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Learning Mathematics from Examples
and by Doing

Xlnming Zhu and Herbert A. Simon
Chinese Academy of Sciences
and Carnegie-Mellon University

Human learning takes place in a wide variety of situations and almost surely

employs many different processes. During the past few years, considerable attention

has been paid to the ways In which people can learn procedures by examining

worked-out examples and by solving problems -- learning from examples and learning

by doing (e.g., Anzai, 1978; Neves, 1978; Anzai & Simon, 1979; Neves & Anderson,

1981; Sweller and Cooper, 1985). Moreover, it has been shown how such learning

can be simulated using computer programs known as adaptive production systems,

and these computer programs now provide a model for the same processes in

human learning.

In this paper we wish to discuss the process of learning from examples, and to

discuss a number of experiments with high-school students employing this learning

paradigm. The experiments, in addition to comparing this learning strategy with more

traditional ones, provided us with information about the processes actually used by

students who employed the new strategies. By "traditional strategies" we mean

procedures in which the teacher and textbook play an active role in presenting and

explaining the material to be learned.

Our interest in the prospects of learning from examples was sparked by

incidents like this. A student who was late for class missed the lecture of the

teacher but at the end of the class looked at the problems worked by another

student. When the tardy student was tested, we were surprised to see that he

worked the test problems correctly. Apparently he had learned by studying the

worked-out examples. How generalizable is the result? How efficient is the process?
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Some Historical Comments

Of course, the idea of learning from examples is not new. Worked-out

examples constitute an important element in textbook presentations of new concepts

and procedures. These examples can be shown to contain enough information about

the procedures to permit diligent students to learn them without additional instruction,

a fact that many good students appear to know and exploit. Presumably, the

students infer from the examples the essential procedures, then internalize these

procedures so that they can apply them to new problems.

Closely related to learning from examples is the alternative process of learning

by doing - that is. learning by solving problems. If feedback is provided on whether

an answer is correct, and if the problem solver persists until the problem is solved,

then the solution path (however halting and inefficient the search for it may have

been) provides a worked-out example. This example can be used as a basis for

finding the correct algorithm in the same manner that a worked-out example provided

by the teacher can be used.
0

in the literature of education, the ideas of learning from examples and learning

by doing also have a long history. They have their roots in ideas about child-

centered education associated with the names of Pestalozzi. Froebel. and Hebart. and

in the role assigned to the learner's experiences in John Dewey's prescriptions for

progressive education. A number of followers of Dewey and Piaget have been strong

advocates of learning by discovery, and there has been a significant amount of

research on the conditions under which discovery learning is. or is not Hkeiv to be

effective ana efficient (Shulman & Keisiar, 1966). Discovery learning is. of course

nearly synonymous with learning by doing.

Psychological research on concept attainment (Bruner. Goodnow. & Austin.

1956), and computer modeling of concept attainment processes (Hovland & Hunt.



Learning from Examples 16 July 1987

1960; Hunt, 1962) have always used a learning-from-examples paradigm, which is

perhaps not surprising, since the interest lay In inductive discovery rather than in

learning per $e. In a different domain, Siklfcssy (1968) showed that the vocabulary

and grammar of languages could be learned by a computer program from examples

of sentences paired with semantic descriptions ("pictures") of the sentence meanings.

Psychologists interested in creative processes have also long observed the

common element of discovery that is central both to creativity and to learning by

doing. In what is perhaps the earliest treatment of creativity from an information

processing point of view (Newell, Shaw, & Simon, 1962, first issued as a technical

report in 1958), a computer learning program was described that learned by doing,

and the importance of hindsight (analysis of problem solutions after discovery) was

underscored.

The learning programs we have mentioned have two important
characteristics in common: (1) they consist in a gradual accumulation of
selective principles that modify the sequence in which possible solutions will
be examined in the problem space; (2) the selective principles are obtained
by hindsight - by analysis of the programs successes in its previous
problem solving.

This early reference to learning by doing, and the discussion that follows it,

foreshadow very closely the form of learning that we will see exemplified in *he

experiments reported in this paper.

Research on learning within an information processing paradigm received a new

impetus a decade and a half ago with Waterman's (1970 1975) invention of adaptive

production systems as a programming model of the learning mechanism An

adaptive production system is simply a computer program that is capable of

modifying itself adaptlvely by constructing new instructions (productions) and adding

them to its memory. The productions provide a detailed model of what must be

learned in order to perform the task, and the adaptive productive system provides an
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explanation of how the productions that make up this model can be acquired

successively.

Adaptive production systems provided an operational method for combining task

analysis (e.g., Gagnfe, 1965; Gagnfc & Briggs, 1974; Resnick, 1976) with a specific

learning theory, hence of constructing an orderly framework within which materials for

learning from examples and learning by doing could be designed, and instructional

materials could be sequenced.

Neves (1978) was the first to apply these ideas to school learning, with an

adaptive production system that was able to learn to solve linear algebraic equations.

Considerable research activity has followed in the subsequent years (e.g.. Anzai.

1978; Anzai & Simon, 1979; Neves & Anderson, 1981), and these learning theories

are now being used by Anderson (1987) and others in the design of tutoring

systems. There have also been new beginnings of experimentation with learning from

examples and learning by doing (e.g., Sweller & Cooper, 1985). Our own empirical

research on this topic began in 1983.

Scope of this Paper

We have carried out a number of experiments to test the feasibility and

efficiency of learning from examples and learning by doing. In the first experiment

<ve shall describe we took verbal protocols from some of the subjects tc learn more

about the processes they /vere using. in the remaining experiments we IOOK

protocols only for the geometry task, out measured tne speed and extern of learning

In comparison with the learning of students who were taught the same material

conventionally.

This paper, focuses primarily on the protocol material and what it discloses

about the processes that students use to learn from worked-out examples and by

solving problems. Our main interest was in determining whether, and with what
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degree of understanding, school children can learn school subjects by these methods.

Since we shall be concerned mainly with the nature and feasibility of the methods.

we will present only briefly some preliminary findings on their efficiency in comparison

with traditional methods, and will postpone to another occasion a detailed report on

outcomes. In addition to elucidating the learning processes that appear in the

protocols, we will pay a good deal of attention to the question of whether the

methods of learning from examples and by doing encourage rote learning or whether

they promote, instead, learning with understanding.

Instructional Materials

Experiments on learning from examples and by doing were carried out with

learning materials for a number of tasks contained in the mathematics curriculum of

5th, 7th, and 8th grade students. The tasks included simplifying fractions, factoring

quadratic expressions, manipulating terms with exponents, and solving several

geometry problems.

