
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



KNOWLEDGE LEVEL LEARNING
IN SOAR

Technical Report AIP-8 i

Paul S. Rosenbloom, John E. Laird
and Allen Newell

Stanford University
University of Michigan

Carnegie-Mellon University

29 September 1987

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number N00014-86-K-0678; the Defense Advanced Research
Projects Agency (DOD) under contract N00039-86-C-0133 and by the Sloan Foundation.
Computer facilities were partially provided by NIH grant RR-00785 to Sumex-Aim. The
views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency, the U.S. Government, and the Sloan
Foundation, or the National Institutes of Health. Reproduction in whole or in part is
permitted for purposes of the United States Government. Approved for public release;

distribution unlimited.



I



REPORT DOCUMENTATION PAGE
U . REPORT SECURITY CLASSIFICATION

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY

2b OEClASSlflCATION / DOWNGRADING SCHEDULE

1b. RESTRICTIVE

3 OlSTRllUTlON/AVAiLAilUTY OF REPORT

Approved for public release;
Distribution unlimited

4 PERFORMING ORGANIZATION RfPOKT

AIP - 8

5. MONITORING ORGANIZATION NUMBER(S)

6* NAME OF PERFORMING ORGANIZATION

Carnegie-Mellon University
6b. OFFICE SYMiOL

(If
74 NAME Of MONITORING ORGANIZATION
Computer Sciences Division
Office of Naval Research (Code 1133)

6c AOORESS (City, SfJft, *nd ZIP Code)
Department o: Psv

AOORESS (Gty, SUf t 4nd
300 N". Quincy Street

Pittsburgh, Pennsylvania 15--13 Arlington, Virginia 22^-17-5000

&i. NAME OF PONOING/ SPONSORING
ORGANIZATION

Srir.ie as Monitoring Organi^atior

8b OFFICE SYMBOL
(If

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-86-K-0678

8c. AOORESS (City, SUt; snd ZIP Cod*) 10 SOURCE OF FUNOiNG NUMBERS o _ 4 0 0 0 0 5 u b 2 0 i
PROGRAM
ELEMENT NO

PROJECT
NO

N/A

TASK
NO

N7A

WORK UNIT
ACCESSION NO

N/A
H riTLH (Includ* Security Clssufiatton)

Knowledge Level Learning in Soar

12 PERSONAL

P . S . Rosenbloonu J . L . Laird and A. Newel l
13a TYPE Of

Technical
13b TIME COVEREO

8 6 l
14 OATE OF REPORT / f j r , MOfitti, Osy)

87 September 29
PAGE COUNT
15

' 6 SUPPLEMENTARY NOTATION

t 7
:OSATI cooes

= ELD GROUP SU8-GROUP

18 SUBJECT TERMS {Continu* on wrs* if n«ctSMry *nd identify by block number)

Artificial Intelligence, Machine Learning,
Cognitive Architecture

9 ABSTRACT Conf/nu« on r#vtrj# if ntct is j ry snd identify by block number)

In this article we demonstrate how knowledge level learning can be performed within the Soar architecture.
That is, we demonstrate how Soar can acquire new knowledge that is not deductively implied by its existing
knowledge. This demonstration employs Soar's chunking mechanism « a mechanism which acquires new
productions from goal-based experience - as its only learning mechanism. Chunking has previously been
demonstrated to be a useful symbol level learning mechanism, able to speed up the performance of existing
systems, but this is the first demonstration of its ability to perform knowledge level learning. Two simple
declarative-memory tasks are employed for this demonstration: recognition and recall.

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT

D UNCLASSIFIED/UNLIMITED QD SAME AS RPT USERS

21 ABSTRACT SECURITY CLASSIFICATION

229 NAME OF RESPONSIBLE NOIVIOUAL
j r . n.i-in L.

>fMevrouitz
22b TELEPHONE (Include A r t * Codt)

(202) 696-4302
22c. OFFICE SYM8OL

N00014

OO FORM 1473,34 MAR 33 APR tOition ^ a y o« used until txh just td .

All othtr editions ar t o b s o w t .
SECURITY CLASSIFICATION OF THIS

Unclassified



 



Knowledge Level Learning in Soar

Paul S. Rosenbloom
Knowledge Systems Lab.
Computer Science Dept.

