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Paul S. Rosenbloom,2 John E. Laird,3 & Allen Newell4

August 18, 1987

Abstract

This article describes recent work that utilizes the concept of chunking as the basis for an
integrated model of the acquisition of both skill and knowledge. We look at results in the
areas of practice (skill) and verbal learning (knowledge). The approach is based on viewing
task performance as a problem solving process and chunking as a learning process that stores
away information about the results of problem solving. In practice tasks, chunks acquired
during the solution of one problem can be used during later problems to speed up the
system's performance. This chunking process produces the same type of power-law practice
curves that appear so ubiquitously in human practice. In verbal learning tasks, chunks
acquired during training are used at test time to determine how to respond. This
psychological model is a manifestation of a set of processes that provide the basis of a
general architecture. Such an architecture is not only interesting in its own right, but
provides support for the more narrowly based psychological phenomena.

The concept of chunking has played a major theoretical role in cognitive psychology
ever since Miller's classic paper (Miller, 1956). Through much of this history it has been
used primarily in models of memory organization. According to this view, chunking is a
process of creating symbols (chunks) which represent the combination of several other
symbols. In this long and productive tradition, chunking has been used to model a wide
variety of memory phenomena (Miller, 1956; DeGroot, 1965; Bower & Winzenz, 1969;
Johnson, 1972; Chase & Simon, 1973; Chase & Ericsson, 1981).

In recent years, chunking has also been proposed as the basis for a model of human
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practice (Newell & Rosenbloom, 1981; Rosenbloom, 1983; Rosenbloom & Newell, 1987a).
According to this view, chunking is a process that acquires new productions (chunks) by
the caching of goal-based performance. This version of chunking was successfully able
to model the ubiquitous power law shape of human practice curves. In building on
these results, chunking has been reimplemented as a learning mechanism within an
artificial intelligence problem solver called Soar (Laird, 1983; Laird, 1986; Laird, Newell,
& Rosenbloom, 1987). This combination of Soar and chunking has provided a learning
architecture with the flexibility and power needed to demonstrate learning behaviors
that go considerably beyond simple practice effects (Steier et al, 1987). The results
have been good enough for chunking to be proposed as a general learning mechanism
for artificially-intelligent systems (Laird, Rosenbloom, & Newell, 1984; Laird,
Rosenbloom, & Newell, 1986).

The generality of the combination of chunking and Soar as an AI learning system
raises the possibility that this combination can be transferred back into psychology to
provide the basis for a general model of human learning. In this article we report on a
preliminary examination of this possibility that involves the application of Soar to two
major domains of human learning: skill acquisition and knowledge acquisition. Within
skill acquisition we return to the subdomain of practice, asking whether Soar can
replicate the earlier results by producing power law practice curves. Within knowledge
acquisition we look within the subdomain of verbal learning at simple recognition,
recall, and cued recall tasks. In this preliminary investigation we are not yet looking for
close matches to experimental data. Instead, we focus on the nature of the processing
that allows these tasks to be performed by chunking.

In the next two sections we give brief descriptions of Soar and chunking. This
background material is followed by sections on skill acquisition and knowledge
acquisition in Soar, and then by a section containing concluding remarks.

1. Soar
Soar is based on formulating all symbolic goal-oriented processing as search in

problem spaces (Newell, 1980). The problem space determines the set of states and
operators that can be used during the processing to attain a goal. The states represent
situations. There is an initial state, representing the initial situation, and a set of
desired states that represent the goal. An operator, when applied to a state in the
problem space, yields another state in the problem space. The goal is achieved when a
desired state is reached as the result of a sequence of operator applications starting from
the initial state.