The Training Materials. The preparation of training materials was preceded by

a careful and detailed analysis of each task. On the basis of this analysis, a

production system was constructed, capable of performing the task, to represent the

skills that students would acquire in mastering the task It is assumed that a person

able to perform the task possesses a set of productions very similar to those in the

model

The training materials were then designed to motivate learning the productions

successively That is, the examples and problems were sequenced so that the initial

ones could be handled with a small subset of the productions, while subsequent

problems required additional productions for their solution. Thus, in accordance with

the usual principles for shaping behavior, learners could attend to one or a few
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aspects of the problem situation at a time.

A Production System. The first section of the Appendix sets forth a

production system for factoring quadratic expressions of the form: X2 + aX + b,

where a and b are (positive or negative) integers. This is the production system we

used to construct our examples and problems for teaching this skill. The procedure

it describes begins by finding ail pairs of positive integers that factor the constant

term, b, of the quadratic. Then it divides into cases, according to the signs of the

linear and constant terms. Depending on these signs, a pair of factors is selected

whose sum (if the sign of the constant term is positive) or difference (if the sign of

the constant term is negative) is equal in absolute magnitude to the coefficient of the

linear term of the quadratic. Signs are now assigned to the factors, depending on

the arrangement of signs in the quadratic. If the constant term is positive, then both

factors are positive (negative) as the coefficient of the linear term is positive

(negative), respectively. If the constant term is negative, then the larger factor is

positive (negative) as the coefficient of the linear term is positive (negative),

respectively and the smaller factor has a sign opposite to that of the larger factor

fortunately for the feasibility of students1 learning to factor, these rules are

easier to understand in the context of examples and problems than they are when

thus stated in prose, or when put in the production system format of the Appendix

Moreover, the principle underlying the factoring of quadratics can be explained, as

we shall see, in a unified way, without invoking four special cases that depend upon

the signs of the coefficients. Nevertheless, factoring is usually taught in terms of the

four cases, and we think this is probably an effective procedure for focusing the

students' attention on one process at a time. First, they learn to search for a pair

of factors of the constant term that adds up to the coefficient of the linear term.

When they have acquired this skill, their attention is called to the signs of the linear
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and constant terms of the quadratic, and the effects of these signs on the selection

of the correct factor pair and the assignment of signs to the factors.

The details of the particular production system we describe in the Appendix are

probably not important, for the task could be accomplished about equally well with a

number of alternative systems. In fact, the protocol evidence will show that the

production systems acquired by our subjects are not identical, but are variants of this

basic scheme.

The alternative to factoring by recognizing distinct cases for different

combinations of the signs of terms in the quadratic is to factor "algebraically," that

is, using signed numbers throughout. Then the rule for factoring a quadratic reduces

to a single case: Find all pairs of factors (regarding +a and a as distinct factors)

of the (signed) constant term of the quadratic: then select the pair whose algebraic

sum equals the (signed) coefficient of the linear term, and write the factorization as

(X + c)(X + d), where c and d are the (signed) factors.

X2 + aX + b = (X + c)(X + d)

where cxd = b, c + d = a.

We shall see that there is evidence that many of our subjects learned the

more general principle, even if they used the productions for the four specific cases

in their actual problem solving.

Prerequisite Knowledge. To learn to factor quadratic expressions, students

must have some prerequisite knowledge (See Appendix, 2. Review Knowledge.) In

particular, they must know what factoring means Before reaching quadratics in the

curriculum they have already studied the factorization of integers and of monomials in

algebraic expressions. We convey additional information about quadratics to them by

defining factoring a quadratic expression into two linear expressions as the inverse of

the operation of multiplying the two linear expressions to form the quadratic. Since
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the students already have the skill of multiplying algebraic expressions, this definition

of the task of factoring should be understandable to them and can also provide them

with a means for checking (by multiplying back) whether they have factored correctly.

Hence, in learning either from examples or by doing, they can obtain feedback on

the correctness of their answers. This feedback provides essential information for the

learning process.

From the definition of factoring as the inverse of multiplication, and from the

worked-out examples of multiplication In the training materials, students can derive the

"algebraic" algorithm for factoring that we presented above. For they can observe

that the constant term in a quadratic is the product of the factors, while the

coefficient of the linear term is the (algebraic) sum of the factors. To facilitate their

noticing these relations, we include in the review knowledge several problems of

factoring integers and noting the sums of the factors. We also carry out the

multiplication in steps, so that the summation of the factors to form the coefficient of

the linear term of the quadratic is made explicit.

Awareness of these relations can provide guidance to the subjects' search for

solutions in the learning-by-doing condition as well as in the leaming-from-examples

condition. As we have seen, the laws of signs in factoring, which we have

represented by separate productions, are also implicit in the definition of factoring.

In principle, students should be able to infer the laws of signs from the general

definition, hence to find a rationale for each of the productions that embody these

laws, and many of our subjects did accomplish this

In presenting the prerequisite knowledge prior to the learning trials we go a

little further than simply defining factoring. We also give the students practice in

finding all the pairs of integral factors of a positive integer, and practice in finding

the sum of each pair. In presenting the product of two linear expressions, we could

8
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also have called attention explicitly to the fact that the linear term of the quadratic is

the algebraic sum of the two constant terms of the linear expressions, while the

constant term of the quadratic is the algebraic product of the two constant terms of

those expressions. In fact, it did not prove necessary to provide this additional

review knowledge in order for students to acquire the requisite skills from the

examples and problems.

Experiment 1

Method

The task was to learn to factor quadratic expressions in algebra, of the form

x2 + ax + b, where a and b are positive or negative integers, and the factors are also

integers. In these experiments we consider only expressions in which the coefficient

of the quadratic term is +1 .

Two groups of subjects were used in the experiment: a group of 20 who

provided verbal protocols while they were run individually, and two classes, totalling

98 students, who were run in the classroom setting without taking verbal protocols.

The first group (protocol subjects) provided us with rich data about the processes

they used. Half of them worked in a learning from examples condition, and half in

a learning by doing condition. (One of the learning-by-doing protocols was lost, so

our protocol analysts for this condition contains only nine subjects.)

"Hie second group {classroom suojects) provided us with a larger sample of data

on learning speeds and levels of learning, all of them working In the learning-from-

examples condition. In this initial experiment, no comparison was made with a

control group using conventional learning methods. Our initial goal was to determine

whether learning by example or by doing was feasible for a standard algebra skill.

and to gain an understanding of the learning process.
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The subjects were approximately 13 years old, enrolled In the first algebra

course in a middle school In Beijing, China. The school is near the middle of the

range of Beijing schools in terms of student ability. In the standard algebra

curriculum, two class sessions are usually devoted to teaching the factorization of

quadratics, and homework is assigned for each evening.