Stanford University
T01 Welch Road (BIdg. C)

Palo Alto, CA 94304

John E. Laird
EECS Dept.

University of Michigan
Ann Arbor, MI 48109

Allen Newell
Computer Science Dept.

Carnegie-Mellon University
Pittsburgh, PA 15213

February 1987

Track: Science
Topic: Learning

Abstract

In this article we demonstrate how knowledge level learning can be performed within
the Soar architecture. That is, we demonstrate how Soar can acquire new knowledge
that is not deductively implied by its existing knowledge. This demonstration employs
Soar's chunking mechanism — a mechanism which acquires new productions from goal-
based experience — as its only learning mechanism. Chunking has previously been
demonstrated to be a useful symbol level learning mechanism, able to speed up the per-
formance of existing systems, but this is the first demonstration of its ability to perform
knowledge level learning. Two simple declarative-memory tasks are employed for this
demonstration: recognition and recall.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD)
under contract N00039-86-C-0133 and by the Sloan Foundation. Computer facilities
were partially provided by NIH grant RR-00785 to Sumex-Aim. The views and conclu-
sions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, the US Government, the Sloan Foundation, or the National
Institutes of Health.



 



 



 



Knowledge Level Learning in Soar Page 1 of 13

Knowledge Level Learning in Soar

1. Introduction
Dietterich has recently divided learning systems into two classes: symbol level

learners and knowledge level learners [4|. The distinction is based on whether or not

the knowledge in the system, as measured by a knowledge level analysis [12], increases

with learning. A system performs symbol level learning if it improves its computational

performance but does not increase the amount of knowledge it contains. According to a

knowledge level analysis, knowledge only increases if a fact is added that is not implied

by the existing knowledge; that is, if the fact is not in the deductive closure of the exist-

ing knowledge. Explanation-based generalization (EBG) [3, 11] is a prime example of a

learning technique that has proven quite successful as a mechanism for enabling a sys-

tem to perform symbol level learning. EBG allows tasks that a system can already per-

form to be reformulated in such a way that they can be performed more efficiently. Be-

cause EBG only generates knowledge that is already within the deductive closure of its

current knowledge base, it does no knowledge level learning (at least when used in any

obvious ways).

Symbol level learning can be quite useful for an intelligent system. By speeding up

the system's performance, it allows the system to perform more tasks while using the

same amount of resources, and enables the system to complete tasks that capacity

limitations previously prevented it from completing. However, an intelligent system

cannot live by symbol level learning alone. If a system is incapable of performing

knowledge level learning — that is, of adding facts not already implied by its existing

knowledge — a host of critical capabilities will be beyond its grasp. These range from

relatively simple declarative memory capabilities, such as learning to recognize

previously seen objects and to store and retrieve representations of new objects, to more

complex capabilities of learning to perform novel tasks.

Soar is an attempt to build an architecture that can support general intelligent

behavior [7]. It contains a single learning mechanism, chunking [9]. Chunking creates

new productions, or chunks, based on the results of goal-based problem solving. The

actions of a chunk contain the results of the goal. The conditions of the chunk test



Knowledge Level Learning in Soar Page 2 of 13

those aspects of the pre-goal situation that were relevant to the generation of the

results. We have been successful in demonstrating Soar's ability to acquire a variety of

types of knowledge, including search-control productions (6, 8], macro-operators [9], and

operator-implementation productions [16]. We have also demonstrated Soar's ability to

perform the basic tasks of EBG and, in the process, provided a mapping between EBG

and chunking [14]. This mapping suggests that chunking is a symbol level learning

mechanism; an identification that is supported by the fact that all of the demonstra-

tions listed above involve only symbol level learning.

However, chunking originated in psychological theories of the structure of declarative

memory [10]. One classical chunking result is that if a list of items is to be memorized

for later recall, the memory structure is organized as a hierarchical structure of

chunks [2]. Chunking, at least of this classical variety, is thus strongly implicated in

the acquisition of new knowledge. This has encouraged us to believe that Soar's chunk-

ing mechanism should be able to perform knowledge level learning. It has also placed a

responsibility on us to demonstrate these classical chunking phenomena in Soar in order

to justify that its learning mechanism is entitled to its name. To distinguish between

the form of chunking currently performed by Soar and the more declarative classical

chunking capability, we refer to the classical form of chunking as data chunking.

