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Abstract

The ultimate goal of work in cognitive architecture is t¢ provide the foundation for a system
capable of general intelligent behavior. That is, the goal is to provide the underlying structure that
would enable a system to perform the full range of cognitive tasks, cmploy the rull range of
problem-solving methods and reprcsentations appropniatce for the tasks, and learn about all aspects
of the tasks and its performance on them. In this article we present Soar, an implemented
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Soar: An Architecture for General Intelligence!

Soar is an architecture for a s:}stem that is to be capable of general intelligence. Soar is to be able to: (1)
work on the full range of tasks, from highly routine to extremely difficult open-ended problems; (2) empioy
the full range of problem-solving methods and representations required for these tasks: and (3) learn about ail
aspects of the tasks and its performance on them. Soar has existed since mid 1982 as an experimental software
system (in OpsS5 and Lisp), initially as Soar 1 [31. 32], then as Soar 2 [29, 35], and currently as Soar 4 [30]. Soar
realizes the capabilities of a general intelligence only in part, with significant aspects still missing. But enough

has been attained to make worthwhile an exposition of the current system.

Soar is one of many artificial intelligence (Al) systems that have attempted to provide an appropriate
organization for intelligent action. It is to be compared with other organizations that have been put forth,
especially recent ones: MRS [22]; Eunrsko [38, 39]; blackboard architectures [4. 16, 24, 56]; Pam/Pandora
[79] and Nasl [40]. Soar is also to be compared with machine learning systems that involve some form of
problem solving [10, 15, 37, 45. 46]. Especially important are existing systems that engagc in some significant
form of both problem solving and learning, such as: ACT™* [2]; and Repair theory [§], embodied in a system
called Sierra [77]. ACT™ and Repair theory are both psychological theories of human cognition. Soar, whose
antecedents have layed a strong role in cognitive theories, is also intended as the basis for a psychological

theory, but this aspect is not yet well developed and is not discussed further.

Soar has its direct roots in a continuous line of research that starts back in 1956 with the Logic Theorist
[S3] and list processing (the [PLs) [55]. The line goes through GPS [17, 54], the general theory of human
problem solving [51] and the development of production systems, PSG [48], Psanls [66] and the Ops series (20,
21]. Its roots include the emergence of the concept of cognitive architecture [48], the Instructable Production
System projcct {67, 68] and the extension of the concept of problem spaces to routine behavior [49]. They also
include rescarch on cognitive skill and its acquisition [11. 35, 50, 63]. Soar is the current culmination of all this

work along the dimension of architectures for intelligence.

Soar’s behavior has alrcady been studied over a range of tasks and methods (Figure 1), which sample its
intended range, though unsystematically. Soar has been run on most of the standard Al toy problems [29, 31].
These tasks clicit knowledge-lean, goal-oricnted behavior. Soar has been run on a small numnber of routine,
esscnually algorithmic, tasks, such as matching forms to objeccts, doing elementary syllogisms, and searching
for a root of a quadratic equation. Soar has been run on knowledge-intensive tasks that are typical of current

expert systems. The tactic has been to do the same task as an existing Al expert system, using the same

1We‘would like to thank David Sicier and Danny Bobrow for their helpful comments on carlier drafts of this article, and Randy
Gobbel for assistance in the final preparation of the manuscnipt.
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knowledge. The main cffort has been R1-Soar [65], which showed how Soar would realize a classical expert
system, R1. which configures Vax and PDP-11 computers at Digital Equipment Corporation [3, 41]. Rl is a
large system and R1-Soar was only carried far enough in its detailed coverage (about 25% of the functionality
of R1) to make clear that it could be extended to full coverage if the effort warranted [75]. [n addition, Soar
versions of other substantial systems are operational although not complete: Neomycin [13], which itself is a
rcworking of the classical expert system, Mycin [71]; and Designer [26], an Al system for designing al-
gorithms. Soar has also been given some tasks that have played important roles in the development of
artificial intelligence: natural-language parsing, concept learning. and predicate-calculus theorem proving. In
each case the performarnce and knowledge of an exisiing system has been adopted as a target in order to learn
as much as possible by comparison: Dypar [6]. Version Spaces [44] and Resolution [60]. These have so far

been small demonstration systems: developing them to full-scale performance has not seemed profitable.

A variety of different representations for tasks and methods can be realized within Soar’s architecturally
given procedural and declarative representations. Essentially all the familiar weak methods [47] have been
realized with Soar and used on several tasks [31]. In larger tasks. such as R1-Soar, different weak methods
occur in different subparts of the task. Alternative decompositions of a task into subtasks [75] and alternative

basic repreéentations of a task have also been explored [31], but not intensively.

Soar has a gencral mechanism for learning from experience [33, 36] which applies to any task it performs.
Thus, it can improve its performance in all of the tasks listed. Detailed studies of its learning behavior have
been done on several tasks of varying characteristics of size and task-type (games, puzzles, expert-system
tasks). This single learning mechanism produces a range of learning phenomena. such as improvement in
related tasks (across-task transfer); improvement ¢ven within the learning trial (within-trial transfer); and the

acquisition of new heuristics, operator implementations and macro-operators.

Several basic mechanisms of cognition have not yet been demonstrated with Soar. Potentially, each such
mechanism could force the modification of the architecture, although we expect most of them to be realized
without major cxtension. Some of the most important missing aspects are deliberate planning, as developed
in artficial-intelligence systems [69]; the automatic acquisition of new tasks [23]; the creation of new task
representations [1, 27]; extension to additional types of learning (e.g.. by analysis, instruction, example,
reading); and the ability to recover from errors in lcarning (which in Soar occurs by overgeneralization [34]).
[t is useful to list these lacunae, not just to indicate present limitations on Soar, but to establish the intended

scope of the system. Soar is to operate throughout the entire spectrum of cognitive tasks.

The first section of this paper gives a preview of the features of Soar. The sccond section describes the Soar
architecture in detail. The third section discusses some examples in order to make clcar Soar’s structure and

opcration. The final scction concludes with a list of the principal hypotheses underlying the design of Soar.
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Small. knowledge-lean tasks (typical Al toy tasks):
Blocks world. eight puzzle, eight queens, labeling line drawings (constraint satisfaction),
magic squares, missionaries and cannibals. monkcy and bananas, picnic problem,
- robot location-finding, three wizards problem, tic-tac-toe. Tower of Hanoi,
water-jug task

Small routine tasks:
Expression unification. root finding, sequence extrapolation, syllogisms, Wason verification task

Knowledge-intensive expert-system tasks:
R 1-Soar: 3300 rule industrial expert system (25% coverage)
Neomycin: Revision of Mycin (initial version)
Designer: Designs algorithms (initial version)

Miscellancous Al tasks:
Dypar-Soar: Natural language parsing program (small demo)
Version-spaces: Concept formation (small demo)
Resolution theorem-prover (small demo)

Multiple weak methods with variations, most used in multiple small tasks:
Generate and test. AND/OR search, hill climbing (simple and steepest-ascent), means-ends analysis,
operator subgoaling, hypothesize and match, breadth-first search, depth-first search, |
heuristic search, best-first search. A®, progressive deepcning (simple and modified),
B* (progressive deepening), minimax (simple and depth-bounded), alpha-beta, iterative deepening, B*

Multiple organizations and task represcntations:
Eight puzzle, picnic problem, R1-Soar

Learning:
Learns on all tasks it performs by a uniform method.(chunking)
Detailed studies on eight puzzle. R1-Soar, tic-tac-toe, Korf macro-operators
Types of learning:
Improvement with practice, within-task transfer, across-task transfer, strategy acquisition,
operator implementation, macro-opcrators, ¢xplanation-based generalization

Major aspects still missing:
Deliberate planning, automatic task acquisition, creating representations, varicties of learning,
recovering from overgeneralization, interaction with external task environment

Figure 1. Summary of Soar performance scope.

1. Preview

In common with the mainstream of problem-solving and reasoning systems in Al, Soar has an explicit
symbolic representation of its tasks, which it manipulates by symbolic processes. It encodes its knowledge of
the task cnvironment in symbolic structures and attempts to usc this knowledge to guide its behavior. It has a
general scheme of goals and subgoals for representing what the system wants to achieve, and for controlling

its behavior.
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Beyond these basic communalitics, Soar embodics mechanisms and organizational principles that express
distinctive hypotheses about the nature of the architecture for intelligence. These hypotheses are shared by
other systems to varying extents, but taken tngether they determine Soar’s unique position in the space of
possible architectures. We preview here these main distinctive characteristics of Soar. The full details of ail

these features will be given in the next section on the architecture.

1.1. Uniform task representation by problem spaces

In Soar, every task of attaining a goal is formulated as finding a desired state in a problem space (a space
with a set of operators that apply to a current state to yield a new state) [49]. Hence, all tasks take the form of
“heuristic search. Routine procedures arise, in this scheme, when enough knowledge is available to provide
complete search control, i.e.. to determine the correct operator to be taken at each step. In.AI. problem spaces
are commonly used for genuine problem solving [18, 51, 57, 58, 59, 72], but procedural representations are
commonly used for routine behavior. For instance, problem-space operators are typically realized by Lisp
code. In Soar, on the other hand, complex operators are implemented by problem spaces (though sufficiently
simple operators can be realized directly by rules). The adoption of the problem space as the fundamental
organization for all goal-oriented symbolic activity (called the Problem Space Hypothesis [49]) is a principal

feature of Soar.

Figure 1-1 provides a schematic view of the important components of a problem-space search for the eight
puzzle. The lower, triangular portion of the figure reprcsents the search in the eight puzzle problem space,
while the upper, rectangular portion represents the knowledge involved in the definition and control of the
search. In the cight puzzle, there arc eight numbered tiles and one space on a threce-by-three board. The
states are different configurations of the tiles on the board. The operators are the movements of an adjacent
tile into the space (up, down, left and right). In the figure, the states are represcnted by schematic boards and

the operators are represented by arrows.

Problem-space search occurs in the attempt to attain a goal. In the eight puzzle the goal is a dcsired state
representing a specific configuration of the tiles — the darkened board at the right of the figure. In other
tasks, such as chess, where checkmate is the goal, there are many disparate desired states, which may then be
represcnted by a test procedure. Whenever a new goal is cncountered in solving a problem, the problem
solver begins at some initial state in the new problem space. For the eight puzzle, the initial state is just a
particular configuration of the tiles. The problem-space search results from the problem solver’s application

of operators in an attempt to find a way of moving from its initial state to one of its desired states.

Only the current position (in Figure 1-1, it is the board pointed to by the downward arrow from the

knowledge box) exists on the physical board, and Soar can gencrate new states only by applying the operators.
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Task
Implementation
+
Search-control
Knowledge

~ B

Eight Puzzie
Problem Space

Figure 1-1: The structure of problem-space search for the eight puzzle.

Likewise, the states in a problem space, except the current state and possibly a few remembered states, do not
preexist as data structures in the problem solver, so. they must be gencrated by applying operators to states

that do exist.
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1.2. Any decision can bé an object of goal-criented attention

All decisions in Soar relate to searching a problem space (selection of operators. selection of states, etc.).
The hox in Figure 1-1 represents the knowledge that can be immediately brought to bear to make the
dccisions in a particular space. However, a subgoal can be set up to make any decision for Which the
immediate knowledge is insufficient. For instance. looking back to state S1. three moves were possible:
moving a tile adjacent to the blank left, right or down. If the knowledge was not available to select which
move to try. then a subgoal to select the operator would have been set up. Or, if the operator to move a tile
left had been selected, but it was not known immediateiy how to perform that operator. then a subgoal would
have been set up to do that. (The moves in the cight puzzle are too simple to require this, but many operators
are more complex, e.g., an operator to factor a polynomial in an algebraic task.) Or, if the left operator had
been applied and Soar attempted to evaluate the result, but the evaluation was too complicated to compute
directly. then a subgoal would have been set up to obtain the evaluation. Or, to take just one more example, if
Soar Had attempted to apply an operator that was illegal at state S1, say to move tile 1 to the position of tile 2,

then it could have set up a subgoal to satisfy the preconditions of the operator (that the position of tile 2 be

blank).

In short, a subgoal can be set up for any problematic decision, a property we call universal subgoaling.
Since setting up a goal means that a search can be conducted for whatever information is needed to make the
decision, Soar can be described as having no fixed bodies of knowledge to make any decision (as in writing a
specific Lisp function to evaluate a position or select among operators). The ability to search in subgoals also
implies that further subgoals can be set up within existing subgoals so that the behavior of Soar involves a tree
of subgoals and problem spaces (Figure 1-2). Because many of these subgoals address how to make control
decisions, this implies that Soar can reflect (73] on its own problem-solving behavior, and do this to arbitrary

levels [64].

1.3. Uniform representation of all long-term knowledge by a production system

There is only a single memory organization for all long-term knowledge, namely, a production system [9,
14, 25, 42, 78]. Thus, the boxes in Figures 1-1 and 1-2 are filled in with a uniform production system.
Productions deliver control knowledge, as when a production action rejects an operator that leads back to the
prior position. Productions also providé procedural knowledge for simple operators, such as the eight-puzzle
moves, which can be accomplished by two productions, one to create the ncw state and put the changes in
place and one to copy the unchanged tiles. (As noted above, more complex operators are realized by
operating in an implementation problem space.) The data structures cxaminable by productions — that is,
the pieces of knowledge in declarative form — are all in the production system'’s short-term working memory.
Howevef, the long-term storage of this knowledge is in productions which have actions that generate the data

structurcs.
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Long-term

Task-implementation and search-control knowledge

Task
operator
implementation

Task . Task
operator operator
selection impiementation

. . Subtagk

Evailuation Evaluation
operator operatpr operagor
selecgon

implementatig implermnentatigs

Figure 1-2: The tree of subgoals and their problem spaces.
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Soar cmploys a specialized production system (a modified version of OpsS {20]). All satisfied productions
are fired in parallel. without conflict resolution. Productions can only add data elements to working memory.

Al modification and removal of data elements is accomplished by the architecture.

1.4. Knowledge to control search expressed by preferences

Secarch-control knowledge is brought to bear by the additive accumulation (via production firings) of data
elements in working memory. One type of data element, the preference, represents knowledge about how
Soar should behave in its current situation (as defined by a current goal, problem space, state and operator).
For instance, the rejection of the move that simply returns to the prior state (in the example above) is encoded
as a rejection preference on the operator. The preferences admit only a few concepts: acceptability, rejection,
better (best, worse and worst), and indifferent. The architecture contains a fixed decision procedure for
interpreting the set of accumulated preferences to determine the next action. This fixed procedure is simply

the embodiment of the semantics of these basic preference concepts and contains no task-dependent

knowledge.

