculate for Tncminal from Equation (9) by expressing the equation in terms of Tnminal

and substituting for power and angular speed.

Step 2: Calculate for T^- from Equation (8) by substituting the just detennined value of
* nominal'

Step 3: Calculate for D<Mir, Dm, D€ and Fa simultaneously from equations (5), (6), (7) and (10)

Step 4: Calculate for Shoop from Equation (11)

The above strategy shows three aspects of solution planning: (1) Constraints may be treated as
procedures, where any variable in the constraint can be determined if the values of all the other variables
are known. (2) Some variables can be determined only after other variables are determined. This produces
a chain (or ordering) of constraint evaluations, and (3) Variables which depend on one another have to be
solved for simultaneously* The actual numerical method used to solve the constraints is outside the scope
of this report It is our aim, to find a viable solution strategy which identifies and isolates only those
constraints which have to be solved simultaneously. This is done to avoid treating die entire constraint set
simultaneously.

2.17 Planning Algorithm for Serially Decomposable Constraint Sets
Some constraint sets do not need any simultaneous solution of constraints. We call such constraint sets
Serially Decomposable. This is because the constraints can be solved serially, that is, there is no
simultenaety among the constraints. For example, consider a reformulation of the dutch problem:

(12)

Power = ^Tmm^d (13)

9PD/CO2

D^ = 12 Dt (15)

£?k = 0.8 Dt (16)
7\ . = T • , K (17)

design nominal s * '/

.26

3 rdesign (18)

This constraint set is equivalent to the original constraint set, but has been manually reformulated to be

serially decomposed. The notion can best be explained with using an adjacency matrix representation.

Constraints form the rows of the matrix, and the variables correspond to the columns. In every row

(constraint), Xs are marked in the columns which correspond to the variables involved in the constraint

The adjacency matrix is as shown in Figure 2-8 (a). Careful re-ordering of the rows and columns yields

the matrix in part (b) of the figure. This matrix shows the order in which the constraints can be solved. As
Tnommai ** * ° ^^ unknown m Equation (13), it is determined first Once TllcmiluJ is known, Tduttm

becomes the only unknown in Equation (17). In this way all the variables can be solved for one after the

other, that is, serially.

•a

8
9

10
11
12
13
14

X

X
X

X

X

X

X
X
X

X

X

X

X

(a)

l a

13
8

11
12
10
14

(b)

Figure 2-8: A Serially Decomposable Constraint Set

An important property of a serially decomposed set is that the rows and columns can be reordered to yield

an adjacency matrix which is populated (with X's) only on and/or under the diagonal. This is what allows

us to solve the constraints in a serial order. Every time a variable is determined, at least one constraint

becomes solvable (i.e. only one unknown left). If a constraint set is not serially decomposable, it implies

that some of the equations would have to be solved simultaneously. In such cases, it is our aim to find an

which tries to minimize the total number of equations which have to solved simultaneously.

2.17.1 An Algorithm for Ordering Serially Decomposed Constraint Sets
A McrfaHy decOTfflowlile consliaiin set can be oidered using a veiy simple row and column elimination

algorithm.

StepG. Express "iie cc^tramt set as an adjacency matrix.
Initialize t stack d i e d ORDER

Step!.. If there are no x̂ ^̂

Step 2. Find til the rows with onlyooaX in i t
If them arc no neb rows, return "The Mairix is not Serially Decomposable1*

27

Step 3. For all the rows with only one "X" in it:
a. read off the corresponding column (variable name)

and push it on the stack ORDER
b. remove the row from the matrix
c. remove the column with the "X" in i t

Step 4. Go to Step 1.

A problem with using the above algorithm, is that it fails ungracefully when the constraint set is not
serially decomposed. The algorithm has no way of telling whether a given constraint set is serially
decomposable or not, it starts generating an ordering and fails only when it reaches an impasse. It would
be better if we could determine, up front, whether a constraint set is orderable or not The next section
presents an algorithm aimed at quickly determining whether a constriant set is serially orderable or not
The algorithm works without actually trying to order the constraints, and thus runs very fast

2.18 Special Treatment of Serially Decomposable Constraint Sets
The constraint sets encountered in design practice are usually extremely complex. The number of
constraints and the number of variables is large. An interesting property of the constraint sets is that they
are usually sparse. Each of the individual equations have a small number of variables. A direct
simultaneous solution or optimization of the set of constraints is computationally very complex. It is
undesirable as it does not take advantage of the sparseness of the constraint set The sparse set of
constraints is broken down in to different groups which can be solved separately and progressively one
after another.