The purpose of this article is to report on recent work with Soar that demonstrates

data chunking, and thus knowledge level learning, using chunking as the only learning

mechanism. In Section 2 we give a brief overview of Soar. In Section 3 we describe the

fundamental concepts underlying the implementation of data chunking in Soar. In Sec-

tions 4 and 5 we then describe in detail how Soar performs two simple two data chunk-

ing tasks: learning to recognize new object and learning to recall new objects. In Sec-

tion 6 we conclude and describe some important future work.

2. Overview of Soar

Soar is based on formulating all goal-oriented processing as search in problem spaces.

The problem space determines the set of legal states and operators that can be used

during the processing to attain a goal. The states represent situations. There is an in-

itial state, representing the initial situation, and a set of desired states that represent



Knowledge Level Learning in Soar Page 3 of 13

the goal. An operator, when applied to a state in the problem space, yields another

state in the problem space. The goal is achieved when one of the desired states is

reached as the result of a string of operator applications starting from the initial state.

Goals, problem spaces, states, and operators exist as data structures in Soar's work-

ing memory — a short-term declarative memory. Each goal defines a problem solving

context, or context for short. A context is a data structure in the working memory that

contains, in addition to a goal, roles for a problem space, a state, and an operator.

Problem solving for a goal is driven by the acts of selecting problem spaces, states, and

operators for the appropriate roles in the context. Each of the deliberate acts of the

Soar architecture — a selection of a problem space, a state or an operator — is ac-

complished via a two-phase decision cycle. First, during the elaboration phase, the

description of the current situation (that is, the contents of working memory) is

elaborated with relevant information from Soar's production memory — a long-term

procedural memory. The elaboration process involves the creation of new objects, the

addition of knowledge about existing objects, and the addition of preferences. There is

a fixed language of preferences that is used to describe the acceptability and desirability

of the alternatives being considered for selection. By using different preferences, it is

possible to assert that a particular problem space, state, or operator is acceptable

(should be considered for selection), rejected (should not be considered for selection),

better than another alternative, and so on. When the elaboration phase reaches quies-

cence — that is, no more productions can fire — the preferences in working memory are

interpreted by a fixed decision procedure. If the preferences uniquely specify an object

to be selected for a role in a context, then a decision can be made, and the specified ob-

ject becomes the current value of the role. The decision cycle then repeats, starting

with another elaboration phase.

If an elaboration phase ever reaches quiescence while the preferences in working

memory are either incomplete or inconsistent, an impasse occurs in problem solving be-

cause the system does not know how to proceed. When an impasse occurs, a subgoai

with an associated problem solving context is automatically generated for the task of

resolving the impasse. The impasses, and thus their subgoals, vary from problems of

selection (of problem spaces, states, and operators) to problems of generation (e.g..



Knowledge Level Learning in Soar Page 4 of 13

operator application). Given a subgoal, Soar can bring its full problem solving

capability and knowledge to bear on resolving the impasse that caused the subgoal.

When subgoals occur within subgoals, a goal hierarchy results (which also therefore

defines a hierarchy of contexts). The top goal in the hierarchy is a task goal. The sub-

goals below it are all generated as the result of impasses in problem solving. A subgoal

terminates when its impasse is resolved, even if there are many levels of subgoals below

it (the lower ones were all in the service of the terminated subgoal, so they can be

eliminated if it is resolved).

Chunking is a learning mechanism that automatically acquires new productions that

summarize the processing that leads to results of subgoals. The actions of the new

productions are based on the results of the subgoal. The conditions are based on those

aspects of the pre-goal situation that were relevant to the determination of the results.

Relevance is determined by treating the traces of the productions that fired during the

subgoal as dependency structures. Starting from the production trace that generated

the subgoal's result, those production traces that generated the working-memory ele-

ments in the condition of the trace are found, and then the traces that generated their

condition elements are found, and so on until elements are reached that exist outside of

the subgoal. These elements form the basis for the conditions of the chunk. Produc-

tions that only generate preferences do not participate in this backtracing process -

preferences only affect the efficiency with which a goal is achieved, not its correctness.

