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Abstract

The purpOM of the two studies reported here was to develop an integrated mode!

of the scientific reasoning process. Subjects were placed in a simulated scientific

discovery context by first teaching them how to use an electronic device and then asking

them to discover how a hitherto unencountered function worked. To do this task,

subjects had to formulate hypotheses based on their prior knowledge, conduct

experiments and evaluate the results of their experiments. In the first study, using 20

adult subjects, we identified two main strategies that subjects used to generate new

hypotheses. One strategy was to search memory and the other was to generalize from

the results of previous experiments. We described the former group as searching an

hypothesis space, and the latter as searching an experiment space. In a second study

with 10 adults, we investigated how subjects search the hypothesis space by instructing

them to state ail the hypotheses that they could think of prior to conducting any

experiments. Following this phase, subjects were then allowed to conduct experiments.

Subjects who could not think of the correct rule in the hypothesis generation phase

discovered the correct rule only by generalizing from the results of experiments in the

experimental phase.

Both studies provide support for the view that scientific reasoning can be

characterized as search in two problem spaces. By extending Simon and Lea's (1974)

Generalized Rule inducer, we present a general model of Scientific Discovery as Dual

Search (SDDS) that shows how search in two problem spaces (an hypothesis space and

an experiment space) shapes hypothesis generation, experimental design and the

evaluation of hypotheses. The model also shows how these processes interact with each

other. Finally, we interpret earlier findings about the psychology of scientific reasoning in

terms of the SDDS model.
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1 Two aspects of scientific discovery

The successful scientist, like the successful explorer, must master two related skills:

knowing where to look and understanding what is seen. The first skill - experimental

design - Involves the design of experimental and observational procedures; the second -

hypothesis formation - Involves the formation and evaluation of theory. Historical

analyses of scientific discoveries (e.g., Conant, 1964; Mitroff, 1974) suggest that the

interaction between experimental design and hypothesis formation is crucial to the

success of the real scientific endeavor and that both activities are influenced by the

semantics of the discovery context.

However, this interaction can be quite complex; consequently, the implicit research

strategy in most psychological studies of scientific reasoning has been to investigate

each skill in isolation and in semantically lean contexts. This strategy has yielded many

important findings about distinct stages of the scientific reasoning process, but much

remains to be learned about how the stages interact and about how the interaction is

influenced by prior knowledge. The goal of the work described in this paper is to

extend the earlier laboratory studies by investigating scientific reasoning in a context that

requires a rich interaction among the processes of hypothesis formation and experiment

design. Based upon the analysis of our subjects' behavior in this situation, we propose a

framework that integrates the processes involved in scientific reasoning, and then use it

as a basis for reinterpretation of some important issues in the area.

1.1 Laboratory studies of scientific reasoning: Two exemplars

In order to provide a background for our proposed extensions, in this Section we

summarize two of the best-known laboratory simulations of scientific reasoning. Consider

first the series of investigations stimulated by Bruner, Goodnow and Austin's (1956)

elegant work on concept learning (e.g., Bourne and Restle, 1959; Hunt, 1962; Shepard,

Hovland, and Jenkins, 1961; Whitman and Garner, 1963). The focus of this work is on

how subjects select instances from a predefined set in order to evaluate hypotheses and

how they form new hypotheses on the basis of feedback about those instances (e.g.,

Bower & Trabasso, 1964; Levine, 1966; Restle & Greeno, 1970). Instances usually vary

in terms of the values of a set of constant attributes, and the rule to be discovered is

an arbitrary combination of these values. Bruner, et al. discovered that even in this

relatively simple context, subjects use several different strategies for gathering information
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about hypotheses and they suggested that the different strategies had different levels of

"cognitive strain.' This Interaction between strategies and short-term memory demands

was fully articulated by Gregg & Simon (1967), and Greeno & Simon (1984) provide a

brief summary of much of the intervening work on concept induction.

As Bruner et al. argued, the concept-learning task is relevant to real science

because it involves two essential components of the scientific reasoning process: the

logic of experimentation and strategies for discovering regularities. Unfortunately, this

relevance played only a minor role during the next 25 years, as most investigators

studied the task for its own sake (Bourne and Dominowski, i972;Medin and Smith,

i984;Neimark and Santa, 1975). The aim of the work presented here is to return to

one of the original motivations for the Bruner work -- the laboratory study of scientific

reasoning - and to extend that paradigm along several dimensions so as to bring it

even closer to the real nature of scientific reasoning. First, instead of choosing from a

set of pre-defined "experiments" (instances), our subjects will have to design experiments

of modest complexity. Second, the mapping between experiments and hypotheses will

be non-obvious, whereas in the concept (earning task, both instances and hypotheses are

described in exactly the same language. Third, feedback from experiments will be

multivalued rather than just binary. Finally, we will use a context in which prior

knowledge and the semantics of the situation play a role in the content, form and

plausibility of initial hypotheses and in the criteria for revising hypotheses. (The

"simulated universe" tasks used by Mynatt, Doherty & Tweney [1977, 1978] include

similar extensions, although their analysis is focused on the logic of confirmation and

disconfirmation.)

The second widely-known example is the "2-4-6" rule-discovery task invented by

Wason (1960), and used to study scientific reasoning ever since (Gorman and Gorman,

1984;Mahoney and DeMonbruen, 1977;Tukey, i986;Tweney, Doherty, Worner, Pllske,

Mynat, Gross, and Arkkelln, 1980;Wason, 1962;Wetherick, 1962). Subjects are asked to

discover a rule (pre-determined by the experimenter) that will classify sets of numerical

triads, are told that "2-4-6" is an example of a triad that follows the rule, and are

instructed to generate their own triads in attempting to discover the rule. (The

experimenter's rule is typically "any increasing series," but subjects usually propose

several much more constrained and complicated hypotheses before discovering the

correct rule.) The experimenter provides yes/no feedback about instances and also tells

subjects whether or not their proposed hypotheses are correct.
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The basic finding from these and related studies is that when subjects design

experiments, they show a pervasive confirmation bias (Mynatt, Doherty, and Tweney,

1977; 1978).. They propose a single hypothesis and seek evidence that will confirm,

rather than dlsconflrm, it. Mahoney and DeMonbreun (1977) found that scientists and

non-scientists did not differ in this regard. The phenomenon is both important and

puzzling, and we shall return to it at the end of this paper. A common interpretation of

such behavior is that it reveals fundamentally inadequate scientific reasoning skills, but

Klayman and Ha (1987) provide a lucid and convincing analysis showing that this

characterization is unwarranted in most cases.

Tukey (1986) suggests that ''several philosophies of science can readily be applied"

to the interpretation of subjects' performance on the 2-4-6 task, as it captures certain

aspects of the scientific discovery situation: both instances and hypotheses can have

arbitrary complexity, and subjects create their own instances. Nevertheless, as in the

concept-learning paradigm, certain extensions would provide a closer analogy to scientific

reasoning. One would be to allow subjects to design experiments rather than generating

instances. Second, in the 2-4-6 task there is no ambiguity about when to stop: if the

subject states the correct rule, no matter what the evidential basis, the task is over. So

another positive extension would be to have subjects determine when they have

discovered the correct rule, rather than being told by the experimenter. (A recent study

by Gorman, Stafford, and Gorman, 1987, has also relaxed this constraint on the Wason

task.) Third, as Klayman and Ha (1985) point out, studies using the 2-4-6 task, in all of

their variants to date, do not address questions about the content or meaning of initial

hypotheses. As noted above in our comments about the concept learning tasks, one of

our goals is to establish a research context that enables us to address these important

aspects of scientific reasoning.

1.2 Scientific reasoning: Problem solving or concept formation?

There are two principal characterizations of the process of scientific reasoning.

One, exemplified by the Bruner and Wason tasks just cited, we call the concept-formation

view. The argument here is that much of scientific reasoning consists of forming new

concepts on the basis of experimental evidence. This view tends to dominate most of

the laboratory simulations of the scientific discovery process. The second view, which

we call the problem-solving view, is exemplified by Simon's (1977) analysis of the

discovery process. Under this view, scientific reasoning is characterized as a search
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process, similar in structure to any problem-solving task, albeit within a complex search

space.

The problem-solving view of scientific discovery has its roots in the Gestalt tradition.

For example, Wertheimer (1945) implicates search processes in his historical anecdotes

about Einstein and Gauss, and Bartlett (1958) is quite explicit in structuring his

discussion of the "thinking of the experimental scientist" in terms of search through a

set of knowledge states. Simon's contribution to the discovery-as-problem-solving view

was to demonstrate how one could go beyond the search metaphor by explaining the

discovery process in terms of an explicit theory of human problem solving (Newell, Shaw

and Simon, 1958). This basic idea has since been extended substantially by Langley

and Simon and their colleagues in their analysis of major scientific discoveries of the

last few centuries (Langley, Simon, Bradshaw, & Zytkow, 1987; Kulkarni & Simon, 1987).

Their analysis is based on historical records of practicing scientists working for months

or years on a problem, while the focus in this paper is on ordinary people in laboratory

studies of an hour's duration at most. One purpose of the present study was to devise

and execute an experimental study of scientific reasoning within the discovery-as-problem-

solving framework.

1.3 Scientific reasoning as dual search: The Generalized Rule Inducer

In the discussion thus far, we have introduced two dichotomies: one dealing with

two phases of the discovery process (hypothesis formation and experimental design), and

the other with two frameworks for understanding the psychology of these processes (the

concept-learning view and the problem-solving view). Our goal in this paper is to

replace both dichotomies with an integrated view of the discovery process. In this

section we provide an initial overview of our approach, which we will then elaborate in

subsequent sections.

At first glance, the concept-formation and problem-solving approaches appear to

tackle radically different aspects of the scientific reasoning process; yet as we will argue

throughout this paper, both traditions can be organized into a coherent theory of

scientific reasoning. The key to this integration comes from Simon and Lea's (1974)

insight that both concept learning and problem solving are information-gathering tasks

and that both employ guided search processes. Simon and Lea have shown how a

single information-processing system - called the Generalized Rule Inducer (GRI) - can
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account for performance in problem-solving tasks and a range of rule-induction tasks,

including concept attainment, sequence extrapolation, and grammar induction. The GRI

uses the same general methods for both problem-solving tasks and rule-induction tasks.

The main difference between problem-solving and rule-induction is in the problem spaces

that are used in the task. The rule-induction tasks require search in two problem

spaces: a space of rules and a space of instances. Problem-solving search, however,

takes piace in a single space: a space of rules.

The distinctive feature of rule-induction tasks is that proposed rules are never tested

directly, but only by applying them to instances, and then testing whether the application

gives the correct result. In rule induction tasks the subject selects (or is shown) an

instance and checks to see whether the instance confirms or disconfirms the rule.

Instance selection requires search of the instance space, and changing from one rule to

another requires search of the rule space. Because rule-induction requires two spaces,

the tests operate in a different space from the hypothesis (rule) generator. Simon and

Lea's analysis illustrates how information from each space may guide search in the other

space. For example, information about previously generated rules may influence the

generation of instances, and information about the classification of instances may

determine the modification of rules.

The GRI view makes it possible to characterize some further differences between

the previous research on concept formation and problem solving. Because the concept-

learning research is concerned with rules derived from well-defined instances, the rule

space is usually very simple; it consists of all possible combinations of the values and

attributes in the instance space. Even when subjects have some control over instance

selection, as in the Bruner et al. (1956) work, the full set of permissible instances is

predetermined. In problem-solving experiments, the structure of problem space is usually

much more complicated. Rather than being merely the concatenation of a set of given

features, it consists of a series of knowledge states that the subject can generate by

following a wide variety of strategies.
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1.4 Extending QRI to the scientific discovery process

Two extensions are required if we are to effect this proposed integration of the

concept-learning and problem-solving views of scientific reasoning. First, we need to

study subjects' behavior in situations that more closely resemble the scientist's

environment than the traditional laboratory tasks that initially motivated the GRI. Second,

we need to extend the GRI to accommodate the added complexity of the new situation.

1.4.1 Task elaboration

With respect to the first extension, we devised a task with a more complicated rule

space than that used in most concept-formation experiments. Specifically, we studied

the behavior of subjects who were attempting to extend their knowledge about a

moderately complex device. Adult subjects worked with a programmable, multi-

functioned, computer-controlled robot whose basic functions they had mastered previously.

