Constraint Reasoning and Planning
in Concurrent Design
V. Krishnan *
D. Navinchandra *

P. Rane *
J. R. Rinderle *

CMU-RI-TR-90-03 ,

Camegie Mellon University
Pittsburgh, Pennsylvania 15213
£

28 February 1990

*+ Robotics Institute, CMU
* Department of Mechanical Engineering, CMU

i

~ Table of Contents
1. Introduction: Concurrent Design
1.1 Representing Life-Cycle Concerns
1.2 Automation in Constraint Based Design
1.3 Context and Definitions
1.4 Monotonicity Analysis
1.5 Interval Methods
1.6 Conservativeness of Interval Calculations
1.7 Constraint Propagation in Design
1.8 Interval propagation
1.9 Necessary and Sufficient Intervals
1.10 Calculation using the Sufficiency Condition
1.11 Interval Criticality, Dominance, Activity
1.12 Global Optimization
1.13 Interval Variables Approach
1.14 Weldment Design using Interval Variables approach
1.15 Conclusions
2. Planning Constraint Solution Strategies
2.16 A Design Example
2.16.1 Ordering the constraints
2.17 Planning Algorithm for Serially Decomposable Constraint Sets
2.17.1 An Algorithm for Ordering Serially Decomposed Constraint Sets
2.18 Special Treatment of Serially Decomposable Constraint Sets
2.19 Ordering a Non-Decomposable Constraint Sets
2.19.1 Intuitive Explanation
2.19.2 The Complete Planning Algorithm
2.20 Breaking the Strong Components
2.20.1 Experiments with the Most-Dependent Heuristic
2.21 Handling Uni-Directional Constraints
2.21.1 Intuitive Explanation
2.21.2 Ordering Algorithm for a Mixed, Explicit and Implicit constraint Sets
2.22 Related Work
References
APPENDIX A: Implementation Details

RO EEgYYRnrEIRRRBEREERaGEEEScoannmm

UNIVERSITY LIBRARIES
CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PA

15213-3880

Constraint Reasoning and Planning in Concurrent Design

Abstract

By concurrent design we mean, in part, concurrent consideration of a broad range of life-cycle constraints
conceming, for example manufacturing and maintenance. The multitude of constraints arising from these
considerations make it difficult to identify satisfactory designs. An alternative to explicitly considering
all constraints is to determine which of the constraints are relevant, redundant or inconsistent and to
consider only those which impact design decisions.

The proposed approach is based on two simple ideas: (1) Constraints provide a uniform representation for
a variety of life-cycle concems, and (2) Interval methods applied to constraints can be used to identify
critical constraints, eliminate redundant constraints and to narrow the space of design alternatives.

The application of the necessary and sufficient intervals of constraints and constraint propagation
techniques are used to classify constraints in this way and to focus design activity. Regional monotinicity
properties are used to identify critical constraints.

A related aspect of concurrent design problems is the large number of complex constraints which have to
be satisfied to complete a design task. As it is impossible to guarantee the simultaneous solution of a large
set of design constraints, we have investigated algorithms for planning and simplifying such constraint
problems.

Chapter 1

Introduction: Concurrent Design

The practice of design is frequently sequential in nature. In the design of a jet engine turbine disk, for
example, the aecrodynamic shape of the blade might first be determined, later modified to satisfy structural
constraints, and then further modified to satisfy manufacturability and maintenance considerations.

It is not surprising that such a situation exists, since there are few individuals capable of bringing a full
range of life-cycle concems to bear during design. Nevertheless, the fact that manufacturing and
maintenance considerations are introduced only on an ad hoc basis during preliminary design gives rise to
fundamental design deficiencies. It is the purpose of concurrent engineering design to include a broad
range of functional and life-cycle concems during preliminary design phases. While it is possible to
obtain an appearance of concurrence by rapidly iterating through the basic sequential design process, we
seek a greater degree of concurrency by attempting to identify critical life cycle concems early and to use
those concems to direct design decisions.

1.1 Representing Life-Cycle Concerns

Life-cycle concems impose required relationships among features of the design to effect functionality,
manufacturability, reliability, and servicibilty. In the context of engineering design, these required
relationships can be thought of as constraints among design features. Constraints may embody a design
objective (e.g. weight), a physical law (e.g. F = ma), geometric compatibility (e.g. mating of parts),
production requirements (e.g. no blind holes), or any other design requirement. We express constraints as
algebraic relations among feature parameters (e.g. hole diameter, wall thickness, stress level).
Collectively, the constraints define what will be an acceptable design. Constraint based representations
provide a uniform representation for a variety of design considerations including function, geometry,
production and disposal. Because there is a single, uniform representation for all constraints there is no
differentiation between functional, geometrical, manufacturing, and other, so called, life-cycle constraints.
Methods used to refine the design by processing constraints are applied uniformly to all life-cycle
constraints: All constraints, whether they be behavioral, geometrical or those which have traditionally
been considered down-stream, have equal impact on design decision making. It is for this very reason
that our approach achieves concurrency.

Although constraints are a general mechanism to represent design considerations, it is not possibie to
identify all design constraints at the time the design problem is first proposed. This is because the set of
relevant constraints depends on the design context. If the geometry of the designed artifact is such that
casting is an appropriate manufacturing method, then casting constraints are required. Alternatively, a set
of machining constraints is necessary if the part is to be machined. Similarly, there are constraints that

are dependent on material, assembly methods, and a host of other considerations. The relevant constraints
depend on the current design features. The features themselves may be completely defined aspects of a
detailed design or they may be partially specified characteristics of a general configuration. Because
constraints are required relationships among feature parameters they may be retracted, augmented or
refined as the design evolves. The design can be thought of as being complete when the set of constraints
stabilize and when all the constraints have been satisfied. If we assume for the remainder of this article
that constraints can be expressed as algebraic relationships among feature parameters, then we can say
that a design is complete when all variables have been assigned values and when all the constraints have
been satisfied simultaneously.

1.2 Automation in Constraint Based Design
The design of certain small mechanical components can often be effectively accomplished by executing -
an established design procedure. Automating such procedures is a common approach to automating the
design of components such as gears, however, as the complexity of the component itself, or the scope of
considerations increase, it is difficult to identify practical design procedures.

An alternative to coding comprehensive design procedures is to identify isolated procedures and to
determine sequences for executing the procedures until all design variables are established. Certain rule
based design systems and some constraint propagation systems follow this paradigm. Each rule or
constraint can be thought of as a procedure indicating how some specific design decision or variable can
be determined once other design parameters are known. The rules, or constraints, can then be executed,
in sequence, until the design is complete. This method, which requires a dependence ordering or
topological sorting of constraints, is the basis for a family of commercial products. It is effective for
certain classes of designs, most notably when the degree of component interaction is small and when the
design is fundamentally serial in nature. It is not effective when the description is fundamentally what
needs to be achieved rather than means for achieving it. Such a descriptive (rather than prescriptive)
approach to design specification is advantageous because the designer does not need to consider how a
specific constraint will be satisfied, thereby facilitating the inclusion of constraints which cannot readily
be interpreted as procedures. Furthermore, descriptive specification does not impose a causality to the
constraints. For example, if a simple disk was constrained to weigh a specific amount, the constraint
itself could be interpreted as a procedure to determine diameter, or thickness, or density given the other
two. In this way the constraints imposed on a design serve as both a specification of the design and as a
set of procedures for determining design parameters. The design task, in affect, is reduced to that of
satisfying the given constraints.

Constraint satisfaction, however, is not easy. Design constraints are usually numerous, complex and
highly non-linear. Satisfying a large set of arbitrarily complex equality and inequality constraints is, in
essence, the non-linear programming problem and, in general, is not solvable. Although the general
problem cannot be solved, much can be done to assist the designer. It is possible to provide the designer
information is useful to the designer even if the constraints are ultimately solved numerically because a
purely numerical solution does not facilitate understanding the subtleties of a specific design task.

A large body of research exists on solving constraint problems. The SKETCHPAD [Sutherland
83]system_was an early effort on solving constraints by propagation and relaxation. Mackworth
[Mackworth 77] introduced algorithms for maintaining consistency in a network of constraint relations.
The ThingLab research effort [Borning 79] lead to ideas on propagating constraints across part-whole
hierarchies of objects. A constraint representation formalism was introduced by Sussman and Steele
[Sussman 80]. Recently, Gosling [Gosling 83] presented a planning technique which, coupled with
propagation, helps solve algebraic constraints. Other relevant work on solving sets of algebraic equations
has come from Popplestone [Popplestone 80] and Serrano [Serrano 87]. These research efforts provide a
core of solution techniques for handling and propagating variables with exact values. Unfortunately,
many if not most of the engineering design constraints are expressed as inequalities. The very nature of
constraints is such that they often do not prescribe specific values for design parameters but rather
prescribe ranges for the values. To accomodate inequality constraints while maintaining uniformity of
representation, we choose to represent all feature parameters as interval values. Conventional parameter
assignment, e.g. L=1.5in., can be expressed as assignment to a narrow interval, e.g. L=[1.495,1.505],
explicitely representing the scale of indifference or perhaps manufacturing tolerance. Inequality
constraints, e.g. L 2 10f%., may b e expressed as an open interval, e.g. L=[10, o]1, making explicit the (as
yet) unbounded range for a parameter value. Interval specification is also convenient for expressing
constraints which are left implicit such as the positive value requirement, e.g. L < 10ft. — L=[0,10].
Relationships among feature parameter values are also conveniently expressed as interval assignments,
eg. Ly 2L — L,—L,=[0,00].

The ideas presented in this paper are based on treating design parameters as intervals. The notion of
interval arithmetic was developed by Moore [Moore 66, Moore 79]. The value of interval based methods
for design has also been recognized by Ward [Ward 89]. The interval representation of values generalizes
the notion of equality assignment, provides a mechanism to deal with tolerances and adds flexibility,
making it possible to capture incompleteness and uncertainty in a design.

A design which is not yet complete may have some parameters which have not been assigned exact
values and there may be some uncertainty about the final design characteristics. Intervals may be used to
express upper and lower bounds on parameter values, making it possible to estimate some properties of
the artifact before exact values are assigned. This information can sometimes be used to guide
preliminary design, augmenting the rules of thumb or back of the envelope calculations commonly
employed by designers. Furthermore, interval based representation is a convenient framework for
implementing and bounding order of magnitude analysis and default sizing. In this way many levels of
specificity may be used simultaneously at any point in the design process. By representing all levels of
specificity as intervals and using a uniform technique for propagating the intervals through the
constraints, we are able to evaluate the constraints on the design and provide the designer valuable
feedback about potential constraint violations.