A serially decomposable set can be ordered and solved directly without taking recourse to simultaneous
solution methods. A constraint set which is not serially decomposable on the whole, may have parts
which are serially decomposable. This property can be used effectively to partition the constraint set into
smaller and more managabie subsets.

Detection of serially decomposable sets is valuable. At present, the constraint sets are reordered using
various algorithms, to partition the system of equations. It would be good to detect before resorting to
reordering, whether the constraint set is serially decomposable or not

An analytical method has been developed to test the serial decomposability of a constraint set This
method is based on an adjacency matrix representation of the constraint set and a set of boolean properties
of the set

Adjacency matrix representation
A constraint set can be represented as a bi-partite graph. The nodes of the graph are the equatiom and the
variables. The edges are between the equations and the variables present in the equations.

The adjacency matrix of the constraint set is matrix formed by presenting the equations along the rows
and variables along the columns. An element of a row is 1 if the variable corresponding to the column is

28

present in the equation, else it is 0. For example, consider the system of constraint equations of the
design example in section 2 :

FjlD' (1)

(2)

(5)

(6)

(7)

The adjacency matrix of this system can be written as,

A= TO 1 0 0 1 1 01 (1)
10 0 1 1 0 101 (2)
|0 0 1 1 1 0 0| (3)
|1 1 0 0 0 0 0| (4)
|1 0 0 0 0 0 0| (5)
0 0 1 1 0 0 0 (6)

LO 0 1 0 0 0 1J (7)

where, the columns are :(Tvaakat

It can be observed that the adjacency matrix is a boolean matrix: its elements can take only the values 1
or a

Boolean Determinant of Adjacency Matrix
Definition of a boolean determinant of an adjacency matrix is very similar to that of the determinant of a
real matrix. The multiplication operation is replaced by the logical AND operation. The additions are
replaced by an operaior "nary-XOR", which is an extension of me binary exclusive OR.

Consider a square boolean matrix A of size n.

29

aln1Tau a12

I ̂ 1 a 22
I--- ••• I
|... ... |

• • • a j

where elements â are boolean.

If Ais2x2then,

det(A) = (a n AND a ^ XOR (a12 AND a2x)-

If Aisnxnthen

det(A) = (a u AND minor (an)) XOR (a12 AND
minor (a^)) XOR... XOR (a ln AND

= nary-XOR ((a n AND minor (an)),(a12 AND
minor (a12)),... (a ln

The XOR expansion is defined as n-ary XOR; i.e. before evaluating any of the boolean expressions, the
whole expression should be expanded. After the complete expansion, the AND operations should be
evaluated. Then the n-ary XOR should be applied to the whole expression. If there is exactly one f 1' in
the expression, the result will be 1, else the expression will evaluate to 0.

The detenninant can be expanded by any row or column. Consequently, the value of the detenninant does
not change on rearrangement of rows and columns.

Criterion for Serial Decomposability
The detenninant of the adjacency matrix indicates the presence of loops.

If A is an adjacency matrix, then
if det(A) = 1, the constraints can be anally decomposed,

= 0, the constraints can not be serially decomposed.

Consider the first example. The adjacency matrix on rearrangement

A= fl 0 0 0 0 0 01
|1 1 0 0 0 0 0 1
10 1 1 1 0 0 01
10 0 0 1 1 I 01
10 0 1 0 1 1 01
0 0 0 0 1 1 0

Lo o o o i o ij

where the columns are 1(7^^^

Expanding tfae detemmant of A by lira row,

(5)
(4)
(1)
(2)
(3)
(6)

30

det(A) = nary-XOR (1 AND

= nary-XOR ((1 AND minotfa^)))

= nary-XOR ((1 AND minon^))

= nary-XOR ((1 AND minotfa^)

= nary-XOR ((1 AND minon^)), (1

), (1 AND

= nary-XOR ((1), (1), (1), (1))
= 0

Matrix A is not serially decomposable.

Consider the reformulated system of equations (8) to (14).

The adjacency matrix of the constraint set is given by,

B= fl 0 0 0 0 0 Ol (9)
|1 1 0 0 0 0 0| (13)
|0 1 1 0 0 0 01 (8)
| 0 0 1 1 0 0 0| (11)
| 0 0 1 0 1 0 0 1 (12)
0 0 1 0 0 1 0 (10)

LO 1 1 0 0 0 l j (14)

where the columns are: (TJ)aahrtJd^J*Pc#oap
Dm>si*>oJ

det(B) = nary-XOR (1 AND minor^n))

• nary-XOR (1 AND m inor ^)

= nary-XOR (1 AND minoi^a^)

s nary-XOR (1 AND mino^a^)

* nary-XOR (1 AND mmorfy^)

-nary-XOR (1,0)

« 1

B is serially decomposable.