The procedures were as follows (See Appendix):

1. Take pretest

2. Review knowledge prerequisite for the task

3. Take second pretest (five problems)

4. Learn from examples or by doing

5. Take final test (identical with second pretest)

Results

Classroom Subjects. We begin with a brief report on the performance of the

subjects who learned in the classroom without providing protocols. Since 4 of the

classroom subjects could solve the pretest problems, their performance was excluded

from the data we analysed. Of the remaining 94 subjects, 78 (83 per cent) solved

all the test problems correctly after reviewing the prerequisite knowledge and working

through a few examples and problems. Eight (8.5 per cent) of the subjects solved

only three of the five test problems correctly and 8 subjects (8 5 per cent) solved

two or less problems. These results were achieved within the time of a single class

session, demonstrating that learning this skill from examples is wholly feasable well

within the time allowed in the curriculum.

Protocol Subjects. The protocol subjects were run individually, and asked to

talk aloud while they were doing the work. Their protocols were tape-recorded and

10
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transcribed, and for the purposes of this paper have been translated literally into

English. Ten of the protocol subjects were provided with materials that included

worked-out examples, the other 10 only with a carefully arranged sequence of

problems to be solved (Item 4 on list above). None of the subjects could solve any

of the pretest problems (Items 1 and 3) or build appropriate procedures. After about

25 minutes spent in working through examples and doing problems, all twenty

experimental subjects could solve the test problems (Item 5) and 15 of the 20

answered correctly the questions about the procedures. In the following paragraphs,

we will examine their protocols in more detail.

The Protocols: Part I. From the protocols, we obtain a rather clear picture of

how the subjects learn from the examples. We will begin by discussing the

protocols of two subjects on Part I of the materials: E1, who was learning from

examples (E condition); and D7, who was learning by solving problems (D condition).

Their protocols on Part I are shown in Tables 1 and 2, respectively.

11
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Protocol of E1 on Part I
Learning from Examples

[For the problems, see the Appendix, 4A, Part I.)

[Subject looking at first exercise]
1. According to the example,

2. Exercise 1, X2 + 11X + 18 is equal to X . . .
3. [Looking at example 1] 2+3 is equal to the coefficient 5,
4. 2x3 is equal to the constant 6.
5. [Looking at example 2] This example is 1+6=7,
6. 1x6 = 6.
7. Exercise 1 [X2 + 11X + 18] is that X+3 multiplies X+6.

8. Exercise 2 [X2 + 9X + 18] is that X+6 multiplies X+3.

9. Exercise 3 [X2 + 19X + 18] is that (X+9)(X+2).
[Reviewing exercise 1]
10. That is wrong.
11. 3+6 is not equal to 11.
12. Exercise 1 is X+2 multiplying X+9,
13. 2+9=11
14. 2x9=18
15. This one [exercise 2] 3+6=9,
16. 3x6=18.
17. This one [exercise 3] is also wrong.
18. It should be X+l multiplies X+18,
19. 1+18=19
20. 1x18=18.

Protocol of D7 on Part I
Learning by Doing

[For problems, see the Appendix. 4B, Part I]

[Subject is doing the first exercise]

1. [Exercise 1] X2 + 5X +6 = (X+ )(X+ )
2. equals (X+ll)X+30).
3. According to multiplication of polynomials, (X+ll)(X+30) . . .
4. their product
5. That is wrong.
6. It should be (X+2) multiplied by (X+3).
7. Since XxX equals X
8. 2xX = 2X
9. 3xX = 3X
10. 2X+3X=5X
11. 2 multiplied by 3 equals 6.
12. [Experimenter] What rule have you found?
13. I found a rule.
14. The numbers in these brackets...

[the constants of the two factors]
15. added to each other, multiplied by X, we'll get this number

[the coefficient of the linear term].

12
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16. These two figures multiplied by each other will equal the
number at the end [the constant].

13
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E1's Learning. E1 begins by looking at the first exercise (2), then looks back (3-6)

at the first two of the five examples provided, and checks that the sum of the

numerical factors equals the coefficient of the linear term of the quadratic, and the

product of the factors equals the constant term. The subject then proceeds to solve

Exercises 1-3 (7-9), but pays attention only to the second of these two conditions,

thereby obtaining wrong answers. In Lines 10-11, he checks the first condition for

Exercise 1, and sees it is not satisfied. He now (12-14) finds a pair of factors that

satisfies both conditions. Then he goes back (15-20) and corrects Exercises 2 and

3. By the time he has finished, he has essentially built the production rule for

positive coefficients.

The examples provided enable E1 to review the conditions, learned previously

from multiplication of linear terms, that the constant term in the quadratic equals the

product of the constants in the linear terms (the factors), while the coefficient of the

linear term in the quadratic equals the sums of these factors. However, possibly due

to limits on attention span, he constructs erroneous solutions that only take into

account the former of the two requirements. His understanding that factoring is the

inverse of multiplication does allow him to check his results and to discover that they

are wrong.

From the protocol we see clearly how E1 uses previously acquired knowledge

coth to generate his solutions and tc test them We also see the difficulty he

encounters \n using ail the knowiedge he has He initially generates only one pair of

factors that satisfies the product condition /vithcut considering that it may not satisfy

the sum condition Only after discovering his error does ne generate additional pairs

and test each one for the sum condition, thereby debugging his incomplete

procedure.

D7's Learning. D7, provided only with exercises to work, remembers (1-2) that

14
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sums and products have something to do with the process, but applies the rule

backwards (2), adding and multiplying the two coefficients in the polynomial, and

getting a wrong answer for the first problem. Apparently checking the answer (3-5)

by the inverse operation of multiplying, he then (6) arrives at the right answer, which

he checks by multiplication (7-11). He is now able to state the production rule

(14-16).

D7's protocol shows that he was able to learn to factor without being provided

with any worked-out examples, simply by applying his knowledge (1) that factoring is

the inverse of multiplication, and (2) that he must make use, somehow, of sums and

products of factors. Multiplying out the erroneous factors that represent his

attempted solution of the first problem, he rediscovers what rules he should apply.

Progression in Learning. These two protocols are not unrepresentative of the

behavior of the subjects in both conditions at the beginning of the session. An

efficient procedure would be to factor the constant term of the quadratic first, then

find a pair of factors that sum to the coefficient of the linear term. However,

initially, most subjects (5/10 in E condition, 7/9 in D condition) look first for two

numbers that add to the coefficient of the linear term. This preference may reflect

the fact that, on scanning the quadratic from left to right, the subjects first notice

the linear term, derived from the factor sum. then the constant term, derived from

the product. By the end of the session, all the D subjects and all but one of the E

subjects are using the more efficient procedure of satisfying the product condition

before the sum condition

Often, subjects do not initially check whether the numbers they have found to

satisfy one of the conditions also satisfy the second condition. (4/10 E subjects and

5/10 D subjects fail to make such a test on the early exercises.) As we have seen.