This is an open interval and should correctly be written as [y, +eo) . Because the only open intervals which we consider are
unbounded and because the apparent mismatch in open interval delimiters is often confusing we have chosen to ignore this fine
Jistinct

Interval Methods for Constraint Reasoning

Introduction :
The desire to address a broad range of life cycle issues in a nonsequential fashion during the early design
stages introduces two main difficulties: 1) The multitude of constraints obscure the designer’s
understanding of the design by increasing the dimensionality of the problem. and 2) The dimensionality
of the problem increases the complexity of finding a design solution. It is not clear to the designer which
constraints are important and which ones are irrelevant. There is a need to sift the model and identify

1. The active constraints that decide where the solution lies.

2. The critical constraints that determine the solution and preserve the integrity of the model,
and

3. The irrelevant constraints which can be deleted from the model.

Reasoning with a set of multi dimensional nonlinear constraints, is not only a formidable task to the
human designer but also a drudgery to his creative and flexible mind. However it is essential that the
trends and trade-offs inherent in the physics of the device be available to the designer in the early stages
of the decision making process. There is a need for a systematic methodology to
1. Identify the critical considerations that direct the design and
2. Reason with the constraint based design model to gamner insights about the model without
having to choose specific values for the design parameters.

One approach to identifying the relevant and critical constraints is Monotonicity Analysis. Unfortunately
most engineering design constraints do not exhibit the global monotonicity required for the application of
Monotonicity Analysis. It is therefore necessary to exploit regional properties of functions and
reassemble the regional information to draw global inferences. We seek methods to

o Extract and utilize regional information

e Address constraint evaluation, and propagation of decisions in the preliminary stages of
design.
We propose an Interval Analysis based methodology to accomplish these objectives.

In this chapter we explain the interval based methodology to reason with constraints. First, we describe
the concepts of constraint activity,criticality and dominance and the identification of these properties
using Monotonicity Analysis. Conditions under which monotonicity analysis succeeds and its limitations
also come under this discussion. Secondly, we introduce interval methods to represent, manipulate and
propagate regional information and we briefly discuss the mathematics of interval methods along with
some problems associated with them. Thirdly, we discuss the utility of interval methods in handling
constraint sets with many inequalities(as are common in design). We also address the refinement of
decisions through Interval propagation amongst constraints thereby detecting inconsistencies in the
preliminary stages. Fourthly , we describe the enhancements to interval methods to detect regional
constraint dominance, activity and criticality. Lastly, we delve on the applications of interval methods to

1.3 Context and Definitions

Consider a stage of design when the concept and the conﬁgurations to meet the design requirements have
already been synthesized and studied, resulting in a set of constraints.2 This set of constraints is referred
to as a model. A model in which all variables are restricted to physically realizable values is said to be
bounded3

The goal is to obtain a satisfactory design that optimally satisfies the design objective. The following
definitions are in order.

Let x be a vector = (Xq, X, X3, -.. Xp_1» Xp» Xgp10 --o%,) Where Xy, Xy, ..,x,, are the design variables.
A function f(x;, x,, ...x,) is monotonically increasing with respect to x;, if an increase in x; does not result
in a decrease in f.

A monotonic variable is one that is monotonic in every function in the model.

An active constraint is one whose presence influences the solution of the model. An active constraint is a
relevant constraint but need not be tight i.e satisfied as an equality at the design solution.

Constraint 1 dominates Constraint 2 if the feasible region of constraint 1 is a subset of the feasible region
of constraint 2. Satisfaction of constraint 1 implies satisfaction of constraint 2.

An active constraint satisfied as an equality constraint at the design solution is called a critical constraint.
A critical constraint is an active constraint, but an active constraint need not be critical.4

The following example clarifies these definitions.

2By constraints, we mean, a required relationship among design objectives and variables. We limit our discussion to algebraic
constraints.

3In particular, design varisbles should not reach the values 0 or e .

“Not all tight constraints are critical. Consider Minimizing f=(x-5y* , subject to x>=25; The minimum is at 5 but is not
changed when the constraint is removed. So the equality constraint is not active and therefore not critical.

6+

4

24 /\
2 3

Figure 1-1: Plot of f = (x~2)2 (x—4) (x~5) subject to
constraints
¢ =x-35<0andcy; =x-52550

« The function f is monotonically increasing with respect to the design variable x in the region
x=2.0 to x=3.0. The unconstrained minimum occurs at x=4.6

© Now let the constraint ¢;: x— 3.5 < 0 be introduced. The constrained minimum is at x= 2.0;
¢, is an active constraint, as its presence influences the solution. ¢, is not a critical constraint
as it is not satisfied as a tight constraint at the design solution.

¢ The constraint ¢; dominates the constraint ¢,: x— 5.25 < 0, as satisfaction of c¢;, means
satisfaction of ¢,. So the dominated constraint ¢, can be deleted from the model.

AN
N

1.4 Monotonicity Analysis
Monotonicity analysis has been investigated by Wilde et. al, [Papalambros and Wilde 88]. to verify and
simplify the formulated model. They argue that improper bounding usually arises from unnoticed
monotonicity in the mathematical functions of the model and expound a set of principles that summarize
the boundedness requirement of the mathematical model . These are the First and Second Monotonicity
principles, that can be used to identify the critical and relevant constraints in the model.

Monotonicity Principlel: In a well constrained objective function, every monotonic variable in the

objective should be bounded by at least one active constraint.>

Monotonicity Principle2 : Every monotonic nonobjective variable in a well-bounded problem is either
1. Irrelevant and can be deleted from the problem together with all constraints in which it
occurs, or

2. Relevant and bounded by two critical constraints,® one from above and one from below.

The utility of the Monotonicity Principles is in proving criticality and irrelevancy of constraints. This can
result in the deletion of constraints and reduction in size and complexity of the model if the variables are
globally monotonic. The Monotonicity Principles are used to solve the hydraulic cylinder problem given
below. [Papalambros and Wilde 88].

r%faxfo rce

Piston

Hydraulic cylinder pressure

Figure 1-2: Hydraulic Cylinder
Notations : d, = outside dia.; d; = inside dia.; s = hoop stress; ¢ = thickness;
Goal : To design the hydraulic cylinder so as to meet the following functional specifications

e F= Load Handling Capacity = 22 pound wt.(10 kgs)
e P= Pressure < 3.5 psi.

d,=d;+2t , subjectto the Constraint Set
1.-F+22 <0

%amawmmmmvmmmmmmmmmm
6 [Papalambros and Wilde 88] use the term "active” to mean what we are calling “critical”.

45 < Syp = 8000(psi) (Material Strength constraint)
P ndiz
4

6.t 2 3 (mm) (Manufacturing constraint)

5.F =

All the variables are monotonic in this model. Reasoning using Monotonicity principles proceeds as
follows.
¢ Because the stress s does not appear in the objective, from Monotonicity Principle 2, if s is
relevant, then it must be bounded by one constraint from above and one from below .
Constraint 4 binds s from above . The only other constraint in which s appears, constraint 3,
should bind s from below. So constraint 3 becomes a directed equality. constraint 3 :-
pd)
e
2t
thereby binding s from below.
¢ The objective variable d; canmot be bounded from below by constraint 3, due to the

directionality on constraint 3 imposed by step 1. The only other constraint in which d; occurs,
constraint 4 , must be critical , i.e satisfied as an equality.

s=

e The criticality of constraint 4 makes F and p relevant variables. By Monotonicity Principle 2,
these relevant variables have to be bounded by two critical constraints: one from above and

one from below. So constraints 1 and 2 are critical yielding p=3.5(psi) and F=22(lbs). >From
V8004 :nr 5' di=72 (m)

tonicity Principle 1, mwofmetw«ocmmmAmﬁhasmbecnucalmbmdt
from belmv Using s=8000(psi), and results from step 3, constraint 4 becomes ¢20.015(mm).
Therefore constraint 6 becomes critical and z=3mm.(since satisfying constraint 6 implies
satisfaction of constraint 4 but.not otherwise.)

e The Solution : p=3.5(psi), F=22(lbs), t = 3(mm), d; = T2(mm).

‘ Stra wﬁhmpectwﬂx design variables.
| monotonicities do not exist, it is not possible to obtain a closed form solution
usmngmmmyanﬂuﬁwdessgnafmefoanm applmanmwhem

L <

(ST T e T - T B = o B N

P i 2 T . B 2 T o B S Y

A M LA e

ince d, = di+2t we have:
d;+212+d?

\)
P (d+29%-d?

‘'we use Al alloy A96061 with Syp=8000(psi) and p=4000 (psi) then the s < S, , yields,
s
P p
1d therefore
”s d+20%+d?
(d202-d?
hich becomes 42 + 4 d;t— 2d,~220.0. This resultant constraint is not globally monotonic with respect to

easoning using Monotonicity Principles will not work because d; is not a globally monotonic variable.

Ithough the newly introduced constraint was not globally monotonic, it still is monotonic in the regions
< d;andt 2 d;. If t 2 d; is unreasonable in the domain of application, then the solution can be obtained
y solving the problem in one region. Else, the problem is solved separately in the two regions, and the
dlution assembled to obtain the global solution. Most design objectives are too complicated to be
lobally monotonic, but do vary monotonically over regions. Similarly in real design problems, different
nstraints may become active and dominant in different regions; hence great leverage can be obtained by
cploting regional information. We need means for representing, abstracting and manipulating regional
iformation. The need is met by the application of Interval methods.

.5 Interval Methods

iterval Methods provide a convenient framework to characterize regional properties of objectives and
onstraints. An interval is a set [g, b] such that all real numbers between a and b are included in the set.
ttervals can be operated on by set theoretic operators such as intersection, union and subset. An interval
f a function provides upper and lower bounds for the range of the function, when its arguments span an
terval. For eg. the interval of the function (x2 + y) for the interval x=[1, 4] y = [5, 10] is [6, 26]. This
nplies that all the values taken by the function (x2 + y) for the given range of arguments are above 6 and
elow 26.

nterval arithmetic is used as the basis for evaluating algebraic relations containing interval variables,
ielding interval results. Interval arithmetic operators are defined on the upper and lower bounds of the
perands. The interval on (x2+Yy) in the above example, was determined by expanding the square
perator and applying the following interval arithmetic formulae. [Moore 66]
[a,b] + [c,d] = [a + ¢c. b + d] ¢))
[a,b] - [¢,d] = [a-4d b - c] @
[a,b] x [¢d] = [min(ac, ad, be, bd), max(ac, ad, be bd)] €))

10

[a,b] / [c.d]=[ab]x[Vd1c] | @)

By using Interval methods, we can characterize regional monotonicities, regional feasibilities etc. of
design constraints. For example consider the newly introduced constraint in the hydraulic cylinder
problem:
c =42 +4d;t-2d? 2 00;
9) _
a(d,)
In the region #=(3, 10] and d=(35, 40],
e The interval on the partial of c is calculated by using the principles of interval arithmetic to
be = [-148,-100] < 0.0 So the constraint is monotonically decreasing with respect to the
inner diameter, d;.(Regional Monotonicity)
e The interval of the function ¢ itself in this region = [-2744, —450] < 0; So the constraint is
violated in the whole of this region. (Regional infeasibility).
We shall see in a later section how the properties, regional constraint activity, criticality and dominancy
can be redefined through intervals.

