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Abstract

There has been a great deal of work in human problem solving since the landmark

publication of Newell and Simon's Human Problem Solving in 1972. After reviewing the 1972

theory and the subsequent additions to it that model practice effects and expert-level problem

solving, this tutorial presents 19 basic findings that seem to capture much of the recent

experimental work in the field.



 



A brief history of the study of problem solving
Although virtually any human activity can be viewed as the solving of a problem, throughout

the history of the field, most research has concerned.tasks that take minutes or hours to perform.

Typically, subjects make many observable actions during this period, and these actions, are

interpreted as the externally visible part of the solution process. Even if subjects are required to

solve problems in their heads (e.g., to mentally multiply 135x76), they are usually asked to talk

aloud as they work, and the resulting verbal protocol is interpreted as a sequence of actions (see

chapter 1, this book). Thus, the tasks studied are not only long tasks, but also multi-step tasks.

The earliest experimental work on human problem solving was done by Gestalt

psychologists, notably Kohler, Selz, Duncker, Luchins, Maier, and Katona. They concentrated on

multi-step tasks where only a few of the steps to be taken were crucial and difficult. Such problems

are called insight problems because the solution follows rapidly once the crucial steps have been

made.1 An example of such a task is construction of a wall-mounted candle-holder from an odd

assortment of materials, including a candle and a box of tacks. The materials are chosen in such a

way that the only solution involves using the box as a support for the candle by tacking it to the

wall. To find this solution, subjects must change their belief that the box is only a container for the

tacks and instead view the box as a construction material. This belief change is the crucial,

insightful step. Once it is made, the solution is soon reached.

In contrast, most problem solving research in the last three decades has concerned multi-

step tasks where no single step is the key. Rather, finding of a solution depends on making a

number of correct steps. An example of such a task is solving an algebra equation. The solution is

a sequence of proper algebraic transformations, correctly applied. The difficulty in the problem lies

in deciding which transformations to apply, remembering them accurately, and applying them

correctly. Thus, the responsibly for the solution is spread over the whole solution process rather

than falling on the discovery of one or two key steps. This choice of tasks caused research to

focus on how people organize the solution process, how they decide what steps to make in what

circumstances, and how their knowledge of the task domain determines their view of the problem

and their discovery of its solution. These topics are the ones emphasized in this chapter.

In the 1950s and 1960s, most research concerned tasks that require no special training or



background knowledge. Everything that the subject needs to know to perform the tasks is

presented in the instructions. A classic example of such a task is the Tower of Hanoi. The subject

is shown a row of three pegs. On the leftmost peg are three disks: a large one on the bottom, then

a medium sized one, and a small disk on top. The subject is told that the goal of the puzzle is to

move all three disks to the rightmost peg. but only one disk may be moved at a time and a larger

disk may never be placed on top of a smaller one. There are many variations of this basic puzzle.

For instance, there can be more disks than three, and the starting and finishing states can be

arbitary configurations of disks. All these variants of the puzzle are called a task domain and each

specific version is called a task, that is, one element of the task domain. "Task" and "problem" are

virtually synonomous. The Tower of Hanoi, and other simple, puzzle-like task domains are called

knowledge-lean, because it takes very little knowledge (i.e., just what one reads in the instructions)

in order to solve problems in the task domain. Of course, some subjects may have a great deal of

knowledge about the task domain - puzzle fanantics, for instance. However, possesion of such

knowledge is not essential for obtaining a solution. Someone with very little knowledge can

blunder through to a solution.

The study of knowledge-lean tasks led to the formulation of Newell and Simon's landmark

theory. Their 1972 book, Human Problem Solving, is still required reading for anyone seriously

interested in the field. This theory became the foundation for many detailed models of problem

solving in specific task domains. The models are able to explain not only the steps taken by the

subjects, but also their verbal comments (e.g., Newell and Simon, 1972, chapters 6, 9 and 12), the

latencies between steps (e.g., Karat, 1982), and even their eye movements (e.g., Newell and

Simon, 1972, chapter 7). The early seventies marked a high point for theoretical work in the field of

knowledge lean problem solving.

In the late 1970's, attention shifted to studying knowledge-rich task domains, which are task

domains where many pages of instructions are required for presenting even the minimal knowledge

necessary for solving the problem. Know ledge-rich task domains that have been studied include

algebra, physics, thermodynamics, chess, bridge, geometry, medical diagnosis, public policy

formation and computer programming.

Much early empirical research into knowledge-rich tasks concerned the differences between

experts and novices. Varying the level of expertise while holding the task domain constant helped



investigators separate the effects of expertise from the influence of the task domain. The typical

study gave the same set of problems to experts and novices and used protocol analysis (see

chapter 1, this book) to examine differences in the performance of the two groups. Of course, the

novices found the problems quite hard and the experts found them quite easy. If one assumes that

the experts had encounter the same or similar problems many times in the past, one would expect

them to simply recognize the problem as an instance of a familiar problem type, retrieve the

solution template from memory, and generate the problem's solution directly. Novices, on the other

hand, might have no such knowledge, so they would have to blunder about, searching for a

solution, just as the subjects in the knowledge-lean task domains do. To put it briefly, the

hypothesis is that expertise allows one to substitute recognition for search.

Although the mid-70s saw development of computer programs that could model the steps,

latencies and even eye movements of subjects solving puzzles, no such models have been

developed for experts solving problems in knowledge rich task domains. Partly, this is because it

has proved difficult to build computer programs that contain a great deal of knowledge, and only

recently has the technology for building such expert systems begun to bear fruit. There is a small

but increasing number of programs that can competently solve problems in knowledge-rich task

domains, although they often resort to methods that human experts do not seem to use (e.g.,

extensive combinatorial searches).

However, there are also scientific reasons for not just building an expert system as a model

of expert problem solving. Expert behavior, whether generated by people or programs, is a product

of their knowledge, so any explanation of that behavior must rest on postulating a certain base of

knowlege. But what explains that knowledge? Although it could be measured or formally

constrained in various ways, the ultimate explanation for the form and content of the human

experts' knowledge is the learning processes that they went through in obtaining it. Thus, the best

theory of expert problem solving is a theory of learning. Indeed, learning theories may be the only

scientifically adequate theories of expert problem solving.

Thus, the focus of attention in the 1980's has been on the acquisition of expertise. There has

been a revival of interest in traditional topics in skill acquisition, such as practice effects and

transfer, and many of the regularities demonstrated with perceptual-motor skills have been found to

govern cognitive skills as well. There are also novel experimental paradigms. For instance, much



has been learned from taking protocols of students as they learn. A number of learning

mechanisms have been developed, and will be discussed later, but we still have incomplete

knowledge about their respective roles in the total picture of cognitive skill acquisition.

The organization of this chapter

Because this is a time of transition, a coherent theory of problem solving and skill acquisition

cannot be presented here, so the ingredients for developing such a theory are presented instead.

First, the 15-year old theory of Newell and Simon is presented using as illustrations the knowledge-

lean task domains that are its forte. Second, the idea of a schema is introduced because it has

played an important role in explaining the long-term memory structures of experts. Third, a list of

major empirical findings is presented.

Knowledge-lean problem solving
This section discusses a theory of problem solving that was introduced by Newell and Simon

in Human Problem Solving and has come to dominate the field. It forms a framework or set of

terms that have proved useful for constructing specific analyses and models of human cognition.

The theory begins by making idealizations that distinguish between types of cognition.

These distinctions are often difficult to define in objectively measurable terms. For instance, the

first idealization is to distinguish between problem solving that involves learning, and problem

solving that does not. "Learning", in this context, means resilient changes in the subject's

knowledge about the task domain that are potentially useful in solving further problems (see Simon,

1983, for a discussion of this definition of learning). Early work (e.g., Newell and Simon, 1972)

assumed that there is little or no learning during problem solving. This idealization allowed

formulation of an theory that still useful today. Moreover, it provided the foundation for accounts of

problem solving with learning. As usual in science, oversimplification is not necessarily a bad thing.

The first several subsections of this section will present a discussion of problem solving

under the idealization that learning is not taking place. In the last subsection, the oversimplification

will be ammended and learning mechanisms will be discussed.

Problem solving « understanding + searching



A second important idealization is that the overall problem solving process can be analyzed

as two cooperating subprocesses, called understanding and search. The understanding process is

responsible for assimilating the stimulus that poses the problem and for producing mental

information structures that constitute the person's understanding of the problem. The search

process is driven by these products of the understanding process, rather than the problem stimulus

itself. The search process is responsible for finding or calculating the solution to the problem. To

put it differently, the understanding process generates the person's internal representation of the

problem, while the search process generates the person's solution.