These propositions have been developed in a line similar to the theory of system of linear equations. The
proofs are not included here.

Evaluation of die determinant qualitatively corresponds to determination of a path through the '1'
dements of the matrix. A serial decomposation can be viewed as a determination of a spanning tree of the
matrix, such that the parts of the path along the rows (equations) are not longer man one edge per row.

31

A serially decomposable matrix has a path through the all the 1 elements, which is a tree. In a matrix,
which is not serially decomposable, such a path does not exist It contains a path which is a graph with
loops rather than a tree. The number of these loops and their inter-relations are an important consideration
in a solution of the constraint management problem.

The present work does not include non-square constraint sets and directed constraints. It can be extended
to cover these cases. The theoretical approach seems to have a potential to give rise to an analytical
formulation for optimal partitioning of a constraint set

2.19 Ordering a Non-Decomposable Constraint Sets
When a constraint set is not serially decomposable, the constraints have to be solved simultaneously.
Instead of trying to solve the entire constraint set simultaneously, we would like to isolate and identify
subsets of the entire constraint set which necessarily have to be solved simultaneously. This section
presents an ordering algorithm which helps identify such subsets.

Let us return to the original clutch example. The original problem, as we noted earlier, is not serially
decomposable. This can be seen with the aid of the adjacency matrix representation. Figure 2-9 (a) shows
the matrix for the given equations. By carefully reordering the rows and columns, one can find a solution
plan which is better than trying to solve all the variables and constraints simultaneously. Figure 2-9 (b)
shows the ordered matrix: after calculating Tmminal§ it is possible to calculate TdMpg from equation 8. The
next four variables have to solved as a block (simultaneously).

1
2
3
4
5
6
7

X

X

X

X

X

X

X
X

X
X

X

(a)

.:•••
n • •

•• ••

• • • •
uSI
D

H
E3•

•
• i•

(b)

figure 2-9: Adjacency Matrix Representation of the Ordering Task

2.19*1 Intuitive Explanation
The algorithm consists of two stages: Matching and Component Finding. The first stage marches
variables to equations. This is done because we know that each equation can be used to solve for only one
variable. Every variable will be calculated from one constraint It is for this reason that we start by
matching amstramts to variables. It is important to try and find as many matcfaings as possible. For
example, in the two equations F l (xj) and F2(x), there are two variables x and y which have to be
matched. The matching problem is shown in Figure 2-10 (a). The variables are listed cm the left and the
constraints ait listed on the right The lines indicate which variable is involved in which constraint. This

32

rcpiesentation is called a bipartite (two parts) graph. We have to now decide which variable is going to be

solved for from which constraint In the example, if we decided to solve for x from F l (matched the two)

then, there is nothing to match y to. Figure 2-10 (b) shows a better matching, the matchings arc shown in

darker lines. The matching shows that y will be solved from Fl and x will be solved from Fl. Matching

tells us what would be calculated from wherc. It does not tell us the order of the calculation. That is

determined in the second stage of the algorithm.

(a) (b)

Figure 2-10: The importance of finding a Maximal Match

A matching should be maximal, that is, the maximum number of possible matchings should be found.
This is achieved using a standard bipartite matching algorithm (Aho, Hopcroft & Ullman 84), The
algorithm proceeds in stages. The algorithm starts by picking a matching at random. This matching is
then improved by adding new matches between variables and nodes. The technique, known as
"augmenting paths" is iteratively applied untill no new matches can be found. The algorithm is described
in [Aho, Hopcroft, & Ullman '83].

Let us return to the clutch example to find a maximal matching. The constraints are as follows:

Figure 2*11 (a) shows a bipartite graph representation of the problem* The maximal matching (which
need not be unique) is shown in Hguie 2-11 (b).

Finding a maximal match teiis us which variable is determined from which constraint, but it does not tell

us in what order to solve the constraints. The next step of the algorithm is ordering. The order in which

we solve for variables is based cm the variable-constraint matching. For the constraints Fl (x,y) aod

F2(x), x is fiat detemiiifid from the constraint it is matched to, FL The value is then substituted in Fl

an! y is determined. Tte order is determined by the fm. that y depended on knowing x These

dependencies o n be represented as a directed graph among variables. For example, y depends on x, and x

does not depend en anyfMng.