= 41-44;

1.6 Conservativeness of Interval Calculations

The four basic arithmetic operators, are monotonic with respect to each of their arguments. Further more,
the sum and difference operators have known monotonicities and therefore it is possible to determine a
priori which combinations of interval endpoints must be evaluated to determine the maximum and
minimum interval of the function. The multiplication operator however, may have a strictly increasing or
decreasing monotonicity depending on whether or not the arguments are positive or negative. In this case
we must evaluate the multiplication function at each combination of interval end points and select the
minimum and maximum to determine the interval. Nevertheless, these basic operators compute intervals
which are precisely the interval that occurs.

Although the four basic arithmetic operators produce exact intervals, the representation of higher level
functions in terms of these basic arithmetic operators introduces some difficulty. Consider the function of
y=(x-2)? over the interval x= [0, 10]. The function itself is not monotonic over that interval. Since
subdivision into monotonic intervals would require in the general case difficult solution procedures we
prefer to express the function in terms of the monotonic arithmetic operators, i.e. y=(x-2)(x-2). In
ﬁnsmﬂnsqmaopcmmrhasbecnmplmedmthmulnplmmm implicit in the definition of
interval multiplication is that the two arguments may vary independently. This is clearly not the case for
mesqnmﬁmmmMWmﬁmn&lnm.mmenﬂepmofﬂnammmm
restrictive, the result of applying the conventional interval arithmetic will result in an interval on y which
is conservative in the sense that the actual interval on the function will lie within the computed interval.
In this case the interval computed using interval arithmetic is [—16, 64] which includes the actual interval

"The division operator is not valid when the interval of the divisor inciudes zero.

11

of [0, 64]. The conservative interval calculation destroys the one to one correspondence between intervals
on arguments and intervals on functions. This is important in the context of design because it is often
necessary to determine what range of arguments will satisfy a range on the function itself. The extent to
which the computed interval deviates from the actual interval is critical to the degree to which strong
inferences can be made regarding intervals on variables.

There are some specific techniques intended to mediate against the expansion of intervals. One such
approach is the centered form of functions based on a fourier expansion of the intervals and is described
in [Moore 79]. Other heuristics, for example, to deal with even exponents are also useful. There are
several ad-hoc methods to obtain less conservative intervals, often exact intervals. Since the computation
of intervals is not the focus of our research, it will not be discussed at greater length here.

1.7 Constraint Propagation in Design

Intervals can be effective for representing and reasoning about design parameter values. It is also possible
to propagate interval values through a set of constraints and detect potential constraint violations. By
propagating design decisions through constraints it is possible to determine how the various design
parameters affect one another. In the process, redundant constraints are identified and eliminated. The
intervals of the various parameters are also refined in this process.

Consider, for example, a DC motor. The torque (T in-0z) is related to speed (@ rad/sec) as shown in
Figure 3 and as given by the constraint:

1
T = 100 — =
00 50)

Assume that the torque must be at least 30 in-0z (21 N-m) and must not exceed 75 in-oz (.53 N-m) and
that the speed may assume any value between 150 and 400 rad/sec. The given interval, [30, 75 in-0z],8 in
conjunction with the motor characteristics imposes upper and lower bounds on speed of 125 and 350
rad/sec as shown in Figure 3. Intersecting this interval with the original interval we obtain a refined
interval on speed, [150, 350 rad/sec]. This new interval is propagated through the constraint, once again,
to find upper and lower bounds on torque, [30, 70 rad/sec]. This interval on torque and the corresponding
interval on speed indicate that the original specifications requiring torque to be less than 75 in-oz and
speed to be less than 400 rad/sec were not necessary. By propagating intervals it was possible to identify
redundancies and therefore simplify the design task without making specific commitments about any of
the design parameters.

The process of propagating intervals through constraints can be continued through long chains of
constraints. The process provides a means for determining bounds on design variables thercby delimiting
a feasible space for the final design. Propagation can be done through chains of constraints resulting in a
successive narrowing of parameter intervals. Continuing our example, assume the power of the motor
(given by Power = ®T) is required to be less than or equal to 8500 in-oz/second (60 W), that is, in the

¥The S.L units are not generally repeated in the interval notation to avoid confusion.

12

100

75
50

30

125
250
350
500

Figure 1-3: Torque Speed Characteristics of a D.C Motor

interval [0, 8500]. Holding the interval on Power and propagating T and ® through the two constraints
yields the interval [222, 252] for the speed and the interval [30, 38.2] for torque. This narrowing requires
about 20 iterations. By propagating intervals successively, any variable can affect any other variable as
long as there is a chain of constraints connecting them. Propagation can occur in any direction; it is not
the case that one variable in a constraint must be selected, a priori, as being dependent while all others are
regarded as independent. As constraints are propagated and as intervals narrow, specifications may be
found to be inconsistent with other constraints thereby identifying violations® and redundancies before
specific design decisions are made. Interval propagation makes it possible to gain insight about a design
without having to choose specific values for the design parameters.

Working with intervals, in this way, allows one to simultaneously consider a wide range of altematives
and to examine interactions among design parameters before the design is completed. The example also
shows how it is possible to narrow design choices without actually committing to any single operating
point. We believe that the ability to draw important inferences about a design problem, early in the
process is important in concurrent engineering. Later in this paper, we show how interval based

pagation methods can be used to provide a designer feedback about the likely violation of life-cycle
wnmum.cmwmmedwgnmmpkm.chdxmﬁnsmamwayomemy
in design.

SThat is, when an interval is reduced 1o 2 null set.

13

1.8 Interval propagation

In this section we delve in more detail on the propagation of intervals through a set of constraints and the
evaluation of intervals through necessary and sufficient conditions. Consider the evaluation of intervals
using the basic interval arithmetic operations. For example, let V; be an interval calculated from the
equationV, op V, = V,. Where, op is one of the four basic interval arithmetic operators. This operation
guarantees that for any value in the intervals V, and V, the result of applying op will be in V. In other
words, the result is necessarily in the interval V.

After a constraint expression is evaluated the new interval is propagated. For example, when a new
interval is determined for a variable, that variable’s current interval is updated by intersecting it with the
calculated necessary interval. If the intersection is null, then the original interval or the constraint is said
to be inconsistent. This kind of propagation can be carried through complex equations using the interval
arithmetic operators. The process guarantees the result will necessarily be in the calculated interval.

In the DC-motor example, we have the equation Power = ®T. Assume we know the interval on Power:
[8000, 25000] (inch-oz/sec) and Torque [30, 75] (inch-0z). We seek an interval on ® such that, for any
values of power and torque (within their intervals) the speed, ®, falls within the interval. In other words,
we seek an interval in which ® has to necessarily be in. As shown in Figure 4 , the speed must fall
between g and b. Thcmtcrvalmaybecomputedusmgthcbasxcmtervalariﬂmetictoevaluatethc

constraint, expressed terms of the variable in question: @ = "T __[3%27’_55%021__ [106, 833] .

1.9 Necessary and Sufficient Intervals

The fact that a variable falls within a necessary interval does not guarantee that all constraints can be
satisfied, i.e, necessary does not imply sufficient. Consider for example the situation depicted in Figure 4.
Although ®[106, 833 rad/sec] is necessary, an arbitrary value in this interval is not sufficient to satisfy the
power requirement for arbitrary values of allowable torque since the rectangle of valid torques and speeds
extends beyond the bounding power curves. Even when we know that both torque and speed fall within
the necessary intervals it is still necessary to check that the power constraint is satisfied. There may,
however, be an interval on speed which guarantees that the power requirement will be satisfied whenever
torque requirements are met. We say that such an interval is sufficient to satisfy the constraint. For
example, the interval on speed sufficient to satisfy the power requirement is shown in Figure 4. For any
value of torque and speed in their respective intervals, the power will always be between 8000 and 25000

The concept of necessary and sufficient intervals can be very useful to the designer. If two constraints
each have associated with them a necessary interval on the same argument and those necessary intervals
do not overap it is not possible to simultaneously satisfy both constraints. The ability to identify a

raint contradiction oftlnssoneaﬂymtmd@ﬁgncyclemakm it possible for the designer to

The interval of some variable, sufficient to satisfy a constrai nstrain
whenever all of the other variables fall within their necessary intervals. Therefore, if the necessary

14

interval of one constraint falls completely within the sufficient interval of a second constraint, then that
second constraint will be unconditionally satisfied whenever the first is and therefore the second
constraint does not need to be considered explicitly. Identifying a redundant constraint of this sort is
similarly useful to the design since only those constraints which are truly binding need be considered.

'Y
T=75
g \
;////’ \. Power=25000
T= //e)\./z.,
\ T
—Power=8000
\ 4 \ 4 >
a b W
Necessary Interval Evaluation

Figure 1-4: Constant Power Curves for a D.C Motor

In the DC-motor example, where Power = @ T, suppose that the interval on Power is prescribed as:
[8000,25000] (inch-oz/sec) and Torque [60, 70] (inch-0z). The sufficient interval on ® is [133, 357].
Suppose the Torque-Speed characteristics of the d.c motor are given as before:

T =100 - -;0)
The interval on ® necessary in light of torque, is [150, 200] (rad/sec). Since the necessary interval due to
the Torque Speed characteristics constraint is a subset of the sufficient interval on the power constraint,
the Torque speed characteristics constraint dominates the power constraint. This is one way of showing
constraint dominance. We shall provide a stronger necessary condition that dominant constraints obey in
a later section.

e Any sub-interval of a sufficient interval is also a sufficient interval.
¢ A super-interval of any necessary interval is also a necessary interval.
o The union of all sufficient intervals are contained in any necessary interval.

15

1.10 Calculation using the Sufficiency Condition
In this section we present a method to evaluate the intervals on a variable based on a sufficient condition.

Our goal is as follows: Given the constraint V, op V, = Vj, to determine V,, such that for any value in
given V| the application of op yields a result in specified V. In other words, what should V, be so that for
any value in V, , V, op V, lies in the specified interval V,? '

To obtain the unknown interval V,, we express the relation V; op V, = V, in terms of the interval we
want to be within : in this case V;. Assume V, = [vy, vy,], where v,; and v,, are the values we seek.
Now consider the relation V; op V, = V,. The left hand side can be evaluated in terms of the unknowns
vy, and v,, by applying the interval operators. These two unknowns can be found by solving the interval
equation, as demonstrated by the following example : Consider the D.C motor case in which Power is
required to be in the interval [8000, 25000] and the interval on Torque is given to be [30, 75]. Our goal is
to find an interval on ® such that Power = @ T is satisfied for all ® and T in their respective intervals.
Following the above procedure: Let @ = [®, ®,]. Applying the equation Power = @T; substitute the
intervals for Power, Torque and ® we get [8000, 25000] = [®,, ®,] [30, 75] from which it follows that
[8000, 25000] = [30 ®,,75 ®,], since torque and speed are known to be positive definite. Equating the
upper and lower limits of the interval equation, 8000= ®, 30 gives @~ 266 and 25000 = ®, 75 gives ® =
333 . These limits on speed give the sufficient interval.