Once the working-memory elements that are to form the basis of the conditions and ac-

tions of a chunk have been determined, the elements are processed to yield the final

conditions and actions. For the purposes of this article, the most important part of this

processing is the replacement of some of the symbols in the working-memory elements

by variables. If a symbol is an object identifier — a temporary place-holder symbol

used to tie together the information about an object in working memory — then it is

replaced by a variable. Otherwise the symbol is left as a constant.

Chunking applies to all of the subgoals generated during task performance. Once a

chunk has been learned, the new production will fire during the elaboration phase in

relevantly similar situations in the future, directly producing the required information.

No impasse will occur, and problem solving can proceed smoothly. Chunking is thus a



Knowledge Level Learning in Soar Page 5 of 13

form of goal-based caching which avoids redundant future effort by directly producing a

result that once required problem solving to determine.

3. Fundamentals of Data Chunking
If Soar is to use its chunking mechanism to perform data chunking, it must take ad-

vantage of the fact that chunking learns from goal-based experience. The key is for it

to set up the right internal tasks so that its problem solving experience in subgoals leads

to the creation of chunks that represent the new knowledge. Suppose Soar is to

memorize a new object, call it object A, so that it can be recalled on demand. To ac-

complish this, a chunk needs to be acquired that can generate the object when the

demand arises. The appropriate internal task for this problem is simply to copy the ob-

ject in a subgoal. The chunk that is learned from this experience has actions which

generate an object B that is a copy of object A.

This simple description glosses over two important problems. The first problem is

that, at recall time, the system must both generate object B and avoid generating all of

the other objects that it could potentially generate. The direct effect of the chunk is

simply to cache the generation of object B, allowing it to be generated more efficiently

in the future. This, by itself, does not enable Soar to discriminate between object B and

the other objects that could be generated. However, by making use of Soar's ability to

reflect on its own behavior [15] — specifically, its ability to base a decision on whether

an impasse has occurred — the chunk can indirectly support this capability. When the

memorized object is to be recalled, the chunk immediately fires and generates object B.

If no other objects have been chunked, an impasse then occurs. Other objects could be

generated in the subgoal for this impasse, or alternatively (and correctly) the impasse

can be treated as a termination signal, keeping other objects from being generated.

Soar can thus break through the otherwise seamless interface in which a cached value

looks exactly like a computed value (except that it is accessed more quickly).

The second problem is that, if the generation of object B is based on an examination

of object A, then the conditions of the chunk will test for the existence of object A be-

fore generating object B, thus allowing the object to be recalled in only those cir-

cumstances where it is already available. The solution that we have discovered is to



Knowledge Level Learning in Soar Page 6 of 13

split the act of recalling information into separate generate and test phases. During

generation, object B is constructed out of objects that the system has already learned to

recall. Object A is not examined during this process. Instead, it is examined during a

test phase in which it is compared with object B to see if they are equivalent. Separate

chunks are learned for the generate and test phases, allowing a chunk to be learned that

generates object B without examining object A. The generation chunk allows the system

to be more efficient in generating the object in the future (symbol level learning). It

also enables Soar to distinguish objects it has learned to generate from those that it

could potentially generate (knowledge level learning). This latter capability enables

Soar to perform correctly on recall tasks. The test chunks speed up the process by

which Soar determines that it has correctly copied an object (symbol level learning).

Test chunks also allow Soar to distinguish between objects it has learned to detect from

those it could potentially detect (knowledge level learning). This allows Soar to perform

correctly on recognition tasks, in which it must decide whether or not a presented ob-

ject has been seen before. The abilities to learn to recognize and recall new objects are

two of the most basic, yet most important, data chunking capabilities. If Soar is able to

accomplish these two paradigmatic learning tasks, it would seem to have opened the

gates to the demonstration of the remaining data chunking tasks, as well as to more

sophisticated forms of knowledge level learning.

4. Recognition

The recognition task is the simplest declarative memory task. There are two types of

trials: training and performance. On each training trial the system is presented with a

new object, and it must learn enough to be able to perform correctly on the perfor-

mance trials. On each performance trial the system is presented with an object which it

may or may not have seen during the training trials. It must respond affirmatively if it

has seen the object, and negatively if it has not.