1.5. All goals arise to cope with impasses

Difficulties arise, ultimately, from a lack of knowledge about what to do next (including of course
knowledge that problems cannot be solved). [n the immediate context of bchaving, difficulties arise when
problem solving cannot continue — when it reaches an impasse. Impasses are detectable by the architecture,
because the fixed decision procedure concludes successfully only when the knowledge of how to proceed is
adequate. The procedure fails otherwise (i.c., it detects an impasse).. At this point the architecture creates a
goal for overcoming the impasse. For example, each of the subgoals in Figure 1-2 is evoked because some
impasse occurs: the lack of sufficient preferences between the thrze task operators creates a tie impasse; the
failure of the productions in the task problem space to carry out the selected task operator leads to a

no-change impasse; and so on.

In Soar. goals are created only in response to impasses. Although there are only a small set of architec-
turally distinct impasses (four), this suffices to generate all the types of subgoals. Thus, all goals arise from the
architecture. This principle of operation, called automatic subgoaling, is the most novel feature of the Soar

architecture, and it provides the basis for many other features.

1.6. Continuous monitoring of goal termination
The architecture continuously monitors for the termination of all active goals in the goal hierarchy. Upon
detection, Soar proceeds immediately from the point of termination. For instance, in trying to break a tie

between two operators in the eight puzzle, a subgoal will be set up to evaluate the operators. If in ¢xamining
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the first operator a prefcrence is created that rejects it, then the decision at the higher level can. and will, be
made immediately. The second operator will be selected and applied. cutting off the rest of the evaluation

and comparnison process. All of the working-memory elements local to the terminated goals are automatically

removed.

Immediate and automatic response to the termination of any active goal is rarely used in Al systems because

of its expense. Its (efficient) realization in Soar depends strongly on automatic subgoaling.

1.7. The basic problem-solving methods arise directly from knowledge of the task

Soar realizes the so-called weak methods, such as hill climbing, means-ends analysis. alpha-beta search, etc.,
by adding search-control productions that express. in isolation, knowledge about the task (i.e., about the
problem space and the desired states). The structure of Soar is such that there is no need for this knowledge
to be organized in separate procedural representations for each weak method (with a selection process to
determine which one to apply). For example, if knowledge exists about how to evaluate the states in a task,
and the consequences of evaluation functions are understood (prefer operators that lead to states with higher

evaluations), then Soar exhibits a form of hill climbing. This general capability is another novel feature of

Soar.

1.8. Continuous learning by experience through chunking

Soar learns continuously by automatically and permanently caching the results of its subgoals as produc-
tons. Thus. consider the tie-impasse between the three task operators in Figure 1-2. which leads to a subgoal
to break that ue. The ultimate result of the problem solving in this subgoal is a preference (or preferences)
that resolves the te impasse in the top space and terminates the subgoal. Then a production is automatically
created that will deliver that preference (or preferences) again in relevantly similar situations. [f the system
ever again reaches a similar situation, no impasse will occur (hence no subgoal and nov problem solving in a

subspacc) because the appropriate preferences will be generated immediately.

This mechanism is directly rclated to the phenomenon called cAunking in human cognition [63], whence its
name. Structurally, chunking is a limited form of practice leaming. However, its cffects turn out to be
wide-ranging. Because learning is closcly tied to the goal scheme and universal subgoaling — which provide
an extremely fine-grained. uniformly structured, and comprehensive decomposition of tasks on which the
learning can work — Soar learns both operator implementatons and search control. In addition, the com-
bination of the fine-grained task decomposition with an ability to abstract away all but the rclevant features
allows Soar to exhibit significant transfer of learning to new situations, both within the same task and between
similar tasks. This ability to combine learning and problem solving has produced the most striking ex-

perimental results so far in Soar [33. 36, 62].
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2. The Soar Architecture
In this section we describe the Soar architecture systematically from scratch, depending on the preview
primarily to have established the central role of problem spaces and production systems. We will continue to

use the eight puzzle as the example throughout.

2.1. The Architecture for Problem Solving
Soar is a problem-solving architecture, rather than just an architecture for symbolic manipulation within

which problem solving can be realized by appropriate control. This is possible because Soar accomplishes all

of its tasks in problem spaces.

To realize a task as search in a problem space requires a fixed set of task-implementation functions, involv-
ing the retrieval or generation of: (1) problem spaccs. (2) problem-space operators. (3) an initial state
representing the current situation, and (4) new states that result from applying operators to existing states. To
control the search requires a fixed set of search-control functons, involving the selection of: (1) a problem
space, (2) a state from those directly available, and (3) an operator to apply to the state. Together, the task
implementation and search-control functions are sufficient for problem-épace search to occur. The quality

and efficiency of the problem solving will depend on the nature of the selection functions.

The task-implementation and search-control functions are usually interleaved. Task implementation
generates (or retrieves) new problem spaces, states and operators; and then search control selects among the
alternatives generated. Together they completely determine problem-solving behavior in a problem space.
Thus. as Figure 2-1 shows, the behavior of Soar on the eight puzzle can be described as a sequence of such
acts. Other important functions must be performed for a complete system: goal creation, goal selection, goal
tcrmination, memory management and learning. None of these are included in Soar’s search-control or
task-implementation acts. I[nstead, they are handled automatically by the architecture, and hence are not

objects of volition for Soar. They are described at the appropriate places below.

The deliberative acts of search-control together with the knowledge for implementing the task are the locus
of intelligence in Soar. As indicated carlier in Figure 1-1, search-control and task-implementation knowledge
is brought to bear on each step of the search. Depending on how much search-control knowledge the
problem solver has and how effectively it is emploved, the search in the problem space will be narrow and

focused. or broad and random. If focused enough, the behavior is routine.

Figurc 2-2 shows a block diagram of the architecture that gencrates problem-space scarch behavior. There
IS @ working memory that holds the complcte processing state for problem solving in Soar. This has three

components: (1) a context stack that specifies the hicrarchy of active goals, problem spaces, states and
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[Retrieve the eight-puzzle problem space]
Select eight-puzzle as problem space
[Generate S1 as the initial state]

Select S1 as state

[Retrieve the operators Down, Left, Right]
Select Down as operator

[Apply operator (generate S2)]

Select Left as operator

[Apply operator (generate S3)]

Select Right as operator

[Apply operator (generate S4)]

Select S2 as state

[Retrieve the operators Down, Left, Right]
Select Down as operator

[Apply operator (generate S§5)]

Select Left as operator

[Apply operator (generate S6)]

Select Right as operator

[Apply operator (generate S7)]

Select S7 as state

Figure 2-1: Problem-space trace in the eight puzzle. (Task implementation steps are bracketed.)

operators; (2) objects, such as goals and states (and their subobjects); and (3) preferences that encode the
procedural search-control knowledge. The processing structure has two parts. One is the production memory,
which is a set of productions that can examinc any part of working memory. add new objects and preferences,
and augment exisung objects. but cannot modify the context stack. The second is a fixed decision procedure
that examines the preferences and the context stack, and changes the context stack. The productions and the
decision procedure combine to implement the search-control functions. Two other fixed mechanisms are
shown in the figure: a working-memory manager that deletes elements from working memory, and a chunking

mechanism that adds new productions.

Soar is embedded within Lisp. It includes a modified version of the OpsS production system language plus
additional Lisp code for the decision procedure, chunking, the working-memory manager, and other Soar-
specific features. The Ops5 matcher has been modified to significantly improve the efficiency determining
sausfied productions [70]. The total amount of Lisp code involved, measured in terms of the size of the source
code, is approximately 255 kilobytes — 70 kilobytes of unmodificd OpsS code, 30 kilobytes of modified OpsS
code, and 155 kilobytes of Soar code. Soar runs in CommonLisp, FranzLisp, Interlisp and ZctaLisp on most

of the appropnate hardware (Unix Vax, VMS Vax, Xerox D-machines, Symbolics 3600s, TI Explorers, IBM
RTPCs, Apollo and Sun workstations).
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Chunking

Mechanism

Production Memory

| Working-Memory
Manager

Decision
Procedure

Figure 2-2: Architectural structure of Soar.

2.2. The Working Memory
Working memory consists of a context stack, a sct of objects linked to the context stack, and preferences.

Figure 2-3 shows a graphic depiction of a small part of working memory during problem solving on the eight
puzzle. The context stack contains the hierarchy of active contexts (the boxed structurcs). Each context
contains four slots, onc for each of the different roles: goal, problem space, state and operator. Each slot can
be occupied cither by an object or by the symbol undecided. the latter meaning that no object has been
selected for that slot. The object playing the role of the goal in a context is the current goal for that context;

the objecct playing the role of the problem-space is the current problem space for that context and so on. The
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top context contains the highest goal in the hierarchy. The goal in each context below the top context is a
subgoal of the context above it. In the figure, G1 is the current goal of the top context, Pl is the current
problem space. S1 is the current state, and the current operator is undecided. In the lcwer context, G2 is the
current goal (and a subgoal of G1). Each context has only one goal for the duration of its existence, so the

context stack doubles as the goal stack.

(- bindinq
>
operator desired /;inding
preferences — > D1 ‘ S
O1 name
> EIGHT-PUZZLE
02 « binding cell cell
> B1 = C1
o3 binding \tile 1 name
> B2 > T1 = 1
binding N el )
> B3 - C2
item
o1
Q2
o3
OPERATOR
supergoal
N\ G2 TIE .
P2 SELECTION

undecided
undecided

Figure 2-3: Snapshot of fragment of working memory.

N

The basic representation is object-centered. An object, such as a goal or a state, consists of a symbol, called
its identifier, and a sct of augmentations. An augmentation is a labeled relaton (the attribute) between the
object (the identifier) and another symbol (the value), i.e., an identifier-attribute-value triple. In the figure,
Gl is augmented with a desired state, D1, which is itself an object that has its own augmentations
(augmentauons are directional, so G1 is not in an augmentation of D1, even though D1 is in an augmentation
of Gl). The attribute symbol may also be specified as the identifier of an object. Typically, however,
situations are characterized by a small fixed sct of attribute symbols — here, impasse, name, operator,

binding, item. and role — that play no other role than to provide discriminating information. An object may
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have any number of augmentations, and the sct of augmentations may change over time.?

A preference is a more complex data structure with a specific collection of eight architecturally-defined
rclations between objects. Three preferences are shown in the figure, one each for objects Ol, O2, and O3.
The preferences in the figure do not show their full structure (shown later in Figure 2-7), only the context in

which they are applicable (any context containing problem space Pl and state S1).

The actual representation of objects in working memory is shown in Figure 2-4.3 Working memory is a set
— attempting to add an existing clement does not change working memory. Each element in working

memory represents a single augmentation. To simplify the description of objects, we group together all
| augmentations of the same object into a single expression. For example, the first line of Figure 2-4 contains a
single expression for the four augmentations of goal G1. The first component of an object is a c/ass name that
disunguishes different types of objects. For exampie, goal, desired, problem-space. and state are the class
names of the first four objects in Figure 2-4. Class names do nét play a semantc role in Soar, although they
allow the underlying matcher to be more efficient. Following the class-name is the identifier of the object.
The goal has the current goal as its identfier. Following the identifier is an unordered list of attribute-value
pairs, each attribute being prefaced by an up-arrow (*). An object may have more than one value for a single

attribute, as does statc S1 in Figure 2-4, yielding a simple representation of sets.

The basic attribute-value representation in Soar leaves open how to represent task states. As we shall see
later, the representation plays a key role in determining the generality of leaming in Soar. The generality is
maximized when those aspects of a state that are functionally independent are represented independenty. In
the eight puzzle, both the structure of the board and the actual tiles do not change from state to state in the
real world. Only the location of a tile on the board changes. so the representation should allow a tile’s location
to change without changing the structure of the board or the tiles. Figure 2-5 contains a detailed graphic
example of one representation of a state in the eight puzzle that captures this structure. The state it represents
is shown in the lower left-hand corner. The board in the eight puzzle is represented by nine cells (the 3x3
square at the bottom of the figure), one for each of the possible locations for the tiles. Each cell is connected
via augmentations of type cell to its neighboring cclls (only a few labels in the center are actually filled in). In
addition, there are nine tiles (the horizontal sequence of objects just above the cells), named 1-8, and blank
(represcnted by a small box in the figure). The connections between the tiles and cells are specified by objects

called bindings. A given state, such as S1 at the top of the figure, consists of a sct of nine bindings (the

2’T‘he extent of the memory structure is nccessarily limited by the physical resources of the problem solver. but currently this is
assumcd not to be a problem and mechanisms have not been created to deal with it

3Some basic notation and structure is inhenited from OpsS.
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(goal G1 tproblem-space P1 tstate S1 toperator undecided tdesired D1)
(desired D1 tbinding DB1 tbinding DB2 ...) |
(problem-space P1 tname eight-puzzle)
(state S1 tbinding B1 B2 B3 ...)
(binding B1 tcell C1 ttile T1)
(cell C1 tcell C2 ...)
(tile T1 tname 1)
(binding B2 tcell C2 ...)
(cell C2 tcell C1 ...)
(binding B3 ...)

(preference tobject 01 trole operator tvalue acceptable
tproblem-space P1 tstate S1)

(preference tobject 02 trole operator tvalue acceptable
tproblem-space P1 tstate S1)

(preference tobject 03 trole operator tvalue acceptable
tproblem-space P1 tstate S1)

(operator 01 ...)

(operator 02 ...)

(operator 03 ...)

(goal G2 tproblem-space P2 tstate undecided toperator undecided
tsupergoal G1 trole operator timpasse tie
titem 03 titem 02 titem 01) |

(problem-space P2 tname selection)

Figure 2-4: Working memory representation of the structure in Figure 2-3.

horizontal sequence of objects above the tiles). Each binding points to a tile and a cell: each tile points to its
value; and each cell points to its adjacent cells. Eight puzzle operators manipulate only the bindings, the -

representation of the cells and tiles does not change.

Working memory can be modified by: (1) productions, (2) the decision procedure, and (3) the workinz-
memory manager. Each of these components has a specific function. Productions only add augmentations
and preferences to working memory. The decision procedure only modifies the context stack. The working-

memory manager only removes irrelevant contexts and objects from working memory.