Tte directed graph (digraph) is prepared after matching, In the case of the clutch, whenD£ is matched to

&(Dm*DkrD*) ttwi ** fellows that D€ can be calculated only after Dm ami D^ am knowa In other

wonts. Re depends cm DM aid Dk. The matching shown in Hgme 2-11 (b) can be converted into i

digraph as shown in Hgme 2-12, where* an arrow indicates that the tal depends on tte head

33

Variables Constraints Variables Constraints

Figure 2-11: Bipartite Matching

Shoop

^Tdesign

figure 2-12: Dependency graph among variables

In the digraph, Trum^ial does not depend on any unknown quantity and hence can be immediately
determined from the equation it was matched to. Once Tmmhud is known, Tdesign can be calculated. The
rest of the variables, however, cannot be chained as the first two. The variables Dom, D^, De and Fe are in
a cycle of dependencies. That is they depend on one another and have to be solved simultaneously. The
variable S^ is not in the cycle. Cycles aic identified using a standard graph theoretic algorithm called
the Strong Component Algorithm.

A strong component of a digraph is a maximal set of nodes in which there is a path from any node
(variable) in the set to any other node in the set A depth-first search based tedmique is used to determine
strong components efficiently [Aho, Hopcioft & Ullman $84]. The strong component algorithm consists
of the foEowing steps:

1. Perform a depth-first search of the digraph (G) starting at any node N. Mate a note of all the
nodes visited in the list LI. The depth first search procedure is as shown below:

DFS(Gf Current-Node)
1. Add Current-Node to globally defined list: VISITED
2. Get the dependents (D) of the Cmrrat-Node which are not in VISITED
3. IF there are no such dependents return NULL

ELSE each dependent (d) do DFS(G, d)

34

2. Construct a new directed graph Gr by reversing the direction of every arc in G.

3. Perform a depth-first search on Gr starting the search node N. Make a note of all the nodes
visited in the list L2

4. The intersection of LI and L2 will be a cycle* Collapse the cycle into one big node, call the
graph G'.

5. Repeat the above procedure on G' untill no cycles are found when performing a depth-first
search from any node.

digraph for the dutch problem is shown in Figure 2-12. Step 1 of the algorithm involves a depth first

search on the graph. Let the root node be D ^ Let the depth first search path be:

Din> Fa> T d*sign*
SteP 2 searched again in Step 3 from the same

start node. This time, let the search tree be (Dout> Dmt D^FJ. The nodes common to the two trees are

(Dma» Dm> FJ- These three nodes may be collapsed as shown in Figure 2-13. Reapplying the algorithm,

De is also collapsed into the strong component Further applications of the procedure stops when there are

no nodes in the digraph from which components can be found.

Sboop

De

Tdesign >Tnominai

Shoop

Tdesign >Tnominai

Tdesign •

Figure 2-13: Finding strong components in a bi-partite graph.

in the acampie itoove, vte usoi a single path for the depth first search. In practice, the search tree
would contain all the possible paths emanating from the start node. The nodes which am be visited front

Dm include all the nodes in the graph except S ^ Using the eotim tree helps in finding components

tutu* M the dutch example, if the complete tree emanating from DM weie used, the the strong

would have been found in just one Iteration of me algorithm. We deliberately did not do this

to illustrate how nodes can be iterattvely collapsed to find components.

36

In the the clutch example, the strong component can be broken by picking either Doui or D^. The effect of

picking a variable can be shown in an adjacency matrix. Figure 2-14 (a) shows the strong component we

just found. If we pick die value of D^ then the right-most column can eliminated, and the rest of the

constraints become serially decomposed (Figure 2-14 (b)). D&Fm and D€ are solved for serially from

equations (6), (3) and (1) respectively. The last constraint (Equation (2)) is redundant and is used to

calculate a new value for Dout If the error (difference between the new and the old values of the outer

diameter) is not acceptable, DM is re-guessed and the solution process is repeated. Iterations are carried

out untill a suitable solution is found.

In the above example, we saw how it is possible to simplify a constraint set by picking the value of one

variable. We went from a problem of simultaneously solving four equations to performing several

iterations on a problem with a closed fonn solution. It is our hypothesis that this general idea is extensible

to much larger problems. We present algorithms which help identify the best variables to pick in order to

simplify a given constraint problem. We also present experiments which have shown that in many cases it

is possible to completely eliminate simuitenaety by picking the value of just one variable. In fact, if one

picks the value of either DM or Dk, simultenaety is eliminated.

X
X

X

X
X X

X

X
X

X

m
X

X

1X mX
(a) (b)

figure 2-14: Picking the Right Variable: D M is guessed

Not all variables in a strong component break the component when picked. For example, if one picks

either F^ or Dtf, then the component is only reduced to a smaller one. We have identified two heuristics to

pick promising variables.