Now consider the dual case, that of finding an interval on speed sufficient to satisfy the torque
requirement of [30,75] given that power falls within the stated interval of [8000, 25000]. Now, V; is
Torque and V, is Power. Expressing the equation in terms of Torque, Torque = Power/w; we get [30, 75]
= [8000, 25000}/ [@,, ®,], from where it follows that 30 = 8000/w, and 75 = 25000/®, The limits on
speed are hence: @, = 266 and @, = 333 , which is a nonsense interval. There is no interval on speed
sufficient to guarantee that there is some valid torque for any power in the stated interval.

This example not only demonstrates the simple methodology to evaluate sufficient intervals but also
illustates the asymmetric nature of sufficiency intervals and their conditional existence. The existence of a
sufficient intervals has an impact on the design decision making. For example, if we are designing a d.c
motor, the existence of a sufficient interval means the ability to accomodate any motor in the given torque
range or the need to use a particular motor in the given torque range. Conditions for existence of
sufficient intervals, resolutions and retractions needed for their existence are topics of current research.

1.11 Interval Criticality, Dominance, Activity

Constraints in design may not be globally monotonic, globally active, dominant or critical, but certainly
are regionally. The concepts of constraint criticality, dominance and activity, defined over regions, are
therefore, more effective in identifying the critical constraints and pruning the insignificant ones. Interval
Methods, with which we represented and manipulated regional information in the previous sections, can
again be used to characterize dominant, critical and active constraints regionally.

Interval Dominance Constraint ¢; <0 dominates constraint ¢, <0 in the interval I, if the interval (cy—¢;)

S

-

16

is necessarily <0.

Constraint ¢, dominates c,, if the feasible region of ¢, is a subset of the feasible region of c,. In particular
if c,<c,, then ¢, dominates c,, since satisfaction of ¢; < 0, implies that ¢, <0. So if c,—¢<0, then
constraint ¢; dominates ¢,. Regionally, this becomes interval (c,—c,) is necessarily <0 ,for dominance of
€y Over c,. :

Interval criticality An inequality constraint that is satisfied as a tight constraint for a variable x;, over
the interval I is termed Interval Critical. 10,

Interval Activity A constraint that influences the solution within the interval I is termed Interval Active.

The interval dominance conditions stated in this section are stronger conditions than the ones stated using
necessary and sufficient conditions in Section 5.11. Consider the application of the interval dominance
conditions to the d.c motor problem where the following constraints apply:-

¢;... Power = ®T<25,000;
and the motor Torque-speed characteristic constraint

cz.,.T=100—-;-co

with Torque constrained to be in the interval [30,75];

The sufficient interval from ¢; on @ is [0,333], while the necessary interval on ® using c, is [125, 350].
Since the necessary interval from c, is not a subset of the sufficient interval from c,, dominance of c,
over ¢, cannot be proved by the theory of necessary and sufficient intervals.

the Interval (¢,—c,) = Interval(®7-25,000 - (25 - 02 ®))
= Interval((T+0.2) ® —25,025) is necessarily < 0 for ® < 333;
Mwﬁhﬂnmmywﬂmwﬁnmczwemmzﬂzssﬁl,mthsmterval.consn'azmz

Hydraulic Cylinder Revisited The two constraints
L ¢, 4R+4dg-2d?2200;
2. ¢ t2 SMﬁ(mai‘ cturing
One of these two constraints must be :
this heavy load 2 -

pplication, ¢>d; is inapplicable. ’Ihmhthenmal«d,ﬂxenewconsumm

“mumawhwmwuummmm%nmdmm
is one that dictates what the regional solution is, rather than one that keeps the model bounded
!The interval dominance conditions are sufficient conditions, but not necessary conditions, as they are based on interval

17

monotonically decreasing; the new constraint cannot bind 4; from below. The monotonic objective
variable is again bound from below by the relationship between force and d; and so
d=172 (mm), F=44,000(bs) p=4000 (psi).
The Constraint ¢, becomes 42+ 288¢—1036820.0;
cy — ;= 10365 -287t— 4¢%
interval(c5 — ¢,] for t=[3, t,]]
=[10365—- 2871, — 41,2, 10365— 287, — 417]
which is necessarily > O forz, < 27mm.
So in the interval [3, 27] constraint 1 dominates constraint 2.
At ¢ =27(mm), constraint ¢, becomes tight and dominates c,.
The solution is ¢t=27 (mm), d; = 72 (mm) and d,, = 126 (mm), for this is the smallest value of ¢ for which
both constraints are satisfied.

Thus, despite the absence of global monotonicities, the design solution was achieved by combining
regional information. This suggests that one could use interval methods not only for constraint reasoning
but also for optimizing the objectives. In fact interval methods guarantee that the resultant interval
obtained is an inclusion, i.e. the result includes and binds all values of the function in this region. Interval
Methods based algorithms use this assuredness property of intervals to obtain the global optimum. In the
next few sections we will investigate the application of interval based methods to

e Obtaining the globally optimum solution and

e Combining constraint reasoning with global optimization.

1.12 Global Optimization

Global Optimization of a nonlinear, nonconvex objective subject to nonlinear constraints is yet an
unsolved problem. There is no single best method to accomplish this goal of attaining the global
optimum. The problem with most traditional nonlinear programming techniques is that they are local
methods. They can get stuck in local valleys, and there is no guarantee that the solution is globally
optimum. Under strong assumptions about the function involved, like convexity etc. the solution can be
assured to be globally optimum.

Interval methods have been used to solve the global optimization problem [Ratschek and Rokne 88]. The
rationale behind these approaches for unconstrained optimization is as follows:
¢ Use interval methods to represent regional information.
 Exploit the bounds provided by the interval method as a part of a branch and bound search
strategy.
« Combine with a subdivisioning procedure, that helps accelerate the search, by yielding tighter
bounds. ;

To solve the constrained optimization problem, these methods subdivide the constrained design space into
halves, until they get a part of the space which satisfies all the constraints. Due to the the extreme

18

conservativeness of interval calculations, and the non linearity of the constraints, it is very difficult to
obtain a region that satisfies all the constraints through interval calulations. :
Consider the two constraints f; 2 (x—2)(x—-3) andf, < 5x—6.25-x2. as shown in Figure 5.

2.2) . 2.8

-0.05¢
-0.1¢
-0.15+¢

-0.2-. -

-0.254

Figure 1.5: f; = (x—2)(x—3) and
' £ = 5x-625-22.

Consider the small window represented by x=[2.4, 2.6] and y= [-0.21,-0.18]. Although the rectangle
shown is clearly feasible, doing interval analysis on this rectangle cannot show that this rectangle is
Interval[(x-2) (x—3)] for x=[2.4, 2.6] = [-0.36, -0.16].

Y- Interval[(x—2) (x—3)] for x=[2.4, 2.6] = [-0.05, 0.18], which is not necessarily greater than zero. So
according to interval analysis, this region may not be completely feasible.

Despite subdividing the originally available region to very small regions we cannot prove that the small
region is going to satisfy both the constraints, although in reality it does. So the region which satisfies all
constraints is going to be difficult to obtain, and may be too small to be of any engineering use.

On the other hand it is not necessary that each and every constraint be satisfied a priori in every region
through interval calculations. A large portion of the constraints are dominated in some regions and can be
deleted from that region. So great gains may accrue if constraints are reasoned within each of the regions,
and model simplified , before optimizing in that region.

Combining constraint reasoning with interval based methods for global optimization, results in the
Interval Variable approach for giobal optimization.

19

1.13 Interval Variables Approach

Unlike conventional interval algorithms which keep sub-dividing the design space until all constraints are
satisfied, the Interval variables approach simplifies the model regionally by reasoning from a variable
point of view. The interval dominancy, criticality and activity conditions, as defined in an earlier section,
are used to reason from the variable point of view. The Interval Variable approach, by itself, may not be
able to solve all the problems completely. In such cases it may be used as a pre-processor that simplifies
the model.

Interval Variables approach
1. Form the adjacency matrix for the model.12

2. Consider nonobjective variables first, giving preference to those variables that figure in the
least number of constraints.
o If the variable occurs in only one constraint, and is regionally monotonic in that
constraint, eliminate the constraint and the variable.

o If the variable occurs in several constraints, and is regionally monotonic with respect
to each of the constraints, then call these constraints, nonobjective conditionally
critical,(exactly one constraint in this group is critical). Apply Interval Dominance
conditions to all pairs of constraints in this conditionally critical set to identify the
critical constraint. While considering the various pairs, dominance relations are
propagated.i.e. If A dominates B, and B dominates C, then A dominates C; The pair
A,C need not be tested for dominance.

o If the nonobjective variable is not monotonic, subdivide the design space further, to
obtain desired monotonicities.
Consider monotonic objective variables, starting first with variables that occur in the least number of
constraints. For each variable,
o Partition design space to obtain desired monotonicities.
e List all the constraints with the desired monotonicities under an objective conditionally
critical set.
o Test for interval dominancy of constraints.
e Delete the dominated constra‘nts. Apply Monotonicity Principle 1 to obtain the constraint
which is regionally critical.
In a larger sense, the interval variable approach is similar to active set strategies, as it tries to solve the
problem by finding out the critical constraints. However instead of expecting a few constraints to be
critical throughout the design space, the interval variables approach looks for regional criticality. In
highly nonlinear situations, such as design constraints and objectives, we believe this results in significant
benefits.

12 giacency matrix lists the numbers of the constraints and the variables that occur in each of the constraints. It is described in
the next chapter.

V. F.E L

20

1.14 Weldment Design using Interval Variables approach

Figure 1-6: Design of Bar Weldment

The rectangular bar supporting a vertical force on one end is to be welded at the other end to a metal
column. [Ragsdell and Philips 76]. The distance of the metal column to the force F is denoted by L. The
four design variables in the problem are weld length ., weld rod thickness A, bar width b and bar depth ¢.
The objective to be minimized is the sum of weld, stub and bar costs

f=C K1+ Cylbt + C3bt

where C; = 1.1047 ; C; = 0.6735 ; C3 = 0.04811. subject to

gl = -hl+ 15211 < 0.0 .. shear stress
2 = b2 +16.8 s 0.0 .. bending stress in bar

g = -b+h < 00 .. weld width < bar width

g4 = b8 +9.08 <0.0 . end deflection

g = 0.094t + (0.02776/6°1) < 0.0 ..buckling

g6 = -h +0.125 <0.0 ..weld width’s lower bound.

[Papalambros and Wilde 88] used the variable transformation a = bt, where g is the vertical cross-
sectional area of the bar. They eliminate b using the transformation and obtain the following set of

SULALEILS

f=C1+ Cyla + Cia

gl = -hl+ 15211 < 00

82 = —-ar+ 16.8 < 00

g3 = —-a+ ht < 00

g4 = —a? +9.08 <00

28 = -1+0.02776¢ + (0.094%a%) < 0.0
86 = -h + 0.125 <0.0

21

Start with the following intervals:-
h=[01,1]

t=1[1,3]

b=1[3,10]

I1=[3,30]

a=bt=[3,30]

Step 1 Select the only nonobjective variable, ¢ , for consideration. The constraints in which it appears
are as follows:-

g2 = —at+ 16.8 < 0.0

g = —a+ ht < 00

g4 = —a?2 +9.08 <0.0

g5 = ~140.02776 ¢ + (0.094 2/a3) < 0.0 and the set constraints
t210,t < 3.0

On grouping the constraints into those that bind the variable ¢ from above and those that bind from below,
we obtain

Set A(binds t from above)

g3 = —a+ ht < 00

g5 = -1+0.02776¢ + (0.0942/a>) < 0.0 and
t-3.0 0.0

Set B(constraints providing lower bounds)

Q2 = —at+ 16.8 < 00
g4 = —a? +9.08 <0.0
—-t+1 < 0.0

Because ¢ is a monotonic nonobjective variable, it has to be bounded by two critical constraints, one from
above and one from below. So exactly one constraint from each set must be critical.