It is tempting to think that the understanding process runs first, produces its product, and

then the search process begins. However, the two processes often alternate or even blend

together (Hayes & Simon, 1974; Chi, Glaser & Rees, 1982). If the problem is presented as text,

then one may see the solver read the problem (the understand process), make a few moves

toward the solution (the search process), then reread the problem (understanding again). Although

some understanding is logically necessary before search can begin, and indeed most

understanding does seem to occur towards the begining of the problem solving session, it is not

safe to assume that understanding always runs to completion before search begins.

The first subsection will discuss the understanding process, and the second will discuss the

search process. A third, brief subsection discusses a common type of problem solving that has

some of the characteristics of both understanding and search.

The understanding process in knowledge-lean task domains

The understanding process converts the problem stimuli into the initial information needed by

the search process. The early stages of the understanding process depend strongly on the media

in which the problem is presented: text or speech, diagrams or pictures, physical situations or

imaginary ones. Presumably, a variety of perceptual processes can be involved in the early stages

of understanding. Because perceptual processes are studied in other fields of cognitive science,

problem solving research has concentrated on describing the later stages of understanding, and in

particular, on specifying what the output of the understanding process is.

In knowledge-lean task domains, there is wide-spread agreement on what the product of

understanding is. It follows, almostly logically, from constraints on the type of material being



understood. By definition, the instuctions for a problem in a knowledge-lean task domain contain

all the information needed for solving the problem, although It may have to be supplemented and

interpreted by common sense knowledge. When this definition is combined with the fact that

problem solving tasks are, almost by definition, multi-step tasks, then it follows that the minimal

information that the subject needs to obtain from the problem instructions consists of three

components: (1) the initial problem state, (2) some operators that can change a problem state into

a new state, and (3) some efficient test for whether a problem state constitutes a solution. These

three components, along with some others that can be derived from them, are collectively called a

problem space. Thus, a major assumption about the understanding process for knowledge-lean

task domains is that it yields a problem space.

The name "problem space" comes from the fact that the conjunction of an initial state and a

set of operators logically implies a whole space of states (i.e., a state space). Each state can be

reached from the initial state by some sequence of operator applications. An incontestable

principle of cognition is that people are not necessarily aware of all the deductive consequence of

their beliefs, and this principle applies to problem spaces as well. Although the state space is a

deductive consequence of the initial state and the operators, people will not be aware of all of it.

For instance, a puzzle solver may not be able to accurately estimate the number of states in the

state space even after solving the puzzle several times. On the other hand, the size and topology

of the state space has played an important role in theoretical analyses where, for instance, the

difficulty of a problem is correlated with the topology of the state space (Newell & Simon, 1972).

As an illustration of the concept of a problem space, the problem spaces of two subjects will

be compared. Both subjects heard the following instructions:
Three men want to cross a river. They find a boat, but it is a very small boat. It will only hold 200

pounds. The men are named Large, Medium and Small. Large weights 200 pounds, Medium
weights 120 pounds, and Small weights 80 pounds. How can they all get across? They might have
to make several trips in the boat.

One subject was a nine-year old girl, who asked me to refer to her as "Cathy" in describing her

performance. Upon hearing the instructions, Cathy immediately asked "The boat can hold only 200

pounds?", and the experimenter answered affirmatively. Thereafter, almost all of Cathy's

discussion of the puzzle used only "sail" as a main verb and "Large", "Medium", "Small", "the boat"

and pronouns as noun phrases. (Cathy's complete protocol will appear later in table 3.) It is

apparent from the protocol that Cathy solves this problem by imagining the physical situation and
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the actions taken in it, as opposed, say, to converting the puzzle to a directed graph then finding a

traversal of the graph. Thus, we can formally represent her belief about the current state of the

imagined physical world as a set of propositions of the form (ON X Y) where x is in the set «: L,

M, s, 3} and Y is in the set (Source, Des t ina t ion} . For instance, the set of propositions,
(On L Source) (On M Source) (On S Source) (On 3 Source)

represents the initial situation, where Large, Medium, Small and the boat are all on the source bank

of the river. Notice that Cathy could have a much richer description of the situation in mind, that

includes, for instance, propositions describing how much weight is in the boat and on each of the

banks. However, such descriptions never appear in her protocol, so it can be assumed (justified by

simplicity and parsimony, and subject to refutation by further experiments) that Cathy maintains

only descriptions of the (On x Y) type while she solves the puzzle.

Similarly, we can ask what types of operators Cathy believes are permitted in solving this

puzzle. Apparently, she infers it is not permitted that the three men can swim across the river or

take some other transportation than the boat. Moreover, she must have inferred that the 200

pound limit implies that only certain combinations of passengers are possible, because she only

mentions legal boat rides. Thus, Cathy seems to have just one legal operator, which can be

formally represented as (Sa i l x Y z), which stands for sailing passenger set x from bank Y to

bank z. The argument x is either {L}, { M , S } , (M} or {S}, and Y and z are either source or

Destination.

Cathy immediately recognizes when she has reached the desired final state, and moreover,

she shows signs throughout the protocol of being aware of it. So we can safely assume that

Cathy's understanding of the LMS puzzle contains at least an initial state, the s a i l operator, and

the desired final state.

It is clear that Cathy's problem state is a very coarse representation of the actually physical

situation of some men and a boat. Apparently she does not believe that the river's current, the

weight of a boatload, and other factors are relevant to solving this puzzle. In order to highlight the

subject's beliefs about what aspects of the puzzle's situations are relevant, most definitions of

"problem space" (e.g., Newell and Simon, 1972) specify a fourth component, a state representation

language. Every state in the problem space, including the initial and final states, should be

representable as some expression in this formal language. The state representation language in



Cathy's case is simply all possible conjunctions of (On x Y) propositions.

It is important to note that not all subjects derive the same problem space from the

instructions. For instance, another subject, a 60-year old adult male, first understood the

instructions given to Cathy as an arithmetic problem. After hearing the instructions, the subject

immediately answered that it would take two trips, because only 200 hundred pounds could be

moved per trip, and there were 400 pounds of men to move. He generated a different problem

space from Cathy's, even though he received the same instructions. He was asked to described

exactly what those two trips were. He indicated that first Large could row across, then Medium and

Small. The experimenter asked him how the boat was gotten back across. The subject replied

that there must be a system of ropes or something. The experimenter asked him to assume

instead that someone would have to row the boat back. This added instruction caused the subject

to change his problem space. His new problem space was similar to Cathy's. This second

subject's behavior shows that the understanding of simple knowledge-lean puzzles can interact

with common-sense knowledge in interesting and non-obvious ways, and can proceed differently

with different subjects.

The above example also shows that subjects can change their problem space to

accomodate added information from the experimenter. Sometimes, information garnered by the

subjects themselves in the course of problem solving will also cause them to change their problem

space. Some investigators (Duncker, 1945; Ohlsson, 1984) hypothesize that the "insights" of

subjects solving insight problems are often changes of problem spaces.

There are problems that do not fit neatly into the problem space mold, mostly because the

solution states are not well defined. For instance, one can ask a subject to draw a pretty picture.

Although minimal competence in this task requires no special knowledge, and therefore the task

domain qualifies as a knowledge-lean one, it is difficult to characterize the subject's test for the final

state. Indeed, it is likely that some subjects themselves may not know what the final state will be

until the picture is half-drawn. In these cases, finding a set of constraints that qualify a problem

state as a solution is just as imporant as generating a solution state. For knowledge-lean task

domains, a well-defined problem is defined to be one where the subject's understanding of the

problem produces a problem space, that is, an initial state, a set of operators, and a solution state

description. Problems whose understanding is not readily represented as a problem space are
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called ill-defined problems. Sketching pretty pictures is an ill-defined problem. A definition of "^ell-

defined" for knowledge-rich task domains would be equivalent in spirit, but is not so easily stated

because the understanding process for knowledge-rich task domains is considerably more

complicated. There have been only a few studies of ill-defined problem solving. Reitman (1965)

studied a composer writing a fugue for piano. Akin (1980) studied architectural design. Voss and

his colleagues have studied agricultural policy formulation (Voss, Greene, Post & Penner, 1983;

Voss, Tyler & Yengo, 1983). Simon (1973) provides a general discussion of ill-defined problem

solving. This chapter concentrates exclusively on well-defined problems, since that is where most

of the research has been focused.

Although the output of the understanding process in knowledge-lean task domains is well-

understood (albeit, by fiat), less is known about the process itself. In part, this is because the

understanding process for typical puzzles takes very little time. Cathy's protocol was two minutes

long, but the understanding process seems to have run to completion during the first 20 seconds.