Innermost-Loop Heuristic

in Figure 2-13, we saw how a strong component was found in stages: by finding and collapsing cycles of

nodes and super-nodes Into bigger super-nodes. According to the figure, the cycle containing DM% Dm

and Fa was found first, and was later incorporated in the final strong component Intuitively speaking, it

appears that the fiist three variables fonn the "inner" component of the larger strong component This

faeniisilc is based CM the honcli, that these ^inntf1 variables might be the best variables to pick.

We found this heuristic to be rather weak. Inner loops are not unique, and even though die inner loops

often tend to contain Hie best variable, they also contain non-optimai variables. Tbis leads to a lot of

wasted effort. Anoiher reason for the Inefficacy of this heuristic is that inner loops axe oftentimes inside

other loops only because of the order in which the nodes where considered- Change the order, ami the

crcer of collapsing of n o t e into components will change. For example, in collapsing the digraph m

Rgore 242, one could have found a different cycle first This depends on where the search tree is started,

for cxanple one could have found the cycle: Fm*Dg and D^ TMs fcnas the wmsmost component D€m

37

is added in the the second stage. The heuristic will wrongly consider Fa 2J\dDe as possible candidates.

Most-Dependents Heuristic
We have found that the best variables to pick are often the ones which are most "coupled." Simply put,
we sort the nodes (variables) in the strong component by the total number of dependent variables in the
strong component In the clutch digraph, applying this heuristic places Dm and Dcui as the best choices
(Figure 2-15). The numbers in the figure indicate the number of dependents at each node.

Shoop

2

Tdesign >Tnomiiial

Figure 2-15: Counting the number of dependents at each node.

The number of dependents of a variables is a heuristic measure of how critical it is to know the value of a
variable, before otter parts of the design can be determined. It is this property that, we believe, makes the
heuristic work. We have conducted experiments to verify this hypothesis.

2.20.1 Experiments with the Most-Dependent Heuristic
We are currently conductive extensive experiments to assess the efficacy of heuristic approaches to
selecting variables which can break a given strong component The experiments are being run on
faundercds of randomly generated constraint sets.

Preliminary results show, that if one uses the Most-Dependents heuristic it takes (on the average) two
tries to find a variable which breaks the strong component If no heuristic is used it takes about five or six
tries before the appropriate variable is found These experiments yielded results only for small
components. Larger components were rarely eliminated by choosing a single variable. Detailed
experimental results will be reported in a later version of this document,

2-21 Handling Uni-Directional Constraints
One of the assumptions made in the above ordering algorithm is thai all constraints are invemble. That is,
for any function F(X)f one can find the value of any variable Xj inZ if the values of all the other variables
arc known* Not all constraints are explicit and not all constraints arc Inveitlble. Far example, a Finite
Element Method (FEM) based tool takes some inputs and produces outputs. One camof determine the
inputs from the output: The constraint is a Black-Box. Algebraic constraints can also be Implicit For
example, it may not be possible to calculate for all the variables in a very complex transcendeittal
fimctioa For such constraints only a subset of the Involved variables can be solved for, thereby making
the rest of the variables serve merely as inputs.

38

Generalizing this idea, for an irreversible constraint, there may be many possible input/output cases. For
example, assume there is a constraint (let us call it IRR1) with the following variables:
(Power, T^^D^, MaxStress). Where, MaxStress is the maximum allowable Shoop. Assume that the
constraint is irreversible and can be executed only in the following ways:

Casel: If the Power and T^n *& known* ̂ ^ * e constraint can give D^ and MaxStress.

Case2: If the T^ and Dam are known, then the constraint can give MaxStress.

If this constraint is introduced, the variables in the clutch example can be solved without iteration. It
should be noted, however, that the problem is now over constrained- Unless, by chance, some of the
constraints turn out to be redundant, over constrained problems are difficult to solve and require special
treatment Our purpose for introducing two new constraints is only to illustrate how explicit and implicit
constraints can be ordered.

Hie algorithm used to order mixed implicit and explicit constraint problems is an extension of the basic
explicit constraint ordering algorithm. As soon as uni-directional constraints are introduced, the bi-partite
graph becomes a partially directed bi-partite graph. Algorithms for such graphs are rare and inefficient.
Our solution consists of using two graphs, one for inputs and the otter for outputs. The basic algorithm is
modified to use the second graph when it matches variables to constraints and to use the first graph when
it needs dependency information

221.1 Intuitive Explanation
As befoie, the constraints can be represented as a bipartite graph. This time, however, the graph has to be
diw^ed in order to indicate the direction in which variables may be solved. Continuing the clutch
example, all of the bi-directional constraints and one uni-directionai constraint (IRR1) can be represented
as shown in Figure 2-16. AHlines with no arrows are bi-<iiiwtionaL The two cases of tbec^
are treated as separate constraints. The arrows indicate which variables axe inputs and which ones are
outputs.