E1 makes this error twice on the first three exercises, then notices his mistakes and

15
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corrects them. The error is usually noticed when the subject checks his or her

answer by multiplying the factors (E1, Lines 10-12).

If the subject does not check the answer, the failure to satisfy the second

condition may go unnoticed. Thus, the protocol of Subject D4 on the second

training problem of Part I reads:

"X2 + 7X + 6, equals...[pause] That's 3, 4. By adding them we get the
coefficient of the second term. So I chose 3 and 4. 3 + 4 = 7."

In this case the error is not corrected. Such errors, where one of the

conditions is violated, are rare in the latter parts of the session.

In the earlier parts of the session, subjects frequently check their answers

explicitly by multiplying out the two factors to obtain the original quadratic expression.

Later on, as they become skilled and accurate, this check, if it is made, is

sometimes not verbalized. Two examples will illustrate this difference among subjects

when they are solving some of the later problems. On Exercise 7 of Part III.

Subject D3 says only:

The protocol of Subject E3 on the same problem reads:

"X2 + 7X+1O. 10 can be factored into 2 times 5. 2 plus 5 equals 7,
which is the linear term's coefficient. So this problem equals (X + 2) times
(X + 5)."

Through all the thirteen exercises of Part III, the protocols of both subjects

were essentially identical with their protocols for Exercise 7 (with the appropriate

numbers inserted in the grammatical "slots"). There is no reason to suppose the

one subject had a better understanding of the process than the other; both were

able to state the rule quite correctly and clearly One was simply more taciturn than

the other, or had, perhaps, automated the solution process more completely.

All subjects appeared to recognize that the constant term of the quadratic

16
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could be factored in more than one way, but they did not always find the pairs of

factors systematically, and in a number of cases took some time to realize that N

can be factored into 1xN. When they sought to satisfy the sum condition first, they

often proceeded rather systematically on early problems. Later, on most problems,

subjects mentioned only the pair of numbers that satisfied both conditions; the

selection process was not verbalized except when they got stuck. A rare exception is

represented by D2 on Exercise 5, Part

[X2 +11X12] "Equals X... Factor 12 into 3x4, 2x6=12. We don't get
11X. Factor it into 1 and 12. X plus... X minus 1 times X plus 12."

On that same problem, D5 merely said:

"X2 + 11X 12. X_1 times X+12."

Differences Between E and D Conditions. From what has been said thus far.

there do not appear to be large differences between the subjects in the two

conditions, although the subjects in the D condition had to infer the factorization

process without the help of worked-out examples. What differences appear are most

clearly visible in the problems of Part I. The subjects who are learning from

examples typically examine several of the examples with some care, and quite often

refer back to them while working the first exercises. A clear case is Subject E8:

"Example 1: X2 + 5X + 6 = (X + 2)(X + 3). This is factoring of the constant.
6. into the linear term. 5X. It is, factor 6 into 2x3. Then the sum of the
two factors is just the linear term: 2 + 3 = 5, 2x3 = 6. just right.
Consequently, plus X with this number, and then multiply... So it equals
(X + 2)(X + 3).

"Example 2: The same as the one above. Factor the constant. 6. The
product of the two factors must equal this. The sum of the two factors
must equal the linear term's coefficient, 7. It's just good to factor 6 into
1x6. So 1+6 = 7 equals the coefficient of the linear term Finally, multiply
the two factored polynomials. The answer is (X + i)(X + 6).

"Exercise 1: This is the same as the example. Factor 18 into two
numbers, letting their sum equal 11. 18 can be factored into 2x9 2x9=11.
which just equals the coefficient of the linear term. 11. So also factor
X. Equals (X + 2)(X + 9)."
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Notice (and this is common among the subjects in the E condition) that E8

does not work mechanically from the examples, but has clearly In mind the principle

that factorization of a quadratic is the inverse of multiplying two linear polynomials.

This is especially evident from his comments on Example 2. For the D subjects,

understanding this principle is essential to solving any of the problems. So, Subject

D3 says, on the Training Problem 4 of Set I:

"X2 + 7X+12. There are supposed to be two numbers in the
parentheses. Their sum is 7, their product is 12. Equals (X + 3)(X + 4)."

D subjects who have not digested the principle from the definition of factoring

quadratics have considerable difficulty with the initial training problems. Consider

Subject D2:

"Training 1: X2 + 5X + 6 = (X+ )(X + ). Plus 5. Hmm, wrong. Factor 5
into 2... X. Factor 6 into 2x3. 3X.

"Training 2: X2 + 7X + 6 = (X+ )(X+ ). Factor 6 into...X2..X2... plus 2.

X, hmm, wrong. Need one more X, 2X. Since 2X equals X2. then 3X.

7X = 2X+... Need one more X. X2 + 3X + 4X... I don't know how to solve this
problem."

He solves Problem 3, falters on Problem 4, but thenceforth seems to

understand the principle and solves the problems successfully.

Knowledge of Rule. By the end of Part I, almost all the subjects (9/10 E

subjects and 8/9 D subjects) can, in response to the experimenter's question, state

fairly accurately the rule they are following in factoring, but often in the form of an

example, rather than a generalization Thus 04 in answer to the question 'How do

you factor^

'Use multiplication. 2x3 If satisfied, see the linear term See if 2 ^ 3
equals the coefficient of the linear term, If yes, that's right. Thus it
satisfies the problem. We got the coefficient of the linear term by
addition."

In reply to the same question, E7 says:
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"The sum of the two factors is the coefficient of the linear term. The
product of two factors is the constant. All are the same."

Some answers refer explicitly to factoring as the inverse of multiplication. E4

says:

"Factoring equals multiplication formation -- its inversion. Factoring is to
get numbers by modification of the multiplication equations; to go back to
get the initial ones before utilization of the multiplication process, i.e., before
the calculation."

Some subjects in the E condition perhaps lean too heavily on the examples.

Thus, E6, during Part II:

"For the problems in these two parts, read the examples first, then do
the exercises. If I cannot solve the problems, I compare the exercises with
the examples carefully."

It is not at all certain that this kind of direct comparison of exercises with

examples will lead to understanding of the principles. Most of the time, fortunately,

subjects seem to try to extract the principles from the examples before they go on

to the exercises. Some thought needs to be given to designing the learning

materials so that the latter strategy, rather than the former, will be encouraged.

The Protocols: Part II. On Part II. subjects compare the first and second

examples, and note that a negative sign in the linear term produces negative signs

in both factors. Many subjects are soon able to verbalize the rule (E10):

"Well, mainly one has to see the linear term. If its coefficient has a
plus sign, then the factors of the constant have plus signs.. But if there is
a minus sign in front of the linear term then the two factors both have
minus signs."