The only behavior to observe during that brief time was Cathy's posing a question to the

experimenter. In order to magnify the understanding process, Hayes and Simon (1974) studied a

puzzle, called the tea ceremony, whose instructions are quite difficult to understand:
In the inns of certain Himalayan villages is practiced a most civilized and refined tea ceremony.

The ceremony involves a host and exactly two guests, neither more nor less. When his guests have
arrived and have seated themselves at his table, the host performs five services for them. These
services are listed in the order of the nobility which the Himalayans attibute to them: (1) Stoking the
Fire, (2) Fanning the Flames, (3) Passing the Rice Cakes, (4) Pouring the Tea, and (5) Reciting
Poetry. During the ceremony, any of those present may ask another, "Honored Sir, may I perform
this onerous task for you?" However, a person may request of another only the least noble of the
tasks which the other is performing. Further, if a person is performing any tasks, then he may not
request a task which is nobler than the least noble task he is already performing. Custom requires
that by the time the tea ceremony is over, all the tasks will have been transfered from the host to the
most senior of the guests. How may this be accomplished?

Hayes and Simon took a protocol of a subject interpreting these instructions and solving the puzzle.

The subject read the text many times before he began to solve the puzzle. From the protocol, it

appears that the subject first built up an understanding of the objects in the initial state, then of the

relationships between the objects, and finally of the legal operators. The subject proceeded

statement by statement, trying to reconcile each statement with his current understanding.

The subject's major problem lay in interpreting the sentence, "During the ceremony, any of

those present may ask of another, 'Honored Sir, may I perform this onerous task for you?'" The

correct interpretation of this sentence, which the subject eventually discovered, is that the
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responsibility and ownership of the onerous task is transfered from one person to another.

However, the subject's initial interpretation of the sentence was that one person is asking to do the

task for the benefit of the other without actually relieving the other of the responsibility and

ownership of the task. This benefactive reading is arguably the default interpretation for the

English "perform for" construction, so it is no surprise that the subject's initial interpretation was

benefactive. He only changed his interpetation when he noticed that the desired solution state

requires that ownership of the onerous tasks have been transfered, and yet he has no operator that

will effect such transfers. In order to make the problem solvable, he re-examines his interpretation

of the "perform for" sentence, and discovers its other reading.

This study and others (Hayes & Simon, 1976; Kotovsky, Hayes & Simon, 1985) convinced

Hayes and Simon that understanding of well-defined problems in knowledge-lean task domains is a

rather direct translation process whose character is determined mostly by the type of stimulus used

and the need for an internally consistent initial problem space. As will be seen later, this is not an

apt characterization of the understanding process in knowledge-rich domains, nor does it explain

why different subjects sometimes generate different problem spaces from the same instructions.

The search process

Suppose that problem spaces had not yet been invented, and we set out to formally describe

the process of searching for problem solutions. We would soon discover that it is often quite easy

to represent the subjects' current assumptions, postulations or beliefs about the problem as a small

set of assertions. For example, in the midst of trying to extrapolate the sequence "ABMCDM," the

subject might have the beliefs that the sequence has a period of three and the third element of the

period is always "M." Thus, the subject's current beliefs could be notated formally as including the

assertions Period » 3 and For a l l p, T h i r d ( p ) * "M f\ where p indexes periods. The

search process consists of small, incremental changes in the subject's beliefs that can be modelled

as small changes to the set of assertions. For instance, the next step in the search for the pattern

of ABMCDM might produce just one new assertion about the problem, say, that the first and

second elements in a period are consecutive letters in the alphabet. (Put formally, the new

assertion is For a l l p, Second (p) = Next (F i rs t (p)).) This formal description of the

problem solving process, as a sequence of incremental changes to a set of assertions, is exactly

the same as the problem space notation. A state in a problem space corresponds to a set of

assertions. The applicatation of an operator to a state corresponds to the incremental changes in
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the subject's set of assertions. The operators themselves correspond to the heuristic rules that the

subject uses to modify assertions (e.g., "if the same letter occupies both positions i and i-x, then

assert that Period * xM). This demonstrates the naturalness of problem spaces as a formal

notation for the behavior that subjects exhibit while problem solving.2

The assertions that populate a problem state can represent beliefs that arise directly from

perception. For instance, if the subject sees that the leftmost peg of the Tower of Hanoi puzzle has

no disks on it at this time, then one could include the assertion Disks ( leftmost-peg) = n in the

set that represents the subject's beliefs. Similarly, moving a disk can be represented as an

incremental change in the set of assertions. Thus, the problem space framework serves both to

represent changes of the subject's internal state was well as changes in the physical state of the

world.3

For most problem spaces, there are usually several operators that can be applied to any

given state. For instance, instead of infering that Second (p) - Next ( F i r s t (p ) ) , which relates

A with B and C with D in ABMCDM, it could be infered that F i r s t (p+l)«Next (Second(p)),

which relates B with C. In this case, it does not matter which operator is chosen. However, some

operator applications lead to dead ends. For instance, if it is decided that the period of the

sequence "defgefghfghi" is 3, then a correct solution cannot be found by adding more assertions to

the resulting state, because the correct period is actually 4. These facts -- that multiple operators

apply at most states, and that some sequences of operator applications lead to dead ends - follow

logically from the definition of the problem space. Any intelligence, human or artificial, must cope

with these facts in order to find a solution path.

Suppose it is assumed that only one operator can be applied at a time and that an operator

can only be applied to an available state, where a state is available only if (1) it is mentioned in

statement of the problem or (2) it has been generated by application of an operator to an available

state.4 These assumptions logically imply that any solution process must be a special case of the

algorithm template shown in table 1. The HslotsM in this template are the functions for choosing a

state, choosing an operator and pruning states from the set of active states. A variety of specific

algorithms can be formed by instantiating these slots with specific computations. The class of

algorithms formed this way are called state space search algorithms. Much work has been done

on the properties of these algorithms.5
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Let active-states be a set of states, which initially contains only the
states mentioned in the problem statement.

1. Choose a state from active-states. If there are no states
left in active-states, then stop and report failure.

2. Choose an operator that can be applied to the state.
If no operator applies, then go to step 5.

3. Apply the operator to the state, producing a set of new states.
If the set is empty, go to step 5.

4. Test whether any of the new states is a desired final state. If one
is, then stop and report success. If none are, then place them in
active-states and go to step 5.

5. Choose a subset of the states in active-states, and remove them from
active-states. Go to step 1.

Table 1 : A general search procedure

Although the search algorithm template of table 1 is simple, it does not have quite the right

structure for describing human problem solving. People seem to distinguish between new states

and old states, where a new state is one produced by the most recent operator application. In

selecting a state (step 1 of the algorithm), choosing a new state is viewed as proceeding along the

current path in the search, while choosing an old state is viewed as failing and backing up. For

people, different principles of operation seem to apply to these two kinds of selections. In order to

capture this distinction, the work of search can be allocated among two collaborating processes:
1. A process, called the backup strategy, that maintains the set of old states, and

chooses one when necessary.

2. A process, called the proceed strategy, that (1) chooses an operator to apply to the
current state, (2) applies it, and (3) evaluates the resulting states. If one of them is a
desired, final state, the search stops and reports success. On the other hand, if none
of them seem worth pursuing, then the backup strategy is given control. Otherwise,
this process repeats.

Although this algorithm template is logically equivalent to the one of table 1, it has different slots,

namely, one for the backup strategy and one for the proceed strategy (the latter is not a standard

term in the field, but it should be).

Both the backup strategy and the proceed strategy are viewed as potentially

nondeterministic procedures, in that there are a number of choice points (e.g., choosing a operator)

where the procedure does not specify how the choice is to be made. However, some subjects
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seem to apply simple, efficient criteria, called heuristics, to narrow the set of choices. Sometimes

the heuristics are so selective that they narrow the options to just a single, unambiguous choice. In

short, this general template for search algorithms has three slots: (1) the backup strategy, (2) the

proceed strategy, and (3) heuristics for the backup and proceed strategies.