The standard maiding algorithms do not apply to directed bipartite graphs. We solve the problem using a
simple trick: as the matching step of the algorithm is supposed to pair variables to constraints, with the
idea that the variable can be calculated from the constraint, we should only consider those arcs which are
either bidirectional or point to output variables. Matching is carried cut using the original algorithm,
howewr* the graph Inptu to the matching algorithm is modified to depict which variables ran match with
cooMniitt. TM$ is done by removing all uni~dixtctioQal arcs wMch point from variables to constraints.
These arcs are removed to ensure that we don't match a variable to t constraint when it cannot be solved
for from that constraint In die clutch example, the graph in Figure 2-16 is converted into the bipartite
papb shown in Figure 2-17 (a). Matching is carried out as usual The maadnial match is shown in put (b)
of the Figure,

The next sap1 is the generation of the dependency digraph. For reversible ccnstrainis, when a variable was
a constraint, then it was aid ID be depoala^ CM all the other wi&bies in the constrain In the

39

MaxStress

Tnominal

Figure 2-16: A Directed Bipartite Graidi representation

figure 2-17: A Directed Bipartite Graph representation

case of an irreversible constraint, the matched variable is only dependent on the inputs to the constraint

In other words, one need consider only those uni-directional arcs which point from variables to

constraints. In the clutch example, the matchings are as follows:

MaxStress IRR1: Cas<Q. (T * ^ , ,

D.

design

)

Fl(Td,Fa,Dt)

40

Following the original algorithm, the matchings then have to be then converted into a directed graph. For

example, MaxStress depends on Tduipi and Dout. Note that the variables listed (in the matchings above)

for IRR1 only include the input variables. This die crux of the algorithm: We use the directed bipartite

graph in two different ways. During matching, only arrows which go from right to left (Figure 2-16) are

considered. This is done only for uni-directiraal constraints. When the dependency graph (the digraph) is

prepared, we consider only those anows which go from left to right. The digraph for the above set of

maJjchings is shown in Figure 2-18. The numbers on the figure indicate the order in which the variable

may be solved. There are no strong components in the graph.

Tnominal

Figure 2-18: Dependency Graph with Unidirectional Constraints

2*2L2 Ordering Algorithm for a Mixed, Explicit and Implicit constraint Sets
The combined algorithm is as shown below. The actual graph theoretic algorithms being used need no

modification. We just change the inputs to these algorithms.

Step L Split all multi-cased implicit constraints into separate constraints and develop a directed
bipartite graph (Call it B).

by removing all uni-directional arcs pointing Iran

by removing all uni-directional arcs pointing from

Slep 2. Develop a new graph
variables to constraints.

Step 3. Develop a new graph

constraints to variables.

Steo 4. Find a maximal match en B

Step 5. Develop a directed graph of dependencies using tte maidiing finiiMl in Stq> 4, bm using

Step 6. Find Strong components in the above digraph as usual.

Step 4. After all strong coniponeiits are found, tte digraph becomes a tree, A
topologicai sent yields the steps which can be taken to find the values of the variables.

41

2.22 Related Work
The notion of using bipartite matching and the strong components algorithm together was originally

suggested by Wang (Wang 73). The algorithms were originally used to solve Gaussian matrices for

solving sets of equations using Newton-Raphson like methods. Serrano applied a similar algorithm for

finding strong components in sets of constraints (Serrano 87). The aim of this work was to concentrate

solution on components and to avoid having to solve the entire constraint set simultaneously. Both these

efforts arc aimed at bi-directional constraints. We have extended the algorithms to uni-directional

constraints. We have also developed the notion of breaking strong components using heuristic

approaches.

Recently, Eppinger & Whitney have described a coordination problem in complex design projects
[Eppinger & Whitney '89]. A design project is viewed as being composed of several tasks, each of which
needs some input data and produces (as output) some data for other tasks. The dependencies among the
tasks can be expressed in an adjacency matrix. The paper presents a heuristic approach to ordering the
tasks. A comparison study of our approach to ordering uni-directional constraints and the proposed
heuristic approach is in order.

42

References
[Boming 79] Boming, A.

TMngLab- A Constraint Oriented Simulation Laboratory.
Technical Report, Xerox Palo Alto Research Center, 1979.