Each goal defines a problem solving context ("context" for short). A context is a
data structure in Soar's working memory — a short-term declarative memory — that
contains, in addition to a goal, roles for a problem space, a state, and an operator.
Problem solving for a goal is driven by the acts of selecting problem spaces, states, and
operators for the appropriate roles in the context. Each deliberate act of the Soar
architecture — a selection of a problem space, a state or an operator — is accomplished
via a two-phase decision cycle. First, during the elaboration phase, the description of
the current situation (that is, the contents of working memory) is elaborated with
relevant information from Soar's production memory — a long-term procedural
memory. The elaboration phase proceeds in a sequence of synchronous cycles. During
each cycle of the elaboration phase, all of the productions in the production memory are
matched against working memory, and then all of the resulting production
instantiations are executed. The net effect of these production firings is to add
information to the working memory. New objects are created, new knowledge is added
about existing objects, and preferences are generated.

There is a fixed language of preferences that is used to describe the acceptability and
desirability of the alternatives being considered for selection. By using different
preferences, it is possible to assert that a particular problem space, state, or operator is
acceptable (should be considered for selection), rejected (should not be considered for
selection), better than another alternative, and so on. When the elaboration phase
reaches quiescence — that is, no more productions can fire — the second phase of the
decision cycle, the decision procedure, is entered. The decision procedure is a fixed
body of code that interprets the preferences in working memory according to their fixed
semantics. If the preferences uniquely specify an object to be selected for a role in a
context, then a decision can be made, and the specified object becomes the current
value of the role. The decision cycle then repeats, starting with another elaboration
phase.

If, when the elaboration phase reaches quiescence, the preferences in working memory
are either incomplete or inconsistent, an impasse occurs in problem solving because the
system does not know how to proceed. When an impasse occurs, a subgoal with an
associated problem solving context is automatically generated for the task of resolving
the impasse. The impasses, and thus their subgoals, vary from problems of selection (of
problem spaces, states, and operators) to problems of generation (e.g., operator
application). Given a subgoal, Soar can bring its full problem solving capability and
knowledge to bear on resolving the impasse that caused the subgoal. When impasses
occur within impasses, then subgoals occur within subgoals, and a goal hierarchy results
(which therefore defines a hierarchy of contexts). The top goal in the hierarchy is a



task goal; such as, to recognize an item. The subgoals below it are all generated as the

result of impasses in problem solving. A subgoal terminates when its impasse (or some

higher impasse) is resolved.

2. Chunking
The traditional view of chunks is that they are symbols representing the combination

of several other symbols (Miller, 1956). Newell and Rosenbloom (1981) turned this
concept into a model of practice by describing how performance could be improved by
the acquisition of chunks that represent patterns of objects in the task environment.
This model was instantiated in a production system- architecture, first in a domain-
specific form (Rosenbloom & Newell, 1987b), and then in a domain-independent form
(Rosenbloom, 1983; Rosenbloom & Newell, 1987a). A modified version of the domain-
independent chunking mechanism was then implemented as part of the Soar
architecture (Laird, Rosenbloom, & Newell, 1986).

In its Soar implementation, chunking is a learning mechanism that acquires new
productions which summarize the processing that leads to results of subgoals. The
actions of the new productions are based on the results of the subgoal. The conditions
are based on those aspects of the pre-goal situation that were relevant to the
determination of the results. Relevance is determined by using the traces of the
productions that fired during the subgoal. Starting from the production trace that
generated the subgoal's result, those production traces that generated the working-
memory elements in the conditions of the trace are found, and then the traces that
generated their condition elements are found, and so on until elements are reached that
existed prior to the subgoal. Productions that only generate preferences do not
participate in this backtracking process — preferences only affect the efficiency with
which a goal is achieved, and not the correctness of the goal's results.

An example of this chunking process is shown schematically in Figure 2-1. The
circled letters are objects in working memory. The two striped vertical bars mark the
beginning and ending of the subgoal. The objects to the left of the first bar (A, B, C,
D, E, and F) exist prior to the creation of the subgoal. The objects between the two
bars (G, H, and I) are internal to the subgoal. The objects to the right of the second
bar (J) are results of the subgoal. P i , P2, P3, and P4 are production traces; for
example, production trace Pi records the fact that a production fired which examined
objects A and B and generated object G. The highlighted production traces are those
that are involved in the backtracing process.