Some protocols provide evidence that the reason for the factor s being negative

is understood. Thus. E5:

"The second one [the linear term] has a negative sign. So the latter two
terms [the constants of the factors] must have negative signs...because
minus, minus... These two both have negative signs."
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In the D condition, the production for Part II Is learned almost in the same

way - by noting that the first and second problems differ only In the sign of the

linear term. A little trial and error shows that if the linear term is negative, the

signs of both factors should then be negative. When asked what rule he had found,

one subject (D7) replied:

"For example, X 29X+18. 9X is negative, 18 is positive. In the
parentheses they are all (X ). (X3),(X6). The signs in parentheses
should all be minus."

The subjects understand the reason for the negative factors, even when

examples are not provided, D5, for example, is quite explicit, saying:

"According to the formula which I mentioned a moment ago, since the
sum of these two numbers, 1 and 6, is the coefficient of the linear term,
and the coefficient of the linear term is negative, so these two numbers
should be negative. Negative times negative is positive."

In Part II. a few subjects give evidence that they are using the algebraic

algorithm, which does not require them to distinguish different cases for the different

arrangements of signs in the quadratic. This can be seen in E3's summary of the

rules for Part

71 have found from here that one might factor the constant into these
numbers It might be factored into four pairs of numbers. 2 times 9. 3
times 6 Three pairs of numbers. 6 might be factored into 2 times 3.
Factor the constant into a pair of numbers. If the sum of these two
numbers equals the linear term's coefficient, these two numbers factored
from the constant would be good," [Experimenter: "What rule have you
found from this problem?"] E3: "It has been found from this problem that 6
can be factored into minus 2 times minus 3. The sum of minus 2 and
minus 3 just equals the linear term's coefficient."

In general, the problems in Part II were not difficult for subjects in either

condition. Where difficulties were encountered, they generally had to do with finding

the correct pair of factors, rather than with assigning the correct positive or negative

signs to them. Nine of the E subjects and seven of the D subjects were able to

'verbalize rules for handling the problems of Part II.
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The Protocols: Part III. On the problems of Part III, we again observe some

trial and error. Subjects become aware that the assignment of signs to the factors

depends upon the pattern of signs in the quadratic, and gradually formulate the

correct rules. Checking by multiplying the factors of the proposed answer reveals

errors and allows the search to be successful.

Typically, the fact that the factors must have opposite signs is learned before it

is understood which factor should have the positive sign and which the negative. A

characteristic first attempt at a (incorrect) rule is (D7):

"If the problem is (x2 + ), then in the first parentheses it will be
(x ); in the second parentheses it will be (x + )."

After making and correcting several mistakes, using this rule, the subject

corrects the rule:

"As far as the polynomial with successive subtractions [X2 ]. its
negative factor is larger than the positive factor. If the sign after x2 is
" + ", and the next sign is " " [x2 + ], then also one factor is
positive, the other is negative; but its positive factor is larger than the
negative factor."

Table 3 gives the protocol of D6 on the first two exercises of Part III. In the

first exercise. D6 attends to the constant term of the quadratic (1-3), but fails to

notice the sign of the linear term (4-5). He now notices that Exercise 2 is identical

to Exercise 1. except for the sign of the linear term (7-9). This observation leads to

comparing the solutions of the two prooiems :0-12) and the "ecognition 13-15: :hai

his answer to Exercise 1 is wrong. Now the two answers are corrected (16 19). and

the conditions for the coefficients of the linear terms are restated (20-27).

Protocol of D6 on Part III

1. [Working exercise 1 in Part I I I ] X2 + 5X - 6 = (X 1)(X 6)
2. So i t should be minus.
3. It should be (X+l)(X-6).
4. Because -6 plus 1 equals 5
5. so it can match 5X.
6. Positive multiplied by negative is negative too.
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7. [Working exerc i se 2] X2 - 5X - 6 » (X 1)(X 6)
8. -5X i s negat ive
9. 6 is also negative

10. It should be (X-l)(X+6).
11. Oh, it is right,
12. because -5X is negative . . . .
13. It is wrong,
14. it is positive.

15. I'm wrong in problem 1, X2 + 5X - 6 = (X 1)(X 6).
16. It should be (X-l)(X+6).
17. Problem 2, X2 - 5X - 6 = (X 1)(X 6)
18. It should be reversed.
19. It should be (X+l)(X-6),
20. because -6 plus 1 is equal to -5,
21. while this is +5.
22. X2 + 5X - 6 = (X 1)(X 6)
23. so it can't match.
24. In the second problem, X2 - 5X - 6 = (X 1)(X 6)
25. +1 plus -6 is equal to -5
26. It can match the number -5X
27. and +lx-6 also equals -6 [the constant].

The fact that the factors must be written down in some order causes some

subjects to attend to this feature rather than to the relative sizes of the two factors,

and consequently to arrive at a faulty generalization. Here is an example of such a

faulty production (E10):

"From the above, it is clear that in the polynomial there is only one
minus sign, and it is in front of the constant, then the front one of its two
factors should be with a minus. And if there are minus signs in front of
the first-order term and in front of the constant, then the factor which has
the minus sign is the second one/'

This error might be avoided if the pretraining included examples showing that

when the order of factors to be multiplied is reversed the same quadratic polynomial

is produced.

Comparison of protocols of the same subject from Parts I and III shows that

subjects gradually chunk the procedures they are learning into larger integrated units

So, in Part III, subjects typically verbalize their choice of signs, but verbalize only the

result of their choice of factors (E10):
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"In Problem 4, because the polynomial has two minus signs, therefore the
minus sign should be in the second factor. So (x + 3)(x4)."

In this protocol, as in many of the other Part III protocols, there is no evidence

to show how the subject searched the factor pairs to find the one that also satisfied

the sum condition. Some subjects have also automated the assignment of signs in

the same manner, verbalizing only the final answer.

The subjects found the rules for Part III problems substantially harder to

verbalize than the rules for the problems of Parts I and II. Only 5 of the 9 D

subjects and 6 of the 10 E subjects were able to provide reasonably accurate rules

(sometimes in the form of examples) for the problems of Part III, although in the

post-test, all subjects showed that they could solve these kinds of problems correctly.

E3 provides a clear statement of the rule:

"For these problems, some have positive linear terms and negative
constants. Thus, one factor is positive and another one is negative. If the
linear item is positive, the larger factor is positive and the smaller one is
negative. If the linear term is negative, the larger factor is negative and
the smaller one positive."

Discussion

The test results and protocols indicate that as long as the examples are

appropriate and the problems are well arranged, most students master the skill of

factoring quadratics quite well within a short time by working through examples and

problems, after being given knowledge that factoring is the inverse of multiplication.