It is generally held that there are a handful of distinct weak methods that novice subjects use

for knowledge-lean task domains (Newell & Simon, 1972; Newell, 1980; Laird, Newell, &

Rosenbloom, 1987). Most of these methods are proceed strategies. The simplest weak method is

a proceed strategy called forward chaining. Search starts with the initial state. Heuristics are used

to select an operator from among those that are applicable to the current state. The selected

operator is applied, and the strategy repeats. Another strategy, called backwards chaining, can be

used only when a solution state is specific and the operators are invertible; it starts at the solution

state, heuristically chooses an operator to apply, and applies it inversely. Thus, it builds a solution

path from the final state towards the initial state. A third strategy is operator subgoaling. It

heuristically chooses an operator without paying attention to whether that operator can be applied

to the current state. If the operator turns out to be inapplicable because some condition that the

operator requires (such conditions are called preconditions) is not met, then a subgoal is formed,

which is to find a way to change the current state so that the preconditions are true. The strategy

recurses, using the new subgoal as if it were the solution state specified by the problem space.6

As indicated above, all these strategies may usefully incorporate heuristics (rules of thumb)

in order to narrow the guesswork. Often, heuristics are specific to the particular task domain.

However, a particularly general heuristic is based on having the ability to simply calculate the

difference between a state and the description of a desired state. If states are notated as sets of

assertions, then set difference can be used to calculate inter-state differences. The difference

reduction heuristic is simply to choose operators such that the differences between the current

state and the desired state are maximally reduced.7

There is a very general method, called means-ends analysis, that is so widely used that is

worth examining in some detail. Table 2 shows the basic strategy. It subsumes two common

strategies: forward chaining and operator subgoaling. For instance, if there are never any

unsatisfied preconditions in step 3 of table 2, the method will do forward chaining. Thus, means-

ends analysis is.a generalization several other weak methods. (Such incestuous relationships
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Let State hold the current state, and Desired hold a description of the
state. Let Goal and Op be temporary variables.

1. Calculate the differences between State and Desired.
If there are no differences/ then succeed.
Otherwise, set the differences into Goal.

2. See which operators will reduce the differences in Goal.
If there are none, then fail .
Otherwise, use heuristics to select one, and set i t into Op.

3. Calculate the differences between State and the preconditions of Op
If there are any, set Goal to the differences, and go to step 2.
Otherwise, apply Op to State, and update State accordingly.

4. Use heuristics to evaluate State.
If i t seems likely to lead to Desired, then go to step 1.
Otherwise, fail .

Table 2: The method of means-ends analysis

among weak methods makes it difficult to give crisp definitions, so the terminology is rather fluid.

Indeed, some authors would take issue with the definitions given in this chapter.)

Table 3 shows means-ends analysis as a model for a Cathy solving the LMS puzzle, which

was discussed earlier. Note that the heuristics used in this task mention specific information in the

task, such as men and river banks. This is typical. The heuristics are task-specific while the

methods are general. Note also that means-ends analysis does not specify what happens when a

failure occurs. It is only a proceed strategy and not a backup strategy. However, means-ends

analysis alone suffices to model Cathy's behavior, because she never backs up during the solution

of this puzzle.

Backup strategies are determined mostly by the types of memory available for storing old

states. If external memory is used, such as a piece of scratch paper, then more old states may be

available than when only internal memory is used. Also, some tasks place physical constraints on

backup strategies. For instance, there are puzzles, such as the eight-puzzle, Rubik's cube, or the

Chinese Ring puzzle, where the goal is to rearrange the puzzle's parts into a certain configuration.

However, the parts are constructed so only some kinds of moves are physically possible. Thus,

one cannot backup to arbitrary states, even if one writes them down.
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Problem space:
(1) A state is a pair consisting of two sets, representing the contents of the source and destination

banks, respectively. Both sets are subsets of {L.M.S.B}, which stand for Large, Medium, Smail and
the Boat. The union of the two sets is {L,M,S,B}. (2) There is only one operator, Sail. It takes a set
of men and a bank as arguments. It only applies if the men are oniy the bank, and if their weight
sums to 200 or less. It has a precondition that the boat be on the bank. (3)The initial state is IMS
on the source bank. (4) The final state is that LMS be on the destination bank.

Heuristics:
(1) choose an opertor that will maximize the number of men on the destination bank. (2) Choose

an operator that will maximize the weigth of the men on the destination bank.

line number Protocol simulation

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
15
16
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

S:
E:
S:

E:
S:

E:
S:

E:

S:

E:

S:

E:
S:
E:
S:

E:
S:

E:
S:
E:

Goal • LMS on destination bank
The boat can only hold 200 pounds?
The boat can only hold 200 pounds.
Okay...first...
Small and medium go back,
Uh-huh.
...go across the river on it.
and then, urn,... Oh
Large... /3 second pause/
Yeah, go on... talk out loud.
... and... um...
Large... um... /3 sec. pause/
Talk out loud.
Tell me everything you're thinking.
But, I can't do it
because someone has to sail the boat back.
Ok... That's right.
Somebody has to sail the boat back.
Oh! Ok... so... /4 sec. pause/
Small sails the boat back

and gets off,
and lets Large sail the boat back.
Um-hmm. And then what happens.
Uh... /3 sec. pause/
Talk out loud...
And then small...
small...
cant think of anything...
Keep talking.
So... Medium... sails back.
and...

Medium and small sail back.
Keep talking.
And they're all across!
Very good!

Op • Sail MS to destination bank

Apply Op
Goal « L on destination bank
Op • Sail L to destination bank

Goal = Boat on source bank

Op = Sail S to source bank
Apply Op
Goal = LS on destination bank
Op • Sail L to destination bank
Apply Op
Goal » S on destination bank
Op • Sail S to destination bank

Goal • boat on source bank

Op = Sail M to destination bank
Apply Op
Goal = MS on destination bank
Op * Sail MS to destination bank
Apply Op

Table 3: Protocol and simulation of Cathy solving the LMS puzzle
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Elaboration: search or understanding?

There is a special type of problem solving that deserves some extra discussion because it

blurs the distinction between understanding and search. It concerns a certain class of beliefs,

called elaborations, that subjects often develop about problems. Suppose, as usual, that the

subjects' current beliefs about a problem are viewed as a set of assertions. As they work on the

problem, they could add new assertions, take old ones away, or modify old assertions. They could

even add assertions that, while not causing any of the old assertions to be removed, cause them to

become irrelevant to subsequent problem solving. An elaboration is an assertion that is added to

the the state without removing any of the old assertions or decreasing their potential relevance. As

an illustration, consider the following problem:
Al is bigger than Carl. Bob is smaller than Carl. Who is smallest?

Such problems are called series problems (see Ohlsson, 1987, for a recent model of problem

solving in this task domain and an introduction to the rather large literature on series problems).

Suppose a subject reads this problem and immediately says "I guess it has to be one of the three

of them." The subject apparently had some initial understanding of the problem, which could be

modelled as a set of assertions. This statement indicates a reasoning process of some kind has

run, producing a new assertion. The new assertion qualifies as an elaboration because it does not

negate, remove or obviate any of the older assertions.

It is not clear what kind of reasoning produced this elaboration. On the one hand, the

subject's behavior seems similar to the behavior of Cathy, who understood the LMS puzzle by

assuming that the only transportation was a boat. This similarity suggests that the elaboration is a

product of the understanding process. However, suppose the subject's next statement is "It can't

be Carl, because Bob is smaller." This inference also qualifies as an elaboration. Indeed, there is

nothing to distinguish it formally from the earlier elaboration. However, it is clear that the subject

could go on to find a solution of the puzzle by making only elaborations of this sort. If all of them

are considered to be products of understanding instead of operator application, then it follows that

this problem can be solved by just understanding it. Search is not needed.

Clearly, elaborations can be classified either as part of the understanding process or as part

of the search process. This might seem like a pointless terminological quibble. However, the

search process is currently better understood than the understanding process. If elaboration is
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classified as search, then it inherits hypotheses (e.g., means-ends analysis, the paucity of backup)

that might shed light on its organization and occurrence. Whether these hypotheses hold for

elaboration remains to be seen.

Learning during problem solving

If subjects are given a knowledge-lean task, their initial performance may be stumbling and

slow, but improve rapidly with practice. Mechanisms of practice-driven learning may be needed in

order to give a sufficient explanation of such behavior. Several mechanisms have been proposed.

Although this is a part of the field that is developing rather rapidly at present, its importance makes

it worthwhile to describe some of the more widely known mechanisms. The mechanisms need not

be used exclusively, but may be combined, and thus account for more phenomena that each can

explain individually.

Compounding is a process that takes two operators in the problem space and combines

them to form a new operator, often called a macro-operator (Fikes, Hart & Nilsson, 1972). Macro-

operators are just operators, so they can be compounded with other operators to form even larger

operators. As an illustration, suppose that a subject's algebra equation solving problem space

originally has an operator for subtracting a constant from both sides of the equation, and a second

operator for performing arithmetic simplifications. The following lines shows an application of each

operator:

3x+5»20
3x=20-5

Compounding can create a macro-operator that would produce the third line directly from the first

line. When there are preconditions or heuristics associated with operators, then some

bookkeeping is necessary in order to create the appropriate preconditions and heuristics for the

macro-operator. This is easiest to see when operators are notlted as productions so that the

preconditions and heuristics appear in the condition of the operator's production. The two algebra

operators can be represented as:

If"+ <constant>" is on the left side of the equation,
then delete it and put"- <constant>" on the right side of the equation.