Chunking in this figure begins by making the result object (J) the basis for the



re 2-1: Schematic view of the chunking process in Soar.

action of the chunk. The condition-finding process then begins with object J, and
determines which production trace produced it — trace P4. It then determines that the
conditions of trace P4 (objects H and I) are generated by traces P2 and P3, respectively.
The condition elements of traces P2 and P3 (objects C, D, E, and F) existed prior to the
subgoal, so they form the basis for the conditions of the chunk. The resulting chunk is

C A D A E A F — > J. (1)

Once a chunk has been learned, the new production will fire during the elaboration
phase in relevantly similar situations in the future, directly producing the required
information. No impasse will occur, and problem solving will proceed smoothly.
Chunking is thus a form of goal-based caching which avoids redundant future effort by
directly producing a result that once required problem solving to determine. It bears a
family resemblance to other learning mechanisms which move the system along the
store-versus-compute trade-off, such as production composition (Lewis, 1978; Neves &
Anderson, 1981; Anderson, 1982; Anderson, 1983), memo functions '(Michie, 1968),
macro-operators (Fikes, Hart, & Nilsson, 1972; Korf, 1985), and explanation-based
generalization (Mitchell, Keller, & Kedar-Cabelli, 1986).

In the pre-Soar implementation of chunking, chunks were learned bottom-up in the
goal hierarchy, reflecting the accepted view of human chunking. On any trial, only the
terminal subgoals — the subgoals that did not themselves have subgoals — were
chunked. Higher-level subgoals could be chunked only after all of their subgoals had
been chunked. This bottom-up approach was critical in producing power law practice
curves. However, chunking has been implemented in Soar with a settable option.
Chunking can proceed for only the terminal subgoals (bottom-up chunking) or for all of
the goals in the hierarchy (all-goals chunking). Given a sufficient number of trials, the
results of the two approaches should be essentially indistinguishable. However, because
all-goals chunking yields faster learning, most research on learning in Soar has employed



it. In this article, all results except for those specifically intended to model practice
curves were generated with all-goals chunking. Practice curves were generated with
bottom-up chunking.

3, Skill Acquisition
There is a ubiquitous regularity in human practice — the power law of practice —

that states that the time to perform a task (T) decreases as a power-law function of the
number of times the task has been performed (that is, the number of trials, N):

While the power law of practice was originally recognized in the domain of motor skills
(Snoddy, 1926), it has recently become clear that it holds over a much wider range of
human tasks — possibly extending to the full range of human performance (Newell &
Rosenbloom, 1981).

The driving force behind the initial development of chunking as a learning
mechanism was a desire to develop a model of practice that would produce power law
practice curves. The experimental task used during these early investigations was a
1023-choice reaction-time task (Seibel, 1963). This is a perceptual-motor task in which
there is a stimulus display of ten lights, arranged horizontally, and a response apparatus
of ten buttons, arranged horizontally in such a way that each finger rests on one of
them. The stimulus and response environments are set up so that there is a highly
compatible one-one correspondence between the lights and buttons, each light directly
above a button. On each trial of the experiment, some of the lights are on and some
are off. The subject's task is to respond as quickly as possible by pressing the buttons
corresponding to the lights that are on.

The performance algorithm used in modeling this task is based on a top-down divide-
and-conquer algorithm. The top goal is to process a horizontal region of the display,
containing a pattern of on and off lights. This goal is recursively decomposed into
subgoais to process smaller and smaller regions until patterns are reached which can be
directly converted into corresponding patterns of button presses. Chunking works in a
bottom-up fashion in this goal hierarchy. Productions are first learned for the bottom-
most level of subgoals. These chunks relate small patterns of lights to their
corresponding patterns of button presses. In later trials, these chunks can be used in
place of problem solving in the low-level subgoals, speeding up task performance. This
also allows chunking to proceed up the goal hierarchy, acquiring chunks which relate
increasingly larger patterns of lights to patterns of button presses.