[Gagne53] Gagne Jr., A.F.
Torque Capacity and Design of Cone and Disk Clutches.
Product Engineering, December, 1953.

[Gosling 83] Gosling, J.
Algebraic Constraints.
PhD thesis, Department of Computer Science, Carnegie-Mellon University, 1983.

[ffindhede,ELaL83]
Hindhede, U., JJL Zimmerman, RJJ. Hopkins, RJ. Erisman, W. C Hull, J.D. Lang.
Machine Design Fundamentals: A practical approach.
John Wiley & Sons, 1983.

[Mackwortli 77] Mackworth, A. K.
Consistency in Network Relations.
Artificial Intelligence 8:99-118,1977.

[Moore 66] Ramon Moore.
Interval Analysis*
Prentice-Hall Inc., Engiewood Oif&NT, 1966,

[Moore 79] Ramon Moore.
Methods and Applications of Interval Analysis.
SIAM, Philadelphia, 1979.

[Papalamtoros and Wilde 88]
Panos J JPapalmbros and D.J. Wilde.
Principles of Optimal Design.
Cambridge University Press, NewYoric, 1988.

[Popplestone 80] Popplestone, R. 1, Ambler, A. P, and Belles, 1.
An Interpreter for a Language for E>escribing Assemblies.
Artificial Intelligence 14(l):79-107s 1980.

(Ragsddl and Philips 76]
Ragsdell KM md D.T, Riflif^
Carnal dmgn of a dass <rf wdded strtKamra using Geometric Programming.
Transactions cfASMEJ. of Engin. for Industry. 98(3):1021-25t 1976.

andRokne88]

New Computer Methods for Global Optimisation.
Mis Horwood limited, CMctiesier* B^Jtod, 1988,

Constraini Management in Conceptual Design*
PhD fte$iss Dcpt of l^todimiical Escuaeering, MLT- f 1987.

[Su^nm 80] Sussinan, G. 19M S ^ t e Jrf G. L.
QMSfTRAMTS - A Language forExpc^ttg
Artificial InteMgeme 14:1-39,1980.

43

[Sutherland 83] Sutherland, IJB. .
Sketchpad - A Man-Machine Graphical Communication System.
Technical Report TechReport #296, MTT Lincoln Lab. Cambridge, Massachusetts,

1983.

[Ward 89] Ward,A.C
A Theory of Quantitative Irference Applied to a Mechanical Design Compiler.
PhD thesis, M.LT., 1989.

[Navinchandra & Rinderle f 89]
Navinchandra D., J, Rinderle, Interval approaches for Concurrent Evaluation of Design Constraints, In
proceedings of the Symposium on Concurrent Product and Process Design, held at the American Society
of Mechanical Engineers Winter Annual Meeting, San Francisco, December, 1989

[Eppinger & Whitney *89]
Eppinger, S.D. , D. Whitney, Coordinating Tasks in Complex design projects, In Proceedings of the
MTT-JSME (Japan Society of Mechanical Engineers) joint workshop on Concurrent Engineering. Boston,
Nov, 1989.

[Aho, Hopcroft & Ullman *83]
Aho, A.V., J.E. Hopcroft, J.D. Ullma, Data structures and Algorithms, Addison-Wesley series in
computer science and information processing. Addison-Wesley, Reading, MA 1983

[Serrano 87]
Serrano, D., Constraint Management in Conceptual Design, PhD dissertation, Dept of Mechanical
Engineering, MTT, 1987

[Sriram etal *89]
Sriram, D., G. Stephanopoulos, R.D. Logcher, D. Gossard, N. Groleacu, D. Serrano, D. Navinchandra,
"Knowledge-Based System Applications in Engineering Design: Research at MET, AI Magazine, Fafl
1989

[Wang 73]
Wang, RXR., Bandwidth Minimization, Reducibility Decomposition, and Triangularization of Sparse
Matrices, PhD dissertation, Computer and Info, Science Research Center, Ohio State University, 1973

44

APPENDIX A: Implementation Details
The solution planning code is all written in generic Common Lisp, To avoid clashes, the code resides in a
package called loop.

There is a more embellished version of the program which produces graphics. To run these capabilities,

one would need the Knowledge Craft package and PostScript display capabilities.

Getting the code
The files reside on the machine goldJcalendarjlcmu.edu under the directory /usr/dchandra/desfus/order.

The files may retrieved using the ftp package. The files to be retrieved are:

loopJisp
imslJisp
lisp-utils.lisp
matcfaJisp
components Jisp
unidoJisp

All the files load into the loop package and will have to be run from that package.