The objects that the system deals with are of one of two types: primitive or com-

posite. Primitive objects are those that the system is initially set up to recognize: the

letters a-z, plus the special objects [ and ] . A composite object is a hierarchical struc-

ture of simpler objects that is eventually grounded in primitive objects. The object



Knowledge Level Learning in Soar Page 7 of 13

representation includes two attributes: name and substructure. An object is recognized

if it has a name. A primitive object has nothing but a name. A composite object may

or may not have a name, depending on whether it is recognized or not. A composite

object is distinguished from a primitive object by having a substructure attribute that

gives the list of objects out of which the object is composed. The list always begins

with C, ends with ] , and has one or more other objects — either primitive or composite

— in between. For example, [a b c] and [ [a b c] [d e ] ] , are two typical com-

posite objects.

To learn to recognize a new composite object, an internal task is set up in which the

system first recognizes each of the subobjects out of which the object is composed, and

then generates a new name for the composite object. The name becomes the result of

the subgoal, and thus forms the basis for the action of a chunk. The name is dependent

on the recognition of all of the object's subobjects, so the conditions of the chunk test

for the subobjects' names. During a performance trial, the recognition chunk can be

used to assign a name to a presented object if it is equivalent to the learned one, allow-

ing an affirmative response to be made to the recognition query.

In more detail, a training trial begins with a goal to learn to recognize an object. A

recognition problem space is selected along with a state that points to the object that is

to be learned — the current object — for example, [a b c ] . If the current object is

recognized — that is, has a name — the training trial is terminated because its task is

already accomplished. There is only one operator in the recognition problem space:

get-next-element. If the current-object is recognized, then the get-next-element operator

receives an acceptable preference, allowing it to be selected as the current operator.

When the operator is executed, it generates a new state that points to the object that

follows the current one.

However, if the current object is not recognized, the get-next-element operator cannot

be selected, and an impasse occurs. It is in the subgoal that is generated for this im-

passe that recognition of the object is learned. The recognition problem space is used

recursively in this subgoal, with an initial state that points to the object's first sub-

object (i.e., [). Because the current object has a name, the get-next-element operator is



Knowledge Level Learning in Soar Page 8 of 13

selected and applied, making the next subobject (a, for the current example) the current

object. If the subobject were not recognized, a second-level subgoal would be generated,

and the problem solving would again recur, but this time on the substructure of the

subobject. The recursion is grounded whenever objects are reached that the system has

previously learned to recognize. Initially this is just for the primitive objects, but as the

system learns to recognize composite objects, they too can terminate the recursion.

When the system has succeeded in recognizing all of the object's subobjects, a unique

internal name, such as *p0045*, is generated for the object. The new name is returned

as the result of the subgoal, allowing the problem solving to proceed in the parent con-

text because now its current object has a name. The subgoal is thus terminated, and a

chunk is learned that examines the object's subobjects, and generates the object's name.

This recognition production can fire whenever a state is selected that points to an object

that has the same substructure. In schematic pseudo-code, the production for the cur-

rent example looks like the following.

Current-Object(s. [a b c]<x>) —> Name(x, *p0045*) (1)

The variable s binds to the current state in the context. The variable x binds to the

identifier of the current object, whose substructure must be [a b c ] . The appearance

of the relevant constants — [, a, b, c, ] , and *p0045* — in the conditions and actions

of this production occur because, in creating a chunk from a set of production traces,

constant symbols are not replaced by variables.

If [a b c] is now presented on a performance trial, production 1 fires and augments

the object with its name. The system can then respond that it has recognized the ob-

ject because there is a name associated with it. If an unknown object, such as [x y

z ] , is presented on a performance trial, no recognition production fires, and an impasse

occurs. As discussed in Section 3, this impasse is used as a termination signal for the

performance trial. The system could clearly learn to recognize [x y z ] , but since it

has not yet, the system answers no to the recognition query.