At the end, all of these middle school students had acquired about five productions,

could use these productions to solve additional problems and in most cases could

verbalize them fairly accurately, if not elegantly The Learning Process The

process that subjects in the E condition use to acquire a production is approximately

this: first they compare the polynomial with the factored expression to see what

change has taken place. Based on their previous knowledge of multiplication of

23



Learning from Examples 16 July 1987

polynomials, and by trying to multiply (X + c)(X + d), they notice that c and d add to

the coefficient of X in the quadratic, and that c times d equals the constant. From

this knowledge, they are able to compose the first production.

Similarly, from the examples in Part II, they notice that a change in the sign of

the linear term changes the sign of the factors. This enables them to state the

conditions and action of the next production. The examples in Part Ml lead to

further discrimination of the four distinct cases on the basis of the pattern of signs

in the quadratic.

Because the subjects in the D condition are provided with no worked-out

examples, they must use their knowledge that factoring is the inverse of multiplication

to solve the initial problems. The protocol of D7, shown above, gives a typical

instance of earlier faltering, but rapid progress as soon as one or two problems are

solved.

What Understanding is Achieved? Since the product of the learning

experience is a set of rules that most students can verbalize, should we conclude

that the students have merely memorized these rules? We believe this is not a

correct conclusion, but that, instead, they understand the process -- the learning has

been meaningful. There are a number of reasons for this interpretation. To discuss

them, we must say what we mean by "understanding."

We test whether someone understands knowledge by determining whether he or

she can use it in appropriate ways. Knowledge can be understood shallowly or at

great depth, the depth being measured by the range of tasks that can be performed

with its help. Thus, one test of understanding of factoring is to ask someone \c

solve factorization problems. Another test Is to ask for the relation of factoring to

multiplication. A third test is to ask for a derivation of the sum and product rules

for the factors from the definition of factorization as the inverse of multiplication. A
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fourth test is to ask for a derivation of the pattern of signs in the factors from the

pattern of signs In the quadratic. A fifth test is to ask for a verbal statement of the

procedures for factorization.

Even greater depths of understanding can be probed. Tasks can be proposed

to see if the skill of factoring quadratics of the form "X2 + aX + b" can be transferred

to quadratics of the form "X2 + aXY + bY2" or "aX2 + bX + c." Or, in another direction,

students might be asked to explain the relation between the factors of "X2 + aX + b"

and the solution of the equation "X2 + aX + b=*0." As one measure that the

semantics of the factorization have been understood, students could be shown a

rectangle with dimensions (X + a) and (X + b), and asked to identify the subareas of

the rectangle that correspond to the terms of the quadratic: X2, aX, bX, and ac.

At the level of a university course in abstract algebra, other questions, much deeper

than these, can be posed.

In terms of this notion of understanding, it is clear that the subjects in this

experiment had not merely acquired rote learning about factoring quadratics, but had

acquired a considerable depth of understanding -- some, of course, a greater depth

than others.

The first evidence of their understanding is that they can do more than merely

recite the rules: they can and do also apply them skilfully by making the appropriate

perceptual discriminations and then carrying out the appropriate actions They

recognize when each rule is relevant, and then use it

Second, the students demonstrate understanding by using the basic meaning of

factorization to check their trial results by multiplying back They have seen how the

corresponding patterns of signs in the quadratic and its factors derive from the

nature of the multiplication process for polynomials. They have also seen how the

sum and product of the factors appears in the resulting quadratic. The students in
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the D condition have even demonstrated that they can acquire these skills by

derivation from the basic definition, without the help of examples.

For these reasons, we must conclude that the students have learned a good

deal about the semantic meaning of factorization, as well as the skill of doing it. and

that it is from this knowledge that they generate their versions of the verbal rules

that govern it. Since the rules were never given to them explicitly, they have

certainly not simply memorized them and recited them by rote.

For some of the students (but probably only a few) understanding was limited

largely to being able to factor. Most of them, however, as our account has shown,

also understood why the rules worked as they did. We did not probe deeper levels

of understanding - how broadly the new skill would transfer, whether they could

understand a geometric representation of the factoring of a quadratic, or whether,

which is highly doubtful, they had acquired any of the understanding that would be

expected in a course on abstract algebra. They did appear to understand most of

the things that first-year algebra textbooks undertake to teach about factoring

quadratics.

In sum. Experiment 1 demonstrated that students can learn how to factor

quadratics by studying examples and/or by working problems, and that they can do it

relatively quickly and efficiently if care is taken to arrange the examples and

problems so that they do not make too many errors of induction or require too much

trial and error search.
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Additional Experiments

The success of our Initial experiment, completed in 1983, encouraged us to

extend the inquiry in several directions. First, we wished to replicate the experiment

on factorization of quadratics, but including comparisons with control groups of

subjects who were taught by lecture in the normal way. Second, we wished to

generalize the result to other tasks. Since our main purpose in this paper is to

discuss the processes of learning from examples rather than the efficiency of this

procedure under classroom conditions, we will give only a brief summary of the

findings of these experiments, leaving a detailed analysis to a later report.

With respect to replication, we obtained very similar findings on the factorization

task in three other schools, and results that were favorable in comparison with

control groups, as we shall see in a moment. As for new tasks, we constructed and

tested materials for a task of manipulating exponents, a geometry task, a lesson in

ratios and proportions, and three lessons in fractions. For all tasks, the students in

the experimental condition were usually more successful, and usually took less time

to learn, than the students in the control condition.

Replications of the Factorization Task

In School A, with 32 students in each condition, the average post-test score of

the experimental students was 93.13% correct, and of the control students, 75.50%

correct. The difference was significant at the .001 level, by t-test. In school B. with

39 students in the experimental condition and 38 in the control condition the

average scores were 97 23% and 95.08% respectively Here the difference is not

significant. In School A. the control students took slightly (but not significantly)

longer to learn than the experimental students In School B. there was no difference

in learning times. (The average times in School A were about 40 minutes, and in
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School B about 30 minutes.)

The Exponent and Geometry Tasks

In the experiments with exponents, students learned the three formulas: amx

an = a m + n. (amjn = amxn. ( a b )m = am x bm Q n p r o b | e m s Involving the first

formula, 32 of 36 students (89%) scored 80% or higher; on the second formula, all

36 students scored 80% or higher; on the third formula. 21 of 35 students scored

80% or higher, and all 35 scored 60% or higher.

These results were replicated in 1985, with comparisons with control subjects.

The experimental subjects scored higher than the control subjects on all three laws

of exponents (significantly higher at the .05 and .001 levels on the second and third

laws), and required only 180 minutes for learning, as compared with 270 minutes for

the control subjects. The average scores of the experimental subjects for the three

laws of exponents were 93.1, 95.4, and 90.2, and for tasks involving several of the

laws together, 88 (as compared with 73.1 for the control subjects).