(Details will be provided in Section 2.)

Our analysis focuses on their attempts to discover how a new function operates -

that is, to extend their understanding about the device. Experiment construction involves

designing an experiment (i.e., a program) and predicting the device's behavior. The

analysis phase involves a comparison between an observation of what the device actually

did and what the current hypothesis predicted it would do. Incorrect predictions lead to

a revised hypothesis and further experimentation. The cycle terminates when subjects

believe that they have discovered how to predict and control the behavior of the device.

This task allowed us to observe the interplay between the hypothesis-formation and

experimental-design phases of the discovery process.

Shrager (1985) showed that when people encounter a novel device, they bring to

bear a wide variety of (often inappropriate) prior knowledge in formulating their initial

hypotheses about how the device operates. Given the influential role of prior knowledge

on initial hypotheses, the literature on analogical problem solving is relevant to our focus

on scientific reasoning. Holland, Holyoak, Nisbett, and Thagard (1986) summarize much

of this recent work. They suggest that the underlying mechanism for retrieving

appropriate prior knowledge involves the summation of activation propagated from the

elements of the current problem to related elements in memory. Although there have

been a few studies addressing the issues of what triggers or evokes the appropriate

prior knowledge, the process is only partially understood (cf. Gick & Holyoak, 1983;

Gentner, 1983; Ross, 1984).
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1.4.2 Theoretical extension

With respect to the second, theoretical, extension of GRI, we need to augment the

GRI processea In two respects. The mapping we propose is between GRI's two spaces

(rules and instances) and the corresponding hypothesis space and experiment space

involved in the discovery process. Thus, we propose that scientific reasoning can be

conceptualized as a search through two problem spaces: an hypothesis space and an

experiment space. This means that, first, we need to account for the identification of

relevant attributes, for, unlike the conventional studies, our situation does not present the

subject with a highly constrained attribute space for hypotheses. Second, we need a

more complex treatment of the instance generator, because in our context it consists of

an experiment, its predicted outcome, and the observation of the actual outcome. The

details of these extensions will be provided in Section 5.

We would expect subjects who are attempting to discover some new function on a

partially-understood device to propose the most plausible and "obvious" hypotheses first

and to make a sustained effort to prove such initial hypotheses true. Thus it would be

useful to have some characterization of subjects' initial knowledge about the device and

about potentially relevant general knowledge. The importance of prior knowledge leads

us to the final issue in this introduction.

1.5 The inseparability of knowiedge and process

Most laboratory studies of scientific reasoning attempt to minimize -- at every stage

of the discovery process -- the mutual influence of strategy and knowledge for the sake

of experimental rigor. That is, one class of investigations deals with the strategies used

in solving "scientific" problems, such as designing experiments (Case, i974;Siegier and

Liebert, 1975), or formulating hypotheses (Kuhn and Phelps, i982;Wason, 1960), or

evaluating evidence (Robinson and Hastie, 1985;Karmiloff-Smith and Inheider, 1974). The

other class dealt with people's knowledge about the natural world: pendulums, balance

scales, falling bodies, etc. (Kaiser, Proffitt, and McCloskey, i985;McCloskey, 1983;Stavy,

Strauss, Orpaz. and Carmi, 1982). But the separation is highly artificial. In any real

scientific reasoning context, substantive knowledge and the form of investigative strategy

are mutually influential, and the scientist's knowledge about the topic influences the initial

hypotheses, the types of experiments conducted, and the way results are analyzed

(O'Brien, Costa and Overton, 1986).
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In contrast, our goal is to determine how existing knowledge structures determine

the initial hypotheses, experiments, and data analysis in a discovery task and to

elucidate the process whereby relevant constellations of prior knowledge influence both

the formation of hypotheses and the design of experiments. We will focus on how

hypotheses are generated by search for appropriate frames and on how experiments are

designed either to fill in unspecified variables in those frames or to explore the

permissible range of variables. Furthermore, we explore the process whereby

experiments lead to the development of more knowledge, which in turn leads to the

development of new hypotheses and different strategies of investigation and analysis.

2 Simulating aspects of the discovery process

In this section, we describe the device about which our subjects have to reason,

some earlier research using the device, and our procedure for studying scientific

reasoning in the laboratory.

2.1 BigTrak

The device we use is a computer-controlled robot tank (called "BigTrak") that is

programmed using a LOGO-like language, it is a six-wheeled, battery-powered vehicle,

approximately 30 cm long, 20 cm wide and 15 cm high. Interaction takes place via a

keypad on the top of the device, which is illustrated in Figure 1. In order to get

BigTrak to behave, the user clears the memory with the CLR key and then enters a

series of up to sixteen instructions, each consisting of a function key (the command) and

a 1- or 2-digit number (the argument), terminated by the GO key. BigTrak then

executes the program by moving around on the floor.

Insert Figure 1 about here

The effect of the argument depends on which command it follows. For forward (t)

and backward (A) motion, each unit corresponds to approximately one foot. For left (<-)

and right (-») turns, the unit is a 6° rotation (corresponding to one minute on a clock

face. Thus, a 90° turn is 15 "minutes.") The HOLD unit is a delay (or pause) of 0.1

sec, and the FIRE unit is one auditory event: the firing of the cannon (indicated by

appropriate sound and light effects). The other keys shown in Figure 1 are CLS, CK,

and RPT. CLS Clears the Last Step (i.e., the most recently entered instruction), and CK
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ChecKs the most recently entered instruction by executing it in isolation. Using CK does

not affect the contents of memory. We will describe RPT later. The GO, CLR, CLS,

and CK commands do not take an argument. To illustrate, one might press the

following series of keys:

CLR T 5 « - 7 T 3 - > 1 5 HOLD 50 FIRE 2 I 8 GO

and BigTrak would do the following: move forward five feet, rotate counterclockwise 42

degrees, move forward 3 feet, rotate clockwise 90 degrees, pause for 5 seconds, fire

twice, and backup eight feet.

Certain combinations of keystrokes (e.g., a third numerical digit or two motion

commands without an intervening numerical argument) are not permitted by the syntax of

the programming language. With each syntactically legal key-stroke, BigTrak emits an

immediate, confirmatory beep. Syntactically illegal key-strokes elicit no response, and

they are not entered into program memory.

2.2 Previous work with BigTrak

In our initial investigations using BigTrak, subjects were given no preliminary

instruction; they were simply handed BigTrak and told to "figure out" how it worked.

Based on analysis of subjects' protocols in this "instructionless learning" situation,

Shrager and Klahr (1986) sketched a framework for characterizing the learning process,

and Shrager (1985) constructed a computer simulation model of how initial hypotheses

are formed and refined. The model attempts to form initial hypotheses through a

process that Shrager calls "view application," in which previously stored knowledge

structures are mapped to specific BigTrak elements. For example, if the "calculator

view" is activated, then a mapping is made between BigTrak's keys and calculator keys,

and the associated knowledge that calculators have memories is used to hypothesize that

BigTrak has one also. Shrager's model focused almost entirely on this first phase of

the discovery process. Our goal in this study was to establish a procedure that would

enable us to track subjects' behavior through the entire cyclical sequence of stages that

comprise the discovery process.



Scientific reasoning 12

3 Study 1: Discovering a new function

In this study1, we modified the original Shrager and Klahr procedure in two ways.

First, we established a common knowledge base about the device for all subjects, prior

to the discovery phase. Second, we limited the scope of the subject's task to

discovering how a single BigTrak function worked. We instructed subjects about how to

use all function keys and special keys, except for RPT. Subjects learned about the

syntax and semantics of the keys and about how to combine commands into a program

to accomplish some goal. All subjects were trained to criterion on the keys described

earlier and given a fixed set of tasks to accomplish.

Once the training phase was completed, we entered the instructionless phase.

Subjects were told that there is a "repeat" key, that it takes a numerical parameter,

and that there can be only one RPT in a program. Then they were asked to discover

how RPT works by proposing hypotheses and evaluating them. We suggest that before

going further, the reader do the following: formulate an initial hypothesis about how

RPT work, and then construct a BigTrak program to evaluate the hypothesis. This will

provide a subjective impression of the task facing the subject.

3.1 The influence of prior Knowledge

One purpose of the instruction phase was to familiarize subjects with the device and

the experimental context so that they could function comfortably in the discovery phase.

A more important goal of the instruction phase was to establish a realistic but tractable

analog to the real scientific context. Scientific work goes on in the context of previously

developed theories that provide a background both for the generation of hypotheses and

the design of experiments. Analogously, by the time our subjects encounter the RPT

key, they have various models about BigTrak's functioning as well as general knowledge

about what "repeat" means. In the BigTrak context, three categories of prior knowledge

may influence subjects' hypotheses about how RPT works.

1. Linguistic knowledge about the meaning of "repeat." Subjects know that

repeating something means doing it again and that various linguistic devices

We use the term "study" here to distinguish our procedures from our subjects' "experiments" with
BigTrak.
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are needed to determine both what is to be repeated and how many times

the repetition is to occur. There is some ambiguity about whether the

number of repeats includes or excludes the initial execution or occurrence

(i.e., does "he repeated it twice" mean two or three utterances of the same

sentence?).

2. Programming knowledge about iteration. BigTrak is a computer-controlled

device, and subjects with some programming experience may draw on

knowledge about different kinds of iteration constructs from familiar

programming languages. Typically, N plays the role of determining the

number of repetitions, while the scope is determined by syntactic devices.

3. Specific knowledge about BigTrak. Based on what they learn during the

training phase, subjects know that there are two types of keys: regular

command keys that correspond to specific observable actions and take

numerical arguments (T, ->, etc), and special keys that take no argument

(CLR, GO, etc.). For all command keys, the numerical argument corresponds

to the number of repetitions of a unit event (moving a foot, turning a six-

degree unit, firing the cannon once, etc.) Although all command keys have

an eventual observable consequence, they do not have an immediate action.

Two of the special keys (CK and GO) do have immediate observable

consequences. The former executes the most recently entered instruction

and the latter executes the entire program. Two other special keys (CLR

and CLS) change an invisible internal state of the device, but cause no

immediately observable action.

We predicted that subjects would have difficulty discovering the correct hypothesis

without extensive experimentation because the different knowledge sources suggest

misleading and conflicting analogies. In most programming conventions, the eiement(s)

to be repeated follow the repeat indicator, the scope is determined by syntax, and the

number of repetitions is controlled by a variable. On the other hand, a common

linguistic form for repeat implicitly sets the number of repetitions to a single one and the

scope to an immediately preceding entity ("could you repeat that?").

Even the specific experience with other BigTrak commands provides contradictory
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clues to RPT's precise function. One potential conflict concerns the cues for

classification of the type of command. RPT is "regular* in that it takes a parameter

and does not cause any immediate action, and yet unlike any other regular key, it

corresponds to no particular behavior. Another potential conflict concerns the meaning

of the parameter. The subject has to determine whether N corresponds to what is to

be repeated or to how many times it is to be repeated. Finally, prior knowledge about

special keys may leave subjects uncertain about the domain over which the repeat will

occur. For the other special keys the domain is either the entire program (CLR and

GO) or the single previous step (CK and CLS), but the domain of RPT remains to be

discovered.

3.2 Procedure

Twenty adult subjects participated. They were Carnegie Mellon undergraduates

participating in the experiment for course credit. All subjects had prior programming

experience in at least one language.

The study consisted of three phases. First, subjects were given instruction and

practice in how to generate a good verbai protocol. Next, the subjects learned how to

use the BigTrak. The experimenter read the manual to the subject and asked the

subject to write specified programs that demonstrated how the BigTrak works. At the

end of this second phase, the subject was asked to write a moderately complex

program. Ail subjects mastered the device within about 20 minutes.

The third -- and focal - phase began when the experimenter asked the subject to

find out how the repeat key works. Subjects were asked to speak aloud, to say what

they were thinking and what keys they were pressing. All subject behavior during this

phase, including all key-strokes, was videotaped. At the outset of this phase, subjects

had to state their first hypothesis about how RPT worked before using it in any

programs. When subjects claimed that they were absolutely certain how the repeat key

worked, or when 45 minutes had elapsed, the phase was terminated.

The experimenter interacted with the subject under the following conditions: If the

subject was pressing buttons without talking, the experimenter could ask what the subject

was thinking. If the subject forgot to bring the BigTrak back to the starting position, the

experimenter would ask the subject to do so. Finally, if the subject tested the same



Scientific reasoning 15

incorrect hypotheses with the same type of program more than 3 consecutive times, the

experimenter would suggest writing "a different kind o f program.