If the object being learned is a multi-level composite object, then in addition to

learning to recognize the object itself, recognition productions are learned for all of the

unrecognized subobjects (and subsubobjects, etc.). For example, if the system is learn-

ing to recognize the object [ [a b c] [d e ] ] , it first uses production 1 to recognize

[a b c] and then learns the following two new recognition productions:



Knowledge Level Learning in Soar Page 9 of 13

Current-ObjtctU, Id e]<x>) —> M « « ( i , *p0046<0 (2)
Op0045* «p0046*]<x>) « > Naae(z, *p0047«)

Chunks are also learned that allow composite subobjects to be recognized directly in the

context of the current object. To recognize a composite subobject without these

chunks, the system would have to go into a subgoal in which the subobject could itself

be made the current object.

If [ [a b c] [d e ] ] is now presented on a performance trial, productions first fire

to recognize [a b c] and [d e] as objects *p0045* and *p0046*. Production 3

then fires to recognize [*p0045* *p0046*] as object *p0047*. The system can then

reply in the affirmative to the recognition query.

5. Recall
The recall task involves the memorization of a set of objects, which are later to be

generated on demand. It is the dual of the recognition task. Instead of incorporating

information about a new object into the conditions of a production, the information

must be incorporated into the actions. As with recognition, there are training and per-

formance trials. On each training trial the system is presented with a new object, and it

must learn to generate the object on demand. On a performance trial, the system

receives a recall request, and must respond by producing the objects that it learned to

generate on the training trials.

As described in Section 3, on a training trial the general approach is to set up a two-

phase internal task in which the object is copied. In the first phase, a new composite

object is generated by recalling and assembling objects that the system can already

recall. This generation process does not depend on the presented object. In the second

phase, the generated object is tested to see if it is equivalent to the presented object.

Though this approach solves the problem discussed in Section 3, it also introduces a

smaller but still important technical issue — how to efficiently generate the new object

without examining the presented object. Because it is possible to generate any object

that can be constructed out of the already known objects, there is a major control

problem involved in ensuring that the right object is generated. The solution to this

problem is to use the presented object as search-control knowledge during the process of

generating the new object. Search-control knowledge determines how quickly a problem



Knowledge Level Learning in Soar Page 10 of 13

is solved, not the correctness of the solution — the goal test determines the correctness

— so the result does not depend on any of the knowledge used to control the search.

Thus, chunks never incorporate control knowledge. In consequence, the generation

process can proceed efficiently, but the chunk created for it will not depend on the

presented object.

In more detail, a training trial begins with a goal to learn to recall a presented ob-

ject. The system selects a recall problem space. An initial state is created and selected

that points to the presented object; for example, Presented ( s i , [a b c ] ) , where

s i is the identifier of the state. There is only one type of operator in the recall problem

space: recall. An instance of the recall operator is generated for each of the objects

that the system knows how to recall. To enable the system to find these objects, they

are all attached to the recall problem space. This can be a very large set if many ob-

jects have been memorized; a problem to which we return in Section 6. Initially the

system knows how to recall the same primitive objects that it can recognize: a-z, [,

and ] . This set increases as the system learns to recall composite objects.

The presented object acts as search control for the generation process by influencing

which recall operator is selected. First the system tries to recognize the presented ob-

ject. For the current example, production 1 fires, augmenting the object with its name

(*p0045*). If the system had not previously learned to recognize the presented object,

it does so now before proceeding to learn to recall it. Then, if there is a recall operator

that will recall an object with the same name, an acceptable preference is generated for

the operator, allowing it to be selected. When a recall operator executes, it creates a

new state in which it adds the recalled object to a structure representing the object be-

ing generated. If this happens in the top goal, it means that the system has already

learned to recall the presented object, and it is therefore done with the training trial.

However, when the system does not already know how to recall the object, as is true

in this instance, no recall operator can be selected. An impasse occurs and a subgoal is

generated. In this subgoal, processing recurses with the attempt to recall the subobjects

out of which the presented object is composed. A new instance of the recall problem

space is created and selected. Then, an initial state is selected that points to the first



Knowledge Level Learning in Soar Page 11 of 13

subobject of the presented object (Presented ( s 2 , [)). In this subgoal, processing

proceeds just as in the parent goal. If the object is not recognized, the system learns to

recognize it. Then, if the object cannot be recalled, the system learns to recall it in a

further subgoal. However, in this case the object ([) is a primitive and can thus already

be recognized and recalled. The appropriate recall operator is selected and creates a

new state with a newly generated [ object in it (Generated ( s 3 , [)). The operator

also augments the new state with the successor to the presented object

( P r e s e n t e d ( s 3 , a)). This information is used later to guide the selection of the next

recall operator.