A simple analysis of this learning process suggests exponential speed-ups with
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practice. Each time a task is practiced, a new and higher level of chunks can be
acquired, reducing the time to perform the task by a constant factor (the size of the
chunks). However, learning slows down because the larger chunks that are learned later
in practice are encountered less often — for example, in the Seibel task, a chunk that
contains three lights is encountered half as often as a chunk that contains two lights —
and therefore contribute less to the overall speedup than do the smaller chunks which
are encountered more often. Learning (chunk acquisition) actually continues at a
constant pace, but what is learned becomes progressively less helpful. The net result is
a slow down of the learning process to the point where it becomes more like a power
law than an exponential. Approximate mathematical analyses of this process can be
found in Newell & Rosenbloom (1981) and Rosenbloom (1983).

In addition to the mathematical analyses, the pre-Soar implementation of chunking
was evaluated by generating and analyzing simulated practice curves (Rosenbloom,
1983; Rosenbloom & Newell, 1987a). For the Seibel task, the simulated practice curves
were shown to provide close approximations to power laws. To determine whether these
results continue to hold for the implementation of chunking in Soar, a version of
Seibel's task has been implemented in Soar. The divide-and-conquer algorithm is
implemented by having a problem space with a single operator — process-a-region-of-
lights — which can be instantiated for different regions. In the top goal, two instances
of this operator are generated, one for each half of the display. When one of these
operators is selected, an impasse occurs because there is no knowledge directly available
in productions about how to process regions that contain more than one light. In the
subgoal for this impasse, two more instances of the operator are generated, this time for
the two halves of the region that the higher-level operator was processing. This
recursion continues until operator instances are generated for regions that contain only
a single light. Such operators can be processed directly by productions.

With practice on this task, chunks are learned which summarize the processing that
goes on in the subgoals. These chunks directly implement particular instances of the
proces&-a-region-of-lights operator, avoiding the need for problem solving in a subgoal.
Figure 3-1 shows a log-log plot — power laws plot as straight lines in log-log plots — of
125 trials of the Seibel task, as performed by Soar. In this figure, the data has been
aggregated at a rate of five trials per point. Simulated time is computed by counting
the number of decisions required to perform the task. The best-fit power law curve for
this data is:

T = 110AT0-80. (3)

In addition to the Seibel task, well over 20 other tasks have been implemented in
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Figure 3-1: Simulated practice curve for a 1023-choice RT task.

Soar, Practice curves have not been generated for most of these tasks, but one does
exist for the task of computer configuration. This is a difficult task that involves
configuring a working computer by assembling a list of components that have been
ordered by a customer. About 25% of the Rl/XCON computer-configuration expert
system (McDermott, 1982) has been reimplemented in Soar by designing and
implementing a set of problem spaces in which the computer components can be
assembled (Rosenbloom, Laird, McDermott, Newell, & Orciuch, 1985; van de Brug,
Rosenbioom, & Newell, 1987). The final system had 9 task problem spaces with a total
of 34 operators.

One interesting phenomenon that shows up in this task (as well as in others) is that
chunks can transfer within a single trial (improving performance the first time a
problem is solved), across trials (to later instances of the same problem), and across
tasks (to other configuration problems). As long as two subproblems are relevantly
similar, chunks can transfer between them. Figure 3-2 shows a thirty trial practice
curve generated by Soar for this task. The data presented in this figure is
unaggregated (accounting for the apparent increase in variance). The thirty trial
sequence consists of two complete passes through a sequence of 15 orders. The best-fit
power law curve for this data is:

r = niivr0-21. (4)

The chunks that Soar learns while performing these two tasks fall into two
categories. The first category of chunks are for operator implementation. In the Seibel

Interestingly, this curve was produced by plotting existing data generated for a different purpose.
This was not a deliberate experiment to produce power law practice curves.
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Figure 3-2: Simulated practice curve for a computer configuration task.

task, chunks are learned which directly relate patterns of lights to patterns of button
presses. These chunks act as implementation productions for the process-a-region-of-
lights operator. In the computer configuration domain there is a single top-level
problem space for the task. All of the other task problem spaces are used as subspaces
for the implementation of the operators in this space, or at lower levels to implement
operators of subspaces. Implementation chunks are acquired for all of these complex
operators.