3.3 Protocol encoding

In this section, we give a brief overview of how we analyzed the protocols. (Details

are available upon request.) The video tapes were transcribed into computer text files

that contained all verbalizations, timing information, and all key presses. Individual

sessions were segmented into episodes by a program that searched for critical delimiters

(CLR, CLS, CK, RPT, and GO) and computed the extent to which BigTrak's behavior

would be consistent with a set of alternative hypotheses (to be described in Section

3.4.2). Explicit statements about how the subject thought the RPT key might work were

coded as hypotheses. Statements of what might happen once the QO had been

pressed were coded as predictions. Comments about the behavior of the device once

the program had been executed were coded as observations.

To illustrate, we will give an example of the encoding of an entire protocol. (The

listing, shown in Table 1, is one of our shortest, because it was generated by a subject

who very rapidly discovered how RPT works.) At the outset, the subject (ML) forms the

hypothesis that RPT N will repeat the entire program N times (003-004). The prediction

associated with the first "experiment" is that BigTrak will go forward 6 units (010-011).

The prediction is consistent with the current hypothesis, but BigTrak does not behave as

expected: it goes forward only 4 units, and the subject comments on the possibility of

a failed prediction (013). This leads him to revise his hypothesis: RPT N repeats only

the last step (019). At this point, we do not have sufficient information to determine

whether ML thinks there will be one or N repetitions of the last step, and his next

experiment (021) does not discriminate between the two possibilities. (We call this kind

of hypothesis "partially specified/ because of the ambiguity. In contrast, the initial

hypothesis stated earlier (003-004) is "fully specified.") However, his subsequent

comments (024-025) clarify the issue. The experiment at (021) produces results

consistent with the hypothesis that there will be N repetitions (BigTrak goes forward 2

units and turns left 60 units), and ML explicitly notes the confirming behavior (022). But

the next experiment (026) disconfirms the hypothesis. Although he makes no explicit

prediction, we infer from previous statements (023-025) that ML expected BigTrak to go

forward 2 and turn left 120. Instead, it executes the entire T 2 «- 30 sequence twice.

ML finds this "strange" (028), and he repeats the experiment.
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At this point, based on the results of only four distinct experiments, ML begins to

formulate and verbalize the correct hypothesis - that RPT N causes BigTrak to execute

one repetition of the N instructions preceding the RPT (030-034) -- and he even correctly

articulates the special case where N exceeds the program length, in which case the

entire program is repeated once (035-037). ML then does a series of experiments

where he only varies N in order to be sure he is correct (038-046), and then he

explores the issue of the order of execution of the repeated segment.

In addition to encoding the verbalizations, we classified the experiments according to

their length (X), defined as the number of instructions prior to the RPT, and the value of

N in RPT N. The eleven experiments in ML's protocol are of four general types,

defined by the relation between N and X: N = 1 (14, 21, 54); X < N (12, 26, 29); X

= N (46, 66); X > N, N * 1 (40, 43, 63). In Section 3.4.3, we will explain why the

first three of these types of experiments produce results that are uninformatlve, at best,

and misleading, at worst, while the latter type are highly informative.

Insert Tabie 1 about here

3.4 Aggregate results

In this section, we present a coarse-grained summary of the data. First (Section

3.4.1), we provide descriptive statistics about the major categories of scientific reasoning:

hypotheses, experiments, and reaction to experimental outcomes. This analysis will show

that although our subjects are generally successful at this task, their behavior diverges

widely from any normative model of scientific reasoning. Then we turn to the specific

content of these categories - that is, to the particular hypotheses and experiments that

are created during the discovery process. In Section 3.4.2, we describe the most

commonly proposed hypotheses about how RPT works and introduce the hypothesis

space, a formal characterization of these hypotheses. We conciude the aggregate

analysis by shifting our focus from generating and revising hypotheses to designing

experiments. We summarize the key dimensions of subjects' experiments (Section 3.4.3)

and introduce the notion of the experiment space. In Section 3.5, we describe different

strategies used by subjects to search both the hypothesis and the experiment space,

and, in Section 5, we describe a formal model of the process.
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3.4.1 Overall performance

Nineteen of the 20 subjects discovered how the RPT key works within the allotted

45 minutes. The mean time to solution (i.e., when the correct rule was finally stated)

was 19.8 minutes (s.d. • 9.6 min). In the process of discovering how RPT worked,

subjects generated, on average, 18.2 programs (s.d. = 11.5).

Of the 364 programs run by the 20 subjects, 304 were experiments: that is, they

included a RPT. Another 51 programs were control trials, in which the subject wrote a

program without a RPT, ran the program, then added RPT, and ran the program again.

We label the initial program of the pair - as the one that does not include a RPT -- as

the control trial. Another 7 programs we label as calibration trials: the subject attempted

to determine (or remember) what physical unit is associated with N for a specific

command (e.g., how far is T 1). Only 2 programs that did not contain a RPT were

unclassifiable.

We define a "common hypothesis'' as a fully-specified hypothesis that was proposed

by at least two different subjects. Across all subjects, there were 8 distinct common

hypotheses. Protocols were encoded in terms of the fully-specified hypotheses listed in

Table 2. Subjects did not always express their hypotheses in exactly this form, but

there was usually little ambiguity about what the current hypothesis was. We coded

each experiment in terms of the hypothesis held by the subject at the time of the

experiment, and Table 2 shows the proportion of all experiments that were run in Study

1 while an hypothesis was held.2 (The final two columns in Table 2 will be described

in Section 4.2.)

Insert Table 2 about here

Subjects proposed, on average, 4.6 (s.d. = 1.3) different hypotheses (including the

correct one). Fifty-five percent of the experiments were conducted under one of the

eight common hypotheses. The partially-specified hypotheses, which account for 3% of

the experiments, are defined as those in which only some of the attributes of the

common hypotheses were stated by the subject. (E.g., "It will repeat it N times.") An

As noted earlier, MS1 in Table 2 is the way that BlgTrak actually operates.
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idiosyncratic hypothesis is defined as one that was generated by only one subject (e.g.,

"The number calls a little pre-stored program and runs it off."). Such hypotheses are

not listed separately In Table 2. For 28% of the experiments, there were no stated

hypotheses. For some experiments classified in the "no hypothesis" category, subjects

may have actually had an hypothesis, but failed to state it; however, for reasons to be

discussed in Section 3.5, we believe that for most of these cases, subjects did, in fact,

conduct experiments without an hypothesis in mind. We will aiso offer an explanation

for partial and idiosyncratic hypotheses.

3.4.2 The hypothesis space

There is no limit to either the number of possible attributes or the number of

hypotheses that can be formulated from such attributes. Despite this potential for vast

variation, the eight common hypotheses - which account for over half of the experiments

- deal with only four attributes. We can characterize the common hypotheses shown in

Table 2 in terms of these key attributes: The role of N, the type of element to be

repeated, the boundaries of the repeated element, and the number of repetitions. The

resulting hypothesis space is shown in Table 3, together with an abstract test program

and an indication (in the rightmost column) of how BigTrak would execute the test

program, if it operated according to the hypothesis in question.

Insert Table 3 about here

The hypothesis space can also be represented in terms of "frames" (cf. Minsky,

1975). The basic frame for discovering how RPT works is depicted at the top of Figure

2. It consists of four slots, corresponding to the four attributes listed above: n-role,

unit of repetition, number-of-repetitions, and boundaries-of-segment. A fully-instantiated

frame corresponds to a fully-specified hypothesis, several of which are shown in Figure

2. There are two principle subsidary frames for RPT, N-role:counter and N-role:selector.

Within each of these frames, hypotheses differing along only a single attribute are shown

with arrows between them. All other pairs of hypotheses differ by more than one

attribute. Note that the hypotheses are clustered according to the N-role frame in which

they fall. No arrows appear between hypotheses in one group and the other because a

change in N-role requires a simultaneous change in several attributes. This is because

the values of some attributes are linked to the values of others. For example, if N-role

is counter, the number-of-repetitions is /V, whereas, if N-role is selector, then number-of-

repetitions is 1.
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Insert Figure 2 about here

This frame representation is a convenient way of capturing a number of aspects of

the scientific reasoning process. First, it characterizes the relative importance that

subjects give to different aspects of an hypothesis. Once a particular frame is

constructed, the task becomes one of filling in or verifying "slots" in that frame. The

current frame will determine the relevant attributes. That is, the choice of a particular

role for N (e.g., N-role:counfeA), also determines what slots remain to be filled (e.g.,

number-of-repetitions: /V), and it constrains the focus of experimentation.

Furthermore, frames enable us to represent the differential importance of different

attributes, as the "frame type" becomes the most important attribute, and its "slots"

become subordinate attributes. This is consistent with Klayman & Ha's (1985) suggestion

that "some features of a rule are naturally more salient', i.e., more prone to occur to a

hypothesis-tester as something to be considered" (p. 11). In our context, a frame is

constructed according to those features of prior knowledge that are most strongly

activated, such as knowledge about the device or linguistic knowledge about "repeat."

When a frame is constructed, slot values are set to their default values. For example,

having selected the N-role:coumer frame, values for number-of-repetitions, unit and

boundary might be chosen so as to produce HC1 (see Figure 2).

Recall that subjects were asked to state their hypothesis about RPT before actually

using it in an experiment. This enabled us to determine what frame is constructed by

prior knowledge. In Section 3.1, we discussed the possibility that linguistic knowledge of

RPT, programming knowledge about iteration, and specific knowledge about BigTrak

should conspire to produce Inappropriate analogies to RPT. This was indeed the case;

no subject started off with the correct rule. Seventeen of the 20 subjects started with

the N-role:counter frame. That is, subjects initially assumed that the role of N is to

specify the number of repetitions, and their initial hypotheses differed only in whether the

repeated unit was the entire program or the single instruction preceding RPT (HC1 and

HC2). This suggests that subjects drew their initial hypotheses by analogy from the

regular command keys, all of which determine the number of repetitions of a unit.

Having proposed their initial hypotheses, subjects then begin to revise them on the



Scientific reasoning 20

basis of experimental evidence. Subsequent hypotheses are systematically related to

initial hypotheses. By representing knowledge in terms of frames we can specify the

relation among subsequent hypotheses. Of the 55% of all experiments that were

conducted with a fully specified hypothesis, nearly two-thirds (.36/55) were conducted

with N-role:counfer. As shown in Table 2, these experiments dealt with HC1, HC2, and

HC3, which assign N the role of counter; another 10% dealt wrth HN1 and HN2, which

assign it no role at all. When subjects were exploring a particular frame, changes in

hypotheses usually differed only in the value of a single attribute. (Indicated by

connecting arrows in Figure 2). For example, if subjects were using the N-role:counfer

frame, changing the unit of repetition from program to step would correspond to a

change from HC1 to HC2, or changing the bounds from prior to subsequent would

produce HC3 as the hypothesis. When subjects switch from seeing N-role as counter to

seeing it as a selector, there is a change in the values of the N-role slot, the unit-of-

repetition slot, the number-of-repetitions slot, and the bounds slot. Thus, whenever there

is a shift from one frame to the other, at least three slots must change value

simultaneously. Fifteen of the subjects make only one frame change, and four of the

remaining five make 3 or more frame changes. This suggests that subjects are

following very different strategies for searching the hypothesis space. We will return to

this issue in Section 3.5.

By abstracting over the content of hypotheses, we can analyze the logic of

confirmation and disconfirmation. If subjects responded according to the classical norms

of the scientific method, they would reject disconfirmed hypotheses and retain confirmed

ones (cf. Bower & Trabasso, 1964; Popper, 1959). The first row of Table 4 shows the

effects of all 2203 experimental outcomes on subjects' hypothesis-retention behavior. If

subjects were perfectly rational, there would be no cases of rejection following

confirmation or retention following disconfirmation. Instead, in 25% (21/84) of the

instances where the experimental outcome confirms the current hypothesis, subjects

change hypotheses, and in over half (76/136) of the disconfirming instances, they retain

the disconfirmed hypothesis. In other words, for the average subject, out of 11

experimental outcomes, there are approximately 4 cases in which a disconfirmed

hypothesis is retained, and 1 case in which a confirmed hypothesis is abandoned. This

3
Recall that about 28% of all 304 experiments were performed without a stated hypothesis. They are

excluded from this analysis.
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is not to say that subjects are entirely insensitive to confirmation/dlsconffrmatlon

Information, for their responses are far from random (X* • 8.16, p < .005).