The geometry task involved proving properties of triangles, parallelograms, and

their components The experiment was run in I984 in four different schools

improvements being introduced into the training materials on the basis of the

experience gained in the first two schools. The average scores in the four schools

were 76.9%. 77.9%, 89 .1% and 83.5%. respectively. In the last two schools

experimental groups had slightly higher (but not significantly higher) scores than the

control groups (89.1% versus 85.2% in School M. and 83 5% versus 83 2% in

School, N). Significantly more students acquired the skill in the experimental groups

(94.6% versus 88% in School M, and 90.6% versus 85% in School N). Moreover,

the average learning times required by the experimental groups were substantially

shorter than the control groups' (50 minutes versus 75 minutes in School M. and 50

minutes versus 70 minutes in School N).
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In a 1985 replication of the geometry experiment In one school, the average

score of the experimental group was 89%, and of the control group, 83%, a non-

significant difference at the .05 level. Both groups required the same class learning

time (50 minutes), but the control group spent an additional 20 minutes doing

homework.

Ratios and Fractions

The results in 1985 with lessons on ratios and proportions and fractions were

similar to those of the other experiments. The experimental groups performed as

well as, or slightly better than, the control groups on all tasks, and required

substantially less time to learn the tasks of manipulating fractions.

Results of Retests

In comparing different instructional methods, the relative durability of the skills

attained by the one method or the other is of the greatest importance. Retention

also bears upon the question of whether the learning was rote or meaningful, for

Katona (1940) has shown that material learned with understanding is better retained

than material learned by rote.

Retention after one year was tested for two of the tasks discussed above:

factorization and geometry. A class that learned the factorization of quadratics in

1984, with an average score of 97.2 obtained an average score of 96.0 when

retested in I985. The control class, which had an average score of 95.0 in I984.

had an average score in 1985 of 92 1 Thus retention was good for both groups

but perhaps slightly better for the experimental group

With respect to geometry, experimental and control classes that scored 89.1

and 85.2, respectively, in 1984. scored 96.3 and 86.7. respectively, in 1985 --

showing some advantage for the experimental subjects.
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All of these additional experiments further demonstrate the feasibility of teaching

students through worked-out examples and carefully designed sequences of problems.

While the differences in success between these methods and traditional methods of

instruction were generally modest in magnitude, they were positive, and they were

generally achieved with a saving -- sometimes substantial -- in time.

The geometry experiment showed the importance of designing the instructional

materials carefully. By redesigning the materials, we were able to enhance the

learning performance of the students, and in particular, to enable most of the weaker

students to acquire the ability to solve the problems.

As we pointed out earlier, our analysis of the protocols of students in the first

experiment gives us strong reason to believe that the students are learning in a

meaningful fashion, and not simply by rote. This conclusion is borne out by the high

levels of retention of the skills over one year.

Experiment With a Full Course

Within the past two years, materials have been completed for teaching, by the

learning-from-examples method, the standard curriculum in the Chinese middle schools

of two years of algebra and one of geometry; and these materials have been used,

following the method, with a Beijing middle-school class judged to be of "average"

ability In two years, most students in the class have completed the entire three-year

curriculum We will be able to say more about these results when we have analysed

tr.e scores of tnese siuaenxs on me sianaaraizec mathematics tests given TO children

all over China which our students took in June I987

Even if the evidence becomes clear that a time saving of one-third has actually

been achieved, the findings will need to be interpreted with caution. It is one thing

to conclude that children can learn from examples, and can do so efficiently. It is

quite another matter to conclude that the time saving was caused by the method of
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Instruction used.

This is especially so since other experiments in algebra instruction in Chinese

schools, conducted by Professor Zhongheng Lu and his colleagues in the Institute of

Psychology, Chinese Academy of Sciences, in collaboration with middle-school

teachers, have shown comparable savings. Professor Lu's experiments, begun in 1965

as an investigation of the effectiveness of American methods of programmed

instruction, soon took a distinctly new turn. Interrupted by the Cultural Revolution,

they were resumed about 1975, and have continued on a considerable scale since.

The methods used and the findings are reported in detail in some 121 papers

reprinted (in Chinese) in Lu (1983, 1984, 1986).

In the curriculum designed by Professor Lu, which is called "guided self-study,"

students are provided with a very complete textbook, which contains thorough

explanations of each topic, followed by examples, exercises, and tests. Students

study the textbook and work the problems during the class period, with a minimum

of lecturing from the classroom teacher.

Thus, Professor Lu's approach is different in important respects from ours.

What the two methods have in common is that the primary responsibility for learning

is placed on the student, who spends his time actively reading and solving problems,

and not passively, attending to an instructor. Of course, there is also the possibility

that the effectiveness of both methods stems from a "Hawthorne effect," the students

being motivated by the knowledge that they are the subjects of special attention and

are using novel methods of learning.

All of these possibilities are quite compatible There is ample evidence that

students learn only when they are attending to the task. The motivation for

appropriate attention may come from many sources. One of the important ones.

evidently, is the availability of materials that allow students to adopt active strategies
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in their learning, so that a maximum of time is devoted to relevant activities. We

make no claim that learning from examples is the sole route to this goal, although

the evidence thus far suggests that it is a very effective one.

Conclusions

Our experiments provide substantial evidence for the possibility of teaching a

number of different skills in mathematics by presenting students with carefully chosen

sequences of worked-out examples and problems, and without lectures or other direct

instruction. In learning by these methods, the students were at least as successful

as. and sometimes more successful than, students learning by conventional methods,

and in most cases they learned in a shorter time.

Although the students were usually able to state the rules they had learned,

they had not simply memorized these rules, for they were able to recognize when

they were applicable to a problem and then to apply them. Moreover, protocol

evidence shows that they understood the semantic meanings of the rules in terms of

their derivation from the fundamental definition of factorization. Hence we may say

that the learning that took place was learning with understanding and not merely rote

learning.

Materials for teaching three years of middle-school mathematics by the leaming-

from-examples method have now been developed, and have been tested, thus far

very successfully, with a middle-school class in Beijing. As next steps in the study

of learning from examples and its practical applicability to school instruction

experiments will need to be carried out on a wider range of school subjects, and

further tests will need to be made of retention and transfer of the skills acquired.

Since the processes of learning from examples are well adapted to computer

aided instruction, the method has considerable potential for wide use. Whether
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computers are used, or simple paper-and-pencil materials, the methods described

here give promise of freeing considerable teacher time for working with individual

students who are having special difficulties.
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Appendix: Materials for Experiment 1

Production System

As a basis for preparing the training materials, a detailed analysis was made of

the factorization task, and a production system was constructed that was powerful

enough to perform the task successfully. This production system is assumed to

represent (approximately) the set of skills that students must acquire in order to do

the task. It served as a guide to the design of the teaching materials. It consists of

seven productions:

1. If the goal is to factor an expression like (X2 + aX + b)

X2 is factored as X.X.