If H<constant1> arithmetic operation> <constant2>" is in the equation,
then replace it with M<constant3>M, where <constant3> is...etc.

The second production's condition cannot be added verbatim to the macro-productions left side,

because it would not be true at the time the macro-production should be applied. Thus, the correct
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formulation of the macro-production is:

If M+ <constant1>" is on the left side of the equation,
and "<constant2>" is on the right side of the equation,

then delete both and put "<constant3>" on the right side,
where <constant3> is ...etc.

This demonstrates that compounding is not always a trivial process. Fikes, Hart and Nilsson

(1972) give a general algorithm. Lewis 1981) and Anderson (1982) have investigated the special

case of production compounding.

As mentioned earlier, heuristics are offen used in deciding which operator to select while

moving forward. Tuning is the process of modifying the operator selection heuristics. Suppose for

the sake of illustration that there are two applicable operators, A and B, in a certain situation. The

heuristic conditions associated with A are false, say, so A is deemed a poor choice in this situation.

The heuristics associated with B are true, which makes it a good choice, so it is selected. Suppose

that the application of B leads immediately to failure, so backup retreats, A is chosen instead, and

success occurs immediately. Obviously, the two heuristics gave poor advice, so they should be

tuned. A's condition was too specific: it was false of the situation, and it should have been true.

The appropriate tuning is to generalize A's condition. Conversely, B's condition was too general: it

was true of the situation and it should have been false; so its condition needs to be specialized.

Generalization and specialization are the two most common forms of condition tuning. A variety of

cognitive models have used one or both of them (Anderson, 1982; Langley, 1987; VanLehn, 1987).

Newell and Rosenbloom (1981) invented a mechanism that serves the function of both

compounding and tuning. The mechanism, called chunking, requires that operators and heuristics

be represented as productions that read and modify only the temporary information storage buffer

called working memory. It also requires that there be a bookkeeping mechanism that keeps track

of which working memory items were read and/or modified over a sequence of production

applications. Given a sequence of production applications, chunking creates a new production by

putting all the pieces of information that were read on the condition side, and all the pieces that

were modified on the action side. This creates a production that does the work of several smaller

productions. In this respect, it is just like compounding. However, because the chunking

mechanism builds the new production directly from the working memory elements that were

accessed, it builds very specific productions that incorporate all the detail of those elements. Thus,

chunking "specializes" productions, in a sense. In some circumstances, it can also generalize
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productions (Laird, Rosenbloom, & Newell, 1986). For this reason, chunking is a form of tuning as

well as compounding.

Another learning mechanism, called proceduralization is applicable only in models, such as

ACT* (Anderson, 1983) or UNDERSTAND (Hayes & Simon, 1974) that distinguish between

procedural and declarative knowledge. Such models view the mind as analogous to a program

that employs both a data base (» declarative knowledge) and some functions for manipulating it («

procedural knowledge). Procedural knowledge is usually represented as a production system.

ACT* and UNDERSTAND assume that when subjects encode the problem stimulus, a declarative

knowledge representation of it is built. In order to explain how subjects solve problems initially, it is

assumed that they have general-purpose productions that can read the declarative representation

of the problem, infer what actions to take, and take them. Thus, the problem is solved initially by

this slow interpretive cycle. Proceduralization gradually builds specific productions from the

general interpretive ones. It copies a general production and fills in parts of it with information from

the declarative knowledge. Thus, proceduralization creates task-specific productions by

instantiating the general purpose productions.

Another common learning mechanism is strengthening (Anderson, 1982). It is assumed that

each operator has a strength, and that the operator selection process prefers stronger operators

over weaker ones. The learning mechanism is simply to increment an operator's strength whenever

it is used successfully. In order to keep strengths from growing indefinitely, some kind of strength

decay is usually assumed.

Another learning mechanisms is rule induction (Sweller, 1983). When the sequence of

moves along a solution path has a salient pattern, such as two operators being applied alternately,

then subjects may notice the pattern and induce a rule that describes it. Several mechanisms for

such serial pattern learning, as it is sometimes called, have been described (Restle70; Kotovsky &

Simon, 1973; Levine, 1975). Sweller and his colleagues (Sweller, 1983; Mawer & Sweller, 1982;

Sweller & Levine, 1982; Sweller, Mawer & Ward, 1983) showed that this type of learning is rare

when subjects employ means-ends analysis as their problem solving strategy, but that various

experimental manipulations can reduce the use of that strategy and increase the occurrence of rule

induction.
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Notorious technical problems, and a standard solution.

Several of the mechanisms above (tuning and strengthening at least; perhaps also

compounding and chunking) require knowing whether the application of a given operator led to

success or failure. This presents problems. Often, the operator application may occur quite some

time before the problem is successfully solved, so substantial memory capacity may be required in

order to remember which operators contributed to the success. Moreover, making learning

conditional on success means that no learning will occur until the problem has been solved, but it is

quite clear the people can learn in the middle of problem solving. This set of difficulties is

sometimes called the credit assignment problem.

Another problem common to several mechanisms is that they can build highly idiosyncratic

operators. Not only do these idiosyncratic operators waste storage space, they can sometimes

grab control of the model and cause it to predict absurd behaviors of the subjects. This problem is

sometimes called the mental clutter problem.

To handle the assignment of credit problem, the mental clutter problem and others, it is

standard to embed the learning mechanisms enumerated above in a sophisticated processing

architecture that allows severe constraints to be placed on their operation. A common approach is

to assume that the architecture is goal-based. All processing is done in the context of the current

goal; goals may be pushed and popped, as in the method of operator subgoaling. Goals help solve

the assignment of credit problem by allowing success to be defined relative to the given goal, thus

providing earlier feedback. Mental clutter is avoided by only combining operators when they

contribute directly to the success of the current goal.

This completes the desciption of problem spaces, understanding, search and learning - the

major components of contemporary as well as past theorizing about problem solving. With the

theoretical framework in place, it is time to turn to describing the empirical findings that are the

second pillar on which forthcoming theories of problem solving will be built.
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Schema-driven problem
If one gives subjects the same set of problems many times, they may learn how to solve

them and cease to labor through the understanding and search processes described in section 2.

Instead, they seem to recognize the stimulus as a familiar problem, retrieve a solution procedure

for that problem and follow it. The collection of knowledge surrounding a familiar problem is called

a problem schema, so this style of problem solving could be called schema-driven. It seems to

characterize experts who are solving problems in knowledge-rich domains. This section describes

it, by first discussing how schemas are used to solve familiar problems, then how they are adapted

in solving unfamiliar problems. The last subsection describes how schemas can be explained as

the products of the learning mechanisms presented earlier.

Word problems in physics, mathematics and engineering

In many of the knowledge-rich task domains that have been studied, problems are presented

as a brief paragraph that describes a situation and asks for a mathematical analysis of it (Paige &

Simon, 1966; Bhaskar & Simon, 1977; Hinsley, Hayes & Simon, 1977; Simon & Simon, 1978;

McDermott & Larkin, 1978; Larkin et al., 1980; Larkin, 1981; Chi, Feltovich, & Glaser, 1981; Silver,

1981; Chi, Glaser & Rees, 1982; Schoenfeld & Herrmann, 1982; Larfcin, 1983a; Sweller, Mawer &

Ward, 1983; Anzai & Yokoyama, 1984; Sweller & Cooper, 1985; Reed, Dempster & Ettinger,

1985). Because so much work has been done with word problems, and schemas are so prominent

in subjects' behavior when solving word problems, such problems make a good starling place for

the examination of schema-driven problem solving.

For purposes of exposition, let us distinguish two types of problem solving. If the subjects

are experts and the problem given is an easy, routinely encountered problem, then the subjects will

not seem to do any search. Instead, they will select and execute a solution procedure that they

judge to be appropriate for this problem. For these subjects, the understanding process consists of

deciding what class of problem this is, and the search process consists of executing the solution

procedure associated with that class. Let us call this case routine problem solving. Of course,

experts can solve non-routine problems as well, but on those problems, their performance has a

different character. Routine problem solving is discussed first; a discussion of non-routine problem

solving follows.