By Interval Dominance we can show that the set constraint z—3.0 < 0.0 dominates the other two
constraints in set A. So it is critical and = 3.0;

This makes sure that —z+1 2 0.0 is not critical. Using =3.0 and the interval dominance condition we can
show that

g2 = —at + 16.8 < 0.0 dominates

g4 = —ar? +9.08 <0.0 over the specified interval of a.

g4 can be deleted and g2 is critical resulting in a=(16.8/3)=5.6;

h is bounded from below by two constraints. The set constraint £20.1 and

the constraint g6 = . -h + 0.125 <0.0 ;

Obviously g6 dominates the set constraint and so b= 0.125;

Thus the solution in this region of the design space is A = 0.125,a = 5.6,t = 3.0, = 1.9.

1.15 Conclusions
In this chapter the utility of interval methods to reason with constraints was presented. Intervals help

abstract, represent and manipulate regional information. They also help characterize regional properties.
They can easily describe incomplete designs and can accomodate any level of specificity in the values of
the variables. Furthermore, their assuredness property, makes them useful candidates for a methodology
to be used in global optimization.

23

Chapter 2

Planning Constraint Solution Strategies

In concurrent design problems we often have large numbers of complex constraints which have to be
satisfied to complete a design task. As it is impossible to guarantee the simultaneous solution of a large
set of design constraints, we have investigated algorithms for planning and simplifying such constraint
problems.

Satisfying a large number of constraints does not imply that all the constraints be solved simultaneously.
Often, some parts of the design tend to be more coupled than others. This chapter presents algorithms for
finding the coupled constraints and for developing a solution strategy which minimizes simultenaety.

The simplest type of constraint sets are those which do not need any simultaneous solution of constraints.
Such constraint sets are said to be Serially Decomposable. The constraints can be solved serially, yielding
the value of one new variable for each constraint evaluation. We present algoﬁthlhs to detect serial
decomposability and for ordering the solution sequence of such constraint sets. When a constraint set is
not serially decomposable, the constraints have to be solved for simultaneously. Instead of trying to solve
the entire constraint set simultanecusly, we would like to isolate and identify subsets of the entire
constraint set which necessarily have to be solved simultaneously. This chapter presents algorithms for

One of the assumptions we make in ordering algebraic constraints is that they are invertible. That is, for
any function F(X), one can find the value of any variable x; in X if the values of all the other variables are
known. Not all constraints are explicit and not all constraints are invertible. For example, a Finite Element
package, unlike an algebraic relation, takes inputs and produces outputs. One cannot determine the inputs
from the outputs. Such constraints have to be handled in a special way. We present an algorithm for
ordering constraint sets which contain both reversible and irreversible constraints.

2.16 A Design Example

Before embarking on discussions about graph theory and algorithms, let us examine the major ideas of
this chapter with the aid of a simple, but illustrative example. We will be using this example throughout
Consider the design of a friction-type disc clutch shown in Figure 2-7. This example is taken from
[Hindhede, Et.al. 83]. The problem is to find the size of the clutch plate (D), and the inner diameter of
the lining (Din), to safely transmit 32 HP at 3000 rpm.

There are several design equations relating the known and unknown clutch parameters. We treat these

Fa y Fa

Figure 2-7: Clutch Example

equations as constraints. In other words, the equations are used both as procedures for calculating
unknowns and also as relations among parameters. These relations have to be satisfied in the final design.
For the clutch example, we will be using the following seven constraints:

F uD
Taesign = — 3 -)
where,
Tiesign = Design Torque (N.m)
F, = Actuating Force (N)
D, = Effective Diameter (mm)
B = Coefficient of friction
The effective friction radius is the average radius
D, + D,
D‘ = _"% - ©)

The actuating force depends on the allowable contact pressure (P,;.....;,) Of the materials chosen for the
clutch plates.

F, = 025%(D, 2 — D;2)Pypeasic M
The nominal torque (T,,,.;»,) i8 increased to the design torque (T ;) using a service factor (X,). The

service factor depends on the type of load, drive and starting mode [Gagne 53]. We will assume
K, = 25.
Tiesign = Toominat K, , ®

The nominal torque is given in terms of power to be transmitted (Power) and the speed (®)

Power = @T, iu ®
Based on past experience, the ratio of inner and outer diameters (D,,,;,) is fixed at 1.5

Doﬁ
Dm = 'D_' (10

i
n

Enaﬂy,mwouﬁﬁkcmcbeck&tcemiﬁxgalhoopmswmmechnch.

pDZout(')2
h00p=‘-—4_

an

The design task is to find values for the unknown variables such that the above constraints are all satisfied
simultaneously.

2.16.1 Ordering the constraints
Instead of trying to solve all the above equations simultaneously, one can try to identify a reasonable
strategy to solve the equations. The algorithm presented in this paper produces the following strategy:
Step 1: Calculate for T,,,;,,; from Equation (9) by expressing the equation in terms of 7},,,....;
and substituting for power and angular speed.

Step 2: Calculate for T, from Equation (8) by substituting the just determined value of
Tnandml‘
Step 3: Calculate for D, D,,, D, and F, simultaneously from equations (5), (6), (7) and (10)

Step 4: Calculate for S,,,,,, from Equation (11)

The above strategy shows three aspects of solution planning: (1) Constraints may be treated as
procedures, where any variable in the constraint can be determined if the values of all the other variables
are known. (2) Some variables can be determined only after other variables are determined. This produces
a chain (or ordering) of constraint evaluations, and (3) Variables which depend on one another have to be
solved for simultaneously. The actual numerical method used to solve the constraints is outside the scope
of this report. It is our aim, to find a viable solution strategy which identifies and isolates only those
constraints which have to be solved simultaneously. This is done to avoid treating the entire constraint set
simultaneously. ‘

2.17 Planning Algorithm for Serially Decomposable Constraint Sets
Some constraint sets do not need any simultaneous solution of constraints. We call such constraint sets
Serially Decomposable. This is because the constraints can be solved serially, that is, there is no
simultenaety among the constraints. For example, consider a reformulation of the clutch problem:

6T, .

D‘3 = ;‘u"@" (12)

Power = T, ... (13)
9p D2 ?

Shoop = —5— (14)

D,, = 12D, a1s)

D, = 08D, (16)

Tiesign = Tnominat Ko an

31 design |
F, = 18
a kD, . . a8

This constraint set is equivalent to the original constraint set, but has been manually reformulated to be
serially decomposed. The notion can best be explained with using an adjacency matrix representation.
Constraints form the rows of the matrix, and the variables correspond to the columns. In every row
(constraint), Xs are marked in the columns which correspond to the variables involved in the constraint.
The adjacency matrix is as shown it Figure 2-8 (a). Careful re-ordering of the rows and columns yields
the matrix in part (b) of the figure. This matrix shows the order in which the constraints can be solved. As
T pminea iS the only unknown in Equation (13), it is determined first. Once T, is known, T, ..,
becomes the only unknown in Equation (17). In this way all the variables can be solved for one after the
other, that is, serially. :

]
8. 118 i ..
= 2 o 2o
BESERRE EelREEE
8ix X :
9 X 13[x &
10 X[x 8 X Ex
11 x[x 11 X
121 Ix X 1 X
13{x X | 10 X
14 Ix 14 x|
(a) ®)

An important property of a serially decomposed set is that the rows and columns can be reordered to yield
an adjacency matrix which is populated (with X"s) only on and/or under the diagonal. This is what allows
us to solve the constraints in a serial order. Every time a variable is determined, at least one constraint
becomes solvable (i.e. only one unknown left). If a constraint set is not serially decomposable, it implies

uations would have to be solved simultaneously. In such cases, it is our aim to find an
ordering which tries to minimize the total number of equations which have to solved simultaneously.

gorithm for Ordering Serially Decomposed Constraint Sets
Amﬂlydempwﬂ:kmmmmmbeoﬂcmdumammmdcohmn

Step 0. Express the constraint set as an adjacency matrix.
Initialize a stack called ORDER

Step 1. If there are no rows or columns in the matrix, return: ORDER

Step 2. Find all the rows with only one X in it.
If there are no such rows, return "The Matrix is not Serially Decomposable™

27

Step 3. For all the rows with only one "X" in it:
a. read off the corresponding column (variable name)
and push it on the stack ORDER
b. remove the row from the matrix
¢. remove the column with the "X" in it.

Step4. Go to Step 1.

A problem with using the above algorithm, is that it fails ungracefully when the constraint set is not
serially decomposed. The algorithm has no way of telling whether a given constraint set is serially
decomposable or not, it starts generating an ordering and fails only when it reaches an impasse. It would
be better if we could determine, up front, whether a constraint set is orderable or not. The next section
presents an algorithm aimed at quickly determining whether a constriant set is serially orderable or not.
The algorithm works without actually trying to order the constraints, and thus runs very fast.

2.18 Special Treatment of Serially Decomposable Constraint Sets

The constraint sets encountered in design practice are usually extremely complex. The number of
constraints and the number of variables is large. An interesting property of the constraint sets is that they
are usually sparse. Each of the individual equations have a small number of variables. A direct
simultaneous solution or optimization of the set of constraints is computationally very complex. It is
undesirable as it does not take advantage of the sparseness of the constraint set. The sparse set of
constraints is broken down in to different groups which can be solved separately and progressively one
after another. .

A serially decomposable set can be ordered and solved directly without taking recourse to simultaneous
solution methods. A constraint set, which is not serially decomposable on the whole, may have parts
which are serially decomposable. This property can be used effectively to partition the constraint set into
smaller and more managable subsets.

Detection of serially decomposable ‘sets is valuable. At present, the constraint sets are reordered using
various algorithms, to partition the system of equations. It would be good to detect before resorting to
reordering, whether the constraint set is serially decomposable or not.

An analytical method has been developed to test the serial decomposability of a constraint set. This
method is based on an adjacency matrix representation of the constraint set and a set of boolean properties
of the set.

Adjacency matrix representation

A constraint set can be represented as a bi-partite graph. The nodes of the graph are the equatio
variables. The edges are between the equations and the variables present in the equations.