The system continues in this fashion until a state is created that contains a com-

pletely generated object (for example, Generated ( s 7 , [a b c ] ) ) . The one thing

missing from the generated object is a name, so the system next tries to recognize the

generated object as an instance of some known object. If this fails, the subgoais stays

around and the system has the opportunity to try again to generate a recognizable ob-

ject. If this succeeds, as it does here, the generated object is augmented with its name

(*p0045*). Generation is now complete, so the the generated object is added to the set

of objects that can be recalled in the parent goal (unless there is already an object with

that name in the set). This act makes the generated object a result of the subgoal,

causing a chunk to be learned which can generate the object in the future. Execution of

this chunk is the basic act of retrieving the remembered object from long-term

(production) memory into working memory. In schematic pseudo-code, this chunk looks

like the following.

-Object ( r e c a l l , *p0045«) - -> Object ( r e c a l l . *p0045»[a b c ] ) (4)

This production says that the object should be generated and attached to the recall

problem space if there is not already an object with that name so attached.

Though generation is now complete, the generated object cannot yet be recalled in

the parent goal until a goal test has been performed to ensure that the generated object

is equivalent to the presented object. This test is performed by comparing the name of

the presented object with the name of the generated object. If the names match, a

recall operator can be selected in the parent goal for the generated object, and the sub-

goal is terminated. The recall operator is then executed, and processing continues. If



Knowledge Level Learning in Soar Page 12 of 13

the names do not match, no recall operator is selected, the subgoal does not terminate,

and the system has the opportunity to keep trying. Contrary to the simple picture

presented in Section 3, no test production is actually learned at this time. The

functionality to be provided by the test production is provided by the recognition

production that was previously learned.

During a performance trial, the top goal is to recall all of the objects so far learned.

A recall problem space is created, selected, and then augmented with the set of objects

that the system has learned to recall. Since the goal is to recall all learned objects

rather than just a specific one, acceptable and indifferent preferences are created for all

of the recall operators, allowing everything that has been so far learned to be recalled in

random order — the indifferent preferences state that it doesn't care which of the

operators is selected first. Recall performance is terminated when no more recall

operators can be selected. This condition is signaled by the occurrence of an impasse.

In the resulting subgoal the system could generate more objects, but it should not be-

cause they would not correspond to objects it has seen.

If the object being learned is a multi-level composite object, the system learns to

recall the object as well as each subobject, assuming it has not previously learned them.

If the system were to learn to recall the object [ [a b c] [d e] ] , given that it has al-

ready learned to recognize the object and its subobjects, and to recall the subobject [a

b c ] , the following two new generation productions would be learned.
- O b j e c t ( r e c a l l , •p0048«0 --> Object ( reca l l , *p0046*[d e]) (5)
- O b j e c t ( r e c a l l , •p0047«) ~ > Ob jec t ( r eca l l , *p0047* Op0045« *p0046*]) (6)

On a performance trial that follows these training trials, the system would recall all

three objects.

6. Conclusion
In this article we have demonstrated how Soar can expand its knowledge level to in-

corporate information about new objects, and thus perform knowledge level learning.

This was accomplished with chunking, a symbol level learning mechanism, as the only

learning mechanism. One new mechanism was added to Soar for this work: the ability

to generate new long-term symbols to serve as the names of objects. However, this

capability is only critical for the learning of object hierarchies. Knowledge level learn-

ing can be demonstrated for simpler one-level objects without this added capability.



Knowledge Level Learning in Soar Page 13 of 13

One implication of this demonstration is that caution must be exercised in classifying

learning mechanisms as either symbol level or knowledge level. The distinction may not

be as fundamental as it seems. In fact, other symbol level learning mechanisms, such as

EBG, may also be able to produce knowledge level learning. A second implication of

this demonstration is that chunking may not have been misnamed, and that it may be

able to produce the full span of data chunking phenomena.

Three important items are left for future work. The first item is to extend the

demonstrations provided here to more complex tasks. This may involve using the

recognition and/or recall capabilities as components in more complex tasks, or the

direct development of more complex knowledge level learning capabilities.