The second category of chunks are for selection — usually of operators, but also
potentially of states and problem spaces. When it is unclear which among several
operators should be selected for a state in a problem space, an impasse and subgoal are
generated. The results of problem solving in the subgoal should be preferences that
lead to the selection of one of the alternatives. Chunking this type of subgoal leads to
the acquisition of search control productions; that is, productions which generate
preferences that can be used to control the problem space search. This category of
chunks does not appear in the relatively simple implementation of the Seibel task, but
does appear in the computer confi ration task. In other tasks, such as Tic-Tac-Toe,
for which we do not yet have practice curves, search control chunks are the dominating
factor in learning.

4. Knowledge Acquisition
In the previous section it was demonstrated how the acquisition of chunks could lead

to improvements in performance. Procedural chunks were learned that performed
operator implementation, and control chunks were learned which helped in selection.
However, chunking originated as a model of declarative memory, and only later was it
converted into a model of skill learning. Given this conversion, the question naturally

9



arises as to whether it can, in its current form, be used to acquire declarative chunks

which represent new knowledge. For example, can chunking support the types of

learning that are required in simple verbal learning experiments? There have been good

reasons for doubting that this form of data chunking is possible. Chunking, as a skill

acquisition mechanism, improves performance by creating productions which cache the

effects of subgoal-based problem solving. The new productions thus summarize

processing that the system can already perform. They do not, at least in any obvious

fashion, lead to qualitatively new behaviors or to the acquisition of new knowledge that

is not already known to the problem solver. Nonetheless, as was demonstrated in

Rosenbloom, Laird, & Newell (1987), chunking can be used as the basis for a data

chunking capability in Soar.

Consider one of the simplest of the verbal learning tasks, a recognition task. Let's
assume that the objects to be learned are strings of letters, such as "ab", and that the
performance task is to recognize whether a string has ever been seen before. There are
two types of trials: training and performance. On each training trial the system must
perceive a new string, and then store into its long-term memory a representation of the
string that will enable it to perform an old-versus-new judgement on a performance
trial. Thus, the first step in Soar's learning to recognize a new string is for it to use its
perceptual capabilities to generate a representation of the string in its working
memory.7 At this point, the new string is available for use by the system, but it has not
yet been learned — working memory is only a temporary memory which holds the
current data upon which the system is working. The learning act occurs when a
production is created which can, at appropriate points in the future, recognize the
string. If Soar is to use its chunking mechanism to do this, it must take advantage of
the fact that chunking learns from goal-based experience. The key is for it to set up
the right internal tasks so that its problem solving experience in subgoals leads to the
creation of chunks that represent the new knowledge.

To learn to recognize a new string, an internal task is set up in which, in a subgoal,
the system first examines each of the letters out of which the string is composed, and
then generates a name for the string. The name is an internally generated symbol for
the new string; for example, G3297. The name becomes the result of the subgoal, and

The system described in Rosenbloom, Laird, & Newell (1987) actually learns about hierarchically
structured objects that are grounded in a set of primitive objects that represent letters. However, in this
article only one-level strings of letters are discussed.

Soar does not yet have an appropriate I/O interface, so in the current implementation this perceptual
phase is performed by special purpose Lisp code.

10



thus forms the basis for the action of a chunk. The conditions of the chunk explicitly
test for the contents of the string. For example, when the system learned to recognize
the string HabM, the following production was acquired that augments (/) the string
with its name.