The adjacency matrix of the constraint set is matrix formed by presenting the equations along the rows
and variables along the columns. An element of a row is 1 if the variable comresponding to the column is

Taft NV L

28

present in the equation, else it is 0. For example, consider the system of constraint equations of the
design example in section 2 :

- .
Tdaign=_J;-D': M
D _+D,,
e = 2 (2)
F, =025 (Dyy? - Dyy?) Pypiomabie ©)
Power=0T, 00 &)
Do‘
D yio =D, (6)
pD?, o
Shoop =3)
The adjacency matrix of this system can be written as,
=[0100110])
1001101 0| @)
]10011100| ®3
1110000 0] @
110000 0 0} (&)
LO 01100 Oj 6)
0010001 M

where, the columns are (T, mingls Taesigns Dourr Pine Far Des Shoop)

It can be observed that the adjacency matrix is a boolean matrix : its elements can take only the values 1
or 0.

Boolean Determinant of Adjacency Matrix

Definition of a boolean determinant of an adjacency matrix is very similar to that of the determinant of a
real matrix. The multiplication operation is replaced by the logical AND operation. The additions are
replaced by an operator "nary-XOR", which is an extension of the binary exclusive OR.

Consider a square boolean matrix A of size n.

29

A= I-all 3.12 s aln‘]
:321322 e g
“ e e l
'..'. e :
{-anlanz T gl

where elements 3;; are boolean.
If A is2 x 2 then, ’
det(A) = (a;; AND a,,) XOR (a;5 AND a,,).
If A isn x nthen

det(A) = (a;; AND minor (a;;)) XOR (a;5 AND
minor (a;,)) XOR ... XOR (a;, AND minor(a,)).

= -XOR ((an AND minor (al 1)),(3.12 AND
minor (a,5)), ... (2, AND minor(a;))).

The XOR expansion is defined as n-ary XOR; i.e. before evaluating any of the boolean expressions, the
whole expression should be expanded. After the complete expansion, the AND operations should be
evaluated. Then the n-ary XOR should be applied to the whole expression. If there is exactly one ’1’ in
the expression, the result will be 1, else the expression will evaluate to 0.

The determinant can be expanded by any row or column. Consequently, the value of the determinant does
not change on rearrangement of rows and columns.
Criterion for Serial Decomposability
The determinant of the adjacency matrix indicates the presence of 1oops.
If A is an adjacency matrix, then
if det(A) = 1, the constraints can be serially decomposed,
= 0, the constraints can not be serially decomposed.

Consider the first example. The adjacency matrix on rearrangement :
A= [

COOO
OO0 =D
COO~-OO
COOOQ
et ek ek et DO O
O e OO0

ceees,
2

r“‘u—-—-———a—v—
pten
o)

P

2

where the columns are (T, minai T design” a2 e"P ourLin"Shoop)

Expanding the determinant of A by first row,

- 30

det(A) = nary-XOR (1 AND minor(a;))
= -XOR ((1 AND minor(ay,)))
= nary-XOR ((1 AND minor(a;3)), (1 AND minor(a;4)))
= nary-XOR ((1 AND minor(a,4)), (1 AND minor(ass)))
= nary-XOR ((1 AND minor(ass)), (1 AND minor(as)),
(1 AND minor(2,s)), (1 AND minor(a,e)))

- gary-XOR ((1), (1), (1), (1))

Matrix A is not serially decomposable.
Consider the reformulated system of equations (8) to (14).

The adjacency matrix of the constraint set is given by,

B= [1000000] ©)
[1100000] 13)
[0110000]| 8)
[0011000]| (11)
|0010100] (12)
[OOIOOIOJ (10)
0110001 @14)

where the columns are : (Toominal»] design aPeDoutLinShoop)
det(B) = nary-XOR (I AND minor(a,,))

= nary-XOR (1 AND minor(a,,))
= nary-XOR (1 AND minor(a,5))
= nary-XOR (1 AND minor(a,,))
= pary-XOR (1 AND minor(ass))
= nary-XOR (1, 0)
=1
B is serially decomposable.
These propositions have been developed in a line similar to the theory of system of linear equations. The
proofs are not included here.

Evaluation of the determinant qualitatively corresponds to determination of a path through the 1’
elements of the matrix. A serial decomposation can be viewed as a determination of a spanning tree of the
matrix, sach that the parts of the path along the rows (equations) are not longer than one edge per row.

31

A serially decomposable matrix has a path through the all the 1 elements, which is a tree. In a matrix,
which is not serially decomposable, such a path does not exist. It contains a path which is a graph with
loops rather than a tree. The number of these loops and their inter-relations are an important consideration
in a solution of the constraint management problem.

The present work does not include non-square constraint sets and directed constraints. It can be extended
to cover these cases. The theoretical approach seems to have a potential to give rise to an analytical
formulation for optimal partitioning of a constraint set.

2.19 Ordering a Non-Decomposable Constraint Sets
When a constraint set is not serially decomposable, the constraints have to be solved simultaneously.
Instead of trying to solve the entire constraint set simultaneously, we would like to isolate and identify
subsets of the entire constraint set which necessarily have to be solved simultaneously. This section
presents an ordering algorithm which helps identify such subsets.

Let us return to the original clutch example. The original problem, as we noted earlier, is not serially
decomposable. This can be seen with the aid of the adjacency matrix representation. Figure 2-9 (a) shows
the matrix for the given equations. By carefully reordering the rows and columns, one can find a solution
plan which is better than trying to solve all the variables and constraints simultaneously. Figure 2-9 (b)
shows the ordered matrix: after calculating T, _ . .. it is possible to calculate Tdc:ign from equation 8. The
next four variables have to solved as a block (simultaneously).

E =

=

g%ﬁ: § §§o = §~

ERRACRS ESsRRES
1 X xl x 5
2 X{x| Ix 4
3 x| x| x 1 X,
4 |x[x 2 :
5 Ix 3
6 x|x 6 BEEEY
7 X X 7 X

(@) ()

Figure 2-9: Adjacency Matrix Representation of the Ordering Task

2.19.1 Intuitive Explanation

The algorithm consists of two stages: Matching and Component Finding. The first stage matches
variables to equations. This is done because we know that each equation can be used to solve for only one
variable. Every variable will be calculated from one constraint. It is for this reason that we start by
matching constraints to variables. It is important to try and find as many matchings as possible. For
example, in the two equations F1(x,y) and F2(x), there are two variables x and y which have to be
matched. The matching problem is shown in Figure 2-10 (a). The variables are listed on the left and the
constraints are listed on the right. The lines indicate which variable is involved in which constraint. This

32

representation is called a bipartite (two parts) graph. We have to now decide which variable is going to be
solved for from which constraint. In the example, if we decided to solve for x from F1 (matched the two)
then, there is nothing to match y to. Figure 2-10 (b) shows a better matching, the matchings are shown in
darker lines. The matching shows that y will be solved from F1 and x will be solved from F2. Matching
tells us what would be calculated from where. It does nottellusthcorder of the calculation. That is
determined in the second stage of the algorithm.

xXFI xy) x><Fl xy)
y F2 (x) y F2 (x)
(@ ®)

Figure 2-10: The importance of finding a Maximal Match

A matching should be maximal, that is, the maximum number of possible matchings should be found.
This is achieved using a standard bipartite matching algorithm (Aho, Hopcroft & Ullman 84). The
algorithm proceeds in stages. The algorithm starts by picking a matching at random. This matching is
then improved by adding new matches between variables and nodes. The technique, known as
"augmenting paths” is iteratively applied untill no new matches can be found. The algorithm is described
in [Aho, Hopcroft, & Ullman 83].

Let us retumn to the clutch example to find a maximal matching. The constraints are as follows:
FW(T,F,D,)
F2(D,,.D,,D,)
F3(D,,.D,,F,)
F«TWTM)
FS(TM)
F6(D 0 D;)
m(o,..s,,,,,)
Figure 2-11 (a) shows a bipartite graph representation of the problem. The maximal matching (which
need not be unique) is shown in Figure 2-11 (b).

ﬁndingama@mﬂsmwﬁchvaﬁabkisﬁomwbichmsmﬁmbutitdmmtmn
us in what order to solve the constraints. 'I'hcnextswpofmealgmthmxsordmng The order in which
~ | straint matching. For the constraints F1(x, y) and
m&xxmﬁmﬂommemmumnmmambedm.mmvahmmmmumdmn
andy is determined. The order is determined by the fact that y depended on knowing x. These

ndencies can be represented as a directed graph among variables. For example, y depends on x, and x
mwwmmm’ng

The directed graph (digraph) is prepared after matching. In the case of the clutch, when D, is matched to
FXD,,.D,D,) then it follows that D, can be calculated only after D, and D;, are known. In other
words, Re depends on D, and D,. The matching shown in Figure 2-11 (b) can be converted into a
digraph as shown in Figure 2-12, where, an arrow indicates that the tail depends on the head.

33

Figure 2-11: Bipartite Matching

Shoop
\
Din<’3' o'
Fa/ 3

\yrd@ign ——>Tnominal

Figure 2-12: Dependency graph among variables

In the digraph, T,,...; does not depend on any unknown quantity and hence can be immediately
determined from the equation it was matched to. Once T,y is known, T, can be calculated. The
rest of the variables, however, cannot be chained as the first two. The variables D, D, D, and F, are in
a cycle of dependencies. That is they depend on one another and have to be solved simultaneously. The
variable S, is not in the cycle. Cycles are identified using a standard graph theoretic algorithm called
the Strong Component Algorithm.

A strong component of a digraph is 2 maximal set of nodes in which there is a path from any node
(variable) in the set to any other node in the set. A depth-first search based technique is used to determine
strong components efficiently [Aho, Hopcroft & Ullman ’84]. The strong component algorithm consists
of the following steps:

1. Perform a depth-first search of the digraph (G) starting at any node N. Make a note of all the
nodes visited in the list L1. The depth first search procedure is as shown below:

DFS(G, Current-Node)
1. Add Current-Node to globally defined list: VISITED
2. Get the dependents (D) of the Current-Node which are not in VISITED
3. IF there are no such dependents return NULL
ELSE each dependent (d) do DFS(G, d)

34

2. Construct a new directed graph G, by reversing the direction of every arc in G.

3. Perform a depth-first search on G, starting the search node N. Make a note of all the nodes
visited in the list L2

4. The intersection of L1 and L2 will be a cycle. Collapse the cycle into one big node, call the
graphG".

5. Repeat the above procedure on G’ untill no cycles are found when performing a depth-first
search from any node.

The digraph for the clutch problem is shown in Figure 2-12. Step 1 of the algorithm involves a depth first
search on the graph. Let the root node be D,,. Let the depth first search path be:
D e Dins F o T sosigns Tnomingd- 10 Step 2 the graph is inve;ted and searched again in Step 3 from the same
start node. Thlsume,letthesearchn'eebe(Dm, i Dos Fp)- The nodes common to the two trees are
(D yu» D;ns F). These three nodes may be collapsed as shown in Figure 2-13. Reapplying the algorithm,
D, is also collapsed into the strong component. Further applications of the procedure stops when there are
no nodes in the digraph from which components can be found.

Shoop

—
\j . \ 9/ De
\\wagn-—SI‘nommal

Tdesign ——>Tnominal
e S
Din
Fa De
Dout
Tm-——)’l‘naninal

Figure 2-13: Finding strong components in a bi-partite graph.