2.3. The Processing Structure

The processing structure implements the functions required for search in a problem space — bringing to
bear task-implementation knowledge to generate objects. and bringing to bear search-control knowledge to
select between alternative objects. The search-control functions are all realized by a single generic control act:
the replacement of an object in a slot by another object from the working memory. The represcntation of a
problem is changed by replacing the current problem space with a new problem spacc. Returning to a prior
state 1s accomplished by replacing the current state with a preexisting one in working memory. An operator is
sclected by replacing the current operator (often undecided) with the new one. A step in the problem space
occurs when the current opcrator is applicd to the current state to produce a ncw state, which is then selected

to replace the current state 1n the context.
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Figure 2-5: Graphic representation of an eight puzzle state.

a[=]a

A replacement can take place anywhere in the context stack, e.g., a new state can replace the state in any of
he contexts in the stack, not just the lowest or most immecdiate context but any higher one as well. When an
object in a slot is replaced. all of the slots below it in the context arc reinitialized to undecided. Each lower
slot depends on the values of the higher slots for its validity: a protlem space is set up in response to a goal; a
state functions only as part of a problem space; and an operator is to be applied at a state. Each context below
the one wherc the replacement took place is terminated because it depcends on the contents of the changed

context for its existence (recall that lower contexts contain subgoals of higher contexts).

The replacement of context objects is driven by the decision cycle. Figure 2-6 shows three cycles, with the
first one expanded out to reveal some of the inner structure. Each cycle involves two distinct parts. First,
during the elaboration phase, new objects, new augmentations of old objccts, and preferences are added to
working memory. Then the decision procedure examines the accumulated preferences and the context stack,

and either it replaces an existing object in some slot, i.e., in one of the roles of a context in the context stack, or

it creates a subgoal in response to an impasse.
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DECISION 1 DECISION 2 DECISION 3

Elaboration Decigion \L \l’

S 2k L2 2R IVA L 2R 2 2
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Preferences

Quiescence \L Replace
Interpret —> Context

Preferences Object

|

Impasse

|

Create
Subgoal

Figure 2-6: A sequence of decision cycles.

2.3.1. The elaboration phase

Based on the current contents of working memory, the elaboration phase adds new objects, augmentations
of existing objects, and preferences. Elaborations are generated in parallel (shown by the vertical columns of
arrows in Figure 2-6) but may still require multiple steps for completion (shown by the horizontal sequences
of elaborauons in the figure) because information generated during one step may allow other elaborations to
be made on subsequent steps. This IS @ monotonic process (working-memorv elements are not deleted or
modified) that continues until quiescence is reached because there are no more claborations to be generated.’
The monotonic nature of the elaboration phaSe assures that no synchronizauon problems will occur during
the parallel generation of elaborauons. However, because this is only syntactic monotonicity — data struc-

tures are not modified or deleted — it leaves open whether semantic conflicts or non-monotonicity will occur.

The claboration phase is encoded in Soar as productions of the form:
IfC,and Cz and ... ande thenadd A, A, ... A

The C, are conditions that examine the context stack and the rest of the working memory, while the A, are
actions that add augmentations or preferences to memory. Condition patterns are based on constants, vari-
ables, negations, pattern-ands, and disjunctions of constants (according to the conventions of Ops)

productions). Any objcct in working memory can be accessed as long as there exists a chain of augmentations

4In practice, the claboration phase reaches quicscence quickly (less than ten cycles). howcever, if quicscence i1s not rcached after a
prespecificd number of iterations (typically 100), the claboration phase terminates and the decision procedure is entered.
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and preferences from the context stack to the object. An augmentation can be a link in the chain if its
identificr appears either in a context or in a previously linked augmentation or preference. A preference can
be a link in the chain if all the identifiers in its context fields (defined in Section 2.3.2) appear in the chain.
This property of /inked access plays an important role in working-memory management, 'subgoal términation.
and chunking, by allowing the architecture to determine which augmentations and preferences are accessible

from a context. independent of the specific knowledge encoded in elaborations.

A production is successtully instantiated it the conjunction of its conditions is satisfied with a consistent
binding of variables. There can be any number of concurrently successful instantiations of a production. All
successful instantiations of all productions fire concurrently (simulated) during the claboration phase. The
only conflict-resolution principle in Soar is refractory inhibition — an instantiation of a production is fired
only once. Rather than having control excrted at the level of productons by conflict resolution, control is

exerted at the level of problem solving (by the decision procedure).

2.3.2. The decision procedure

The decision procedure is executed when the elaboration phase reaches quiescence. It determines which
slot in the context stack should have its content replaced, and by which object. This is accomplished by
processing the context stack from the oldest context to the newest (ie.. from the highest goal to the lowest
one). Within each context, the roles are considered in turn, s:arting with the problcm space and continuing
through the state and operator in order. The process terminates when a slot is found for which action is

required. Making a change to a higher slot results in the lower slots being reinitialized to undecided, thus

making the processing of lower slots irrelevant.

This ordering on the set of slots in the context stack defines a fixed desirability ordering between changes
for different slots: it is always more desirable to make a change higher up. The processing for each slot is
driven by the knowledge symbolized in the preferences in working memory at the end of the elaboration
phase. Each preference is a statement about the selection of an object for a slot (or set of slots). Three

primitive concepts are available to make preference statemnents:>

acceptability: A choice is to be considered.

rejection: A choice is not to be made.

desirability: A choice is better than (worse than, indifferent to) a reference choice.

5Therc is an additional preference type that allows the statement that two choices for an operator slot can be explored in parallel. This
1S a special option o explore parallel processing where muluple slots are created for paralle! operators. For more details. see the Soar

manual [30}.
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Together, the acceptability and rejection preferences determine the objects {rom which a selection will be
made., and the desirability preferences partially order these objects. The result of processing the slot, if
successful, is a single object that is: new (not currently selected for that slot); acceptable; not rejected; and

more desirable than any other choice that is likewise new, acceptable and not rejected.

A preference encodes a statement about the selection of an object for a slot into a set of attributes and
values, as shown in Figure 2-7. The object is specified by the value of the object attribute. The slot is
specified by the combination of a role and a context. The role is cither the problem space, the state or the
operator: a goal cannot be specified as a role in a preference because goals are determined by the architecture
and not by deliberate decisions. The context is specified by the contents of its four roles: goal, problem space,
state and operator. A class of contexts can be specified by leaving unspecified the contents of one or more of
the roles. For example, if only the problem space and state roles are specified, the preference will be relevant

for all goals with the given problem space and state.

The desirability of the object for the slot is specified by the value attribute of a preference, which takes one
of seven alternatives. Acceptable and reject cover their corresponding concepts: the others — best, better,
indifferent, worse, and worst — cover the ordering by desirability. All assertions about ordering locate the
given object relative to a reference object for the same slot. Since the reference object always concerns the
same slot, it is only necessary to specify the object. For better, worse, and some indifferent preferences, the
reference object is another object that is being considered for the slot, and it is given by the reference attribute
of the preference. For best, worst, and the remaining indifferent preferences, the reference object is an
abstract anchor point, hence is implicit and need not be given. Consider an example where there are two
eight-puzzle operators, named up and left, being considered for state S1 in goal Gl. If the identifier for the
eight-puzzle problem space is Pl, and the identifiers for up and left are Ol and O2, then the following

preference says that up is better than left:

(preference tobject O1 trole operator tvalue better treference 02
tgoal G1 tproblem-space P1 tstate S1)

The decision procedure computes the best choice for a slot based on the preferences in working memory
and the semantics of the preference concepts, as given in Figure 2-8. The preference scheme of Figurc 2-8 is a
modification of the straightforward application of the concepts of acceptability, rejection and desirability.
The modifications arise from two sources. The first is independence. The elaboration phase consists of the
contributions of independently firing individual productions, each expressing an independent source of
knowlédge. There is no joint constraint on what each asserts. These separate expressions must be combined,
and the only way to do so is to conjoin them. Independence implies that one choice can be (and often is) both

acceptable and rejected. For a decision to be possible with such preferences, rejection can not be
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Attri
Object The object that is to occupy the slot

Role The role the object is to occupy
(problem space, state, or operator)

Goal
Slot
Problem space
Context in which the preference applies
State (A set of contexts can be specified)
Operator
Value acceptable The object is a candidate for the given role
reject The cbject 1s not to be selected
best The object is as good as any object can be
better The object is better than the reference object

indifferent The object is indifferent to the reference object
if there is one, otherwise the object is indifferent
to all other indifferent objects

worse The object is worse than the reference object
(the inverse of better)

worst The object is as bad as any object can be
(the inverse of best)

Reference The reference object for order comparison

Figure 2-7: The encoding of preferences.

—acceptable, which would lead to a logical contradiction. Instead, rejection overrides acceptable by eliminat-
ing the choice from consideration. Independence also implies that one choice can be both better 4and worse
than another. This requires admitting conflicts of desirability between choices. Thus. the desirability order is
quite weak, being transitive, but not irreflexive or antsymmetric, and domirates must be distinguished from
simply better — namely, domination implies better without conflict. The possibility of conflicts modifies the
notion of the maximal subsct of a sct to be those elements that no other clement dominates. For example, in

the set of {x, y} if (x > y) and (y > x) then the maximal subset contains both x and y.

The sccond source of modifications to the decision procedure is incompleteness. The elaboration phase will
deliver some collection of preferences. These can be silent on any particular fact, e.2., they may assert that x is
better than y, and that y is rejected, but say nothing about whether x is acceptable or not, or rejected or not.

Indeed. an unmentioned object could be better than any that are mentioned. No constraint on completeness
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Primitive predicates and functions on objects, x, y, z,

current The object that currently occupies the slot
acceptable(x) X 1S acceptable

reject(x) x is rejected

(x > y) x is better than y

(x < y) x is worse than y (same as y > x)

(x ~ y) x is indifferent to y

(x >> y) X dominates y = (x > y) and =(y > x)

Reference anchors
indifferent(x) = Vy [indifferent(y) = (x ~ y)]
best(x) = Vy [best(y) = (x ~ y)] A [—best(y) A =(y > x) = (x > y)]
worst(x) = Vy [worst(y) = (x ~ y)] A [~worst(y) A =(y < x) = (x < y)]

Basic properties
Desirability (x > y) is transitive, but pot complete or antisymmetric
Indifference is an equivalence relationship and substitutes over >
(x > y) and (y ~ z) implies (x > 2)
Indifference does not substitute in acceptable, reject, best, and worst.
acceptable(x) and (x ~ y) does not imply acceptable(y),
reject(x) and (x ~ y) does not imply reject(y), etc.

Default assumption
A1l preference statements that are not explicitly mentioned and not
implied by transitivity or substitution are not assumed to be true

Intermediate definitions
considered-choices = {xeobjects | acceptable(x) A —reject(x)}
maximal(X) = {xeX | Vy -(y > x)}
maximal-choices = maximal(considered-choices)
empty(X) = —=xeX
mutually-indifferent(X) = Vx,yeX (x ~ y)
random( X) choose one element of X randomly
select(X) if currenteX then current else random(X)

Final choice
empty(maximal-choices) A —reject(current) = final-choice(current)
mutually-indifferent(maximal-choices) A —empty(maximal-choices)
= final-choice(select(maximal-choices))

Impasse

empty(maximal-choices) A reject(current) = impasse
—mutually-indifferent(maximal-choices) = impasse(maximal-choices)

Figure 2-8: The semantics of preferences.




PAGE 22 SOAR: AN ARCHITI'CTURE FOR GENERAL INTELLIGENCE

can hold, sincc Soar can be in any statc of incompletc knowledge. Thus. for the decision procedure to get a
result. assumptions must be made to close the world logically. The assumptions all flow from the principle
that positive knowledge is required to state a preference — to state that an object ts acceptatle. rejected or has
some desirability relaton. Hence, no such assertion should bé made by default. Thus. objects are not
acceptable unless explicitly acceptable: are not rejected unless explicitly rejected; and are not ordered in a
specific way unless explicitly ordered. To do otherwise without explicit support is to rob the explicit state-

ments of assertional power.

Note, however, that this assumption does allow for the existence of preferences implied by the explicit
preferences and their semantics. For example, two objects are indifferent if either there is a binary
indifferent-preference containing them, there is a transitive sct of binary indifferent-preferences containing

both of them. they are both in unary indifferent-preferences, they are both in best-preferences, or they are

both in worst-preferences.

The first step in processing the preferences for a slot is to determine the set of choices to be considered.
These are objects that are acceptable (there are acceptable-preferences for them) and are not rejected (there
are no rcject-preferences for them). Dominance is then determined by the best, better, worst, and worse
preferences. An object dominates another if it is better than the other (or the other is worse) and the latter
object is not better than the former object. A best choice dominates all other non-best choices, except those
that are explicidy better than it through a better-preference or worst-preference. A worst choice is dominated
by all other non-worst choices. except those that are explicidy worse than it through a better or worst

preference. The maximal-choices are those that are not dominated by any other objects.

Once the set of maximal-choices is computed, the decision procedure determines the final choice for the
slot. The current choice acts as a default so that a given slot will change only if the current choice is displaced
by another choice. Whenever there are no maximal-choices for a slot, the current choice s maintained, unless
the current choice is rejected. If the set of maximal-choices are mutuaily indifferent — that is, all pairs of
elements in the sct are mutually indifferent — then the final choice is one of the elements of the set. The
default is to not change the current choice, so if the current choice is an element of the set, then it is chosen;
otherwise, one element is chosen at random.’ The random selection is iystified because there is positive
knowledge, in the form of preferences, that explicitly states that it does not matter which of the mutually

indifferent objects is selected.

If the decision procedurc determines that the value of the slot should be changed — that is, there is a final

In place of a mandom sclection, there is an opt.on in Soar to allow the user to sclect from the set of indifferent choices.
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choice different from the current object in the slot — the change is installed. all of the lower slots are
reinitialized to undccided, and the elaboration phase of the next decision cycle ensues. If the current choice is
maintained. then the decision procedure corsiders the next slot lower in the hierarchy. If cither there is no
final choice, or all of the slots have been exhausted. then the decision procedure fails and an impasse7 occurs.

[n Soar, four impasse situations are distinguished:

1. Tie: This impasse arises when there are multiple maximal-choices that are not mutually indif-
ferent and do not conflict. These are competitors for the same slot for which insufficient
knowledge (expressed as preferences) exists to discriminate among them.

2. Conflict: This impasse arises when there are conflicting choices in the set of maximal choices.
3. No-change: This impasse arises when the currcnt value of every slot is maintained.

4. Rejecrion: This impasse arises when the current choice is rejected and there are no maximal
choices: that is, there are no viable choices for the slot. This situation typically occurs when all of
the alternauves have been trned and found wanting.

The rules at the bottom of Figure 2-8 cover all but the third of these, which involves cross-slot considerations
not currently dealt with by the preference semantics. These four conditions are mutually exclusive, so at most
one impasse will arise from executing the decision procedure. The response to an impasse in Soar is to set up

a subgoal in which the impasse can be resolved.