-ab" —> /G3297 (5)

On a performance trial, a string is presented and an old-versus-new judgement must
be made. This judgement is made by determining whether a name for the string has
been retrieved from long-term memory. There is one tricky aspect to this judgement.
Suppose a name does appear for the string in working memory. Was the name
retrieved from long-term memory by the execution of a recognition chunk, or was it just
now invented? An "old" response should only be produced for a string if a recognition
chunk has been learned for it on a previous training trial. The key to making this
discrimination lies in realizing that the data generated by a production can be used in
more than one way. The most straightforward way to use a recognition chunk is as a
means of speeding up the generation of a name for a string — it allows a name to be
generated during the elaboration phase, rather than via problem solving in a subgoal.
However, the task at hand is to determine whether the string has been seen before, not
to generate a name for it.

To actually use the chunk for the recognition task it needs to be treated as episodic
knowledge representing the fact that the string has been perceived. This involves a
small inductive leap in assuming that chunks are only created for strings that are
perceived — it can be wrong if the system learns about a string that it has imagined
rather than perceived. To use the recognition chunk as episodic knowledge in Soar,
responses on performance trials are based on the contents of working memory after the
completion of one elaboration phase. If a recognition chunk has been learned for the
string, its name will be retrieved during elaboration. If, on the other hand, quiescence is
reached without a name appearing, then the string is not recognized. This recognition
task is described in detail in Rosenbloom, Laird, & Newell (1987).

Also described in Rosenbloom, Laird, & Newell (1987) is a simple recall task which
involves the memorization of a set of strings, which are later to be generated on
demand. From the point of view of the internal task, it is the dual of the recognition
task. Instead of incorporating information about a new string into the conditions of a
production, the information must be incorporated into the actions. As with recognition,
there are training and performance trials. On each training trial the system is

This is a simplified representation of the actual production.
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presented with a new string, and it must learn to generate it on demand. On a
performance trial, the system receives a recall request, and must respond by producing
the strings that it learned to generate on the training trials.

To accomplish this, on training trials chunks need to be acquired that can generate
the presented strings when the demand arises. The appropriate internal task for this
problem would appear to be simply to copy a presented string in a subgoal. The chunk
that is learned from this experience has actions which generate a string that is a copy of
the presented string. The problem with this simple solution is that, if the copy is based
on an examination of the presented string, then the conditions of the chunk will test for
the existence of the presented string before generating the copy, thus allowing the string
to be recalled in only those circumstances where it is already available. The solution to
this problem that we have discovered is to split recall learning into separate generate
and test phases. Generation is performed in a problem space that contains operators
which generate (and combine) a primitive set of known letters. The result of the
generation process is a new string constructed from known objects, rather than a copy
of the input string. As with other generate-and-test models of recall, a recognition
capability — a recognition chunk — is used as the basis for the test (see, for example,
Watkins & Gardiner, 1979), but in contrast with other models, generate-and-test is
being used here during training trials rather than performance trials.

The entire training trial consists of three steps: (1) learn to recognize the presented
string, (2) in a subgoal, generate a new string by selecting and executing a sequence of
operators that build up a string one letter at a time (without examining the presented
string in the process), (3) if the generated string is recognized, return it as a result of
the subgoal and learn a chunk which will generate the string. Constructing the new
string from scratch ensures that the chunk will not test the presented string. However,
it does introduce an additional problem of how to control the generation process so that
the to-be-learned string will be generated rather than any of the other infinite
possibilities. The solution to this problem is to use the presented string as search-
control knowledge during the process of generating the new string. As described in

Section 2, search control knowledge (productions which generate preferences) does not

enter into the chunking process because it only affects the efficiency with which a
problem is solved, and not its correctness. The goal test — that is, the recognition
chunk — determines correctness. In consequence, the generation process can proceed
efficiently, but the chunk created for it will not depend on the presented object.

' The following production is a typical recall chunk. It generates a string and its name
if there is not already a string with that name in working memory. The *'s denote
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wildcards which can match any letter.
- • • • • /G3297 —> «ab"/G3297 (6)

On a performance trial, all of the available recall chunks execute, retrieving into
working memory representations of all of the strings that the system has so far learned
to recall. To satisfy the recall request, all of these retrieved objects must then be
produced.