Note, in the example above, we used a single path for the depth first search. In practice, the search tree
would contain all the possible paths emanating from the start node. The nodes which can be visited from
Dwincindeaﬂﬂmenod&sinmegnphexceptsw Using the entire tree helps in finding components
faster. In the clutch example, if the complete tree emanating from D, were used, the the strong
component would have been found in just one iteration of the algorithm. We deliberately did not do this
to illustrate how nodes can be iteratively collapsed to find components.

35

2.19.2 The Complete Planning Algorithm
In summary, the steps are as follows.

Step 1. As the evaluation of a constraint yields the value of only one variable at a time, we have
to first decide which variables will be calculated from which constraint. As we would like to
evaluate as many variables as possible, the matching of variables to constraints is done using a
bi-partite graph matching technique.

Step 2. A directed graph of dependencies among variables is generated. For example, if one is |
going to calculate for variable a from the constraint f{a, b, ¢), then a is said to depend on b and
c.

Step 3. Cycles in the above di-graph indicate simultaneity among variables. Using an algorithm
to find strongly components in the di-graph, the smallest cycles are found and isolated.

Step 4. After all cycles are isolated, the rest of the di-graph becomes a tree. A reverse
topological sort yields the steps which can be taken to find the values of the variables. The
algorithm (RTS) is as follows:

RTS(Tree)
Step A. Initialize a stack called ORDER

Step B. If there are no nodes in the Tree, retumm ORDER

Step C. Find all nodes that have no children (depend on no other variable)
If there are no such nodes, then the input graph is not a tree.

Step D. For each node found in Step C, do the following:
i. push the node onto the stack ORDER
ii. remove the node from the digraph

Step E. Go to Step B.

The algorithm is based on three standard graph theoretic algorithms: Bipartite-matching, Strong
Components and Reverse Topological Sort. These algorithms are all described in introductory graph
theory texts. Please see [Aho, Hopcroft & Ullman °83].

2.20 Breaking the Strong Components
Stmngcomponmtscansomcﬁmwbcbmkenorshnpﬁﬁedbyp&ddngthevameofoneofthevaﬁabmin
mcmngwmmanTbepmmﬁisanﬂogwsmummgmmaMngUmyingalmgekmtmigm
cither reveal smaller knots or might eliminate the knot altogether. The idea behind breaking a strong
compMismpeﬁomashgledchuoﬁﬁeedomwuchmomvaﬁathomengaume
variables simultaneously. Consider, for example, a coupled constraint set with n variables and »
constraints. Assume that all simultenaety is eliminated if one variable x is guessed. After guessing x the
values of all the remaining n—1 unknowns can be easily determined from n—1 constraints. The
mmahﬁngommaiMCmbemedmcﬂaﬂmamwvahmmrxThcmwmmmmpmedmﬂmgtmsm
value. If there is some error, a new value for x is guessed and the process is repeated. Iterations are
carried out untill the error is within acceptable limits.

36

. N
i

In the the clutch example, the strong component can be broken by picking either D, or D,,. The effect of
picking a variable can be shown in an adjacency matrix. Figure 2-14 (a) shows the strong component we
just found. If we pick the value of D, then the right-most column can eliminated, and the rest of the
constraints become serially decomposed (Figure 2-14 (b)). D,,,F, and D, are solved for serially from
equations (6), (3) and (1) respectively. The last constraint (Equation (2)) is redundant and is used to
calculate a new value for D, If the error (difference between the new and the old values of the outer
diameter) is not acceptable, D,,,, is re-guessed and the solution process is repeated. Iterations are carried
out untill a suitable solution is found.

In the above example, we saw how it is possible to simplify a constraint set by picking the value of one
variable. We went from a problem of simultaneously solving four equations to performing several
iterations on a problem with a closed form solution. It is our hypothesis that this general idea is extensible
to much larger problems. We present algorithms which help identify the best variables to pick in order to
simplify a given constraint problem. We also present experiments which have shown that in many cases it
is possible to completely eliminate simultenaety by picking the value of just one variable. In fact, if one
picks the value of either D _, or D,,, simultenaety is eliminated.

n

£ &

X
X

»[~|p
» x| Dout

N =W
=W

Ll L
tal

@

Figure 2-14: Picking the Right Variable: D, is guessed

Not all variables in a strong component break the component when picked. For example, if one picks
either F, or D,, then the component is only reduced to a smaller one. We have identified two heuristics to
pick promising variables.

Innermost-Loop Heuristic

In Figure 2-13, we saw how a strong component was found in stages: by finding and collapsing cycles of
nodes and super-nodes into bigger super-nodes. According to the figure, the cycle containing D _,, D,
and F, was found first, and was later incorporated in the final strong component. Intuitively speaking, it
appears that the first three variables form the "inner” component of the larger strong component. This
heuristic is based on the hunch, that these "inner” variables might be the best variables to pick.

We found this heuristic to be rather weak. Inner loops are not unique, and even though the inner loops
often tend to contain the best variable, they also contain non-optimal variables. This leads to a lot of
wasted effort. Another reason for the inefficacy of this heuristic is that inner loops are oftentimes inside
other loops only because of the order in which the nodes where considered. Change the order, and the
order of collapsing of nodes into components will change. For example, in collapsing the digraph in
Figure 2-12, one could have found a different cycle first. This depends on where the search tree is started,
for example one could have found the cycle: F,, D, and D,. This forms the innermost component. D,

37

is added in the the second stage. The heuristic will wrongly consider F, and D, as possible candidates.

Most-Dependents Heuristic

We have found that the best variables to pick are often the ones which are most "coupled.” Simply put,
we sort the nodes (variables) in the strong component by the total number of dependent variables in the
strong component. In the clutch digraph, applying this heuristic places D,, and D, as the best choices
(Figure 2-15). The numbers in the figure indicate the number of dependents at each node.

Shoop

/"’\

Tdesign ——>Tnominal

Figure 2-15: Counting the number of dependents at each node.

The number of dependents of a variables is a heuristic measure of how critical it is to know the value of a
variable, before other parts of the design can be determined. It is this property that, we believe, makes the
heuristic work. We have conducted experiments to verify this hypothesis.

2.20.1 Experiments with the Most-Dependent Heuristic

We are currently conductive extensive experiments to assess the efficacy of heuristic approaches to
selecting variables which can break a given strong component. The experiments are being run on
hundereds of randomly generated constraint sets.

Preliminary results show, that if one uses the Most-Dependents heuristic it takes (on the average) two
tries to find a variable which breaks the strong component. If no heuristic is used it takes about five or six
tries before the appropriate variable is found. These experiments yielded results only for small
components. Larger components were rarely eliminated by choosing a single variable. Detailed
experimental results will be reported in a later version of this document.

2.21 Handling Uni-Directional Constraints

One of the assumptions made in the above ordering algorithm is that all constraints are invertible. That is,
for any function F(X), one can find the value of any variable x; in X if the values of all the other variables
are known. Not all constraints are explicit and not all constraints are invertible. For example, a Finite
inputs from the output: The constraint is a Black-Box. Algebraic constraints can also be implicit. For
example, it may not be possible to calculate for all the variables in a very complex transcendental
function. For such constraints only a subset of the involved variables can be solved for, thereby making
the rest of the variables serve merely as inputs.

38

Generalizing this idea, for an irreversible constraint, there may be many possible input/output cases. For
example, assume there is a conmstraint (let us call it /RR1) with the following variables:
(Power, T jpyiom D gy MaxStress). Where, MaxStress is the maximum allowable S,,,,. Assume that the
constraint is irreversible and can be executed only in the following ways:

Casel: If the Power and T, are known, then the constraint can give D,,, and MaxStress.
Case2: If the T, and D,,,, are known, then the constraint can give MaxStress.

If this constraint is introduced, the variables in the clutch example can be solved without iteration. It
should be noted, however, that the problem is now over constrained. Unless, by chance, some of the
constraints turn out to be redundant, over constrained problems are difficult to solve and require special
treatment. Our purpose for introducing two new constraints is only to illustrate how explicit and implicit
constraints can be ordered.

The algorithm used to order mixed implicit and explicit constraint problems is an extension of the basic
explicit constraint ordering algorithm. As soon as uni-directional constraints are introduced, the bi-partite
graph becomes a partially directed bi-partite graph. Algorithms for such graphs are rare and inefficient.
Our solution consists of using two graphs, one for inputs and the other for outputs. The basic algorithm is
modified to use the second graph wken it matches variables to constraints and to use the first graph when
it needs dependency information.

2.21.1 Intuitive Explanation

As before, the constraints can be represented as a bipartite graph. This time, however, the graph has to be
directed in order to indicate the direction in which variables may be solved. Continuing the clutch
example, all of the bi-directional constraints and one uni-directional constraint (/RR1) can be represented
as shown in Figure 2-16. All lines with no arrows are bi-directional. The two cases of the constraint JRR1
are treated as separate constraints. The arrows indicate which variables are inputs and which ones are
outputs.

The standard matching algorithms do not apply to directed bipartite graphs. We solve the problem using a
simple trick: as the matching step of the algorithm is supposed to pair variables to constraints, with the
idea that the variable can be calculated from the constraint, we should only consider those arcs which are
either bidirectional or point to output variables. Matching is carried out using the original algorithm,
however, the graph input to the matching algorithm is modified to depict which variables can match with

nstraint. This is done by removing all uni-directional arcs which point from variables to constraints.
Thmemmmovedmmﬂmmdmtmachavmaﬂzmammwhenxtmtbesolved
for from that constraint. In the clutch example, the graph in Figure 2-16 is converted into the bipartite
graph shown in Figure 2-17 (a). Matching is carried out as usual. The maximal match is shown in part (b)
of the Figure.

The next step is the generation of the dependency digraph. For reversible constraints, when a variable was
matched to a constraint, then it was said o be dependent on all the other variables in the constraint. In the

39

Figure 2-17: A Directed Bipartite Graph representation
case of an irreversible constraint, the matched variable is only dependent on the inputs to the constraint.
In other words, one need consider only those uni-directional arcs which point from variables to
constraints. In the clutch example, the matchings are as follows:

MaxStress IRR1: Case2 (T yigns Do)
o e s SR
Do 1RR1-Casel (T)

Din F 6(D out® D in®)

F, FI(Td,F,,D,)

D, F2(D,,D,,D,)

Shoop FT(D e Dins F 22 Shoop)

40

Following the original algorithm, the matchings then have to be then converted into a directed graph. For
example, MaxStress depends on T,,;.,, and D ;. Note that the variables listed (in the matchings above)
" for IRR1 only include the input variables. This the crux of the algorithm: We use the directed bipartite
graph in two different ways. During matching, only arrows which go from right to left (Figure 2-16) are
considered. This is done only for uni-directional constraints. When the dependency graph (the digraph) is
prepared, we consider only those arrows which go from left to right. The digraph for the above set of
matchings is shown in Figure 2-18. The numbers on the figure indicate the order in which the variable
may be solved. There are no strong components in the graph.