2.3.3. Imblementing the eight puzzle |

Making use of the processing structure so far described — and postponing the discussion of impasses and
subgoals unui Section 2.4 — 1t is possible to describe the implementaton of the eight puzzle in Soar. This
implementation consists of both task-implementation knowledge and search-control knowledge. Such
knowledge is eventually to be acquired by Soar from the external world in some representation and converted
to internal forms, but untl such an acquisition mechanism is developed, knowledge is simply posited of Soar,

encoded into problem spaces and search control, and incorporated directly into the production memory.

Figures 2-9, 2-10, and 2-11 list the productions that encode the knowledge to implement the cight puzzle
ask.} F igure 2-9 contains the productions that set up things up so that problem solving can begin, and detect
when the goal has been achicved. For this example we assume that initially the current goal is to be
augmented with the name solve-cight-puzzle, a description of the initial state, and a description of the desired
state. The problem space is selectcd based on the description of the goal. In this case, production

select-eight-puzzle-problem-space is sensitive to the name of the goal and suggests cight-puzzle as the

7Thc term was first used in this sensc in Repair theory [8]: we had onginally used the term difficulty [29].

8Thcse descriptions of the productions are an abstraction of the actual Soar productions, which are given in the Soar manual [30].
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problem space. The initial state is dctermined by the current goal and the problem space. Production
define-initial-state translates the description of the initial state in the goal to be a state in the eight-puzzle
problem space. Similarly. define-final-state translates the description of the desired s:ate to be a state in the
cight-puzzle problem space. By providing different initial or desired states, different eight puzzle problems
can be attempted. Production detect-eight-puzzle-success compares the current state, tile by tile and cell by

cell to the desired state. If they match, the goal has been achieved.

select-eight-puzzie-space:
If the current goal is soive-eight-puzzle, then make an acceptable-preference for eight-puzzie as the current problem

space.

define-initial-state:
[f the current probiem space is cight-puzzle, then create a state in this problem space based on the description in the

goal and make an acceptable-preference for this state.

define-finai-state:
If the current problem space is eight-puzzie, then augment the goal with a desired state in this problem space based

on the description in the goal.

detect-eight-puzzle-success:
If the current problem space is eight-puzzie and the current state matches the desired state of the current goal in

each cell, then mark the state with success.

Figure 2-9: Productions that set up the eight puzzle.

The final aspect of the task definition is the implementation of the operators. For a given problem, many
different realizations of essentially the same problem space may be possible. For the eight puzzle, there could
be twenty-four operators, one for each pair of adjacent cells between which a tile could be moved. In such an
implementation, all operators could be made acceptable for each state, followed by the rejection of those that
cannot apply (because the blank is not in the appropnate place). Alternatively, only those operators that are
applicable to a state could be made acceptable. Another implementation could have four operators, one for

each direction in which tles can be moved into the blank cell: up, down. left, and right. Those operators that

do not apply to a state could be rejected.

[n our implementation of the eight puzzle, there is a single general operator for moving a tile adjacent to the
blank ccll into the blank cell. For a given state, an instance of this operator is created for each of the adjacent
cells. We will refer to these instantiated operators by the direction they move their associated tle: up, down,
left and nght. To create the operator instantiations requires a single production, shown in Figure 2-10. Each
operator is represented in working memory as an object that i1s augmented with the ccll containing the blank
and one of the cells adjacent to the blank. When an instantiated operator is created, an acceptable-preference
is also created for it in the context containing the eight-puzzle problem space and the state for which the

instantiated operator was created. Since operators are created only if they can apply, an additional production

that rejects inapplicable operators is not required.

An operator is applied when it is selected by the dccision procedure for an operator role — selecting an
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instantiate-operator:
If the current problem space is eight-puzzle and the current state has a tile in a cell adjacent to the blank's cell. then
create an acceptable-preference for a newly created operator that will move the tile into the blank's cell.

Figure 2-10: Production for creating eight puzzie operator instantiations.

operator produces a context in which productions associated with the operator can execute (they contain a
condition that tests that the operator is selected). Whatever happens while a given operator occupies an
operator role comprises the attempt to apply that operator. Operator productions are just elaboration produc-
tions. used for operator application rather than for search control. They can create a new state by linking it to
the current context (as the object of an acceptable-preference), and then augmenting it. To apply an instan-
tiated operator in the eight puzzle requires the two productions shown in Figure 2-11. When the operator is
selected for an operator slot, production create-new-state will apply and create a new state with the tile and
blank in their swapped cells. The production copy-unchanged-binding copies pointers to the unchanged
bindings between tiles and cells.

create-new-state: .
If the current problem space is eight-puzzle, then create an acceptable-preference for a newly created state. and
augment the new state with bindings that have switched the tiles from the current state that are changed by the
current operator. ' '
copy-unchanged-binding:
If the current problem space is eight-puzzle and there is an acceptable-preference for a new state. then copy from
the current state each binding that is unchangced by the current operator.

Figure 2-11: Productions for applying eight puzzle operator instantiations.

The seven productions so far described comprise the task-implementation knowledge for the cight puzzle.
With no addidonal productions, Soar will start to solve the problem, though in an unfocused manner. Given
enough ume it will search until a solution is found.” To make the behavior a bit more focused, search-control
knowledge can be added that guides the selection of operators. Two simple search-control productions are
shown in Figure 2-12. Avoid-undo will avoid operators that move a tile back to its prior cell.
Meca-operator-select is a means-ends-analysis heuristic that prefers the selection of an operator if it moves a
tile into its desired cell. This is not a fool-proof heuristic rule, and will sometimes lead Soar to make an
INCOrrect move.

avoid-undo:
If the current problem space is cight-puzzle, then create a worst-preference for the operator that will move the tile
that was moved by the operator that crecated the current state.

mea-operator-selection:
If the current problem space is eight-puzzle and an operator will move a ule into its cell in the desired state, then
make a best-preference for that operator.

Figure 2-12: Search-control productions for the eight puzzle.

9“I'he default search is depth-{irst where the choices between competing operators are made randomly. Infinite loops do not arise
because the choices are made non-deterministically.
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Figure 2-13 contains a trace of the initial behavior using these nine productions (the top of the figure shows
the states and operator involved in this trace). The trace is divided up into the activity occurring during each
of the first five decision cycles (plus an iritialization cycle). Within each cycle, the activity is marked
according to whether it took place within the elaboration phase (E), or as a result of the decision procedure
procedure (D). The steps within the elaboration phase are also marked; for example, line 4.1E represents
activity occurring during the first step of the elaboration phase of the fourth decision cycle. Each line that is
part of the elaboration phase represents a single production firing. Included in these lines are the
production’s name and a description of what it does. When more than one production is marked the same, as

in 4.2E. it means that they fire in parallel during the single elaboration step.

S1 S2 D1
21813 down 21813 11213
11614 > |1 4 8 4
PR —

7 8 71615 716158
Cvcle Production » Action |
D Gl is the current goal Gl is already augmented with solve-eight-puzzle
1€ select-e9ight-puzzle-space Make an acceptable-preference for eight-puzzle
1D Select eight-puzzle as problem space
2E define-final-state Augment goal with the desired state (D1)
2E define-initial-state Make an acceptable-preference for S1
20 Select S1 a t
J.1E instantiate-operator Create 01 (down) and an acceptable-preference for it
3.1E instantiate-operator Create 02 (right) and an acceptable-preference for it
3.1t instantiate-operator Create 03 (left) and an acceptable-preference for it
3.2E mea-operator-selection (0Ol-down) Make a best-preference for down
3D Select O1 (down) as operator
4.1t create-new-state Make an acceptable-preference for S2, swap bindings
4 .2E copy-unchanged-binding Copy over unmodified bindings
4 .2€E copy-unchanged-binding
4 2E copy-unchanged-binding
4.2E copy-unchanged-binding
4.2E copy-unchanged-binding
4 .2E copy-unchanged-binding
4 .2E copy-unchanged-binding
40 Sele Z a
SE instantiate-operator Create 04 (down) and an acceptable-preference for it
5E instantiate-operator Create 05 (right) and an acceptable-preference for it
5t instantiate-operator Create 06 (left) and an acceptable-preference for it
5t instantiate-operator Create 07 (up) and an acceptable-preference for it
5t Avoid-undo (07-up) Make a worst-preference for up

50 Tie impasse, create subgoal

Figure 2-13: Trace of initial eight puzzle problem solving.

The trace starts where the current goal (called G1) is the only object defined. In the first cycle, the goal is
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augmented with an acceptable-preference for eight-puzzle for the problem-space role. The decision proce-
dure then selects eight-puzzle as the current problem space. In cycle 2, the initial state, S1, is created with an
acceptable-preference for the state role, and the problem space is augmented with its coerators. At the end of
cycle 2, the decision procedure selects S1 as the current state. In cycle 3, operator instances, with correspond-
ing acceptable-preferences, are created for all of the tiles that can move into the blank cell. Production
mea-operator-sclection makes operator Ol (down) a best choice, resulting in its being selected as the current
operator. In cycle 4, the operator is applied. First, production create-new-state creates the preference for a
new state (S2) and augments it with the swapped bindings, and then production copy-unchanged fills in the
rest of the structure of the new state. Next, state S2 is selected as the current state and operator instances are
crcated — with corresponding acceptable-preferences — for all of the tiles that can move into the cell that
now contains the blank. On the next decision cycle (cycle 5), none of the operators dominate the others, and

an impasse occurs.

2.4. Impasses and Subgoals

When attempting to make progress in attaining a goal, the knowledge directly available in the problem
space (encoded in Soar as productions) may be inadequate to lead to a successful choice by the decision
procedure. Such a situation occurred in the last decision cycle of the eight puzzle example in Figure 2-13.
The knowledge directly available about the eight puzzle was incomplete — it did not specify which of the
operators under consideration should be selected. In general, impasses occur because of incomplete or
inconsistent information. Incomplete information may yield a rejection, tie, or no-change impasse, while

inconsistent information yields a conflict impasse.

When an impasse occurs, returning to the elaboration phase cannot deliver additional knowledge that might
remove the impasse, for elaboration has already run to quiescence. Instead, a subgoal and a new context is
created for each impasse. By responding to an impasse with the creation of a subgoal, Soar is able to
dcliberately search for more information that can lead to the resolution of the impasse. All types of

knowledge, task-implementation and search-control, can be encoded in the problem space for a subgoal.

If a tie impasse between objects for the same slot arises, the problem solving to select the best object will
usually result in the creation of one or more dcsirability preferences, making the subgoal a locus of search-
control knowledge for selecting among those objects. A ue impasse between two objects can be resolved in a
number of ways: one object is found to lead to the goal, so a best preference is created; one object is found to
be better than the other, so a better preference is created; no difference is found betwecn the objects, so an
indiffcrent preference is created; or one object is found to lead away from the goal, so a worst preference is
created. A numbcr of different problem solving strategics can be used to generate these outcomes, including:

further elaboration of the ticd objects (or the other objects in the context) so that a detailed comparison can be
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made: look-ahead searches to determine the effects of choosing the competing objects: and anaiogical map-

pings to other situations where the choice is clear.

If a no-change impasse arises with the operator slot filled. the problem solving in the resulting subgoal will
usually involve operator implementation, terminating when an acceptable-preference is generated for a new
state in the parent problem space. Similarly, subgoals can create problem spaces or inital states when the
required knowledge is more easily encoded as a goal to be achieved through problem-space search, rather

than as a set of elaboration productions.

When the impasse occurs during the fifth decision cycle of the eight-puzzle example in Figure 2-13, the

following goal and context are added to working memory.

(goal G2 tsupergoal Gl timpasse tie tchoices multiple trole operator

titem 04 05 06
tproblem-space undecided tstate undecided toperator undecided)

The subgoal is simply a new symbol augmented with: the supergoal (which links the new goal and context
into the context stack); the type of impasse; whether the impasse arose because there were no choices or
muluple choices in the maximal-choices set; the role where the impasse arose; the objects involved in conflicts
or ties (the items); and the problem-space, state, and operator slots (initialized to undecided). This infor-
mation provides an initial definition of the subgoal by defining the conditions that caused it to be generated
and the new context. In the following elaboration phase, the subgoal can be elaborated with a suggested
problem spacc. an initial state, a desired state or even path constraints. If the situation is not sufficiently
elaborated so that a problem space and initial state can be selected, another impasse ensues and a further

subgoal is created to handle it.

Impasses are resolved by the addition of preferences that change the results of the decision procedure.
When an impasse is resolved, allowing problem solving to proceed in the context, the subgoal created for the
impassc has completed its task and can be terminated. For example, if there is a subgoal for a tie impasse at
the operator role, it will be terminated when a new preference is added to working memory that either rejects
all but one of the competing operators, makes one a best choice, makes one better than all the others, etc. The
subgoal will also be terminated if new preferences change the state or problem-space roles in the context,
because the contents of the operator role depends on the values of these higher roles. If there is a subgoal
created for a no-change impasse at the operator role — usually because of an inability to implement the
operator directly by rules in the problem space — it can be resolved by establishing a preference for a new

state. most likely the one generated from the application of the opcerator to the current state.

In gencral, any change to the context at the affected role or above will lead to the termination of the



2. THE SOAR ARCHITECTURE PAGE 29

subgoal. Likewise, a change-in any of the contexts above a subgoal will lead to the termination of the subgoal
because its depends on the higher contexts for its existence. Resolution of an impasse terminates all goals

below it

When a subgoal is terminated, many working-memory elements are no longer of any use since they were
created solely for internal processing in the subgoal. The working-memory manager removes these useless
working-memory elements from terminated subgoals in essentially the same way that a garbage collector in
Lisp removes inaccessible CONS cells. Only the results of the subgoal are retained — those objects and
preferences in working memory that mcet the criteria of linked access to the unterminated contexts, as
defined in Section 2.3.1. The context of the subgoal is itself inaccessible from supergoals — its supergoal link

IS one-way — so it is removed.

The architecture defines the concept of goal termination, not the concept of goal success or failure. There
are many reasons why a goal should disappear and many ways in which this can be reflected in the
preferences. For instance, the ordinary (successful) way for a subgoal implementing an operator to terminate
is to create the new result state and preferences that enable it to be selected (hence leading to the operator role
becoming undecided). But sometimes it is appropriate to terminate the subgoal (with failure) by rejecting the

operator or selecting a prior state, so that the operator is never successfully applied.

Automatic subgoal termination at any level of the hierarchy is a highly desirable, but generally expensive,
feature of goal systems. In Soar. the implementation of this feature is not expensive. Because the architecture
creates all goals, it has both the knowledge and the organization necessary to terminate them. The decision
procedure iterates through all contexts from the top, and within each context, through the different roles:
problem space, state and operator. Almost always, no new preferences are available to challenge the current
choices. If new preferences do exist, then the standard analysis of the preferences ensues, possibly deter-
mining a new choice. If everything remains the same, the procedure continues with the next lower slot; if the
value of a slot changes then all lower goals are terminated. The housekeeping costs of termination, which is

the removal of irrelevant objects from the working memory, is independent of how subgoal termination

Ooccurs.