Nevertheless, they show severe departures from the purported canons of good science.

These departures have been reported by other investigators, and we will return to this

issue in Section 6.

Insert Table 4 about here

3.4.3 The experiment space

Subjects test their hypotheses by writing programs that include RPT and observing

BigTrak's behavior. The program thus becomes the experiment. But it is not

immediately obvious what constitutes a "good" or "informative" experiment. In

attempting to construct experiments, subjects are faced with a problem-solving task that

parallels their effort to discover the correct hypotheses, except that in this case search

is not in a space of hypotheses, but in a space of experiments. Several

characterizations of this space are possible: here we describe two extreme forms.

First, consider the space of all "distinct" programs. How large is it? There are

six different commands, and programs can have up to fifteen instructions preceding the

RPT. This yields nearly 500 billion (615) distinct programs from which subjects can

choose, even if we ignore different values of N for each command. Making the more

realistic assumption that subjects will tend to limit their experiments to programs having

3 or 4 instructions yields a sharply reduced space of between two hundred and thirteen

hundred (63 to 64) distinct experiments. If we add the additional constraint that (in order

to avoid ambiguity) no command should appear more than once in a program, then

there are between 120 and 360 distinct experiments that could be run.

A much more tractable experiment space is one that abstracts over the specific

content of programs and retains only the values of N and A, the length of the program

preceding the RPT. This characterization is based on the observation that other

potentially relevant features of the program - such as the specific commands in the

program, their sequence, or the value of their numerical argument - tend to play only

an indirect role in the informativeness of the experiments. That is, the importance of

specific instructions is related only to the observability of their independent effects, rather

than to RPT. For example, for all of the common hypotheses, [ T 2 -> 15 FIRE 1] is

a better test sequence than ( T 1 T 1 t 1 t 1).
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Within the N - X space, we identify six distinct regions according to the relative

value of N and X and their limiting values. They are depicted in Figure 3, together with

illustrative programs. At the bottom of the figure, we indicate which of the common

hypotheses would be confirmed by experiments in each region. Here we define the

regions and indicate the general consequences of running experiments in each.

Insert Figure 3 about here

• Region I. One-step programs with N = 1 or 2. Although an incrementalist

strategy would suggest that this is a good starting place for exploring the

experiment space, such experiments are totally undiscriminating: as shown in

Figure 3, they produce behavior consistent with all but HC3 in Table 2.

Furthermore, the ambiguous distinction between "repeat once" and "repeat

twice/' mentioned earlier, is exacerbated with a one-step program. Subjects

tend not to expect a difference in performance in this case, and BigTrak

does not yield one.

• Region II. Multi-step programs with N»1 . Experiments in this region are

consistent with hypotheses of the form "It repeats the previous step," such

as HC2 and HN2. They rule out hypotheses that the entire program is

repeated once (HN1) or N times (HC1).

• Region ill. Programs with at least three instructions and a value of N less

than X and greater than 1. As long as no two adjacent instructions are

identical, programs in this region are consistent only with HS1 (the correct

hypothesis). For example, the program [ T 2 -* 15 FIRE 4 «- 30 RPT 3) is

inconsistent with every common hypothesis except HS1.

• Region IV. Here, X » N. In addition to HS1, these experiments are

consistent with hypotheses that RPT causes a repetition of the entire program

(HN1), as well as with HS2 (Repeat first N steps once).

• Region V. In this region, N is greater than X. In this situation, BigTrak

effectively sets N equal to X, so experiments in this region tend to support

' the hypothesis that N is irrelevant and that HN1 is the correct hypothesis.
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• Region VI. Experiments in this region have one-instruction programs with

values of N greater than 2. This region is similar to Region V and also

serves as the testing ground for hypotheses that N corresponds to the

number of repetitions (HC1 - HC3). These hypotheses are disconfirmed In

this region, but some subjects perseverate here nevertheless.

Other formulations are possible, but we will use the N - X space in our analysis. We

do not claim that subjects have this elaborated representation of the experiment space.

Instead, it enables us to classify experiments according to the kinds of conclusions that

they support.

3.5 Strategic variation in scientific discovery: Theorists and Experimenters

There is abundant evidence that leads us to expect strategic variation in problem-

solving - ranging from Bruner at al.'s discovery of different strategies in the concept-

learning task, to more recent work on strategic differences in chess, puzzles and physics

problems (Chase and Simon, 1973;Klahr and Robinson, i981;Larkin, McDermott, Simon

and Simon, i980;Simon, 1975), and even to such apparentJy straightforward domains as

single digit addition (Siegier, 1987). It is not surprising then that analysis of our subjects'

protocols yielded two distinct experimental strategies.

As noted earlier, subjects started with the wrong general frame. Consequently, their

early efforts were devoted to attempting to refine the details of this incorrect frame. The

most significant representational change occurred when N-role was switched from counter

to selector and a new frame was constructed. Once subjects made this change, they

quickly discovered how the RPT key works. How did they do this? Subjects were

classified as using one of two different strategies according to how they switched from

the N-role: counter frame to the N-role:se/ecfor frame. If subjects induced the correct

frame from the result of an experiment in region III of the experiment space, they were

classified as experiment-space searchers. For convenience, we will refer to them as

"Experimenters." These subjects induced the correct frame by searching the experiment

space. Thirteen subjects were classified as Experimenters. The remaining 7 subjects

discovered the correct frame not by searching the experiment space, but instead by

searching the hypothesis space for an appropriate frame. We call the subjects in this

group "Theorists/ Theorists did not have to conduct an experiment in region III of the

experiment space to induce the correct frame. There were other differences among the
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two groups, but an experiment in region III immediately prior to switching frames was

the operational basis for classification.

3.5.1 Theorists: General strategy

The strategy used by the Theorists was to construct an initial frame, N-role: counter,

and then to conduct experiments that test the values of the frame. When they had

gathered enough evidence to reject an hypothesis, Theorists switched to a new value of

a slot in the frame. For example, a subject might switch from saying that the prior

step is repeated N times to saying that the prior program is repeated N times. When a

new hypothesis was proposed, it was always in the same frame, and it usually involved

a change in only one attribute.

For Theorists, construction of a new frame was not proceeded by an experiment in

region III, nor was it preceeded by a series of experiments where no hypothesis had

been stated. Theorists switched frames by searching memory for information that

enabled them to construct a new frame, rather than by further experimentation. Knowing

that sometimes the previous step and sometimes the previous program was repeated, the

Theorists could infer that the unit of repetition was variable and that this ruled out all

hypotheses in the N-role: counter frame - these hypotheses all require a fixed unit of

repetition. This enabled Theorists to constrain their search for an N-role that permits a

variable unit of repetition. As will be shown in Study 2, subjects can construct an

N-role:selector frame without further experimentation. Following memory search, Theorists

constructed the N-role: selector frame, and proposed one of the hypotheses within it.

They usually selected the correct one, but if they did not, they soon discovered it by

changing one attribute of the frame as soon as their initial N-role: selector hypothesis was

disproved.

3.5.2 Experimenters: General strategy

Subjects in the Experimenter group went through two major phases. During the

first phase, they explicitly stated the hypothesis under consideration, and conducted

experiments to evaluate it. In contrast, during the second phase, they conducted many

experiments without any explicit hypotheses. Experimenters used a variety of initial

approaches. Some proposed new hypotheses by abstracting from the result of a prior

experiment, and they proposed many hypotheses. These were the subjects, described in

Section 3.4.2, who made more than a single frame change; 4 of them made 3 or more
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such changes. Others stuck doggedly to the same hypotheses, abandoning them only

after much experimentation.

The second phase was an exploration of the experiment space. This can be

inferred from the number of experiments conducted without explicit statement of an

hypothesis: prior to the discovery of how the repeat works, the Experimenters conducted,

on average, 6 experiments without statement of an hypothesis. Furthermore, these

experiments were usually accompanied by statements about what would happen if N or

X were changed. By pursuing this approach, the Experimenters eventually conducted an

experiment in region III of the experiment space. As described earlier, experiments in

this region rule out all the commmon hypotheses and are consistent only with HS1.

When the subjects conducted an experiment in this region, they noticed that the last N

steps were repeated and proposed HS1 - the correct rule.

3.5.3 Performance differences

While both groups started off with similar strategies - using hypotheses to guide

search in the experiment space - they diverged in the way they searched for new

hypotheses once the initial hypotheses were abandoned: one group searching the

hypothesis space for a new hypothesis, and the other exploring the experiment space to

see if they could induce some regularities from experimental outcomes. The

consequences of these two approaches show up in a few key performance measures, as

shown in Table 5. T-tests were conducted on the seven means in Table 5. Following

the procedure suggested by Kirk (1968), the over-all level of significance was set at .05;

each individual comparison had to be significant at p < .006 to be regarded as

significant at the over-all p < .05 level. As Table 5 shows, the Theorists took less time

to discover how the HPT key works than the Experimenters; /(18) = 3.97 P < .0009.

The Theorists also conducted half as many experiments as the Experimenters; /(18) «

3.09 p < .006. There was no significant difference between the two groups in terms of

the number of experiments that were conducted under an explicitly stated hypothesis;

/(18) = 1.63 p < .12. However, the Experimenters conducted significantly more

experiments in which an hypothesis was not explicitly stated; J(18) » 3.70 p < .002.

There were no differences between the two groups in the number of different hypotheses

stated; /(18) « 1.83 p < .08, nor in the number of hypothesis switches; f(18) * 1.93 p

< .07. Thus, the major difference between the two groups is in the number of

experiments conducted without an explicitly stated hypothesis, which, in turn, accounts for
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the greater number of experiments conducted by the Experimenters, as well as the

length of time to reach a solution.

Insert Table 5 about here

The two groups can be compared in terms of sensitivity to experimental outcomes

and the strategies used to explore the experiment space. Consider first the sensitivity to

experimental outcomes. In Section 3.4.2, we discussed the aggregate result showing

that although subjects departed substantially from normative models, they did show a

significant sensitivity to experimental outcomes. The second two rows of Table 4 show

the same general pattern for Experimenters and Theorists, with no difference between

the two groups (X\ = 1.49), indicating that neither group responds more (or less)

"rationally" to experimental outcomes.

The strategies that the two groups use to search the experiment space also can be

compared; subjects can change either N, X, both N and X, or neither N nor X. An

analysis of the data in Table 6 also shows that there was no significant difference in

how the two groups search the experiment space: * | =5.35 p < .20. Although the

two groups differ in the conditions under which they decide to search the experiment

space, they do not differ in how they search it, at this aggregate level of analysis.

However, a finer grain analysis reveals an interesting difference between the two groups:

The number of different N - X combinations that are used is a measure of the extent to

which the experiment space is explored. There are 225 different N - X combinations

that could be explored but only a small fraction of this experiment space is actually

used. Recall that the Experimenters conducted twice as many experiments as the

Theorists. If they are using those extra experiments to explore the experiment space

more widely than the Theorists, then they should explore more N - X combinations.

This was indeed the case; overall, the Theorists explored 19 distinct N - X combinations,

whereas the Experimenters explored 50. At an individual level, the Experimenters

explored significantly more N - X combinations than the Theorists; f(18) • 3.29 p <

.004.

Insert Table 6 about here
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In summary, the main difference between the Theorists and the Experimenters is

that the latter group conduct more experiments than the Theorists and that this extra

experimentation is conducted without an explicit hypothesis statement. We have argued

that this extra experimentation is indicative of a search of the experiment space, and we

have shown that the Experimenters do indeed use more N - X combinations than the

theorists. Furthermore, we have argued that instead of conducting a search of the

experiment space, the Theorists search the hypothesis space for an appropriate role for

N. This is an important "claim for which there was no direct evidence in the protocols.

Therefore, we conducted a second study to test the hypothesis that it is possible to

think of an N-role:se/ecror hypothesis without exploration of the experiment space.

4 Study 2: Hypothesis-space search and experimentation

Our interpretation of subjects' behavior in Study 1 generated two related hypotheses:

A: It is possible to think of the correct rule via pure hypothesis-space search, without

using any experimental results; B: When hypothesis-space search fails, subjects switch to

experiment-space search. In Study 2, we directly investigated each of these hypotheses.