5

S

hoop ~ 3

6D’ /

N4

8 7 MaxStress
Fa
\) 2 ¢ 1

Tdesign ——>Tnominal

Figure 2-18: Dependency Graph with Unidirectional Constraints

2.21.2 Ordering Algorithm for a Mixed, Explicit and Implicit constraint Sets
The combined algorithm is as shown below. The actual graph theoretic algorithms being used need no
modification. We just change the inputs to these algorithms.

SmngpMaﬂmmu-casedmphatcmsuamsmsepameommmmsadeelopamMed

e graph (Call it B).
Step 2. Develop a new graph (B,,,,) by removing all uni-directional arcs pointing from

°

variables to constraints.

Smp3.Dwdopamwgmm(Bde)bymmovmganmﬁ-dirwﬁonalampomﬁngﬁom
constraints to variables .

Step 4. Find a maximal matchon B, .

Step S. Develop a directed graph of dependencies using the matching found in Step 4, but using
B,,F,,,,,mtoﬁnd '

Step 6. Find Strong components in the above digraph as usual.

Step 4. After all strong components are found, the digraph becomes a tree. A reverse
topological sort yields the steps which can be taken to find the values of the variables.

41

2.22 Related Work

The notion of using bipartite matching and the strong componénts algorithm together was originally
suggested by Wang (Wang 73). The algorithms were originally used to solve Gaussian matrices for
solving sets of equations using Newton-Raphson like methods. Serrano applied a similar algorithm for
finding strong components in sets of constraints (Serrano 87). The aim of this work was to concentrate
solution on components and to avoid having to solve the entire constraint set simultaneously. Both these
efforts are aimed at bi-directional constraints. We have extended the algorithms to uni-directional
constraints. We have also developed the notion of breaking strong components using heuristic
approaches. '

Recently, Eppinger & Whitney have described a coordination problem in complex design projects
[Eppinger & Whitney '89]. A design project is viewed as being composed of several tasks, each of which
needs some input data and produces (as output) some data for other tasks. The dependencies among the
tasks can be expressed in an adjacency matrix. The paper presents a heuristic approach to ordering the
tasks. A comparison study of our approach to ordering uni-directional constraints and the proposed
heuristic approach is in order.

42

References .

[Boming 79] Boming, A.
ThingLab- A Constraint Oriented Simulation Laboratory.
Technical Report, Xerox Palo Alto Research Center, 1979.

[Gagne 53] Gagne Jr., A.F.
Torque Capacity and Design of Cone and Disk Clutches .
Product Engineering , December, 1953.

[Gosling 83] Gosling, J.
Algebraic Constraints.
PhD thesis, Department of Computer Science, Camegie-Mellon University, 1983.

(Hindhede, Et.al. 83]
Hindhede, U., J.R. Zimmeman, R.B. Hopkins, R.J. Erisman, W. C. Hull, J.D. Lang.

Machine Design Fundamentals: A practical approach.
John Wiley & Sons, 1983.

[Mackworth 77] Mackworth, A. K.
Consistency in Network Relations.
Artificial Intelligence 8:99-118, 1977.
[Moore 66] Ramon Moore.
Interval Analysis.
Prentice-Hall Inc., Englewood Cliffs,NJ, 1966.

[Moore 79] Ramon Moore.
Methods and Applications of Interval Analysis.
SIAM, Philadelphia, 1979.

[Papalambros and Wilde 88]
Panos.J Papalmbros and D.J.Wilde.
Principles of Optimal Design.
Cambridge University Press, NewYork, 1988.

[Popplestone 80] Popplestone, R. J., Ambler, A. P. and Bellos, L.
An Interpreter for a Language for Describing Assemblies.
Artificial Intelligence 14(1):79-107, 1980.

[Ragsdell and Philips 76]
Ragsdell KM and D.T. Philips.
Optimal design of a class of welded structures using Geometric Programming.
Transactions of ASME J. of Engin. for Industry. 98(3):1021-25, 1976.

[Ratschek and Rokne 88]
Ratschek H. and Pokne J.
New Computer M zthods for Global Optimization.
Ellis Horwood Limited, Chichester, England, 1988.

[Serrano 87] Serrano, D.
Constraint Management in Conceptual Design.
PhD thesis, Dept. of Mechanical Engineering, MLLT. , 1987.
[Sussman 80] Sussman, G. J. and Steele Jr, G. L.
CONSTRAINTS - A Language for
Artificial Intelligence 14:1-39, 1980.

Almost-Hierarchical Descriptions.

43

[Sutherland 83] Sutheriand, L.LE.
Sketchpad - A Man-Machine Graphical Communication System.
Technical Report TechReport #296, MIT Lincoln Lab. Cambridge, Massachusetts,
1983.

[Ward 89] Ward, A.C.))
y A Theory of Quantitative Inference Applied to a Mechanical Design Compiler.
PhD thesis, M.L.T., 1989.

[Navinchandra & Rinderle '89]

Navinchandra D., J. Rinderle, Interval approaches for Concurrent Evaluation of Design Constraints, In
proceedings of the Symposium on Concurrent Product and Process Design, held at the American Society
of Mechanical Engineers Winter Annual Meeting, San Francisco, December, 1989

[Eppinger & Whitney ’89] .

Eppinger, S.D. , D. Whitney, Coordinating Tasks in Complex design projects, In Proceedings of the
MIT-JSME (Japan Society of Mechanical Engineers) joint workshop on Concurrent Engineering. Boston,
Nov, 1989.

[Aho, Hopcroft & Ullman ’83]
Aho, AV, JE. Hopcroft, J.D. Ullma, Data structures and Algorithms, Addison-Wesley series in
computer science and information processing. Addison-Wesley, Reading, MA 1983

[Serrano 87]
Serrano, D., Constraint Management in Conceptual Design, PhD dissertation, Dept. of Mechanical
Engineering, MIT, 1987

[Sriram et.al "89]

Sriram, D., G. Stephanopoulos, R.D. Logcher, D. Gossard, N. Groleacu, D. Serrano, D. Navinchandra,
"Knowledge-Based System Applications in Engineering Design: Research at MIT", Al Magazine, Fall
1989

[Wang 73]
Wang, R.TR., Bandwidth Minimization, Reducibility Decomposition, and Triangularization of Sparse
Matrices, PhD dissertation, Computer and Info. Science Research Center, Ohio State University, 1973

4

APPENDIX A: Implementation Details :
The solution planning code is all written in generic Common Lisp. To avoid clashes, the code resides in a
package called loop.

There is a more embellished version of the program which produces graphics. To run these capabilities,
one would need the Knowledge Craft package and PostScript display capabilities.

Getting the code

The files reside on the machine gold kalendar.ri.cmu.edu under the directory /usr/dchandra/desfus/order .
The files may retrieved using the ftp package. The files to be retrieved are:

loop.lisp ’

lisp-utils.lisp

match.lisp

components.lisp

unido.lisp

All the files load into the loop package and will have to be run from that package.

There are some example files in the same directory. The clutch equations are in clutch.eqns. The other
constraint files are:

clutch.eqns The clutch design equations

motor.eqns Electrical characteristics of a D.C. motor

aero.eqns Aerodynamic equations for the design of a fan blade
turb.egns Turbine blade design equations

Compiling and loading

mmmum&mmmmmm:ﬁumﬁkwmmmmm
following procedure may be followed

CLisp> (compile-file "loop.lisp™) ; compile the loop macro
CLisp> (load "loop.lisp") ; load the loop macro
CLisp> (in-package ’loop) ; change the package
ClLisp> (compile-file "imsl.lisp") ; start compiling

; compile all the files
CLisp> (compile-file "lisp-utils.lisp")

After compilation, all the files may be loaded as usual. One may choose to either stay in the loop package
or move to some other package.

Examples

Example 1

To order the equations:

y+y

x

xy

b 4

y
b

45

nno
Qo
I
)
Q

a
P
z
p

The run is as follows:
CLisp> (load "loop") ... :; load all the files
ClLisp> (setg equations
"((X =Y + 2 ** 2) (Y =X * 2) (B=C ** 3)

(A= (B * 10) / P)
(Z=B-2*R3) (P=15) (P=23 *R)))

CLisp> (loop::order egns2 :verbose t) ;verbose switch is on

Step 1: Solve for P from constraint:
(P = 5)

Step 2: Solve for R from constraint:
(P =3 * R)

Under Constrained by 1 degrees of freedom ; some stats
Collapsing ((X Y)) ; trace information

Step 1: Solve for A from constraint
NIL

Step 2: Solve for B from constraint
(A=B * 10 / P)
Step 3: Solve for Z from constraint
(Z =B - 2 * A)
Step 4: Solve the following variables simultaneously:
(X Y)
from the constraints:
((Y =X *2) (X=Y+ 2 ** 2))
Step 5: Solve for C from constraint
(B = C **x 3)

(((P (P =5)) (R (P=3*R))) (AB2Z (XY) C)) ;returned list

The function used is order which is called from the loop package. The ordering is shown in two parts.
The first part indicates the part that is directly decomposed. The second part is where components are
found. In this case, the problem is under constrained. This means that there is an extra variables during
bipartite matching. The system decides that variable A be determined from constraint N/L. This means
that the value of A has to be guessed, as it is an extra degree of freedom. The rest of the setps are self
explanatory.

The function returns the results as a list. The list also two parts. The first part is a list of lists. Each sublist
contains two elements. The first is the name of the variable and the second is the equation from which it
should be calculated. The second list in the result corresponds to the second part of the output. The list
shows the order in which the variables have to be solved in. Variables in parenthesis have to be solved
simultaneously. In the ouput above, we can solve for 4, B and Z, solve X and Y simultaneously and finaily
solve for C.

Example 2

Let us now introduce some uni-directional constraints. Each case of the unidirectional constraint (unid) is
expressed separately. For example, if a unid takes A and B as input and produces X as output, then the
unid is represented as: (unid-name (A B) (X)) . If we guess A and introduce the above unid, then the
equations become serially decomposed. The input would look like this:
Clisp> (loop::order equations :unids ‘((unidl (A B) (X))
(Guess NIL (A))))
Equations serially decomposable

(((P (P =5)) (R (P=3*R)) (AGuess) (B (A=DB * 10 / P))
(Z (Z2=B =2 *RA)) (C (B=2C ** 3))

(X unidl) (Y (Y = X * Z))

(Y (X =Y + 2 ** 2)))

NIL)

The second element of the retumed list is empty because none of the equations have to be solved
simultaneously. The first part of the list, chronologically lists the variables and the equations they have to
be solved from.

Usage: Calling the Order Function

order equations &key :verbose qunids [Function)

The equations can be in either infix or postfix format. The only real requirement is to keep symbols
separate. The parser does not tokenize the input. For example (A = B * 3) should not be written as (A= B
*3) or as (A =3B).

The unids are expressed in the form: (Unid-name input-list output-list)

Each case of a unid should be listed separately, and under a unique name. If the user would like to pick a
value, then 2 unid may be used to express this. For example, if one wanted to pre-pick the value of
variable A then the unid: (Pre-picking-A nil (A)) will do the job. This has to be done mamuaily.

:verbose

When set to ¢, the program will pretty print out the order in
a stepped form. The defanlt is nil

A list of unids. The default is nil