2.5. Default Knowikdge for Subgoals

An architecture provides a frame within which goal-oriented action takes place. What action occurs
depends on the knowledge that the system has. Soar has a basic complement of task-independent knowledge
about its own operation and about the attainment of goals within it that may be taken as an adjunct to the
architecture. A total of fifty-two productions ecmbody this knowledge. With it, Soar cxhibits rcasonable

default behavior; without it (or other task knowledge). Soar can flounder and fall into an infinitely deep series
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of impasscs. We describe here the default knowledge and how it is represented. All of this knowledge can be

over-ridden by addiuonal knowledge that adds other preferences.

Common search-control knowledge. During the problem solving in a problem space, search-control rules

are available for three common situations that require the creation of preferences.

1. Backup from a failed state. [f there is a reject-preference for the current state, an acceptable-
preference is created for the previous state. This implements an elementary form of backtracking.

2. Make all operators acceptable. If there are a fixed set of operators that can apply in a problem
space, they should be candidates for every state. This is accomplished by creating acceptabie-
preferences for those opcrators that are directly linked to the problem space.

3. No operator retry. Given the deterministic nature of Soar, an operator will create the same result
whenever it is applied to the same state. Therefore, once an operator has created a result for a state
in some context, a preference is created to reject that operator whenever that state is the current
state for a context with the same problem space and goal.

Diagnose impasses. When an impasse occurs, the architecture creates a new goal and context that provide
some specific information about the nature of the impasse. From there, the situation must be diagnosed by
search-control knowledge to initiate the appropriate problem-solving behavior. In general this will be task-
dependent. conditional on the knowledge embedded in the entire stack of active contexts. For situations in

which such task-dependent knowledge does not exist, default knowledge exists to determine what to do.

1. Tie impasse. Assume that additional knowledge or reasoning is required to discriminate the items
that caused the ue. The selection problem space (described below) is made acceptable to work on
this problem. A worst-preference is also generated for the problem space, so that any other
proposed prcblem space will be preferred.

2. Conflict impasse. Assume that additional knowledge or reasoning is required to resolve the
conflict and reject some of the items that caused the conflict. The selection problem slpace is also
the appropriate space and it is made acceptable (and worst) for the problem space role. 0

3. No-change impasse.

a. For goal, problem space and state roles. Assume that the next higher object in the context is
responsible for the impasse, and that a new path can be attempted if the higher object is
rejected. Thus, the default action is to create a reject-preference for the next higher object in
the context or supercontext. T[he default action is taken only if a problem space is not
selected for the subgoal that was generated because of the impasse. This allows the default
action to be overriden through problem solving in a problem space sclected for the no-
change impasse. If there is a no-change impassc for the top goal, problem solving is halted
because there is no higher object to rcject and no further progress is possible.

1OThere has beer little experience with conilict subgoals so far. Thus. little confidence can be placed in the ireatment of conflicts and
they will not be discussed further.
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b. For operator role. Such an impasse can occur for multiple reasons. The operator could be
too complex to be performed directly by productions. thus needing a subspace to implement
it. or it could be incompletely specified, thus needing to be instantiatcd. Both of these
require task-specific problem spcces and no appropriate default action based on them is
available. A third possibility is that the operator is inapplicable to the given state, but that it
would apply to some other state. This does admit a domain-independent response, namely
attempting to find a state in the same problem space to which the operator will apply
(operator subgoaling). This is taken as the appropriate default response.

4. Rejection impasse. The assumption is the same as for (nonoperator) no'changé subgoals: the
higher object is responsible and progress can be made by rejecting it. I[f there is a rejection
impasse for the top problem space, probiem solving is halted because there is no higher object.

The sclection problem space. This space is used to resolve ties and conflicts. The states of the selection
space contain the candidate objects from the supercontext (the items associated with the subgoal). Figure 2-14
shows the subgoal structure that arises in the eight puzzle when there is no direct search-control knowledge to
select between operators (such as the mea-operator-selection production). Initially, the problem solver is at
the upper-left state and must select an operator. [f search control is unable to uniquely determine the next
operator to apply. a te impasse arises and a subgoal is created to do the selection. In that subgoal, the

sclection problem space is used.

initial desired
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Figure 2-14: The subgoal structure for the eight puzzle.
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The one opcrator in the sclection space, evaluate-object, is a general operator that is instantiated with each
tying (or conflicting) object: that is. a unique evaluate-object operator is created for each instantiation. Each
statc in the selection space is a set of evaluations produced by evaluate-object operators (the contents of these
states is not shown in the figurc). In the figure, an evaluate-object opcrator is created for each of the tied
operators: down, left, and right. Each evaluate-object operator produces an evaluation that allows the crea-
tion of preferences involving the objects being evaluated. This requires task-specific knowledge, so either
productions must exist that evaluate the contending objects. or a subgoal will be created to perform this
evaluation (see below for a default strategy for such an evaluation). Indifferent-preferences are created for all
of the evaluate-object operators so that a selection between them can be made without an infinite regression
of tie impasses. If all of the evaluate-object operators are rejected, but still no selection can be made, problem
solving in the selection problem space will have failed to achieve the goal of resolving the impasse. When this
happens, default knowledge (encoded as productions) exists that makes all of the ued alternatives indifferent

(or, correspondingly, rejects all of the conflicting alternatives). This aillows problem solving to continue.

The evaluation subgoal. In the selection p_roblem space, each evaluate-object operator must evaluate the
itemn with which it is instantiated. Task-dependent knowledge may be available to do this. If not, a no-change
impasse will occur, leading to a subgoal to implement the operator. One task-independent evaluation tech-
nique is lookahead — try out the item temporarily to gather information. This serves as the default. For this,
productions reconstruct the task context (i.e., the supercontext that lead to the tie), making acceptable-
preferences for the objects selected in the context and augmenting the new goal with information from the
original goal. In Figure 2-14, the original task problem space and state are selected for the evaluation
subgoals. Once the task context has been reconstructed, the item being evaluated — the down operator — is
selected (it receives a best-preference in the evaluation subgoal). This allows the object to be tried out and

possibly an evaluation to be produced based on progress made toward the goal.

When knowledge is available to evaluate the states in the task space, the new state produced in the ¢valua-
uon subgoal will receive an evaluation, and that value can be backed up to serve as the evaluation for the
down operator in this situation. One simple cight-puzzle evaluation is to compute the number of tiles that are
changed relauve to the locations in the desired state. A value of 1 is assigned if the moved tile is out of
position in the original statec and in position in the result state. A value of Q is assigned if the moved ule is out
of position in both states. A value of -1 is assigned if the moved tile is in position in the original state and out
of position in the result state. When an evaluation has been computed for down, the evaluation subgoal
terminates, and then the whole process is repeated for the other two opecrators (left and right). These
evaluations can be used to gencrate preferences among the competing operators. Since down creates a state

with a better evaluation than the other operators, better-preferences (signified by > in the figure) are created
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for down. An indifferent-prefercnce (signified by = in the figure) is also created for left and right because
they have equal evaluations. The preferences for down lead to its selection in the original task goal and
prohlem space. terminating the tie subgoal. At this point down is reapplied to the initial state, the result is

selected and the process continues.

Figure 2-15 shows, in a state-space representation, two steps of the search that occurs within the eight puzzle
problem space. The distinctive pattern of moves in Figure 2-15 is that of steepest-ascent hill climbing, where
the state being selected at each step is the best at that level according to the ¢valuation function. These states
werce generated in the attempt to solve many different subgoals, rather than from the adoption of a coor-
dinated method of hill climbing in the original task space. Other types of search arise in a similar way. If no
knowledge to evaluate states is available except when the goal is achieved, a depth-first scarch arises. [f it is
known that every other move is made by an opponent in a two-player game, a mini-max search emerges. The

emergence of methods directly from knowledge in Soar is discussed further in Section 3.2.
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Figure 2-15: A trace of steepest ascent hill climbing.

2.6. Chunking .

Chunking is a leamning scheme for organizing and remembering ongoing experience automatically on a
continuing basis. It has been much studied in psychology (7, 12, 43, 50] and it was developed into an explicit
learning mechanism within a production-system architecture in prior work [35. 61, 63]. The current chunking
scheme in Soar is directly adapted from this latter work. As dcfined there, it was a process that acquired

chunks that generated the results of a goal, given the goal and its parameters. The parameters of a goal were
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defined to be those aspects of the system existing prior to the goal's creation that were examined during the
processing of the goal. Each chunk was represented as a sct of three productions, one that encoded the
parameters of a goal, one that connected this encoding in the presence of the geal to (chunked) results, and
one that decoded the results. Learning was bottom-up: chunks were built only for terminal goals — goals for
which there were no subgoals that had not already been chunked. These chunks improved task performance
by substituting efficient productions for complex goal processing. This mechanism was shown to work for a
set of simple perceptual-motor skills based on fixed goal hierarchies [61] and it exhibited the power-law specd
improvement characteristic of human practice [50]. Currently, Soar does away with one feature of tiis
chunking scheme, the three-production chunks, and allows greater flexibility on a second, the bottom-up
nature of chunking. In Soar. single-production chunks are built for either terminal subgoals or for every

subgoal, depending on the user’s option.

The power of chunking in Soar stems from Soar's ability to generate goals automatically for problems in
any aspect of its problem-solving behavior: a goal to select among alternatives leads to the creation of.a
chunk-production that will later control search; a goal to apply an operator to a state leads to the creation of a
chunk-production that directly implements the operator. The occasions of subgoals are exactly the conditions |
where Soar requires learning, since a subgoal is created if and only if the available knowledge is insufficient
for the next step in pfoblem solving. The subgoal is created to find the necessary knowledge and the
chunking mechanism stores away the knowledge so that under similar circumstances in the future, the
knowledge will be available. Actually, Soar learns what is necessary to avoid the impasse that led to the
subgoal. so that henceforth a subgoal will be unnecessary, as opposed to learning to supply results after the
subgoal has been created. As search-control knowledge is added through chunking, performance improves
via a reduction in the amount of search. If enough knowledge is added. there is no search; what is left is an
efficient algorithm for a task. In addition to reducing search within a single problem space, chunks can
completely eliminate the search of entire subspaces whose function is to make a search-control decision or
perform a task-implementation function (such as.applying an operator or detcrmining the initial state of the

task).

2.6.1. The chunking mechanism

A chunk production summarizes the processing in a subgoal. The actions generate those working-memory
elements that climinated the impasse responsible for the subgoal (and thus terminated the subgoal). The
conditions test thosc aspects of the current task that were relevant to those actions being performed. The
chunk is created when the subgoal terminates — that is when all of the requisite information is available. The
chunk’s actions are based on the results of the subgoal — those working-mcmory clements created in the
subgoal (or its subgoals) that are acccssible from a supergoal. An augmentation is a result if its identifier

éither existed before the subgoal was created, or is in another result. A preference is a result if all of its
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specificd context objects (goal. problem space, state and operator) either existed before the subgoal was

created. or are in another result

The chunk’s conditions are based on a dependency analysis of traces of the productions that fired during the
subgoal. The traces are accumulated during the processing of the subgoal. and then used for condition
determination at subgoal termination time. Each trace contains the working-memory elements that the

). 1 Only productions that

production matched (condition elements) and those it generated (action elements
actually add something to working memory have their traces saved. Productions that just monitor the state
(that is. only do output) do not affect what is learned, nor do productions that attempt to add working-

memory elements that already exist (recall that working memory is a set).

Once a trace is created it needs to be stored on a list associated with the goal in which the production fired.
However, determining the appropriate goal is problematic in Soar because elaborations can execute in parallel
for any of the goals in the stack. The solution comes from examining the contexts tested by the production.
The lowest goal in the hierarchy that is matched by conditions of the production is taken to be the one
affected by the production firing. The production will affect the chunké created for that goal and possibly, as
we shall see shortly, the higher goals. Because the production firing is independent of the lower goals — it

would have fired whether they existed or not — it will have no effect on the chunks built for those goals.

When the subgoal terminates, the results of the subgoal are factored into independent subgroups, where
two results are considered dependent if they are linked together or they both have links to a third result
object. Each subgroup forms the basis for the actions of one production, and the conditions of each produc-
tion are determined by an independent dependency analysis. The effect of factoring the result is to produce
more productions, with fewer conditions and actions in each, and thus more generality than if a single
production was created that had all of the actions together. For each set of results, the dependency-analysis
procedure starts by finding those traces that have one of the results as an action element. The condition
elements of these traces arc then divided up into those that existed prior to the creation of the subgoal and
those that were created in the subgoal. Those created prior to the subgoal become conditions of the chunk.
The others are then recursively analyzed as if they were results, to determine the pre-subgoal elements that

were responsible for their creation.

Earlier versions of chunking in Soar [36] implicitly embodied the assumption that problem solving was

perfect — if a rule fired in a subgoal, then that rule must be relevant to the generation of the subgoal’s results.

11“. there 1s a condition that tests for the abscnce of a working-mcmory clement. a copy of that negated condition is saved in the trace
with its vanabics instantiated from the values bound clsewhere in the production.
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The conditions of a chunk werc based on the working-memory clements matched by all of the productions
that fired in the subgoal. When the assumption was violated. as it was when the processing involved searches
down paths that led to failure, overly specific chunks were created. By working backward from the results,
the dépendency analysis includes only thosc working-memory elements that were matched by the productions
that actually led to the creation of the results. Working-memory elements that are examined by productions,

but that turn out to be irrelevant, are not included.

A generalization process allows the chunk to apply in a future situation in which there are objects with the
same descriptions. but possibly different identifiers. Once the sct of chunk-productions is determined, they
are generalized by replacing the identifiers in the working-memory elements with variables. Each identifier
serves to tie together the augmentations of an object. and serves as a pointer to the object, but carries no
meaning of its own — in fact. a new identifier is generated each time an object is created. Constant symbols
— those that are not used as the identifiers of objects — are not modified by this varnablization process, only
the identifiers. All instances of the same identifier are replaced by the same variable. Different identifiers are
replaced by different variables which are forced to match distinct identifiers. This scheme may sometimes be
in error, creating productions that will not match when two elements just happen to have the same (or

different) identifiers, but it always errs by being too constraining.