• If Hypothesis A is correct, then it should be possible for subjects to propose

the correct rule without the benefit of any experimental outcomes. Study 1

provided no direct evidence for this hypothesis, because no subject in Study

1 mentioned the correct rule without doing at least some experimentation. In

Study 2. we tested this hypothesis by asking subjects to state not just one,

but several, different ways that RPT might work, before doing any

experiments. If subjects can think of the correct rule without any

experimentation, then this will provide support for the view that the Theorists

in Study 1 did indeed construct the appropriate frame without using

experimental input. This was the hypothesis-space search phase of Study 2.

This phase was followed by the experimental phase, in which the subjects

were allowed to conduct experiments as in Study 1. We expected that

subjects who mentioned the correct rule during the hypothesis-space search

phase would discover the correct rule with relatively little experimentation.

• Hypothesis B asserts that if hypothesis-space search is unsuccessful, then

subjects switch to a search of the experiment space. We argued that this
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was the strategy used by the Experimenters in Study 1. This hypothesis

predicts that subjects who fail to discover the correct rule during the first

phase of Study 2 should not be able to discover the correct rule by

hypothesis-space search during the second, experimental, phase of the task.

Thus, we predict that subjects who are unable to generate the correct rule in

the hypothesis-space search phase will behave like the Experimenters of

Study 1 and will discover the correct rule only after conducting an

experiment in region III of the experiment space.

• A further goal of Study 2 was to discover whether generation of several

hypotheses prior to experimentation would change the way subjects generated

and evaluated experiments. In Study 1, subjects always tested hypotheses

one at a time; they never conducted experiments that would distinguish

between a number of hypotheses. In Study 2, having considered a number

of different hypotheses before entering the experimental phase, subjects may

test multiple hypotheses in a single experiment. Generation of hypotheses

before the experimental phase may also make the subjects more willing to

abandon their preferred hypotheses in the face of inconsistent evidence. If

so, then even those subjects who do not generate the correct hypothesis

during phase 1 should conduct significantly fewer experiments than the

subjects in Study 1. When an hypothesis is disconfirmed they will switch to

another (previously generated) hypothesis rather than continuing with the same

hypothesis.
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4.1 Method

Subjects. Ten Carnegie Mellon undergraduates participated in the experiment for

course credit. Five subjects had taken at least one programming course, and the other

five had no programming experience.

Procedure. The familiarization part of Study 2 was the same as described for Study

1: subjects learned how to use all the keys except the RPT key. Familiarization was

followed by two phases: hypothesis-space search and experimentation.

The hypothesis-space search phase began when the subjects were asked to think of

various ways that the RPT key might work. In an attempt to get a wide range of

possible hypotheses from the subjects, we used three probes in the same fixed order:



Scientific reasoning 29

1. "How do you think the RPT key might work?"

2. "We've done this experiment with many people, and they've proposed a wide

variety of hypotheses for how it might work. What do you think they may

have proposed?"

3. "When BigTrak was being designed, the designers thought of many different

ways it could be made to work. What ways do you think they may have

considered?"

After each question, the subject responded with as many hypotheses as could be

generated. Then the next probe was used.

Once the subjects had generated all the hypotheses that they could think of, the

experimental phase began: The subjects were allowed to conduct experiments while

attempting to discover how the RPT key works. This phase was nearly identical to the

discovery phase of Experiment 1, with a few variations in how the data were collected.

Instead of videotape recording, we used an audio tape for subjects' verbalizations.

Keypresses were also captured on the audiotape by having subjects tell the experimenter

what keys to press. Otherwise, the procedure was the same as that used in Study 1.

4.2 Results

4.2.1 Phase 1: Hypothesis-space search

Subjects proposed, on average, 4.2 different hypotheses. All but two subjects

began with the M-ro\e: counter frame, and 7 of the 10 subjects switched to the

N-ro\e: selector frame during Phase 1. The correct rule (HS1) was proposed by 5 of the

10 subjects.

The last column in Table 2 shows the number of subjects who proposed each

hypothesis at least once. These numbers are only roughly comparable to the other

entries in the table (from Studies 1 and 2) because the first two columns indicate the

proportion of experiments run under each hypothesis, while the final column is simply

frequency of mention (because subjects ran no experiments during the hypothesis-space

search phase). Nevertheless, some similar patterns emerge. First, all but one of the

common hypotheses of Study 1 was mentioned by at least 2 of the subjects.
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Furthermore, as in Study 1, hypotheses HC1 and HC2 were among the most frequently

mentioned hypotheses (indeed, all but one subject proposed HC2). However, half of the

subjects proposed hypotheses from the N-role.selector frame, whereas in Study 1, fewer

than 10% of the experiments deait with hypotheses from the N-role: selector frame, it is

possible that in Study 1 the information gathered from the exploration of the experiment

space may have inhibited subjects from switching to the N-role.se/ecror.

4 2.2 Phase 2: Experimentation

Ail subjects were able to figure out how the RPT key works. As can be seen from

Table 7 mean time to solution was 6.2 minutes, and subjects generated, on average, 5.7

experiments and proposed 2.4 different hypotheses.

Subjects were again classified as Experimenters or Theorists according to whether

or not they discovered the correct rule after conducting an experiment in region III of

the experiment space. In this study, there were six Experimenters and four Theorists.

The performance of the two groups on a number of measures is shown in Table 7.

Note that all of the Theorists stated the correct rule during the hypothesis-search phase

and that they all had prior programming experience. In contrast, only one of the

Experimenters stated the correct rule during the hypothesis-space search phase, and only

one of them had any prior programming experience. While the differences between the

means of the two groups on all the measures mirror the earlier pattern from Study 1,

none of them are significant, due to the small sample size and large within-group

variances.

insert Table 7 about here

The experiment-space search patterns in this study are radically different from those

in Study 1. The Study 2 Experimenters conducted far fewer experiments than either the

Experimenters or the Theorists of Study 1. Subjects in Study 2 switch hypotheses more

readily; in Study 1, both the Experimenters and the Theorists changed their hypothesis

after disconfirmation only 44% of the time. In Study 2 (see Table 8), the Theorists

changed hypotheses after disconfirmation 85% of the time and the Experimenters

changed after 58%. Furthermore, the proportion of experiments that are conducted in

region III of the experiment space is far higher than in Study 1. This indicates that the

subjects switched to conducting experiments in region III earlier than the subjects in

Study 1.
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Insert Table 8 about here

4.3 Discussion

The results of the hypothesis-space search phase of Study 2 show that it is

possible for subjects to generate the correct hypothesis (among others) without

conducting any experiments. This result is consistent with the view that the Theorists in

Study 1 think of the correct rule by a search of the hypothesis space. The results of

the experimental phase of Study 2 further support our interpretation of Study 1. All of

the subjects who failed to generate the correct rule in the hypothesis-space search

phase behaved like Experimenters in the experimental phase: They discovered the correct

rule only after exploring region III of the experiment space. This is consistent with the

view that when hypothesis-space search fails, subjects must turn to a search of the

experiment space.

The differences between the results of Study 1 and Study 2 are striking. The main

difference is that subjects conducted far fewer experiments in Study 2. A prior search

of the hypothesis space allows the subjects to generate the N-role.selector frame much

more readily than in Study 1. This is true even for subjects who could not think of the

correct rule in the hypothesis-space search phase. Furthermore, subjects in this study

did attempt to conduct experiments that allow them to distinguish between two

hypotheses. For example, subjects might be trying to distinguish between two

hypotheses in the N-role:coumer frame: "repeats the previous step N times" and

"repeats the previous program N times." They will write a program and vary the value

of N, this will quickly bring them into region III of the experiment space, and they

discover how the RPT key works. Subjects in Study 1 rarely designed hypothesis-

discriminating experiments, for they usually were dealing with only a single hypothesis at

a time. Thus it took them longer to abandon hypotheses, and they conducted few

experiments in region

The substantial influence of prior knowledge is further demonstrated by the finding

that all of the Theorists, but only one of the Experimenters, had prior programming

experience. Knowing something about programming allowed the Theorists to construct

the correct frame, although precisely what aspect of programming knowledge was crucial
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here is undetermined. Nevertheless, the interesting finding in this study is that ; : *

effect of differential prior knowledge propagates through the initial hypothesis-fomulatior

stage to influence differences in experimental strategies.

In sum, prior exploration of the hypothesis space had two main effects on the

experimental phase. First, it allowed subjects to generate hypotheses that are in the

N-role: selector frame. As a result, subjects quickly switched to the N-role: selector frame

in the experimental phase. Second, because subjects were aware that a number of

hypotheses could account for their results (even if they were working within the

N-role: counter frame), they conducted discriminatory experiments. Often the best way of

distinguishing between hypotheses is to conduct an experiment in region III of the

experiment space. Once subjects conducted such an experiment, they quickly

discovered the correct rule.

5 A Dual-Search Model of Scientific Discovery

Recall that the point of departure for our analysis of scientific reasoning is Simon &

Lea's Generalized Rule Inducer. GRI was designed to account for the results of

traditional laboratory studies of problem solving and rule induction. As noted in Section

1.3, two extensions are necessary in order to apply the concept of dual-space search

underlying GRI to the broader and more complex domain of scientific discovery. The

first extension involves an enrichment of the complexity, depth, and inter-connectedness

of the phases of the discovery task presented to subjects. This extension was described

in Section 2 and the results were described in Sections 3.4 and 3.5. We argued that

qualitative differences in subjects' behavior could be interpreted in terms of differences in

how they allocated their search effort between a space of experiments and a space of

hypotheses. The second extension to GRI is a further specification of the processes

involved in searching these two spaces. In this section we describe a model that

incorporates such extensions.

5.1 SDDS: General description

We start by summarizing the key features of our model of scientific discovery as

dual search (SODS). It is proposed as a general model of scientific reasoning that can

be applied to any context in which hypotheses are proposed and data is collected. The

fundamental assumption is that scientific reasoning requires search in two related
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problem spaces: the hypothesis space, consisting of the hypotheses generated during

the discovery process, and the experiment space, consisting of all possible experiments

that could be conducted. Search in the hypothesis space is guided both by prior

knowledge and by experimental results. Search in the experiment space may be guided

by the current hypothesis, and it may be used to generate information to formulate

hypotheses.

SDDS consists of a set of basic components that guide search within and between

the two problem spaces. Initial hypotheses are constructed by a series of operations

that result in the instantiation of a frame with default values. Subsequent hypotheses

within that frame are generated by changes in values of particular slots, and changes to

new frames are achieved either by a search of memory or by generalizing from

experimental outcomes. Our description of SDDS will proceed as follows: In Section 5.2,

we first introduce the basic components and their evoking conditions. Then in Section

5.3.2, we show how the model accounts for the different strategies described in Sections

3.5 and 4.

5.2 SDDS components

Because we are proposing SDDS as a general framework within which to interpret

behavior from any scientific reasoning task, we introduce it at a very general level,

without reference to our specific BigTrak context. In Sections 5.3.2 and 6 we will return

to an interpretation of our results. Three main components control the entire process

from the initial formulation of hypotheses, through their experimental evaluation, to the

decision that there is sufficient evidence to accept an hypotheses. The three

components, shown at the top of the hierarchy in Figure 4, are SEARCH HYPOTHESIS

SPACE, TEST HYPOTHESIS, and EVALUATE EVIDENCE.

• The output from SEARCH HYPOTHESIS SPACE is a fully specified hypothesis,

which provides the input to TEST HYPOTHESIS.

• TEST HYPOTHESIS generates an experiment appropriate to the current

hypothesis (E-SPACE MOVE), makes a prediction, and observes the outcome.

The output of TEST HYPOTHESIS is a description of evidence for or against the

current hypothesis, based on the match between the prediction derived from

the current hypothesis and the actual experimental result.
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• EVALUATE EVIDENCE decides whether the cumulative evidence - as well as

other considerations - warrants acceptance, rejection, or continued

consideration of the current hypothesis.

These processes and their subcomponents are hierarchically depicted \n Figure 4, which

is described in the following paragraphs.

Insert Figure 4 about here

5.2.1 Search hypothesis: Sub-components

SEARCH HYPOTHESIS SPACE has two components. If there is no active frame, then the

system generates one. Usually a new frame has unfilled slots, so the next step is to

assign specific values to those slots. If there is an active frame, it may require changes

in some slot values.