One peculiarity of this recall task is that to recall a single object (or a subset of the
learned objects), all known objects must be retrieved from long-term memory into
working memory. To solve this problem, and to lead up to more complex verbal
learning tasks, such as paired-associate learning, a form of cued recall has been
implemented. In cued recall there are a set of cues associated with each string to be
learned. A string can only be retrieved from long-term memory if its cues are present
in working memory. When a new string is to be learned, its features may provide cues
which lead to the retrieval of old strings from long-term memory. The cues acquired for
the new string are determined by finding the features which will discriminate it from
these old strings.

The procedure followed during a cued recall training trial is similar to that used for
the simple recall task. The principal difference is that during the generation phase,
search control is used to suggest both the letters used in the presented string, and the
letters used in any of the old strings that are retrieved but not rejected. An impasse
will get generated whenever the generation process reaches a position in the string for
which more than one letter has been suggested. To resolve this impasse, the presented
string is first examined to determine which letter it contains. Then, based on this
examination, the conflicting letter and string are rejected, and the letter from the
presented string is selected. Below are some of the chunks that are acquired as the
system learns to recall the sequence of strings "ab", "ba", "aa11, "bb", Hcalf, "cb",
"ccH, Hbc", and Hac" (not shown are the recognition chunks that are also acquired and
the chunks which reject the incorrect letters). When more than one chunk is learned on
the same trial, they are shown on the same line, separated by a semi-colon. Single
quotes denote a pattern which is to match the input string, while double quotes denote
a pattern that is to match a retrieved string.

-"••• /G3207 ~ > »ab"/G3297
"ba-/G3208;

••a
'•b
*c*

•b«

A "a*- A -"••"/G3298 —:
A "*b - A -»"**"/G3299 —> "aa"/G3299;
A -*a" A -'"••"/G3300 ~ > "bb"/G3300;

A -"••• /G3301 —> "ca"/G3301;
A - • • • • /G3302 —> "cb"/G3302;
A -••••/G3303 ~ > •cc"/G3303;
A -i»**a/G3304 —> "bc»/G3304;

A
A
A
A

•b«"
••a*
mc+m

b*
•a
•b
c*
<:•
•c

A "a*" — > ReJectCa*")
A "•b" —> Reject("*b")
A • • a - —> RejectC^a")
A "*•• - -> Reject ("a* - )
A "b«« — > Rejec tCb*- )
A ••*" —> Re]ect("*a")

(7)
(8)
(9)

(10)
(U)
(12)
(13)
(14)
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A "*b" A -"**"/G3305 —> "ac"/G3305; '*c' A "*b" —> Reject("*b") (15)

On the first learning trial, the string Mabff is presented, and production 7 is learned.
It looks just like the corresponding simple recall chunk, production 6, because there are
no previously learned strings from which it must be discriminated. On the second
learning trial, the string "ba" is presented, resulting in the retrieval of string "ab"
(because production 7 retrieves MabM for every string). The two strings are then
discriminated based on their first letters, resulting in the creation of the two
productions on line 8. The first production generates "ba" if: (1) the first letter of the
input string is "bH, (2) a string has been retrieved that has tfafl as its first letter, and
(3) no string named G3298 has already been retrieved into working memory. The
second production rejects any string beginning with HaH if the first letter of the input
string is Hb". Consider what happens when the cue "b*" (or Hba", for that matter) is
presented on a training trial after these two strings have been learned. First production
7 fires, retrieving "ab". Then the productions on line 8 fire in parallel, retrieving Hba"
and rejecting "ab". The string flba" is then recalled because it is the only non-rejected
string that has been retrieved.

As more strings are learned, multiple cycles of retrieval and rejection often occur
before a desired string is recalled. The following lines show the sequences of retrievals
that occur, as a function of input cue, after all of the strings have been learned. Sets of
strings are bracketed when they are retrieved in parallel.