2. If the goal is to factor a quadratic expression

find all pairs of positive integers whose product equals the
absolute value of the constant term of the expression.

3. If the constant term and the coefficient of the linear term are both
positive

select a pair of factors whose sum equals the absolute
value of

the linear term's coefficient.

4. If the constant term is positive and the coefficient of the linear term
negative

select a pair of factors whose sum is equal to the absolute
value

of the linear term s coefficient, and take their negatives.

5. If the constant term is negative and the coefficient of the linear term
positive

select a pair of factors whose difference is equal to the
linear

term's coefficient, and set the smaller factor negative.

6. If both the constant term and the coefficient of the linear term are
negative
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select a pair of factors whose difference is equal to the
linear

term's coefficient, and set the larger factor negative.

7. If [c,d} is the pair of factors that has been selected
-—>

write X2 + aX + b = (X + c)(X + d).
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1. First Pretest

FILL IN THE BLANKS

l.If:

Then:

2.If:

Then:

3.If:

Then:

4.If:

Then:

Then:

6.If:

Then:

(The correct answers are shown in angle brackets,
< >. Multiple choice alternatives shown to the
students are given in parentheses, ( ).)

The goal is to factor a 3-termed quadratic polynomial,

X2 + 5X + 6, with the coefficient of X2 equal to 1,

X2 factors as <X.X>
The constant term is the <product> (product, sum, quotient)
of the <two> factors.
And the coefficient of the linear term is the <sum> (sum,
product, quotient) of these <two> factors.

The constant term is positive,

The two factors of the constant term have <the same>
(different, the same, positive, negative) signs.

The constant term is positive, and the linear term
is also positive,

The two factors of the constant term are <positive>
(different, the same, positive, negative).

The constant term is positive, the linear term is negative,

The two factors of the constant term are <negative>
(different, the same, positive, negative).

5.If: The constant term is negative, the linear term is positive

(e.g., Xz + 4X - 12),

The two factors of the constant term are <opposite> in sign,
and the positive factor is <larger> in size than the
negative one.

The constant term is negative, the linear term is negative

(e.g., X2 - 4X - 12),

The two factors of the constant term are <opposite> in sign,
and the negative factor is <larger> in SIZP than the
positive one.
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2. Review Knowledge

Subjects in both conditions studied the following materials:

FILL IN THE BLANKS
Example: 8 can be expressed as the product of the two numbers, 2x4,

and the sum of these two numbers is 6.

Problems: 8 can also be expressed as the product of two numbers, 1x8,
and the sum of these two numbers is

6 can be expressed as the product of two numbers, ,
and the sum of these two numbers is

6 can be expressed as the product of two numbers, ,
and the sum of these two numbers is

9 9
Example: In X^+5X+6, X^ is the quadratic term, 5X is thelinear term, 6 is the constant term.

Problems: In X2+8X+12, X2 is
, 12 is

In x2+13X+12, 12 is

, 5X is

, 13X is
, X2 is

USING THE RULES OF REPEATED MULTIPLICATION, WORK THE PROBLEMS BELOW:

Example: (X+2)(X+4) = X2+4X+2X+8 = X2+6X+8.

Problem: (X+3)(X+5) = X2 + 15 = Xz + 15

INVERSE PROCESS: X2 + 6X + 8 = (X + 2)(X + 4)

Xz + 6X + 8 can be expressed as the product of (X+2) and (X+4)
The components are called the factors of the quadratic.

3. Second Pretest

FACTOR THE FOLLOWING:

(1) Xz + 7X - 18 =

(2) X2 - 2X - 8 =

(3) X2 + X - 20 =

(4) X2 - 5X - 36 =

(5) X2 - 9X + 14 =
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4A. Learning from Examples

Part I

Examples: (1) X2 + 5X + 6 = (X + 2) (X + 3)

(2) X2 + 7X + 6 = (X 4- 1) (X + 6)

(3) X2 -f 8X + 12 = (X + 2) (X + 6)

(4) X2 + 7X 4- 12 = (X 4- 3) (X 4- 4)

(5) X2 + 13X 4- 12 = (X + 1) (X + 12)

Exercises: (1) X2 + 11X + 18 = ( ) ( )

(2) X2 4- 9X + 18 = ( ) ( )

(3) X2 + 19X + 18 = ( ) ( )

Part I!

Examples: (1) X2 4- 5X + 6 = (X + 2) (X 4- 3)

(2) X2 - 5X + 6 = (X - 2) (X - 3)

(3) X2 +7X 4- 6 = (X 4- 1) (X + 6)

(4) X2 - 7X + 6 = (X - 1) (X - 6)

Exercises: (1) X2 + 9X + 18 = ( ) ( )

(2) X2 - 9X + 18 = ( ) ( )

(3) X2 - 11X + 18 = ( ) ( )

(4) X2 4- 11X + 15 = ( ) ( )

Part III

Examples: (1) X2 4- 5X - 6 = (X - 1) (X + 6)

(2) X2 - 5X - 6 = (X + 1) (X - 6)

(3) X2 + X - 6 = (X - 2) (X 4- 3)

(4) X2 - X - 6 = (X + 2) (X - 3)
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Exercises: (1) X2 + 4X - 12 = ( ) ( )

(2) X2 - 4X - 12 = ( ) ( )

(3) X2 + X - 12 = ( ) ( )

(4) X2 - X - 12 = ( ) ( )

(5) X2 + 11X - 12 = ( ) ( )

(6) X2 - 11X - 12 = ( ) ( )

(7) X2 + 7X + 10 = ( ) ( )

(8) X2 - 6X + 8 = ( ) ( )

(9) X2 + 7X - 18 = ( ) ( )

(10) X2 - 2X - 8 = ( ) ( )

(11) X2 + X - 20 = ( ) ( )

(12) X2 - 5X - 36 = ( ) ( )

(13) X2 - 9X + 14 = ( ) ( )

4B. Learning by Doing

Part I

Problems: [Identical with Examples for Learning-from-Examples]
except that right-hand sides of equations are shown as:

= (X + ) (X + )]

Exercises: [Identical with Exercises for Learning-from-Examples]

Part II

Problems: [As before, except that right-hand sides are shown as:
(1) - (X 2) (X 3). (2) - (X _ 2; (X 3),
(3) = (X _ 1) (X _ 6). «4> =- (X _ 1) (X __ 6).

Exercises: [As before.]

Part

Problems: [As before, except that right-hand sides are shnvn as:
(1) = (X _ 1) (X _ 6), (2) = (X _ 1) (X _ 6),
(3) = (X 2) (X 3), (4) = (X 2) (X 3).]
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Exercises: [As before.]
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