There are some example files in the same directory. The clutch equations are in dutch.eqns. The other

constraint files are:

dutclLeqns The clutch design equations
motor.eqns Electrical characteristics of a D .C motor
aenxeqns Aerodynamic equations for the design of a fan blade
turb.eqns Turbine blade design equations

Compiling and loading
The files should be compiled while in the loop package and after the file loopJisp has been loaded. The

following procedure may be followed

CLisp> (coinpile-file nloop.lisp11) ; compile the loop macro

CLisp> (load "loop.lisp®1) ; load the loop macro

CLisp> (in-package 'loop) ; change the package

CLisp> (compile-file "iiosl.lisp*) ; start compiling

; compile all the files

CLisp> (compile-file "lisp-utils•lisp") ...•.

After compilatioii* all the files may be loaded as usuaL Qm may choose to dtter my in tbe too# i ^ k a ^
or move to some other package.

Examples
Example 1

To order tite equations:

x = y+y1

y « xy
b = c3

45

10 b
a = —

p
p = 3 r
z = Z?-2a
P - 5

The run is as follows:
CLisp> (load "loop") ... ; load all the files

CLisp> (setq equations
' ((X - Y + Z ** 2) (Y - X * Z) (B - C ** 3)

(A - (B * 10) / P)
(Z - B - 2 * A) (P - 5) (P - 3 * R)))

CLisp> (loop::order eqns2 :verbose t) ;verbose switch is on

Step 1: Solve for P from constraint:
(P - 5)

Step 2: Solve for R from constraint:
(P - 3 * R)

Under Constrained by 1 degrees of freedom ; some stats
Collapsing ((X Y)) ; trace information

Step 1: Solve for A from constraint
NIL
Step 2: Solve for B from constraint
(A - B * 10 / P)

Step 3: Solve for Z from constraint
(Z - B - 2 * A)

Step 4: Solve the following variables simultaneously:
(X Y)
from the constraints:
((Y - X * Z) (X - Y + Z ** 2))

Step 5: Solve for C from constraint
(B - C ** 3)

(((P (P - 5)) (R (P - 3 * R))) (A B Z (X Y) C)) /returned list

The function used is order which is called from the loop package. The ordering is shown in two parts.
The first part indicates the part that is directly decomposed. The second part is where components are
found. In this case, die problem is under constrained. This means that there is an extra variables during
bipartite matching. The system decides that variable A be determined from constraint NIL. This means
that the value of A has to be guessed, as it is an extra degree of freedom. Hie rest of the setps are self
explanatory.

The function returns the results as a list The list also two parts. The first part is a list of lists. Each sublist
contains two elements. The first is the name of the variable and the second is the equation from which it
should be calculated. The second list in the result corresponds to the second part of the output The list
shows the oider in which the variables have to be solved in. Variables in parenthesis have to be solved
simultaneously. In the ouput above, we can solve for A, B and Z, solve X and Y simultaneously and finally
solve for C.

46

Example 2

Let us now introduce some uni-directional constraints- Each case of the unidirectional constraint (unid) is
expressed separately. For example, if a unid takes A and B as input and produces X as output, then the
unid is represented as: (unid-name (A B) (X)) • If we guess A and introduce the above unid, then the
equations become serially decomposed. The input would look like this:

Clisp> (loop::order equations :unids '((nnidl (A B) (X))
(Guess NIL (A))))

E q u a t i o n s s e r i a l l y d e c o m p o s a b l e

< ((P (P - 5)) (R (P - 3 * R)) (A G u e s s) (B (A - B * 10 / P))
(Z (Z - B - 2 * A)) (C (B - C ** 3))
(X u n i d l) (Y (Y - X * Z))
(Y (X - Y + Z ** 2)))

NIL)

The second element of the returned list is empty because none of the equations have to be solved
simultaneously. The first part of the list chronologically lists the variables and the equations they have to
be solved from.

Usage: Calling the Order Function
order equations &key rverbcse mmds [Function]

The equations can be in either infix or postfix format The only real requirement is to keep symbols
separate. The parser does not tokerize the input For example (A » B * 3) should not be written as (A= B

The unids aie expressed m the form; (Unid-name input-list oittput-lisz)

If the user would like to pick a
value, men a unid may be used to express this. For example, if one wanted to pre-plck the value of
variable A men ilie imM^ ̂^̂̂ This has to be done manually.

:verbcse
When set to t, Hot p t ^ n m will pretty print out tbeontor in
a stepped fora. Tte default is nk

A1M of unids. The defeult is nil