Schemas
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Problem type: There is a river with a current and a boat which travels at a constant velocity
relative to the river. The boat travels downstream a certain distance in a certain time, and travels
upstream a certain distance in the same amount of time. The difference between the two distances
is either given or desired.

Solution Information: Given any two of (a) the difference between the upstream and downstream
distances, (b) the time and (c) the river current's speed, the other one can be calculated, because
the boat's speed drops out. First write the distance-rate-time equations for the upstream and
downstream trips, then subtract them, then solve the resulting equation for the desired in terms of
the givens.

Table 4: A schema for river problems

In order to explain routine problem solving, it is usually assumed that experts know a large

variety of problem schemas, where a problem schema consists of information about the class of

problems the schema applies to and information about their solutions. Problem schemas have two

main parts, one for describing problems and the other for describing solutions. As in illustration,

table 4 shows a schema that an expert in high school algebra might have.8 This schema applies to

a very specific class of problems, and it contains the MtrickH for solving problems in that class. If

upstream/downstream problems are solved in a general way, they translate into a system of six

linear equations in nine unknowns. Thus, given any three quantities, all the others can be

calculated. But the trick upstream-downstream problems give only two quantities, not three.

However, the quantities given just happen to be such that subtracting the distance-rate-time

equations yields a solution. Thus, this schema encodes expert knowledge about how to recognize

and solve this special "trick" class of river problems.

Routine problem solving consists of three processes: selecting a schema, adapting

(instantiating) it to the problem, and executing its solution procedure. These three processes will

be discussed in the order just given.

Schema selection often begins when a particular schema suddenly pops into mind. This

triggering process, as it is called, is not well understood. It seems to occur early in the processing

of the problem stimulus. For instance, when Hinsley, Hayes and Simon (1977) read algebra word

problems slowly to their subjects, more than half the subjects selected a schema after hearing less

than one-fifth of the text. Hinsley et al. give the following example,
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For example, after hearing the three words, "A nver steamer..." from a river current problem, one
subject said, "It's going to be one of those river things with upstream, downstream, and still water.
You are going to compare times upstream and downstream -- or if the time is constant, it will be the
distance." Another subject said, "It is going to be a linear algebra problem of the current type - like
it takes four hours to go upstream and two hours to go downstream. What is the current -- or else
it's a trig problem -- the boat may go across the current and get swept downstream." [pg. 97]

These quotes indicated that the triggering process seem to happen very early in the perception of

the problem. Experts reading physics problems also tend to trigger schemas early (Chi, Feltovich,

&Glaser, 1981).

Once an initial schema has been triggered, it guides the interpretation of the rest of the

problem. In this case, it appears that both subjects have selected a general river-problem schema

that has several subordinate schemas, representing more specific river-problem schemas. The

first subject seems to know about the schema of table 4, and is considering whether this problem

might be an instance of it or of a different schema (constant distance river schema). The second

subject is also consider several special cases of the generic river crossing problem. In this case,

triggering the general river-crossing schema could guide subsequent processing by setting up

some expectations about what kinds of more specific, subordinate schemas to look for. The

subjects probably used these expectations to read the problem statement selectively, looking for

information that will tell them which of their expectations is met. This strategy of starting with a

general schema and looking for specializations of it may be a common one in understanding, since

it appears in physics problem solving as well (Chi, Feltovich, & Glaser, 1981).

Selection of a schema goes hand in hand with instantiating it to the given problem.

Instantiation means adapting the schema to the specific problem. For instance, to adapt the

schema of table 4 to the problem
A river steamer travels for 12 hours downstream, turns around and travels upstream for 12 hours,

at which point it is still 72 miles from the dock that it started from. What is the river's current?

requires noting which two quantities are given and which is desired. In the standard terminology,

the variable parts of a schema (i.e., the three quantities, in this case) are called slots and the parts

of the problem which instaniate the slots are called fillers. So instantiating a schema, in the

simplest cases at least, means filling its slots. Often, occasions of slot-filling are mingled with

occasions of specialization, where a schema is rejected in favor of a subordinate schema. Indeed,

it is sometimes not easy to distinguish, either empirically or computationally, between instantiation

and specialization.
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Experts seem to derive features of problem situations that novices do not and to use the

derived features during selection and instantiation. Such features called second-order features

(Chi, Feltovich, & Glaser, 1981) because they seem to be derived by some kind of elaboration

process rather than being directly available in the text. An example of this is found in the remark

quoted earlier of a Hinsley et al. subject, who said Hif the time is constant, it will be the distance."

But the problem states, HA river steamer travels for 12 hours downstream, turns around and travels

upstream for 12 hours,...H The problem does not state that the time is constant, but as that seems

to be the feature that the subject looks for, it is likely that the subject will notice the equality of the

two given times, and immediately infer that the temporal second-order feature that he seeks is

present. Chi et al. (1981, 1982) provide evidence that experts in physics notice second-order

features but novices do not.

The whole process of selecting and instantiating a schema is a form of elaboration because

it does not actually change the problem state, but augments it with a much richer description. An

earlier discussion (section ) indicated that elaboration could be viewed equally well as search or

understanding.

Following the solution procedures

Once a schema has been selected and instantiated, the subject must still produce a solution

to the problem. For routine problem solving, this is can be accomplished by simply following, in a
* »

step by step fashion, the solution procedure that constitutes the second half of the schema. For

instance, the algebra schema of table 4 contains a three step solution procedure: write the two

distance-rate-time equations, subtract them, and solve for the desired quantity in terms of the

givens. Following procedures such as this one is the third and final process in schema-driven

problem solving.

Procedure following is not always trivial. Sometimes the execution of a step may present a

subproblem that requires the full power of schema-driven problem solving for its solution. For

instance, the first step above asks that the subject write a distance-rate-time equations, but it does

not say how. Schema-driven problem solving can easily solve this subproblem, provided that

subject knows schemas such as the following one:

Problem: There is a boat moving downstream on a river at a constant rate. An distance-
rate-time equation is desired.
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Solution: The equation is the standard distance-rate-time equation with the rate equal to
the sum of the boat's speed and the river currents speed.

These simple examples illustrate that the overall process of schema-driven problem solving

is recursive, in that executing one small part of the process can potentially cause complete,

recursive invocation of the problem solving process.

There is yet another complexity involved in following solution procedures. It is quite likely

that some subjects do not follow the procedure's steps in their standard order. They prefer to use a

permutation of the standard order, and sometimes these permutations produce different effects

than the standard one. This particular effect is difficult to demonstrate experimentally, because it is

difficult to find out exactly what the subjects' solution procedures are. Thus, one cannot be certain

whether they are following a standard-order procedure in a non-standard way, or whether they

simply have a procedure with permuted steps. Perhaps the best evidence so far comes from the

task domain of subtraction calculation, where children are asked to work problems such as:

3 4 5
7 9

Although this is not at all a knowledge-rich task domain, it is a task where the subjects following

procedures, so the findings there might generalize to expert's following the solution procedures of

their schemas. Even if the results do not generalize in any detail, subtraction still serves as a

convenient illustration for how procedures can be followed flexibly.

•»

VanLehn and Ball (1987) discovered 8 students (out of a biased sample of 26) who used

non-standard orders. All of the orders standardly taught in the United States have the student

finish one column before moving on to the next, even if that column requires extensive borrowing

from other columns. However, the 8 students did not always exhibit a standard order. For

instance, some students did all of the problem's borrowing first, moving right to left across the

columns, then returned, left to right, answering the columns as they go. It was also found that

students would often shift suddenly from one order to another. This is consistent with the

hypothesis that these students' underlying procedures were stable, but they choose to permute the

order of steps during execution. This conclusion is bolstered by the authors' demonstration that a

small set of standard-order procedures gives excellent fits to the observed orders when they are

executed by a simple queue-based interpreter. Moreover, that set of standard-order procedures

can all be produced by an independently motivated learning model when it is instructed with the
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same lessons that the subjects received (VanLehn, 1983; VanLehn, ress). These results led

VanLehn and Ball to conclude that their 8 subjects were indeed executing standard-order

procedures in a non-standard way. Whether this same flexibility in execution will turn up in expert

behavior remains to be seen.

Non-routine solving of word problems

The preceding section described the routine case of problem solving wherein a single

schema matches the whole problem unambiguously and its solution procedure can be followed

readily, encountering at worst only routine subproblems. This section describes some of the many

ways that schema-driven problem solving can be non-routine. Research is just begining in this

area, so many of the proposed processes are based only on a rational extension of the basic ideas

of routine problem solving and as yet have not been scrutinized experimentally.