• GENERATE FRAME has two components corresponding to the two ways that a

frame may be generated.

o EVOKE FRAME is a search of memory for information that could be used

to construct a frame. This is the process in which the wide variety of

prior knowledge sources - discussed earlier - would influence the

formation of hypotheses. We will not attempt a detailed elaboration of

how specific knowledge elements are activated on the basis of the

current context, for that would occupy an entire volume. The main

purpose of isolating EVOKE FRAME in SDDS is to distinguish it from the

other possible source of new frames: INDUCE FRAME.

o INDUCE FRAME generates a new frame by induction from a series of

outcomes.

• The first sub-process in INDUCE FRAME generates an outcome, and

the second process generalizes over the results of that (and

other) outcomes to produce a frame, GENERATE OUTCOMES will be

described below. The specific termination rule and the mechanism

for cumulating outcomes are unspecified. The result from

GENERATE OUTCOME is a behavior pattern that is input to
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GENERALIZE OUTCOMES, which then attempts to generalize over the

outcomes in order to produce a frame.

The distinction between EVOKE FRAME and INDUCE FRAME corresponds to the

difference between situations in which subjects are able to recall similar

situations and use them as the basis for constructing initial frames, and

situations in which subjects must observe some behavior before they can

venture even an initial hypothesis.
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• The purpose of ASSIGN SLOT VALUES is to take a partially instantiated frame

and assign specific values to the slots so that a fully specified hypothesis

can be generated. It has two components for which we have not specified

a preferred order. Values may be assigned by using prior knowledge (USE

PRIOR KNOWLEDGE) or by using specific experimental outcomes (USE

EXPERIMENTAL OUTCOMES).

olf there are already some experimental outcomes, then they can be

examined to determine specific slot values (USE OLD OUTCOMES).

o Alternatively, the system can use GENERATE OUTCOME to produce some

behavior solely for the purpose of determining slot values.

In the early phases of the discovery process, USE PRIOR KNOWLEDGE plays the

major role in assigning values, whereas later in the course of experimen-

tation, USE EXPERIMENTAL OUTCOMES is more likely to generate specific slot

values. If the system is unable to assign slot values to the current frame

(because they have all been tried and rejected), then the Frame is

abandoned, and the system returns to GENERATE FRAME.

The end result of SEARCH HYPOTHESIS SPACE is a fully specified hypothesis, which is then

input to TEST HYPOTHESIS. Note that "experiments" may be run in two different sub-

contexts in the service of SEARCH HYPOTHESIS SPACE, and that neither of these contexts

involve the evaluation of an hypothesis, for it is still being formed.
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5.2.2 Test hypothesis: Sub-components

TEST HYPOTHESIS uses three sub-components to: formulate an experiment (E-SPACE

MOVE), make a prediction, and run the experiment.

• E-SPACE MOVE produces an experiment. It will be described below, as it is

used in several places in the model.

• MAKE PREDICTION takes the current hypothesis and the current experiment and

predicts specific results, centered on the current focal values.

• RUN the experiment, OBSERVE the result, and MATCH to expectation. RUN

produces a description of a discrepancy between the prediction and the

actual behavior. As depicted here, the expected behavior is generated prior

to the running of the experiment (during MAKE PREDICTION). However, SDDS

allows the computation of what "should have happened" to occur following

the running of the experiment, during the MATCH process, MATCH requires

descriptions of both the expectation and the observation as input.

TEST HYPOTHESIS outputs a representation of evidence for or against the current

hypothesis; this representation is then used as input by EVALUATE EVIDENCE.

5.2.3 Evaluate Evidence

EVALUATE EVIDENCE determines whether or not the cumulative evidence about the

experiments run under the current hypothesis is sufficient to reject or accept it. It is

possible that the evidence is inconclusive and neither situation obtains, in which case

EVALUATE EVIDENCE loops back to TEST HYPOTHESIS. Note that the input to the review

process consists of a cumulation of output from earlier TEST HYPOTHESIS cycles. The

scope of this cumulation could range from the most recent result, to the most salient

ones, to a full record of all the results thus far. The content of this record could be

one of either consistency or inconsistency.

Additional factors may play a role in EVALUATE EVIDENCE. For example, plausibility

seems to distinguish some of adults' and children's hypotheses, particularly those that

perform some arbitrary arithmetic operation on N. Functionality arguments appear in some

of the protocols, and cause subjects to reject hypotheses that give no role to N, even if

they have been confirmed (e.g., "why would it take a number if it's not used?", or "why
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would they design a RPT key in the first place?"). Although these factors appear to

influence behavtor, we do not yet have a full understanding of how they work.

5.2.4 Generate Outcome

This process It conists of an E-SPACE MOVE, which produces an experiment, RUNing

the experiment and OBSERVING the result.

5.2.5 E-space move

Experiments are designed by E-SPACE MOVE. The most important step is to FOCUS

on some aspect of the current situation that the experiment is intended to illuminate.

"Current situation" is not just a circumiocution for "current hypothesis", because there

may be situations in with there is no current hypothesis, but in which E-SPACE MOVE must

function nevertheless. (This is an important feature of the model, and it will be

elaborated in Section 5.3.2). If there is an hypothesis, then FOCUS determines that some

aspect of it is the primary reason for the experiment. If there is a frame with open slot

values, then FOCUS will select an one of those slots as the most important thing to be

resolved If there is neither a frame nor an hypothesis - that is, if E-SPACE MOVE is being

called by INDUCE FRAME, then FOCUS makes an arbitrary decision about what aspect of

the current situation to focus on.

Once the focal value has been determined, CHOOSE sets a value in the Experiment

Space that will provide information relevant to it. and SET determines the values of the

remaining, but less important, values necessary to produce a complete experiment.

5.3 Comments on the model

5.3.1 Memory requirements

A variety of memory requirements are implicit in our description of SDDS, and must,

by implication, play an important role in the discovery process. Here we provide a brief

indication of the kinds of information about experiments, outcomes, hypotheses and

discrepancies that SDDS must store and retrieve.

• Recall that GENERATE OUTCOME operates in two contexts. Under INDUCE

FRAME it is called when there is no active hypothesis, and the system is

attempting to produce a set of behaviors that can then be analyzed by

GENERALIZE OUTCOMES in order to produce a frame. Therefore, SDDS must
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be able to represent and store one or more experimental outcomes each

time it executes INDUCE FRAME.
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• Another type of memory demand comes from EVALUATE EVIDENCE: in order to

be able to weigh the cumulative evidence about the current hypothesis,

REVIEW OUTCOMES must have access to the results produced by MATCH in

TEST HYPOTHESIS. This would include selected features of experiments,

hypotheses, predictions, and outcomes.

• Similar information is accessed whenever ASSIGN SLOT VALUES calls on USE

PRIOR KNOWLEDGE or USE OLD OUTCOMES to fill in unassigned slots in a frame.

At this point in the model's development, the precise role of memory remains an area

for future research.

5.3.2 The multiple roles of experimentation in SDDS

Examination of the relationship among all these processes and subprocesses,

depicted in Figure 4, reveals both the conventional and unconventional characteristics of

the model. At the top level, the discovery process is characterized as a simple

repeating cycle of generating hypotheses, testing hypotheses, and reviewing the outcomes

of the test. Below that level, however, we can begin to see the complex interaction

among the subprocesses. Of particular importance is the way in which E-SPACE MOVE

occurs in three different places in the hierarchy:

1. as a subprocess deep with GENERATE FRAME, where the goal is to generate a

behavior pattern over which a frame can be induced,

2. as a subprocess of ASSIGN SLOT VALUES where the purpose of the

"experiment" is simply to resolve the unassigned slots in the current frame,

3. as a component of TEST HYPOTHESIS, where the experiment is designed to

play its "conventional role" of generating an instance (usually positive) of the

current hypothesis.

Note that the implication of the first two uses of E-SPACE MOVE is that in the absence of

hypotheses, experiments are generated atheoretically, by moving around In the experiment

space.
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SODS also elaborates the details of what can happen during the EVALUATE EVIDENCE

process. Recall that three general outcomes are possible: the current hypothesis can be

accepted, it can be rejected, or it can be considered further.

• In the first case, the discovery process simply stops, and asserts that the

current hypothesis is the true state of nature.

• In the second case - rejection -- the system returns to H-SPACE SEARCH,

where two things can happen. If the entire frame has been rejected by

EVALUATE EVIDENCE, then the model must attempt to generate a new frame.

If EVOKE FRAME is unable to generate an alternate frame, then the system will

wind up in INDUCE FRAME and will ultimately start to run experiments (in

GENERATE OUTCOME) in order to find some element of behavior from which to

do the induction. Having induced a new frame, or having returned from

EVALUATE EVIDENCE with a frame needing new slot values (i.e., a rejection of

the hypothesis but not the frame), SDDS executes ASSIGN SLOT VALUES. Here

too, if prior knowledge is inadequate to make slot assignments, the system

may wind up making moves in the experiment space in order to make the

assignments, (i.e., GENERATE OUTCOME under USE EXPERIMENTAL OUTCOMES).

In both of these cases, the behavior we would observe would be the running

of "experiments" without fully-specified hypotheses. This is precisely what we

see in the second phase of the Experimenters' behavior (see Section 3.5),

and for most of the children.

• In the third case, SDDS returns to TEST HYPOTHESIS in order to further

consider the current hypothesis. The experiments run in this context

correspond to the conventional view of the role of experimentation. During

MOVE IN E-SPACE, FOCUS selects particular aspects of the current hypothesis

and designs an experiment to generate information about it.

5.3.3 Extending the model

As yet, SDDS is not a running computer model, rather it is a specification of the

control structure for a yet to be built program. The actual building of the model will

involve a much more extensive and precise specification of the processes involved. Here

we will sketch some of the possible extensions to SDDS based on several of the related

ideas that have emerged in the field of Machine Learning.
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We need to specify how prior knowledge is activated, searched and utilized by the

discovery context. SDDS lumps all these processes under EVOKE FRAME, yet there are a

large number of complex processes that are involved in this mapping that we have not

addressed. Carbonell's work on derivational analogy (Carboneli, 1986) suggests a

number of possible heuristics that could be used in the EVOKE FRAME process. Holland,

Holyoak, Nisbett, and Thagard (1986) have also proposed several mechanisms that effect

the mapping from prior knowledge to the current experimental context.

Our notion of partially specified hypotheses is similar to the different levels of

specificity in Mitchell's (1979) version spaces. However, it is not clear whether complex

contexts, such as the one we have been studying, will prove as susceptible to the

"single representation trick" (Cohen and Feigenbaum, 1982) in which both instances and

rules can be expressed in the same representation. As Cohen and Feigenbaum point

out, if the trick is inapplicable, then "searches of the two spaces must be coordinated

by complex interpretation and experiment planning procedures." (p. 368)

Notable among the models that do not use a single representation for rules and

instances are the "BACON series" of programs (Langley, Simon, Bradshaw, and Zytkow,

1987). When provided with the appropriate sets of training instances (which represent

the knowledge available to scientists working on the problem at that point in history)

BACON and its successors have been able to rediscover several important scientific

concepts.

Deciding which experiment to conduct next is obviously an important process. We

have only sketched it at a broad level in our description of E-SPACE MOVE and it needs

further elaboration. Three approaches to experiment generation that may be relevant to

our implementation of SDDS are exemplified by AM, KEKADA and LEX. Lenat's (1977)

AM also performs something analogous to experiment planning when it is attempting to

collect examples of a concept under refinement, and it uses dozens of general heuristics

to search its experiment space. Of particular relevance to SDDS is the way that AM's

search is connected to an extensive prior knowledge base. As noted at the outset, we

believe that substantive knowledge influences the search in both spaces during the

discovery process, and the studies reported here have indicated some aspects of this

influence. Kulkarni and Simon (1987) have suggested a number of additional heuristics

that scientists might actually use to conduct further experiments. Their Experiment-



Scientific reasoning 41

proposer heurisitics are largely domain-specific and we expect that some of our

heuristics will be also. However, we believe that there are a number of domain-

independent heuristics that can be used, such as those in LEX (Mitchell, Utgoff and

Banerji, 1983). LEX has a problem generator that will allow it to formulate the correct

hypothesis by generating experiments that discriminate between very general and very

specific hypotheses which have been formulated on the basis of previous experimental

results (i.e., refining the version space). This type of generator would be a component

Of MOVE IN E-SPACE.