The second item is to overcome a flaw in the way recall works. The problem is that

whenever a recall problem space is entered, all of the objects that the system has ever

learned to recall are retrieved from production memory into working memory. If the

system has remembered many objects, this may be quite a time-consuming operation.

We have begun work on an alternative approach to recall that is based on a cued-recall

paradigm. In this version, the system builds up a discrimination network of cues that

tell it which objects should be retrieved into working memory. Early results with this

version have demonstrated the ability to greatly reduce the number of objects retrieved

into working memory. They have also demonstrated the ability to recall objects based

on partial specifications.

The third item is to use our data chunking approach as the basis for a psychological

model of declarative learning and memory. There are already a number of promising

indications: the resemblance between our model of recall and the two component model

of free recall proposed by Anderson and Bower [l]; the resemblance between the dis-

crimination network learned during cued recall and the EPAM model of paired-associate

learning [17, 5]; the resemblance of retrieval-by-partial-specification to the description-

based memory model of Norman and Bobrow [13]; and the way in which both learning

and retrieval are reconstructive processes in the cued recall model. These resemblances

came about not because we were trying to model the human data, but because the con-

straints on the architecture forced us to approach the problems in the way we have.



Knowledge Level Learning in Soar Bibliography Page 1 of 2

References

1. Anderson, J. R., & Bower, G. H. "Recognition and retrieval processes in free
recall11. Psychological Review 79 (1972), 97-123.

2. Buschke, H. "Learning is organized by chunking". Journal of Verbal Learning and
Verbal Behavior 15 (1976), 313-324.

3. DeJong, G., & Mooney, R. "Explanation-based learning: An alternative view".
Machine Learning 1 (1986), 145-176.

4. Dietterich, T. G. "Learning at the knowledge level". Machine Learning 1 (1986),
287-315.

5. Feigenbaum, E. A., & Simon, H. A. "EPAM-like models of recognition and
learning". Cognitive Science 8 (1984), 305-336.

6. Golding, A., Rosenbloom, P. SM 8c Laird, J. E. Learning general search control from
outside guidance. In preparation.

7. Laird, J. E.. Newell, A., & Rosenbloom, P. S. "Soar: An architecture for general
intelligence". Artificial Intelligence (1987). In Press.

8. Laird, J. E., Rosenbloom, P. S., & Newell, A. Towards chunking as a general learn-
ing mechanism. Proceedings of AAAI-84, Austin, 1984.

9. Laird, J. E., Rosenbloom, P. S., & Newell, A. "Chunking in Soar: The anatomy of
a general learning mechanism". Machine Learning 1 (1986), 11-46.

10. Miller, G. A. "The magic number seven plus or minus two: Some limits on our
capacity for processing information". Psychological Review 63 (1956), 81-97.

11. Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. "Explanation-based
generalization: A unifying view11. Machine Learning 1 (1986), 47-80.

12. Newell, A. "The knowledge levelH. AI Magazine 2 (1981), 1-20.

13. Norman, D. A., & Bobrow, D. G. "Descriptions: An intermediate stage in memory
retrieval11. Cognitive Psychology 11 (1979), 107-123.

14. Rosenbloom, P. S., & Laird, J. E. Mapping explanation-based generalization onto
Soar. Proceedings of AAAI-86, Philadelphia, 1986.

15. Rosenbloom, P. S., Laird, J. E., & Newell, A. Meta-levels in Soar. Proceedings of
the Workshop on Meta-Level Architecture and Reflection, Sardinia, 1986.

16. Rosenbloom, P. S., Laird, J. E., McDermott, J., Newell, A. & Orciuch, E. "Rl-
Soar: An experiment in knowledge-intensive programming in a problem-solving
architecture". IEEE Transactions on Pattern Analysis and Machine Intelligence 7, 5
(1985), 561-569.



Knowledge Level Learning in Soar Bibliography Page 2 of o

17. Simon, H. A., & Feigenbaum, E. A. "An information-processing theory of some ef-
fects of similarity, familiarization, and meaningfulness in verbal learning". Journal of
Verbal Learning and Verbal Behavior S (1964), 385-396.



 