Perhaps the most obvious source of complexity in expert problem solving occurs when more

than one schema is applicable to the given situation. Since the subjects do not know which

schema to select (by definition), they must make a tenative decision and be prepared to change

their mind. That is, they must search. Such cases illustrate that schema selection can be usefully

viewed as the result of applying an operator that produces a new state in a problem space search.

The new state differs from the old one only in that it contains an assertion marking the fact that the

schema has been selected. Redoing a schema selection becomes a case of the usual backing up

in search of a problem space. As remarked earlier, schema selection and instantiation are forms of

elaboration, and thus can be viewed either as search or understanding. When the subject is

uncertain which schema to select, it is useful to view schema selection as search.

Larkin (1983) provides a nice example of such a search. She gave five expert physicists a

simple, but difficult physics problem. Although two subjects immediately selected the correct

schema, and one even said, "I know how to do this one. It's virtual work." [Op cit., pg. 93], the

other three subjects tried two or more schemas. Each schema was instantiated and its solution

was partially implemented. Usually, the solution reached a contradiction (e.g., a sum of forces that

should be zero is not). Only the final schemas selected by these subjects led to a contradiction-

free solution. Thus, schema selection plays a crucial role in these subjects search for a solution.

Another type of difficulty occurs when no schema will cover the whole problem, but two. or
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more schemas each cover some part of the problem. The problem is to combine the schemas so

that they cover the whole problem. Larkin (1983) gives some examples of experts combining

schemas.

A third type of difficulty occurs when execution of a solution procedure halts because the

procedure mandates an impossible action or makes a false claim about the current state. Such an

event is called an impasse (Brown & VanLehn, 1980; VanLehn, 1982). Although this notion was

originally invented in order to explain the behavior of children executing arithemetic procedures

(Brown & VanLehn, 1980), it readily applies to experts executing solution procedure. For instance,

Larkin's (1983) three experts reached impasses during their initial solving of the physics problems

because their selected schema's solution procedure claimed, for instance, that the balance of

forces should be zero when it was not. The subject's response to an impasse is called a repair,

because it fixes the problem of being stuck. In the case of Larkin's experts, the repairs were

always to reject the currently selected schema and select another one. Such backing up may be a

frequent type of repair, but it is certainly not the only type (Brown & VanLehn, 1980; VanLehn,

1982; VanLehn, ress).

This subsection has enumerated several processes that seem to occur regularly in non-

routine problem solving: ambiguity in selecting a schema, schema combination, impasses and

repairs. However, these are probably just a few of the many interesting types of behavior that

occur when experts solve difficult problems. Much research remains to be done.

Expert problem solving in other task domains

It may be unsurprising that schemas provide the basis for a natural account of word problem

solving, because the schemas have long been used in psychology to explain how people process

paragraph-sized pieces of text (Bartlett, 1932). On this view, the prominence of schemas in expert

solutions of word problems is due to the task domain, rather than the expertise of the subjects.

However, there is some evidence that schemas, or something much like schemas, are used by

experts in other task domains as well.

For instance, research on programing and algorithm design (Adelson, 1981; Jeffries, Turner,

Poison & Atwood, 1981; Anderson, Farrell, & Saurers, 1984; Pirolli, 1985; Pirolli & Anderson, 1985;

Kant & Newell, 1984) has shown that experts know many schemas such as the one shown in table
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Problem: Given a list of elements and a predicate, remove the elements of which the predicate is
false.

Solution: Use a trailing-pointer loop. The initialization of the loop puts a new dummy element on
the front of the list, and it sets two variables. One variable (called the trailing pointer) points to the
list, and the other points to the second element of the list (i.e., the first element of the original list).
The main step of the loop is to call the predicate on the element, and if the predicate is false, then
the element is spliced out of the loop, using the trailing pointer. If the predicate is true, then both
pointers are advanced by one element through the list. The loop terminates after the last element
has been examined. At the conclusion of the loop, the list must have the dummy first element
removed.

Table 5: A schema for programming

5. This schema is midway between a schema for coding and one for algorithm design. Coding

schemas often mention language-specific information. For instance, schemas for recursion in Lisp

may mention positions in Cond clauses where one should place the code for the recusive step and

the terminating step (Pirolli, 1985; Pirolli & Anderson, 1985). Algorithm design schemas mention

more general techniques, such as dividing a set of data points in half, recursively performing the

desired computation on each half, and combining the solutions for each half into a solution for the

whole (Kant & Newell, 1984).

In many respects, the use of such schemas resembles the use of word problem schemas. In

particular, they must be selected and instantiated before their solution halves are implemented.

Moreover, the problem solving process is recursive in that doing a small part of the process, such

as filling a slot in a selected schema, may create a subproblem whose solution requires more

schemas to be selected and implemented (Kant & Newell, 1984).

In some task domains, schema-driven problem solving does not seem to play a prominent

role in expert behavior. For instance, Lewis (1981) studied algebra equation solving using rather

tricky problems in high-school algebra, such as:

Solve for x: x+2(x+2(x+2))=x+2

Lewis compared expert professional mathematicians with high-school and college students. If the

experts were doing schema-driven problem solving, one might expect them to say, "Oh, one of

those," and produce the answer in one step. This almost never occurred. In fact, Lewis concludes

that Ihe expert's performance was not sharply different from that of the students,"[pg. 85] except

that the experts make fewer mistakes.
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There is no space in this chapter for a thorough review of the expertise literature

Fortunately, there is a recent review (Riemann & Chi, ????) and a recent collection of articles (Chi,

Glaser & Farr, ???). The major purpose of this section is to introduce an analytical idea -- schema-

driven problem solving -- that has sometimes proved useful in understanding problem solving. The

last task of this section is show how this notion relates to the standard theory of problem solving,

which was presented in the preceding section.

Relationship to the standard theory

It is quite plausible that schemas are acquired via the learning mechanisms of the standard

theory. Although there is some disagreement about the exact nature of the learning mechanisms,

they all predict that experts will acquire many large, specialized pieces of knowledge, regardless of

whether they are called chunks, macro-operators or compounded productions. Each piece is

highly tuned, in that it will only apply to a small class of problems, and yet it is be quite effective in

solving those problems. At a rough qualitative level, the assumptions about the products of

learning fit nicely with the assumptions about schemas.

Closer examination yields more points of agreement. In particular, the increased size of the

units of knowledge can be expected to change the character of the problem solving somewhat. To

demonstrate this, suppose that compounding glues together several operators that make physical

changes in the world, and these actions cannot be performed simultaneously. This means that

application of the macro-operator results in execution of a single action plus an intention (plan) to

perform some others. Thus, the macro-operator is more like a procedure (or stored plan) than an

operator per se. Thus, it is likely that the solution procedures of schemas correspond to the

products of compounding, chunking or similar learning mechanisms.

Operator selection can also be expected to change character as learning proceeds. When a

novice searches a problem space, operator selection is taken care of by a proceed strategy and

some heuristics. But the experts' macro-operators/schemas are very specialized, so it might take

some extra work to analyze the current state well enough to be able to discriminate among the

relevant operators in order to find the appropriate one. Elaborations may be needed in order to

build a case for selecting one operator over the others. Thus, increases in the number of available

units of knowledge and in their specificity is consistent with the complicated selection processes

that seems to characterize schema-driven problem solving.
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Although it certainly seems that schema-driven problem solving is the product of learning

during the course of problem space search, there are many technical details that stand in the way

of demonstrating this. At this writing, no computer program exists that can start off as a novice in

some knowledge-rich task domain and slowly acquire the knowledge needed for expert

performance. Thus, we lack even a computation^ sufficient account of the novice-expert

transistion, let alone one that compares well with the performance of human learners. Needless to

say, many theorists are hard at work on this project, so progress can be expected to be quite rapid.

This concludes the discussion of theoretical concepts. The remainder of the chapter reviews

empirical findings and their relationship to theory.

Major empirical findings
Recent work in Artificial Intelligence has dispelled much of the mystery surrounding human

problem solving that was once called "inventive" (Stevens, 1951), "creative" (Newell, Shaw &

Simon, 1962) or "insightful" (Weisberg & Alba, 1981). Computer programs now exist that can

easily solve problems that were once considered to be so difficult that only highly intelligent,

creative individuals could solve them. Many of the formal mechanisms mentioned earlier are used

to build such programs. The new mystery of human problem solving is to find out which of the

now-plentiful solution methods for "creative" or "inventive" problems are the ones employed by

subjects. Thus, experimental findings in problem solving have taken on a new importance. This

section reviews the experimental findings that seem most robust.