6 General discussion

Our concern is with both the logic of experimentation and the link between the

formation of hypotheses and experimental results, so we used a task having a number of

distinctive characteristics: (a) The concept to be discovered was moderately complex and

was not the concatenation of a number of simple features, (b) Instead of just selecting

an instance, subjects had to create experiments that would produce some behavior, (c)

Experimental results were the actual behaviors of the device, and the subjects could

extract much more than one bit of information from them, (d) The correctness of an

hypothesis was never announced, but had to be determined by the subjects' own

evaluation of the accumulated evidence, (e) Prior knowledge could influence the strength

of initial hypotheses, as well as the ease with which alternatives were generated.

The results of both studies support the view that when subjects attempt to discover

how a device works, they must search in two problem spaces: an hypothesis space and

an experiment space. In the previous section, we developed a model (SDDS) that

embodies this idea. Thus one important feature of SDDS is the way in which it

integrates these two searches. A second important feature is the articulation of the

multiple roles played by experimentation. In this final section, we will suggest how

SDDS can provide a useful framework for understanding scientific reasoning in general.

Dual-space search can be used to understand the development of hypotheses (Section

6.1), the logic of experimentation (Section 6.2), and strategy differences in scientific

discovery (Section 6.3).
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6.1 Hypothesis formation and scientific discovery

One of the central features of SDDS is that it accounts for two different aspects of

hypothesis generation: how hypotheses are generated and why on some occasions there

are large differences between adjacent hypotheses, while on others there are only minor

differences. Consider first how hypotheses are generated. In SDDS, hypotheses can be

generated either from prior knowledge or by generalizing from the results of prior

experiments. These two possible knowledge sources play a role both in SEARCH

HYPOTHESIS SPACE (EVOKE FRAME and INDUCE FRAME) and in ASSIGN SLOT VALUES (USE

PRIOR KNOWLEDGE and USE EXPERIMENTAL OUTCOMES), EVOKE FRAME has its strongest effect

at the beginning of the task; subjects formulate their initial hypotheses on the basis of

the frame(s) most activated by the features of their current focus. Once subjects have

exhausted all the relevant values of a frame, they will again use SEARCH HYPOTHESIS

SPACE. Some subjects construct a new frame by using EVOKE FRAME, and others

construct it by using the results from INDUCE FRAME.

Differences in the degree of similarity between adjacent hypotheses is a

consequence of the use of frames. Initial experimentation is directed at the resolution

of particular slot values within a frame. The slot values are changed as a result of

prior knowledge (USE PRIOR KNOWLEDGE) or experimentation (USE EXPERIMENTAL OUTCOMES)

experimentation. This leads to the postulation of hypotheses that differ in only minor

respects, as subjects change the values only a few at at time. Thus, when subjects

search within a frame there will be only minor differences between adjacent hypotheses.

When new frames are generated, there will be large differences between hypotheses:

recall that when there is a change of frames there is a change in the types of

attributes in all the slots, resulting in a radically different knowledge state.

Previous research can also be interpreted in this manner; for example, Mynatt et al.

(1977, 1978) used a task in which subjects had to discover the laws of repulsion and

attraction in an arbitrary "physics world." Subjects had to propose hypotheses and

generate experiments (firing particles at test objects) to test their hypotheses. While

Mynatt et al. were concerned mainly with whether subjects attempted to falsify their

hypotheses, their results suggest that their subjects were exploring frames and switching

frames after they had exhausted all possible values of the frame. In fact, Mynatt et al.

(1978) note that many hypotheses were minor variations on previous hypothesis -

indicating investigation of a frame - and that there were also occassional large

differences in adjacent hypotheses - indicating a switch to a new frame.
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Representational change accompanying a new frame can be viewed as a form of

illumination or Insight (cf. Wallas, 1926; Duncker, 1945). As Simon (1977) notes,

although research on insight commonly assumes that ''asking the right question is the

crucial creative act," it is more likely that ''reformulation of questions -- more generally,

modification of representations - \s one of the problem-solving processes" and that "new

representations, like new problems, do not spring from the brow of Zeus, but emerge by

gradual - and very slow -- stages."

Our results are consistent with this view. None of our subjects started with the

correct general frame. However, once they were driven to it by earlier failed hypotheses

and observation of results, they were able to form the correct hypothesis. In other

words, results of failed experiments forced subjects to consider the role of N, and this

caused a restructuring of the hypothesis space. If restructuring is conceived as

generation of a new frame then the nature of insight becomes obvious. Insight is not

merely the change of values in slots of a pre-existing frame, rather it is the instantiation

of a new frame - this is what is meant by a restructuring of the representation. The

interaction between the experiment space and the hypothesis space plays a crucial role

in such restructuring.

6.2 The logic of scientific inference and SDOS

Almost all prior research on scientific reasoning has been concerned with the logic

used in reasoning tasks. Researchers have devoted an enormous amount of effort to

understanding two aspects of disconfirmation. First, why do subjects fail to test

potentially disconfirming instances when evaluating hypotheses? Second, why do subjects

fail to change their hypothesis in the face of disconfirming outcomes? A third question,

raised by our results, is why subjects change hypotheses that have just been confirmed.

In this section, we will suggest how these issues can be interpreted using the SDDS

model.

6.2.1 Failure to seek disconfirmation

One of the most robust findings in the scientific reasoning literature is that subjects

exhibit a pervasive "confirmation bias." That is, they perfer to select instances that they

expect to confirm rather than disconfirm their hypothesis. Klayman and Ha (1987) argue

that most people follow a heuristic they call a "positive test strategy" - "a tendency to

examine cases hypothesized to be targets" - and they show that, when the probability
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of an hypothesis being confirmed is small, this strategy can provide useful information.

Furthermore, a positive test strategy provides at least a sufficiency test of one's current

hypothesis. However, if, as in Wason's "2-4-6" task, the probability of confirming one's

hypothesis is high, then positive tests will not provide any useful information. Klayman

and Has analysis suggests that the appropriateness of the strategy depends on the

distribution of positive and negative instances, although such information is not available

to the subject.

In our task, subjects' almost invariably followed the positive test strategy: They

stated that "if BigTrak does this, then my hypothesis is correct." According to Klayman

and Has argument, our subjects' strategy was appropriate, because for about 60% of

the experiments in Study 1 and Study 2, subjects received disconfirming evidence (see

Tables 4 and 8). Subjects learned that their initial hypotheses were false and so

changed to other hypotheses. Thus even though subjects were looking for evidence that

would confirm their hypotheses, the hypotheses were usually falsified.

SDDS provides an interesting extension of this view of confirmation bias. As

Klayman and Ha note, subjects' strategies should depend on what they think the nature

of the instances they encounter will be; if there are many positive instances a negative

test strategy will be more useful than a positive test strategy. Following a positive test

strategy and producing a predominance of disconfirming evidence forces subjects to

either search memory in order to construct a new frame or search the experiment space

for a data pattern that can suggest a new hypotheses. Because the subjects in the

Experimenter group discovered that regions II and VI of the experiment space

disconfirmed their initial hypotheses, they switched to regions III, IV, and V. A positive

test strategy enabled them to avoid further search of uninformative regions of the

experiment space.

More generally, a positive test strategy may help scientists in two ways. First, it

may enable them to avoid perseveration on incorrect frames by abandoning EVOKE FRAME

altogether in favor of INDUCE FRAME. Second, it may influence them to conduct different

types of experiments for whatever hypotheses they do hold. Kulkarni and Simon (1987)

have argued that Krebs's discovery of urea was prompted by an exploration of the

experiment space. Thus, a positive test strategy may be a useful heuristic in the early

stages of investigation, as it allows the subject to determine those types of instances
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that are worthy of further experimentation. In our study, search of the experiment space

is initially guided by a positive test strategy, but because so few regions of the

experiment space are consistent with initial hypotheses, this strategy provides useful

information as to which parts of the experiment space to search next. The generality of

this finding remains to be demonstrated, but it suggests some interesting further studies.

6.2.2 Tolerating disconfirming evidence

Recall that our subjects frequently maintained their current hypotheses in the face of

negative information. In Study 1, fewer than half of the disconfirming outcomes lead to

immediate hypothesis changes. SDDS suggests some possible explanations for this

behavior. One contributing factor is the probabalistic nature of the basic processes

underlying TEST HYPOTHESIS and EVALUATE EVIDENCE. An unanticipated consequence of

the complexity of our procedure was that - due to the fallibility of memory and of the

OBSERVE & MATCH processes -- the feedback subjects received had some probability of

error. That is, from the subjects' perspective, there might be error in either the device

behavior, their encoding of that behavior, or their recall of the current program and

associated prediction. Gorman (1986) demonstrated that when subjects are told that

there is some probability of error in the feedback received during a rule discovery task

they tend to "immunize" their hypotheses against disconfirmation by classifying

disconfirming instances as the erroneous trials. Thus, some cases of perseveration may

result from subjects simply not believing the outcome and attributing the apparent

disconfirmation to one of several fallible processes. The most likeiy candidates for this

explanation are the cases in which the subject not only retains a disconfirmed

hypothesis, but actually repeats the exact same experiment (see 26-29 in Table 1).

Another error-related cause of perseveration may be even simpler: subjects erroneously

encode the disconfirming behavior as confirming behavior.

The non-deterministic nature of experimental evidence can aiso have an effect on

the decision mechanism in EVALUATE EVIDENCE. This process is based not only on

whether the result of the prior experiment rules out the hypothesis, but also on whether

enough evidence has accumulated to accept or reject the hypothesis. The amount of

evidence in favor of an hypothesis and the strength of the hypothesis both determine

when subjects will continue to hold or will switch an hypothesis. Only when the

cumulative disconfirming evidence exceeds a criterion will an hypothesis be changed. In

the present study, subjects had general sources of prior knowledge that predisposed
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them to the n-role: counter frame. These hypotheses had a high apriori strength and

needed much discontinuing evidence to be rejected. However, once the initial

hypotheses were rejected, subjects conducted few experiments on subsequent

hypotheses. Because these subsequent hypotheses had lower strength, any evidence

that appeared to contradict them quickly led to their rejection. Other authors have

made similar observations. O'Brien et al.t for example, note that "subjects are less

likely to take evidence as conclusive when their presuppositions about the content

domain discourage them from doing so" (p. 509).

An alternative explanation that has been offered for the finding that subjects tend to

stick to disconfirmed hypotheses is that they cannot think of alternative hypotheses.

Einhorn and Hogarth (1986), suggest that:

... because the goal of causal inference is to find some explanation for the
observed effects, the discounting of an explanation by specific alternatives still
leaves one with the question, 'If X did not cause Y, what did?1 ... In fact,
the distinction between testing hypotheses and searching for better ones can be
likened to the difference between a 'disconfirmation' versus 'replacement' mode
of inference. The replacement view is consistent with the Kuhnian notion that
theories in science are not discarded, despite evidence to the contrary, if they
are not replaced by better alternatives (Kuhn, 1962). Indeed, the replacement
view is equally strong in everyday inference, (pp. 14-15)

The results from our studies provide a basis for elaborating this view. We know that

when subjects do have alternatives readily available -- as \n Study 2 - they are more

likely to drop disconfirmed hypotheses than when they don't - as in Study 1. On the

other hand, when subjects could no longer think of any new hypotheses, they could

decide to search the experiment space and not hold any hypotheses at all. Thus,

subjects did not have to stick with their hypotheses once they had accumulated enough

evidence to reject them, because it was permissible in our study to "replace something

with nothing."

6.2.3 Abandoning verified hypotheses

The other side of perseveration in the face of disconfirmation is changing

hypotheses in the face of confirmation. Recall that, on average, subjects \n Study 1 had

one instance in which they changed an hypotheses even though the most recent

experimental outcome confirmed it. Strictly speaking, this is not a departure from from

logical norms, as positive experimental results can only provide what Klayman and Ha

(1987) call "ambiguous verification", rather than "confirmation" as we have been calling



Scientific reasoning 47

it. Our interpretation of this behavior also invokes memory processes, but this time in a

positive way. That is, subjects do have memory for previous outcomes, and the current

result may not only confirm the current hypothesis, but, when added to the pool of

previous results, may be consistent with some other hypothesis that appears more

plausible or interesting. In order to fully account for this, SDDS would have to elaborate

EVALUATE EVIDENCE so that it could look for global, as well as local, consistency in

deciding what to do with the current hypothesis.