The final step in the chunk creation process is to perform a pair of optimizations on the chunk productioris.
The first optimization simplifics productions learned for the implementation of a complex operator. As part
of creating the new state, much of the substructure of the prior state may be copied over to the new state. The
chunk for this subgoal will have a separate condition, with an associated action, for each of the substructures
copied. The chunk thus ends up with many condi’tion-action pairs that are identical except for the names of
the variables. If such a production were used in Soar during a new situation, a huge number of instantiations
would be created, one for every permutation of the objects to be copied. The optimization eliminates this
problem by removing the conditions that copy substructure from the original production. For each type of
substructure being copied, a new production is created which includes a singlc condition-action pair that will
copy substructures of that type. Since all of the actions are additive, no orderering of the actions has to be

maintained and the resulting sct of rules will copy all of the substructure in parallel.

The second optimization is to order the production conditions in an attempt to make the matcher faster.
Each condition acts like a query — returning all of the working-memory elements that match the condition —
and the overall match process returns all of the production instantiations that match the conjunctive queries
specified by the condition sides of the productions. The efficiency cf such a match process is heavily

dependent on the order of the queries [74]. By automatically ordering the conditions in Soar, the number of
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intcrmediate instantiations of a production is greatly reduced and the overail cfficicncy improveci12

2.6.2. An example of chunk creation

Figure 2-16 shows a trace of the productions that contribute to a chunk butlt for the evaluation subgoal in
the eight-puzzie example discussed in Section 2.5. The first six decision cycles lcad up to the subgoal that
implements evaluate-object(down) (evaluate the eight-puzzle operator down). G1 is the initial goal, G2 is the
subgoal to eliminate a tie between operators. and G3 is the subgoal to implement evaluate-object(down).
Included in this trace are the names of those productions fired during subgoal G3 that provide traces used by
the dependency analysis. Listed for each of these rule firings are the condition elements that existed prior to
the goal, and which therefore become the basis of the chunk’s conditions; and the action elements that are

linked to preexisting structure, and which therefore become the basis of the actions of the chunk.

Cycle
0 G: Gl [Solve the eight puzzle]
1 P. P1 [Eight-Puzzle]
2 S: S1
3 G: G2 (Tie impasse., operators {Ol[down] 02[1eft] 03[ right]})
4 P: P2 [Selection]
5 S: SS1
6 0: 04 [evaluate-object[0l[{down]]]
7 G: G3 (No-change impasse, operator)
eval®select-role-operator ,wm elements tested to
(goal G2 roperator 04) ;establish the context
(operator 04 tname evaluate-object tdesired Dl ;1in which operator Ol[down]
' trole operator tsuperoperator Ol .can be evaluated
tsuperproblem-space P1 tsuperstate S1) '
-=>
8 P: P1 [Eight-Puzzle]
9 S: S1
10 0: 01 [down]
create-new-state
(problem-space Pl tname eight-puzzle) ,wm elements tested to
(operator 01 tname move-tile tadjacent-cell Cl) ;;apply operator that moves
(state S1 tbinding B1 tbinding B2) ;the tile in C1 into the
(binding B1 ttile T1 tcell C2) :cell with the blank (C2)
(tile T1 tname blank) :T1 is the blank
(binding B2 ttile T2 *cell C1) ;T2 is the tile in cell C1
-=D
11 S: S2
eval®state-plus-one
(problem-space P1 *name eight-puzzle) .wm elements tested to
(operator 04 tname evaluate-object ;create evaluation for
tdesired D1 revaluation E1l) ,state based on detecting
(desired D1 tbinding 081) ;that the operator
(binding DBl rcell C2 rtile T2) ;has moved a tile into
(cell C2 tcoll C1) .its desired position
-=>
(evaluation E1 tvalue 1) ,the result/action

12 0: 05 [evaluate-object[02[1eft]]

Figure 2-16: Partial production trace of an cight-puzz!c evaluation subgoal.

12The details of the rcordering algonthm are not imponant here. except that the most recent version (Sept. 86), by Dan Scales and
John Laird. is almost as effective as ordering by hand.
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Oncc the cvaluation subgoal is generated, the production eval*sclect-role-operator fires and creates
acceptable-preferences for the original task problem space (P1), the original task state (S1), and the operator
being evaluated (O1). The production also augments goal G3 with the task goal's desir~d state (D1). Many of
the production’s conditions mab:h working-memory elements that are a part of the definition of the
evaluate-object operator, and thus existed prior to the creation of subgoal G3. These test that the subgoal is to
implement the evaluate-object operator, and they access identifiers of super-objects so that the identifiers can
be included in the preferences generated by the actions of the production. Following the selection of P1 and
S1. a production instantiation fires to generate a best-preference for operator Ol for this specific goal,

problem space, and state. This production firing is not shown because it does not add new conditions to the

chunk.

The problem solving continues with the selection of Ol and the generation of a new state (S2). The
unchanged bindings are copied by a rule that is not shown because it does not affect the subgoal’s result. S2 is
selected and then evaluated by production eval®*state-plus-one, which augments object E1 with the value of
the evaluaton. This augmentation is a result of the subgoal because object El is linked to the state in the
parent context. [Immediately afterwards, in the same elaboration phase, a production generates a reject-
preference for operator O4, the evaluate-object operator. This production has no effect on the chunk built for
subgoal G3 because it looks only at higher contexts. Once the reject-preference is created, operator O4 is

rejected, another operator is selected, the no-change impasse is eliminated, subgoal G3 is terminated, and a

chunk is built.

Only certain of the augmentauons of the objects are included in the chunk; namely. those that played an
explicit role in attaining rhe result. For instance, only portions of the state (S1) and the desired state (D1) are
included. Even in the substruciure of the state, such as binding B2, its ule (T2) has only its identifier saved,
and not its value (6). because the actual vaiue was never tested. The critical aspect to be tested in the chunk is
that the tile appears as a tile-augmentation of both bindings B2 and DBI (a binding in the desired state, D1).
The exact valuc of the tile is never tested in the subgoal, so it is not included in the chunk. The conditions
created from these working-memory elements will test: that a tile (in this casc T2) in the current state (S1) is
in a cell adjacent to the cell containing the blank: and that the ceil containing the blank is the cell in which the
tile appears in the desired state. In other words, the chunk fires whenever the evaluate-object operator is

selected in the selection problem space and the operator being evaluated will move a tile into place.

The action of the chunk is to create an evaluation of 1. This value is used to create preferences by compar-
ing it to the values produccd by evaluating other operators. The other cvaluation values arise when a tile is
neither moved into nor out of its desired cell (0), or when a tle is move out of its desired cell (-1). Symbolic
values could have been used in place cf the numeric ones, as long as there are additional productions to

compare the values and create appropriate preferences.
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Figurc 2-17 contains the one-production chunk built for this example in the format used as input to Soar,
which is similar to that used for OpsS productions. Each production is a list, consisting of a name, the
conditions, the symbol “-->", and the actions. Each condition is a template to be matched against working-
memory elements. Symbols in a production of the form "<..>" (c.g.. <G1>) are variables, all others are
constants. The actions are templates for the generation of working-memory elements. In building the chunk,
all identifiers from the original working-memory elements have been replaced by variables. The constants in
the working-memory elements, those symbols that have no further augmentations (evaluate-object.
eight-puzzle, blank), remain as constants in the conditions. Identifier variablization is also responsible for the
additonal negation predicates in the specification of objects <S1> and <B2>. such as { <> <(B1> <B2> } in
object <S1>. This is a conjunctive test that succeeds only if <B2> can be bound to a value that is not equal to

the value bound to <B1>, thus forcing the objects that are bound to the two variables to be different.

"~ (sp p0038

(goal <G2> troperator <04>)

(operator <04> tname evaluate-object trole operator
t+superproblem-space <P1> tsuperstate <S1>
tsuperoperator <01> tevaluation <E1> tdesired <D1>)

(problem-space <P1> tname eight-puzzle)

(operator <01> tadjacent-cell <C1>)

(state <S1> tbinding <B1> tbinding { <> <B1> <B2> })

(binding <B1> *tile <T1> tcell <C2>)

(tile <T1> tname blank)

(binding <B2> tcell { <> <C2> <C1> } rtile { <> <KT1> KT2> })

(cell <C2> tcell <KC1>)

(desired <D1> tbinding <DB1>)

(binding <DB1> tcell <C2> ttile <T2>)

-=>
(evaluation <E1> tvalue 1))

Figure 2-17: Production built by chunking the evaluation subgoal.
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3. Discussion

The Soar architecture has been fully described in the previous section. However, the consequences of an
architecture are hardly apparent on surface examination. The collection of tasks that Soar has accomplished,
exhibited in Figure 1, provides some useful information abbut viability and scope. However, simply that Soar
can perform these tasks — that the requisite additional knowledge can be added — is not entirely surprising.
The mechanisms in Soar are variants of mechanisms that have emerged as successful over the history of Al
research. Soar’s accomplishing these tasks does provide answers to other questions as well. We take up some
of these here. This discussion also attempts to ensure that Soar’'s mechanisms and their operation are clear.
We limit ourselves to aspects that will shed light on the architecture. The details of Soar’s behavior on specific

tasks can be found in the references.

The first question we take up is what Soar is like when it runs a real task consisting of multiple aspects with
varying degrees of knowledge. The second question is how Soar embodies the weak methods, which form the

foundation of intelligent action. The third question involves learning by chunking.

3.1. Combining knowledge and probiem solving
R1 is a well-known large knowiedge-intensive expert system — consisting of 3300 rules plus a data base of

over 7000 component descriptions, circa 1984 — used at Digital Equipment Corporation to configure Vax and
PDP-11 computers [3, 41]. R1-Soar is an iinplementation in Soar of a system that exhibits about 25% of the
functionality of R1, using the same knowledge as obtained from R1’s OpsS rules [65, 75]. This is a big enough
fraction of R1 to assure that extension to a complete version would be straightforward, if desired.'® The part

covered includes the most involved activity of the system, namely, the assignment of modules to backplanes,

taking into account requirements for power, cabling, etc.

R1-Soar was created by designing a set of problem spaces for the appropriate subpart of the configuration
task. The problem spaces were added to the basic Soar system (the architecture plus the default knowledge,
as described in the previous section). No task-dependent search-control knowledge was included. The
resulting system was capable of accomplishing the configuration subtask. although with substantial search.
R1-Soar’s behavior was initially explored by adding various amounts of search control and by turning chunk-
ing on and off. Later experiments were run with variations in the problem spaces and their organization.

Thus, R1-Soar is a family of systems, used to explore how to combine knowledge and problem solving.

In the eight puzzle there was a single operator which was realized entirely by productions within a single

problem space. However, the configuration task is considerably more complicated. In an extended version of

13 Indeed. a revision of R1 is underway at DEC that draws on the problem structure developed for R 1-Soar [76].
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R1-Soar [75). which covered about 25% of R1 (compared to about 16% in the initial version [65]), there were
thirty-four operators. Twenty-six of the operators could be realized directly by productions, but eight were
complex enough to require implementation in additional problem spaces. Figure 3-! shows the nine task
spaces used in the extended version of R1-Soar. This structure, which looks like a typical task-subtask
hierarchy, is generated by the implementation of complex operators. In operation, of course, specific in-
stances of these problem spaces were created, along with instances of the selection problem space. Thus,

Figure 3-1 represents the logical structure, not the dynamic subgoal hierarchy.

—>={ [nitialize Order > Unibus Priority

—> Configure Cabinet

‘ —> Configure CPU |3
Configure System |—a >4 Configure Box

RS

Configure
1 Backplane

SRR

L= Configure Unibus j—————>

—= Configure Module

Figure 2-1: Task probiem spaces for the extended version of R1-Soar [75].

The total set of task operators is given in Figure 3-2. Many operators are generic and have instantiations, a
feature of the operator in the eight-puzzle task as well. However, in R1-Soar. some of the instantiations of the
same operator have quite distinct character. Two problem spaces. configure-cpu and configure-unibus, make
use of the same generic operators (although they instantiate them diffcrently), such as configured-cabinet.
This accounts for Figure 3-1 not being a pure hierarchy, with both configure-cpu and configure-unibus

linking to the same four subspaces.

The task dccomposition used by R1-Soar is very different than the one used by R1. Soar is a problem
solver capable of working in lecan spaces by extensive search. R1 is a knowledge-intensive shallow expert
systemn, in which as much direct recognition and as little search as possible is done. It is built around a very

large pre-established subtask hicrarchy (some 321 subtasks, circa 1984) plus a databasc containing templates



PAGE 42 SOAR: AN ARCHITECTURE FOR GENFRAL INTELLIGENCE

PROBLEM-SPACE OPERATOR

configure-system initialize order
configure CPU
configure unibus
instance = place modules in sequence
instance = maximum module placement.
show output

initialize-order get component data from database
assign unibus-module priority numbers

unibus-priority sequence unibus modules

configure-cpu configure cabinet

instance = cpu cabinet
configure box
instance = cpu box
configure backplane
instance = cpu backplane
configure module
instance = maximum module placement
unused component
go to previous slot

configure-unibus configure cabinet
instance = unibus cabinet
instance = empty cabinet
configure box
instance = unibus box
instance = empty box
configure backplane
instance = unibus backplane

instance = empty backplane

instance = unibus repeater

instance = special backplane
configure module

instance = place modules in sequence

instance = maximum module placement

unused component

remove backplane
instance = replace backplane with repeater
instance = put backplane in next box

configure-cabinet configure cabinet
add component to order

configure-box configure box
next cabinet
install unibus repeater
add component to order

configure-backplane configure backplane
next section
next box
install unibus repeater
add component to order
conf igure-module configure module in special backplane
configure module with one board

configure module with more than one board
next slot

Figure 3-2: Task operators for the extended version of R1-Soar [75].

for the variety of componcnts available. R1-Soar was given a set of basic spaces that corresponded closely to
the physical manipulations used in configuring computers. The component templates are encoded as rules
that implement the operator that adds components to the order. It thus has an appropriate physical model in

terms of which to do basic rcasoning about the task.

The use of basic spaces in the initial version of R1-Soar was deliberate, to demonstrate that a general
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problem solver (Soar) could operate in knowledge-intensive mode; and could also mix search-intensive and
knowledge-intensive modes as appropriate, dropping back to search whenever the task demanded it (and not
by predesign). To do this, Soar was given only the task-implementation knowledge — the basic spaces,
desired states. and path constraints — without heuristic search control. Expertise was then to be given by
adding search control. Thus, in one small configuration task the base system (no domain-dependent search
control at all) took 1731 decision cycles to solve the task; a version with a small amount of search control took
243 cycles; and a version with a large amount of search conurol (equal to that in the original R1) took 150

].14 One surprise in this experiment was how little search control was involved in moving to the

cycles [65
knowledge-intensive versions. Thus, the base system contained a total of 232 rules (for basic Soar plus the
configuration task): only two productions were added for the small amount of search control; and only 8
more productions for the large amount of search control (for a total of 242). Thus, there is no correspondence

at all between the number of productions of R1 and the productions of R1-Soar.