Input("«") v Input("a«") V Input("«b") v Input("ab") : "ab"
Input("b»•): "ab11, "ba"
Input("*a"): "ab", "aa"
Input("c*"): "ab", "ca"
InputCba"): "ab", <"ba" "aa">
InputCaa"): "ab", "aa"
Input("bb"): "ab", "ba". "bb"
Input("ca"): "ab", {"aa" "ca">
InputCcb"): "ab", "ca", "bb", "cb"
Input("cc"): "ab". <"ca" "ac"}, "cc"
Input("bc"): "ab", <"ba" "ac"}, "cc", "be"
Input("«c") V Input("ac"): "ab", "ac"

Another way to look at the set of productions that have been learned in this cued
recall situation is as the implementation of a discrimination network, as in EPAM
(Feigenbaum & Simon, 1984). In EPAM, the discrimination network was a tree in
which objects were stored at the leaf nodes, and tests were stored at the internal nodes.
Given a set of features, tests would be performed and branches would be followed until
a leaf node was reached. In the Soar version of cued recall, every node in the network
contains an object (a string), and each pair of productions performs a test and branches
to a new node (rejecting the old node in the process). Discrimination stops when there
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are no further branches to follow — essentially, a node acts like a leaf when it has been
retrieved but not rejected. In this discrimination network, multiple tests can be
pursued in parallel on one or more features, and multiple branches can be followed in
parallel. However, for each string, there is only one path through the network that
results in that string appearing as a leaf.

This network can potentially support at least three distinct types of behavior (only
the first has so far been demonstrated). First, given a set of letter features, it can be
used to retrieve the string which is the "best" match to those features. The evaluation
of what match is "best" is not based on some ideal notion of a closest match; rather, it
is based on the structure of the network, which has been built up in response to the
need to make the necessary discriminations. For example, given "xc" as input, the
network retrieves "ac" as the best match. Second, if the recognition chunk fails —
because, for example, some of the input string's features are missing or modified — an
old-versus-new judgement could be made by comparing the input string with the string
that it causes to be retrieved from the network. Third, strings could be recalled in a
free recall task by repeatedly prompting the network with potential cues.

5. Conclusions
In this article we have taken a step towards an integrated model of human learning

that is based on the concept of chunking. All learning occurs via the acquisition of
chunks (productions) that summarize goal-based problem solving experiences.
Chunking has been shown to produce forms of both skill acquisition and knowledge
acquisition.

In skill acquisition, chunks speed up task performance by directly implementing
operators (procedural knowledge) and by controlling problem space search (control
knowledge). Chunks can transfer within a trial, across trials, and across tasks. For
both a simple perceptual-motor task and a complex cognitive task, the practice curves
do appear to be power law in form. However, we have not yet performed a careful
comparison between these curves and alternative functional forms. Future work along
these lines should include a more careful look at practice curves from a wider variety of
tasks, particularly tasks in which most of the chunks are learned for search control
rather than operator implementation, and an expansion of the coverage of the model to
other aspects of skill acquisition.

In knowledge acquisition, chunking can be used to support verbal learning.
Procedural knowledge that is learned through experience is used to answer episodic
questions about what the system has perceived. The result is successful performance in
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simple recognition and recall tasks. The most complex form of verbal learning
presented, cued recall, involves discrimination, generation, and test (recognition)
processes. Future work along these lines should include extending the model to deal
with more complex forms of verbal learning, such as paired-associate learning, and with
other domains, such as semantic memory. Also required is a more detailed comparison
of the model to human experimental data. Until this is done, these results must be
considered tentative. As such comparisons are made, and as the scope of the model is
extended, the model will undoubtedly need to be refined in a variety of ways.

In addition to the fact that the model has qualitatively reasonable properties in the
domains of practice and verbal learning, it is important to note that it is embedded in a
total architecture that is capable of a wide variety of cognitive activities. For instance,
the chunking mechanism which does these two types of learning also does other types of
learning. This larger context provides additional support for the model from outside of
the experimental domains explicitly covered here.
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