6.3 Dual search: The source of different strategies

Strategic differences that have been observed in the prior work on concept

formation bear certain similarities to the strategies that we have observed in our studies.

Bruner, et ai. observed two basic strategies. The first is called focussing: subjects

focus on a positive instance and change the vaiues of instances one attribute at a time

until they discover the concept's defining vaiues. In terms of our model, Bruner's

focussers, by systematically attending to the relevance of individual attributes, were

cautiously searching the experiment space. Our Experimenters pursued a strategy similar

to focussing. They searched the experiment space, not with an hypothesis in mind, but

only with an encoding of the last few instances of the device's behavior. Their goal

was to discover the attributes common to all the instances that they generated.

The second strategy that Bruner et al discovered was successive scanning; subjects

test a single hypothesis at a time. Both our Experimenters and our Theorists used this

strategy, though the difference between our two groups was that the experimenters

switched from testing hypotheses to collecting information that would allow them to

generate a new hypothesis. Bruner et al. argued that subjects adopt one strategy rather

than another because some strategies impose more of a cognitive strain, or Short-term

memory load, than others. However in our task the source of difference between

Experimenters and Theorists is in Long-term memory: Subjects who can construct the

correct frame from information in long-term memory are Theorists. Those who are unable

to construct the correct frame from information in long-term memory are Experimenters,

and must search the experiment space.

Our Experimenter/Theorist distinction is roughly analogous to the data-driven vs

model-driven distinction in Al approaches to inductive inference. However, for most

Machine Learning models, both the amount and the accuracy of information required far
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excedes the capacity of our subjects. This fallibility may account for the kind of

strategy differences - similar to ours - that have been observed in other discovery

tasks. For example, Rasmussen (1981) found two different types of strategies used by

operators trying to find faults in a complex system. Some operators search the

experiment space trying to find the faulty component. Other operators search a

hypothesis space in order to think of a set of symptoms which are similar to the

observed symptoms. Rasmussen also found that use of these strategies vary with the

amount of knowledge about the domain that the operators have: Experts tend to search

the hypothesis space, and novices tend to search the experiment space. It is likely that

in Rasmussen s case, as in ours, the different strategies result from differences in prior

knowledge rather than from a stable individual difference.

6.4 Conclusion

We have proposed that scientific reasoning requires search in two problem spaces

and that the different strategies that we observed are caused by different patterns of

search in these two problem spaces. We proposed SODS as both a framework for

interpreting these results and as a general model of scientific reasoning. Clearly, there

are many aspects of the scientific reasoning process that we need to specify further, but

we believe that SDDS offers a potentially fruitful framework for discovering more about

discovery.
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Table 1

002
003
004
005
006
007
008
009
010
Oil

013

015
016
017
018
019
020

022
023
024
025

027
028

030
031
032
033

Example of a complete protocol. CLR and GO commands have been deleted.
BlgTrak's behavior is shown in boldface type.

EXP: SO HOW DO YOU THINK IT MIGHT WORK?
U h . . . i t would repea t a l l of the s t e p s before i t , however many times
I to ld i t to repea t i t .
EXP: WELL... SO START WORKING ON IT NOW THEN.
Ok.
EXP: AND TELL ME EVERYTHING THAT'S GOING ON IN YOUR MIND.
Ok.
EXP: NOW PRESS CLEAR.
Ok, urn... I'm gonna make it go
forward two, and then I'm gonna make it repeat that twice.

012 00:30 T 2 RPT 2

T 4

Maybe not, uh.... repeat once

014 02:00 T 1 «- 15 T 1 HOLD 2 RPT 1

T 1 15 T 1 HOLD

Hmm.. guess that was it.
EXP: SO WHAT ARE YOU THINKING?
Urn.. actually I have no idea now.
I'm trying to figure out what it is.
Urn., maybe it repeats the last step.
Ok, I'm gonna try that repeat once.

021 03:30 t 2 <- 30 RPT 1

T 2 «-60

All right, that backs up my theory.
Let me see if I can somehow make sure that that's what it does
is repeats the last step however many times that I tell it to,
so I'm gonna ... repeat it four times...

026 04:00 t 2 •- 30 RPT 4

T 2 <- 30 t 2 <- 30

That was strange, hmm... urn... let me see that again.

029 04:30 t 2 «- 30 RPT 4

t 2 <- 30 t 2 <- 30

Ok, maybe it means repeat the last number...
however many steps before it that I put in,
that'll be the number after the repeat. For instance,
if I put repeat two, it'll repeat the last two steps.
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034 If I put repeat five,it'll repeat the last five steps,
035 and if there's too many...
036 if the five is more than the number of steps in the program,
037 it'll just end it at vhatever number of steps in the program,
038 so . . . repeat one, no, repeat two.
039
040 06:00 T 2 4-15 T 2 FIRE 3 RPT 2

t 2 <- 15 T 2 FIRE 3 T 2 FIRE 3

041 All right, I think I might have gotten it.
042
043 06:30 T 2 4-15 T 2 FIRE 3 RPT 3

T 2 <- 15 T 2 FIRE 3 <- 15 T 2 FIRE 3

044 0k, I think I've gotten it. I'm gonna make it repeat four times.
045 . . . vanna repeat four...

046 07:30 T 2 4-15 T 2 FIRE 3 RPT 4

T 2 <- 15 T 2 FIRE 3 t 2 4-15 T 2 FIRE 3

047 0k, now I'm trying to figure out vhich order the repeat step goes.
048 If it does the first part of the program or if it does...if it starts
049 from the last part of the program, vhere repeat...
050 if I say repeat one, does it repeat the first step in the program,
051 or does it repeat the last step I pressed in? Urn...repeat that
052 step...
053
0 5 4 0 9 : 0 0 T 2 4 - 1 5 T 2 FIRE 3 RPT 1

T 2 «- 15 T 2 FIRE 6

055
056 It goes from the last step,
057 and I don't understand vhy it doesn't go backvards.
058 Maybe it counts back tvo steps.
059 If I put repeat tvo, it vould count back tvo steps,
060 starting from there and go until the last step. Alright,
061 ...urn...the last tvo steps vere forvard tvo and fire three,
062 so let me try and repeat that again.

063 10:00 T 2 4-15 T 2 FIRE 3 RPT 2

T 2 4- 15 T 2 FIRE 3 T 2 FIRE 3

064 All right, nov if I ... repeat five...
065 so if I put repeat four, it should do the vhole program over again.
066 11:00 T 2 4-15 T 2 FIRE 3 RPT 4

T 2 4-15 T 2 FIRE 3 T 2 4-15 t 2 FIRE 3

067 Well, I think I figured out vhat it does.
068 EXP: SO HOW DOES IT WORK?
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069 Ok, when you press the repeat key and then the number,
070 it comes back that many steps and then starts from there
071 and goes up to, uh...it proceeds up to the end of the program
072 and then it hits the repeat function again.
073 It can't go through it twice.
074
075 EXP: GREAT.
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Table 2: Common hypotheses and percentage of experiments conducted under each
for Studies 1 and 2. Frequency of mention of each in

hypothesis-search phase of Study 2

HYPOTHESIS4

HS1: One repeat of last N instructions.

HS2: One repeat of first N instructions.

HS3: One repeat of the Nth instruction.

HN1: One repeat of entire program.

HN2: One repeat of the last instruction

HC1: N repeats of entire program.

HC2: N repeats of the last instruction.

HC3: N repeats of subsequent steps.

% EXPERIMENTS
UNDER EACH HYPOTHESIS
Study 1

02

04

03

06

04

14

20

02

Study 2

0

0

05

11

09

13

26

0

FREQUENCY
OF MENTION
Study 2

5

1

5

1

2

5

9

3

Partially specified 03 0 1

Idiosyncratic 14 05 10

No Hypothesis — 28 26

100 100

4
Hypotheses are labeled according to the role of N: HS • selector; HN • nil; HC - counter



Scientific reasoning
57

Table 3: Attribute-value representation of fully-specified common hypotheses5

Rule

HS1

HS2

HS3

HN1*

HN2#

HC1

HC2

HC3

N-rol*

selector

selector

selector

nil

nil

counter

counter

counter

Rep-type Bounds

segment

segment

instruction

segment

instruction

segment

instruction

segment

# of reps

iast N

first N

Nth fm start

ail

prior

ail

prior

ail following

1

1

1

1

N

N

N

Prediction

abcdCDef

abcdABef

abcdBef

abcdABCDef

abcdDef

abcdABCDABCDef

abcdDDef

abcdefEFEF

Test Program: abcdRPT2ef

1) • rules do not use N; 2) Uppercase letters in predictions show executions under control of RPT2- 3)
Underlined letters reflect ambiguity in "repeat twice."
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Table 4: Number of rejections/retentions of stated hypotheses, given
conflrming/disconfirming evidence, in Study 1

All subjects

Experimenters
Theorists

Reject
Confirm

21

17
4

Retain
Confirm

63

43
20

Reject
Oisconfirm

60

44
16

Retain
Disconfirm

76

56
20

Table 5: Performance summary of Experimenters and Theorists in Study 1

N
Time (minutes)
Experiments
Experiments with hypotheses
Experiments without hypotheses
Different hypotheses
Hypothesis switches
Experiment space verbalizations
/V\ combinations used

Experimenters

13
24.46
18.38
12.30
6.08
4.92
4.76
5.85
9.9

Theorists

7
11.40
9.29
8.57
0.76 " '
3.86
3.00
0.86
5.7

Combined

20
19.40
15.20

. — .1t*PQ
' "' "* •*** .2 '

4.55
4.15
4.10
8.45

Table 6:

Experimenters
Theorists
Combined

Number of changes in program length or value of N in successive
experiments for each group in Study 1

N

91
21

112

40
18
58

NX

50
11
61

NX

45
8

53

Total changes

226
58

284



Scientific reasoning 59

Table 7: Performance summary of Experimenters and Theorists in phase 2 of Study 2

N
Have programming experience
Stated HS1 in phase 1
Time (minutes)
Experiments
Experiments with hypotheses
Experiments without hypotheses
Different hypotheses
Hypothesis switches
Experiment-space verbaiizations
NX combinations used

Theorists

4
4
4

3.3
3.0
2.0
1.0
1.5
1.5
1.0
2.5

Experimenters

6
1
1

8.2
7.5
5.7
1.8
3.0
3.0
2.2
5.7

Combined

10
5
5

6.2
5.7
4.2
1.5
2.4
2.4
1.7
4.4

Table 8 Number of rejections/retention of stated hypotheses, given
confirming/disconfirming evidence, in Study 2

Aii subjects

Experimenters
Theorists

Reject
Confirm

5

5
0

Retain
Confirm

8

7
1

Reject
Disconfirm

16

10
6

Retain
Disconfirm

8

7
1
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Figure Captions

Figure 1: The BigTrak robot.

Figure 2: Frames for hypotheses about how RPT N works. Heavy borders
correspond to common hypotheses from Table 2; dashed borders

correspond to partially specified hypotheses; arrows indicate that adjacent
hypotheses differ along a single attribute shown on the arrow; all possible

hypotheses are not shown,

Figure 3: Regions of the Experiment Space, showing illustrative programs
and confirmation/disconfirmation for each common hypothesis. (Shown here is only

the 10x10 subspace of the full 15x15 space.)

Figure 4: Process hierarchy for SDDS. All subprocesses connected by an
arrow are executed in a sequential conjunctive fashion. All process names
preceded by an asterisk include conditional tests for which subprocess to

execute.

60
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HYPOTHESIS SPACE
RPT

Mrole:
Nreps:
Unit:
Bound3:

Common (with label)

I J Example of idiosyncratic

Hi ole: Counter

# Partially specified

Changed Httribute

N
Step
Subsequen

N
Progran
Subsequen

HC3

nrep3
Progra*

Prior Prior 3i«i sequent

boumi

nreps # 0 unit nreps
Program
Prior

Program
Prior Prior

Nrole: Selector

MS3

N Prom beg N from em.1

N
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N-1
FIRE2I|RPT1I

N-2
f3 43*30 "RPT2"

RPTI

Hypothesis

BS1
BS2
BS3
HN1
BM2
BC1
BC2
BC3

II

REGION

III IV VI
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