The version of R1-Soar described in Figures 3-1 and 3-2 extended the coverage of the system beyond the
inidal version and modified the problem spaces to allow it to run larger orders more efficientdy. The
previously separate rules for proposing and checking the legality of an operator (using acceptable and reject
preferences) were combined into a single rule that only made the operator acceptable when it was legal. Also,
additional domain-dependent search-control productions were added (a total of 27 productions for the nine
spaces). These changes converted R1-Soar to a system somewhat more like the original R1. Figure 3-3 shows
the performance of this system on a set of 15 typical orders. This figure gives a brief description of the size of
the order (Components) and the nu;ber of decision cycles taken to complete the order (Decisions). From
the performance figures we see that the tumes range from one to three minutes and reflect the amount of work
that has to be done to process the order, rather than any search (approximately 60 decisions + 7
decisions/component). The extended version of R1-Soar préuy much knows what needs to be done. These
times are somewhat slower than the current version of R1 (about a factor of 1.5, taking into account the speed
differences of the OpsS systems involved). This is encouraging for an experimental system, and more recent

improvements to Soar have improved its performance by a factor of 3 [70].

3.2. Weak Methods
Viewad as bchavior, problem-solving methods are coordinated patterns of operator applications that attempt
to attain a goal. Viewed as behavioral spccifications, they are typically given as bodies of code that can control

behavior for the durauon of the method, where a selection process determines which method to use for a

14These runs took about 29. 4 and 2.5 minutcs respectively on a Symbolics 3600 running at approuimately one decision cycle per
second. Each decision cycle compniscs about 8 production finings spread over two cycles of the elaboration phase (because of the parallel
finng of rules).
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Tasks.
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Components 5 5 2 7 5 8 2 3 5 5 15 2 11 7 9

Decisions 88 78 78 196 94 100 70 74 88 90 173 78 124 123 129

Figure 3-3: Performance of the extended version of R1-Soar (without learning).

given attempt. In Soar, methods are specified as a collection of search-control productions within a set of
related problem spaces — a given lask problem space and its subspaces. Analogously to a code body, such a
collection can be coordinated bv making the search-control productions conditional on the method name
(plus perhaps other names for rclevant subparts). where method selection occurs by establishing the method
name in working memory as part of a goal or state. Thus, methods in Soar can be handled according to the

“standard scheme of selecting among pre-established specifications.

Method behavior may also emerge as the rcsult of problem solving being guided by the appropriate
knowledge, even though that knowledge has not been fashioned into a deliberate method (however specified).
Behind every useful method is knowledge about the task that justifies the method as a good (or at least
possible) way to attain the goal. As bodies of code, methods are simply the result of utilizing that knowledge
at some prior design tme, in an act of program synthesis. The act of proéram synthesis brings together the
relevant knowledge and packages it in such a way that it can be directly applied to produce behavior. What
normally prevents going directly from knowledge to action at behavior time is the difficulty of program
synthesis. However, under special conditions direct action may be possible, hence avoiding the task of
program synthesis into a stored method, and avoiding the pre-choice of which knowledge is relevant for the
task. Instead. whatever knowledge is relevant at the time of behavior is brought to bear to control behavior.

Although no prepaékaged method is being used, the behavior of the system follows the pattern of actions that

characterize the method.

This is the situation with Soar in respect to the weak methods!®> — methods such as depth-first search, hill
climbing, and means-ends analysis. This situation arises both because of the nature of the weak methods and
because of the nature of Soar. First, the weak methods involve relatively little knowledge about the task [47].
Thus, the generation of behavior is correspondingly simple. Second, all the standard weak methods are built
on heuristic search. Thus, realizing their behavior within Soar, which is based on problem spaces, is relatively
straightforward. In »addition, search control in Soar is realized in a production system with an additive
elaboration phase and no built-in conflict resolution. Thus, new search control can be added without regard

to the existing scarch control, with the guarantee that it will get considered. Of course. the relevant total

15 We have called this a universal weak method., on the analogy that Soar behaves according to any weak method. given the appropriate
knowledge about the task [31]. '
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scarch-control knowledge does interact in the decision procedure, but according to a relatuvely clean seman-

tics that permits clear establishment of the role of each bit of added knowledge.

Our previous example of steepest ascent hill climbing in Figure 2-15 provides an illustration of these three
factors. First, the central knowledge for hill climbing is simply that newly generated states can be compared
to each other. The comparison may itself be complex to compute, but its role in the method is simple.
Second, the other aspects of hill climbing, such as the existence of operators, the need to select one, etc., are
implicit in the problem-space structure of Soar. They do not need to be specified. Third, the knowledge to
climb the hill can be incorporated simply by search-control productions that add preferences for the operators
that produce better states. No other control is necessary and hence complex program synthesis is not re-
quired. In short. Soar can be induced to hill climb simply by providing it the knowledge of a specific function
that permits states to be compared plus the knowledge that an operator that gencrates a better state is to be

preferred.

Methods require two types of knowledge. The first is about aspects of objects or behavior. Examples are
the position of the blank square in the eight puzzle or the number of moves taken since the blank was in the
center. Such knowledge says nothing about how a system should behave. The second type of knowledge
provides the linkage from such objective descriptions to appropriate action of the system. For the weak
mef.hods in Soar this takes the especially simple form of single productions that have objective task descrip-
tions as conditions and produce preferences for behavior as actions. No other coordinative productions are
required, such as cuing off the name of the method or expliditly asserting that one action should follow
another as in a sequential program. Sometimes several control productions are involved in producing the
behavior of a weak method, but each are independent. providing links between some aspect of task structure
and preferences for action. For instance a depth-limited lookahead has one production that deals with the
evaluation preferences and one that deals with enforcing the .depth constraint. Soar would produce ap-
propnate (though different) behavior with any combination of these productions. Another important deter-
miner of a mcthod may be specialized task structure, rather than any deliberate responses encoded in search
control. As a simple instance, if a problem space has only one operator, which gencrates new states that are
candidates for attaining the task, then generate-and-test behavior is produced. without any search control in

addition to that defining the task.

The methods listed in Figure 3-4 constitute the aggregate that have been realized in the various versions of
Soar, mostly in Soar 1 [31] and Soar 2 [29], where deliberate explorations of the universal weak method were
conducted. The purpose of these explorations was to demonstrate that each of the weak methods could be
rcalized in Soar. Most of the weak mcthods were realized in a gencral form so that it was clear that the

method could be uscd for any task for which the appropriatc knowledge was available. For a few weak
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mcthods. such as analogy by implicit generalization and simple absiraction planning, the method was realized

for a single task, and more general forms are currenly under investigation.

The descriptions of the weak methods in Figure 3-4 are extremely abbreviated, dispensing with the operat-
ing environment, initdal and terminatng conditions, side constraints, and degenerate cases. All these things
are part of a full specification and sometimes require additional (independent) control productions. Figure
3-5 shows graphically the structural relationships among the weak methods implemented in Soar 2 [29]. The
common task structure and knowledge forms the trunk of a tree, with branches occurring when there is
different task structure or knowledge available, making each leaf in the tree a different weak method. Each of

the additions as one goes down the tree are independent control productions.

These simple schemes are more than just a neat way to specify some methods. The weak methods play a
central role in attaining intelligence, being used whenever the situation becomes knowledge lean. This occurs
in all situations of last resort, where the prior knowledge, however great, has finally been used up without
attaining the task. This also occurs in all new problem spaces, which are necessarily knowledge lean. The
weak methods are also the essential drivers of knowledge acquisition. Chunking necessarily implies that there
exists some way to attain goals before the knowledge has been successfully assimilated (i.e., before it has been
chunked). The weak methods provide this way. Finally, there is no need to /earn the weak methods
themselves as packaged specifications of behavior. The task descriptions involved must be acquired and the
linkage of the task descriptions to actions. But these linkages are single isolated productions. Once this
happens, behavior follows automatically. Thus, this is a particularly simple acquisition framework that avoids

any independent stage of program synthesis.

3.3. Learning
The operation of the chunking mechanism was described in detail in the previous section. We present here
a picture of the sort of learning that chunking provides, as it has emerged in the explorations to date. We

have no indication yet about where the limits of chunking lie in terms of its being a general learning

mechanism [36].

3.3.1. Caching, within-trial transfer and across-trial transfer

Figure 3-6 provides a demonstration of the. basic effects of chunking, using the eight puzzle [33]. The
left-hand column (no learning) show the moves made in solving the eight puzzle without leaming, using the
representation and heuristics described in the prior section (the evaluation function was uscd rather than the
mea-operator-selcction heuristic). As described in Figures 2-14 and 2-15, Soar repeatedly gets a tie impasse
between the available moves, goes into the sclection problem space, evaluates each move in an incarnation of

the task spacc, chooscs the best alternative, and moves forward. Figure 3-6 shows only the moves made in the
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Heuristic search. Select and/or reject candidate operators and/or states.

Avoid Duplicatios. Produce onl); one version of a state. (Extend: an essentially identical state.)

Operator Subgoaling. If an operator does not apply to the current state, find a state where it does.

Match. Put two paterns containing vanables into correspondence and bind vanables to their correspondents.
Hypothesize and Match. Generate possible hypothesis forms and match them to the exemplars.

And-Or heuristic search. Makes all moves at and-states and selects moves at or-states until goal is attained.

Waitz Constraint Propagation. Repeatedly propagate the restrictions in range produced by applying constraints in vanables with finite
ranges.

Means-Ends Analysis. Make a move that reduces the difference between the current state and the desired state.

Generate and Test. Generate candidate solutions and test each for success: terminate when found.

Breadth-First Search. Make a move from a state with untned operators at the least depth.

Depth-First Search. Make a move from a state with untried operators at the greatest depth.

Lookahead. Consider all terminal states to max-depth.

Simple Hill Climbing. Make a2 move that increases a given value.

Steepest Ascent Hill Climbing. Make a move that increases a given value most from the state.

Progressive Deepening. Repeatedly move depth-first until new information is obtained, then return to initial state for repeat.
Modified Progressive Deepening. Progressive Deepening with consideration of all moves at each state before extension.

B* (Progressive Deepening). Progressive Deepening with optimistic and pessimistic values at each state (not a proof procedure).
Mini-Max. Make moves of each player until can select the best move for each player.

Depth-Bounded Mini-Max. Mini-Max with max-depth bound.

Alpha-Beta. Depth-Bounded Mini-Max, without lines of play that cannot be better than already examined moves.

Ordered Alpha-Beta. Alpha-Beta with the moves tried in a heuristic order.

Iterative Deepening. Repeat ordered Alpha-Beta with increasing depth bound (from 1 to max-depth), with each ordering improved.
B* (Mini-Max). Analogous to Alpha-Beta. with each state having opumistic and pessimistic values {5]. .
Branch and Bound. Heunstic search, without lines of search that cannot be better than already examined moves.
Best-First Search. Move from the state produced so far that has the highest value.

Modified Best-First Search. Best-First Search with one-step lookahead for each move.

A* Best-First Search on the minimum depth (or weighted depth).

Exhaustive Maximization. Generate all candidate solutions and pick the best one.

_Exhaustive Maximization with Cutoffs. Exhaustive Maximization without going down paths to candidate solutions that cannot be better
than the current best candidate.

Macro-Operators for Serially-Decomposable Goals [28]. Learn and use macro-operators that span regions where satisfied goals are
violated and reinstated. “

Analogy by Implicit Generalization. Find a related probiem, solve the related problem, and transfer the generalized solution path to the
onginal problem.

Simple Abstraction Planning. Analogy by Implicit Generalization in which the related problem is an abstract version of the original
problem.

Figure 3-4: Weak methods. as patterns of behavior.
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Soar
Macro-operators Hypothesize
and Match
Means-Ends Analysis Constraint
Satisfaction
Operator Subgoaling Depth-First Generate Breadth-First
and Test
Unification
Progressive Steepest Ascent Simple Hill Climbing
Deepening Hill Climbing
B*® (Progressive Deepening) Mini-Max
Depth-Bounded
Mini-Max
Alpha-Beta
iterative Deepening
B® (Mini-Max)

Figure 3-5: Structure of weak methods realized in Soar [29].

task space, coalescing the various incarnations of it. Each state, except for the initial and desired states, is
shown as a black square. The move made to reach the state is shown as a single letter (either Left, Right, Up,

or Down). Soar explores 20 states in all to solve this problem.

The second column (with learning) has chunking turned on. Although Soar starts out examining the same
states as in the run without learning (L, U and R in each of the first two levels), it soon deviates. The
chunking that occurs in the early part of the task alreadv becomes cffective in the later part. This is
within-trial transfer. It answers one basic question about chunking — whether it will provide any transfer at
all to new situations, or only simple practicc cffects. Not only is there transfer, but it occurs on the initial
performance — a total of 135 states is examined, compared to 20 without learning. Thus, with Soar, no rigid
bchavioral separation is possible between performance and learning — lecarning becomes integral to every

performance.
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213 2|3 213
8(1|4 8|14 8l11]4
7161|5 716198 716|585

No Learning With Learning After Learning

Figure 3-6: Learning in the cight puzzle [33].

[f Soar is run again after it has completed its with-learning trial, column 3 (after learning) results. All of the
chunks to be learned in this task have been learned during the one with-learning trial, so Soar always knows
which move to make. This is the direct effect of practice — the use of results cached during earlier trials. The
number of states examined (10) now reflects the demands of the task. not the demands of finding the solution.
This improvement depends on the original evaluation function being an accurate measure of progress to the
goal. Chunking eliminates the neccssity for the look-ahead search, but the path Soar takes to the goal will sull

be determined by the evaluation function cached in the chunks.

Figure 3-7 shows across-task transfer in the Eight Puzzle. The first column (task 1, no learning) is the same
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trace as the first column in Figure 3-6. In the second column (task 2. during learning) Soar has been started
over from scratch and run on an entirely different eight-puzzle task — the initial and final positions are
different from those of task 1. as are all the intermediate positions. This is preparation for the third column
(task 1. after learning about task 2 but without any learning during task 1), where Soar shows across-task
transfer. If the learning on task 2 had no effect, then this column would have been identical to the original

one on task 1 (first column), whereas it takes only 16 states rather than 20.
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Figure 3-7: Across-task transfer in the eight puzzle [33].

What Soar has learned in thesc runs is scarch control to choosc moves, and rules which implement the
cvaluate-object operators. The comparison based on the cvaluation function is cached into productions that

crcate preferences based on direct comparisons between the current and desired states. In this example,



3. DISCUSSION PAGE S1

chunking does not improve the evaluation function. If the evaluation function is imperfect, as it is in this
case, the imperfections are included in the chunks. Also in this example, no eight-puzzie operators have been
learned because the operator was already rzalized directly by productions in the task space. But if the
operator had required subspaces for implementation (as the evaluate-object operator in the selection problem

space did), it would have been learned as well.

3.3.2. Learning in an expert-system task

A striking feature of chunking is that it applies automatically to every task Soar performs, without modifica-
tion of Soar or any special additdons. For example, the investigations that used R1-Soar to show that general
problem-solving capability can be combined with domain expertise (by adding domain-dependent search
control to a basic task representation) became immediately a demonstration that the domain expertise can be
acquired automatically. Figure 3-8 shows that on the task mentioned above that took 1731 decision cycles

with no domain-dependent search control, a pattern of results emerged that followed exactly the pattern on
the eight puzzle [65].

R1-Soar Decisions with Decisions Decisions
Version no learning with learmning after learning
Base 1731 485 72% [+59] 7

Partial [+2] 243 111 54% [+ 14] 7

Full [+8§] 150 %0 40% [+12] 7

Figure 3-8: [earningin R1-Soar.

The first column of Figure 3-8 shows the effects of the manual addition of search control from none for the
basic version, to 2 productions for the partial version, to 8 more productons (for a total of 10 search control
productions) for the full version. This was the basic investigation. and no learning was involved. The second
column shows the effect on performance of running with chunking turned on — the number of decision
cycles, the percent improvement over the trial without learning, and the number of chunks learned. There is
within-task transfer, just as in the eight puzzle. ‘As the system starts with more initial knowledge. the effect
diminishes (from 72% to 54% to 40%) but the effect is appreciable in all cases. Finally, the result of rerunning
the task after learning is complecte is to reduce the task to its necessary processing steps (namely, 7). The
automatic acquisition of knowledge does involve the addition of many more productions than was involved in
the manual acquisition (shown in brackets in the sccond column), because the chunks arc more specific than

the manually encoded rules.

The extensive test on the extended version of R1-Soar yielded additional data on learning, as shown in the
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four right-hand columns of Figure 3-9. In these runs, chunking occurred from the bottom up, that is, chunks
were built for a goal only if no subgoals occurred. Enough runs with bottom-up chunking will yield the same
results as all-at-once chunking (which was used in both the eight puzzie and initial R1-Snar cases). Bottom-up
chunking has the advantage of tending to create only the chunks that have a grcater chance of being
repeatedly used. The higher up in the subgoal hierarchy (measured from the bottom, not the top), the more
specific a chunk becomes — it performs a larger proportion of the task — and the less chance it has to be
used [S0]. Thus, in R1-Soar all-at-once chunking will create many productions that will never be evoked
again in any but identical reruns of the same task. Figure 3-9 shows two passes of bottom-up chunking (Pass
2 and Pass 4), embedded in three passes with chunking turned off to assess the effects (Pass 1, Pass 3, and Pass
5). giving a total of 30 trials with chunking. The test mimics what would be expected in the real situation with

an expert system, namely that the chunk-productions accumulate throughout the entire series of 30 chunking

runs (and remain fixed during the learning-off passes).16
Pass 1 Pass 2 Pass 3 Pass 4 Pass 5
Before During ~ After . During After

TASK (learn off) (learn on) © (learn off) (1earn on) (learn off)
T1 88 88 [ 6] 44 44 [ 3] g
T2 78 68 [ 4] 40 40 [ 3] 9
T3 78 78 [ 6] 38 38 [ 3] 9
T4 196 174 [14] 113 113 [ 6] 58
T5 94 84 [ 6] 48 48 [ 3] 9
T6 100 85 [ 3] 48 48 [ 3] 9
T7 70 48 [ 3] 38 38 [ 3] 9
T8 74 59 [ 3] 40 40 [ 3] 9
T9 88 73 [ 3] 42 42 [ 3]. 9
T10 90 75 [ 3] 48 48 [ 3] 9
T11 173 158 [10] 86 86 [ 2] 48
T12 78 52 [ 3] 38 38 [ 3] 9
T13 124 102 [ 7] 58 58 [ 3] 9
T14 123 108 [ 7] 67 67 [ 4] 28
715 129 109 [ 5] 64 64 [ 2] 28
Productions c-=- ==

Total: 314 397 (83] 397 444 [47] 444

Figure 3-9: Performance of the extended version of R1-Soar (with bottom-up learning) [75].

The figure reveals scveral interesting features. First, there is a 14% average improvement during the first
learning pass. This is primarily due to within-trial transfer in each of the 15 tasks. There is only a small effect
due to across-task transfer, both positive and negative. Necgative transfer comes about from overly-general

scarch-control chunks that guide the problem solving down the incorrect path. Recovery from the misguided

16'I'hus.. the table is not to be read as if it were 15 independent little lcarning experiments.
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scarch occurs, but it takes time. On Pass 3, the asscssment pass after the first learning pass, there is a
substantial improvement. retlecting the full force of the cached chunks: an additional drop of 35% from the
original times, for a total savings of 49% of the original times. The second learning pass (Pass 4) leads to no
further within-task or across-task transfer — the times on this pass are identical to the times on the prior
assessment pass. But after this second learning pass is completed, the final assessment pass (Pass 5) shows
another large drop of 35% from the original times, yielding a total drop of 84% from the original times. All
but four large tasks have reached their minimum (all at 9 steps). Thus the contribution of this second pass has

been entirely to cache results that then do not have to be performed on a rerun.

The details of this version of R1-Soar and the test must be taken with caution, yet it confirms some
expectations. This extended version has substantial domain-dependent knowledge, so we would not expect as
much improvement as in the earlier version, even beyond the effect of using bottom-up chunking. Inves-
tigation of the given productions in the light of the transfer results reveals that many of them test numerical
constants where they could have tested for inequality of two values, and the constant tests restricted their
cross-situational applicability. But even so, we see clearly that the transfer action comes from the lowest level
chunks (the first pass), which confirms theoretical expectatons that they have the most generality. And, more

globally, learning and performance always go together in Soar in accomplishing any task.

3.3.3. Chunking, generality, and representation

Chunking is a learning scheme that integrates learmning and performance. Fundamentally, it simply records
problem-solving experience. Viewed as knowledge acquisition, it combines the existing knowledge available
for problem solﬁng with knowledge of results in a given problem space, and converts it into new knowledge
available for future problem solving. Thus it is strongly shaped by the knowledge available. This integration
is especially significant with respect to generaiization — to the transfer of chunks to new situations (e.g., as
documented above). Generalization occurs in two ways in Soar chunking. One is variablization (replacing
identifiers with variables), which makes Soar respond identically to any objects with the same description
(attribute-value augmentations). This generzalization mechanism is the minimum necessary to get learning at
all from chunking, for most identifiers will never occur again outside of the particular context in which they

wcre created (e.g., goals, states, operator instantiations).

The second way in which genecralization occurs is implicit generalization. The conditions that enter into a
new chunk-production are based only on those working-memory elements that both cxisted prior to the
creation of the goal and affected the goal's results. This is simple abstraction — ignoring everything about a
situation except what has been determined at chunk-creation time to he relevant. It is enabled by the natural
abstraction of productions — that the conditions only respond to selected aspects of the objects available in
the working memory. If the conditions of a chunk do not test for a given aspect of a situation, then the chunk

will ignore whatever that aspect might be in some new situation.
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A good example is provided by the implementation in Soar of Korf's technique for learning and using
macro-operators [28]. Korf showed that any problem that is serially decomposable — that is, when some
ordering of the subgoals exists in which each subgoal is dependcnt only on the preceding subgoals, and not on
the succeeding ones — can have a macro table defined for it. Each entry in the tablc is a macro-operator — a
sequence of operators that can be treated as a single operator [19]. For the eight puzzie, a macro table can be
created if the goals are, in order: (1) place the space in its correct position; (2) place the space and the first tile
in their correct positions; (3) place the space, the first tile, and the second tile in their correct positions; etc.
Each goal depends only on the locations of the ules already in position and on the location of the one new tile.
The macro table is a simple two dimensional structure in which each row represents a goal, and each column
“represents the position of the new tile. Each macro-operator specifies a sequence of moves that can be made
to satisfy the goal, given the current position of the new tile (the positions of the previously placed tiles are

fixed). The macro table enables efficient solutions from any initial state of the problem to a particular goal

state.

Implementing this in Soar requires two problem spaces, one containing the normal eight-puzzle operators
(up, down, left, right), and one containing operators corresponding to the serially-decomposable goals, such as
place the space and the first tile in their correct positions [36]. Problem solving starts in this latter problem
space with the attemnpt to apply a series of the high-level operators. However, because these operators are 100

complex to encode directly in productions, they are implemented by problem solving in the normal eight-

puzzle problem space.

Based on this problem solving, macro-operators are learned. Each of these macro-operators specifies the
sequence of eight-puzzle operators that need to be applied to solve a parucular higher-level goal for a
particular position of the new tile. These macro-operators then lead to efficient solutions for a large class of
eight-puzzle problems, demonstrating how choosing the right problem solving decomposition can allow a
simple caching scheme to achieve a large degree of generality. The generality, which comes from using a
single goal in many different situations, is possible only because of the implicit generalization that allows the
macro-operators to ignore the positions of all tiles not yet in place. If the identities of the not-yet-placed tiles
arc not examined during problem solving, as they need not be, then the chunks will also not examine them.
The subgoal structure by itself does not tap all of the possible sources of generality in the eight puzzle. One
additional source of generality comes from transfer between macro-operators. Rather than a macro-operator
being encoded as a monolithic data structure that specifies each of the moves, it is rcpresented in Soar as a set
of scarch-control rules that sclect the appropriate eight-puzzle operator at each state. These rules are general
enough to transfer across different macro-operators. Because of this transfer, only 112 productions are

required to encode all 35 of the macro-opcrators, rather than the 170 that would otherwise be required.
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One of the most important sources of éenerality is the representation used for the task states. Stated
generally, if the representation is organized so that aspects that are relevant are factored cleanly from the parts
that are not (i.e.. are noise) then chunking can learn highly general concepts. Factoring implies both that the
aspects are encoded as distinct attributes and that the operators are sensitive only to the relevant attributes
and not to the irrelevant attributes. One representational possibility for the eight-puzzle state is a two-
dimensional array, where each array cell would contain the number of the tile that is located at the position on
the board spec.iﬁcd by the array indices. Though this representation is logically adequate, it provides poor
support for learning general rules in Soar. For example, it is impossible to find out which tiles are next to the
blank cell without looking at the numbers on the tiles and the absolute positions of the tiles. [t is thus
impossible. using just implicit generalization, to abstract away these irrelevant details. Though this is not a
good representation for the eight puzzle, the results presented in the previous paragraphs, which were based

on this representation, show that even it provides significant transfer.

By adopting a better representation that explicitly represents the relative orientation of the tiles and the
relationship between where the tile is and where it should be — the representation presented in Section 2.2 —
and adding an incremental goal test, the amount of sharing is increased to the point where only 61 produc-
tions are required to represent the entire macro table. Because the important relationships are represented
directly, and the absolute tile position and name are represented independently of this information, the
chunks are invariant over tile identity as well as translation, rotation, and reflection of groups of tiles. The
chunks also transfer to different desired states and between macro-operators for different starting positions,

neither of which were possible in Korf's original implementation.

Figure 3-10 shows the most complex case of transfer. The top two boards are intermediate subgoals to be
achieved on the path to getting all eight tiles in place. Below them are possible inital states that the relevant
tiles might be in (all others are X’s). A series of moves must be made to transform the initial state to the
corresponding desired intermediate subgoal. The arrow shows the path that the blank takes to move the next
tile into position. The paths for both problems are the same, except for a rotation. In Soar, the chunks
learned for the first subgoal transfer to the second subgoal, allowing it to be solved directly, without any

additional search.
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Different Intermediate Subgoals
Place Tile 3 Place Tile 5

Figure 3-10: Transfer possible with macro-operators in the eight puzzle.
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4. Conclusion

Soar embodies eleven basic hypotheses about the structure of an architecture for general intelligence:

1. Physical symbol-system hypothesis: A general intelligence must be realized with a symbolic system
[52].

2. Goal-structure hypothesis: Control in a general intelligence is maintained by a symbolic goal
system.

3. Uniform clementary-representation hypothesis: There is a single elementary representation for
declarative knowledge.

4. Problem-space hypothesis: Problem spaces are the fundamental organrizational unit of all goal-
directed behavior [49].

5. Production-system hypothesis: Production systems are the appropriate organization for encoding
all long-term knowledge.

6. Universal-subgoaling hypothesis: Any decision can be an object of goal-oriented attention.

7. Automatic-subgoaling hypothesis: All goals arise dynamically in response to impasses and are
generated automatically by the architecture.

8. Control-knowledge hypothesis: Any decision can be controlled by indefinite amounts of
knowledge, both domain dependent and independent.

9. Weak-method hypothesis: The weak methods form the basic methods of intelligence [47].

10. Weak-method emergence hypothesis: The weak methods arise directly from the system respond-
ing based on its knowledge of the task. '

11. Uniform-lcarning hypothesis: Goal-based chunking is the general learning mechanism.

These hypotheses have varying standing in current research in artificial intelligence. The first two, about
symbols and goals, are almost universally accepted for current Al systems of any scope. At the opposite end,
the weak-method emergence hypothesis is unique to Soar. The remaining hypotheses are familiar in Al, or at
least components of them are, but are rarely, if ever, taken to the limit as they are in Soar. Soar uses a
problem-space representation for all tasks, a goal-bascd chunking mechanism for a// learning, and a produc-
ton system for a/l long-tcrm memory. Many systems use production systems exclusively, but they are all pure

performance systems without learning, which does not test the use of productions for declarative memory.

Many aspects of the Soar architecture are not reflected in these eleven hypotheses. Some examples are:
automatic goal termination anywhere in the goal hierarchy; the structure of the decision cycle, with its parallel
claborauon phase: the language of preferences: the limitation of production actions to additon of working-

memory elements; the removal of working-memory elements by the architecture; the restriction of produc-
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tion conditions to test only memory elements accessible through the context stack. There are also details of
the mechanisms menuoned in the hypotheses — attribute-value triples. the form of conditions of productions,
etc. Some of these are quite important, but we do not yet know in Al how to desc-ibe architectures com-

pletely in functional terms or which features shouid be stipulated independently.

Much is still missing in the current version of Soar. Figure 1 pointed out several aspects that are under
active investigation. But others are not recorded there — the acquisition of declarative knowledge from the
external environment and the use of complex analogies to name a couple. Until Soar has acquired the
capabilities to do all of these aspects, there will be no assurance that the Soar architecture is complete or

stable.
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