Practice effects

The literature on practice effects goes back to the turn of the century (see Fitts and Posner,

1967, for a dated but still relevant review). However, most of the earlier work dealt with perceptual-

motor skills, such as sending Morse Code. This subsection discusses only the practice effects that

have been demonstrated explicitly on problem solving tasks (also called cognitive skills). It starts

with effects seen during the early stages of practice and progresses towards effects caused only by

years of practice.

Reduction of verbalization.

It has often been noted that during the initial few minutes of experience with a new task, the

subjects continually restate the task rules, but as practice continues, these restatements of rules
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diminishes. For instance, Sweller, Mawer and Ward (1983) tracked naive subjects as they learned

how to solve simple kinematics problems that require knowing a half dozen equations relating

velocity, distance and acceleration. They found that the number of times a subject wrote one of the

equations without substituting any quantities for its variables decreased significantly over the

practice period. Similar findings have been reported by Simon and Simon (1978), Anderson (1982)

and Krutetskii (1976). Reduction of verbalization can be explained as the result of

proceduralization (Anderson, 1982).

Tactical learning

On some knowledge-lean tasks subjects quickly improve in their ability to select moves.

Greeno (1974) showed that only 3.6 repetitions of the Missionaries and Cannibals puzzle were

required on average before subjects met a criterion of two successive error-free trials.9 Reed and

Simon (1976) and Anzai and Simon (1979) present similar findings. Rapid tactical learning is

consistent with several of the learning mechanisms mentioned earlier. Tuning, chunking and

strengthening all suffice to explain the finding, provided that they are assumed to happen rapidly

(e.g., at every possible opportunity). Atwood, Poison and their colleagues have also shown that

simply remembering what states have been visited also suffices for modeling rapid tactical learning

solution paths (Atwood & Poison, 1976; Jeffries, Poison, Razran & Atwood, 1977; Atwood, Masson

& Poison, 1980).

The power law of practice

A great deal of experimental evidence shows that there is a power-law relationship between

the speed of performance on perceptual-motor skills and the number of trials of practice (Fitts &

Posner, 1967). If time per trial and number of trials are graphed on log-log paper, the curve is a

straight line. Recently, the power law has been shown to govern some cognitive skills as well

(Newell & Rosenbloom, 1981; Neves and Anderson, 1981).

The power law of practice does not fall out naturally from any single one of the learning

mechanisms discussed above. Both chunking and compounding accelerate performance, but they

tend to produce exponential practice curves instead of power-law curves (Lewis, 1979; Neves and

Anderson, 1981; Newell & Rosenbloom, 1981). That is, they learn too fast. Various proposals
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have been put forward for slowing the mechanisms down (Anderson, 1982; Rosenbloom, 1983),

but the experiments that split these hypotheses have yet to be performed.

The biggest theoretical problem presented by the power-law finding is that the effects of

practice never stop. Crossman (1959) showed that a subject who rolled cigars for a living was still

getting faster after several years of practice. Chunking, compounding and other such mechanisms

will have long since built a single huge operator for the task, so they cannot readily explain how

performance continues to improve.

Other possible effects, not yet demonstrated.

From the perceptual-motor literature, it seems likely that the following findings also apply to

problem solving: (1) Within limits, subjects can trade speed for accuracy, reducing one at the

expense of increasing the others. No theoretical work has tried to model this. (2) If exactly the

same task is practiced for hundreds of trials, it can be be automatized, that is, it will be very rapid,

cease to interfer with concurrent tasks, and run to completion once started even if the subject tries

to stop it. However, if the task varies beyond certain limits during training, even hundreds of

practice trials do not suffice for automatization (Schneider & Shiffrin, 1977; Shiffrin & Schneider,

1977). Although chunking, compounding and similar mechanisms are consistent with the general

quality of automatization, it is not yet clear whether they can explain why some types of practice

cause automization and others do not. (3) The distribution of practice makes a difference in the

speed of learning, but the effect depends on the structure of the skill being practiced. Sometimes

practicing parts of the skill before the whole is better, and sometimes not. Sometimes many short

practice sessions are better than a few long ones, and sometimes not. Current cognitive theory

has not yet tried to explain these effects. Also, experimental work is needed in order to check that

these effects are not limited to perceptual-motor skills, but are found with cognitive skills as well.
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Problem isomorphs

Many knowledge-lean tasks have an "intended" problem space, which is the problem space

that people who are very familiar with the problem assign to It. The LMS puzzle discussed earlier

is a case in point. The intended problem space is the one used by Cathy. Of course, a subject's

problem space is not necessarily the intended one, as illustrated by the 60-year old subject who

initially interpreted the LMS puzzle as an arithmetic word problem.

Two problems are said to be isomorphic if their intended problem spaces are isomorphic.

Two problem spaces are isomorphic if there is a one-to-one correspondence between states and

operators such that whenever two states are connected by an operator in one problem space, the

corresponding states are connected by the corresponding operator in the other problem space.

This section compares problem solving behaviors on isomorphic problems.

Varying the cover story does not affect difficulty.

A simple way to create an isomorphic puzzle is to change the cover story. For instance, the

Missionaries and Cannibals puzzle has three missionaries and three cannibals trying to cross a

river subject to certain restrictions. Several investigators (Greeno, 1974; Jeffries, Poison, Razran &

Atwood, 1977) created problem isomorphs by substituting elves and men (or other pairs of

creatures) for the missionaries and cannibals. This change in the cover story of the puzzle had no

measurable effect on the solution times or patterns of moves. This result tends to support the idea

that subjects really are thinking of the puzzle as a formal problem space, and in fact, as the

intended problem space.

Other variations significantly effect difficulty

Although changing the cover story does not seem to effect problem solving behavior, other

manipulations of puzzles can have a very significant effect on the relative difficulty of problem

isomorphs. It is not yet clear how these manipulations differ from the cover story manipulation. For

instance, Kotovsky, Hayes and Simon (1985) studied isomorphs of the Tower of Hanoi, such as the

tea ceremoney puzzle mentioned earlier, and found that some isomorphs took 16 times as long to

solve as other isomorphs (29.39 minutes vs. 1.83 minutes). Reed, Ernst and Banerji (1974)

obtained similiar but less dramatic results with isomorphs of the Missionaries and Cannibals
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puzzle.

Kotovsky et al. develop a model that exhibits good qualitative agreement with their data

They assume that subjects search in a problem space, but not the intended problem space.

Rather, they search in a finer grained problem space where it takes several operator applications to

achieve the same effect as one operator application in the intended problem space.

Transfer and problem solving by analogy

Before presenting some findings concerning transfer and analogy, a brief introduction to this

rather complex subfield is in order. It is clear that complete transfer of expertise between domains

never occurs (e.g., going to medical school does not make one a good lawyer). However, it may

be that incomplete transfer occurs. There are two possibilities: (1) The domain-specific knowledge

of two task domains may overlap. For instance, chemists and physicists overlap in their knowledge

of mathematics and fundamental properties of matter and energy. Thus, there should be specific

transfer of expertise in one domain to another. (2) If two task domains seem to have no overlap in

their requisite knowledge, there still may be general transfer because problem solving in both

domains may require an organized, methodical style of thinking, so training in that type of thinking

in one task domain may give a subtle advantage in another task domain. For instance, learning to

program a computer is often thought to increase one's ability to do logical and quantitative problem

solving of all types (e.g., Papers, 1980).

However, general transfer is difficult to study, and as a consequence, there is some doubt as

to whether general transfer even exists. For a recent review of the general transfer literature, see

Pea (1986). The rest of the remarks here will concern specific transfer.

The existence of specific transfer has been amply demonstrated (Thorndike & Woodworth,

1901; Singley & Anderson, 1985; Singley & Anderson, 19??; Singley, 1986; Kieras & Bovair, 1986;

Kieras & Poison, 19??; Reed, Ernst & Banerji, 1974; Kotovsky, Hayes & Simon, 1985). However,

the exact nature of specific transfer is still being investigated. One leading theory, originated by

Thorndike and rendered more precise by Kieras, Bovair, Singley and Anderson, is that transfer is

accomplished by actually sharing (or copying) relevant units of knowledge. For instance, it is

possible to notate knowledge of procedural skills as production systems in such a way that the

degree of transfer is directly proportional to the number of shared productions (Kieras & Bovair,
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1986; Kieras & Poison, 19?9; Singley & Anderson, 1985; Singley, 1986; Singley & Anderson,

19??).10 This theory is called the identical elements theory of transfer.

In the identical elements theory, knowledge is viewed a set, so calculating the overlap

between two tasks knowledge structures amounts to simply taking a set intersection. However,

another common view has knowledge structured as a semantic net (see chapter ???, this book).

Because a semantic net is a labelled directed graph rather than a set, there are multiple ways to

calculate the overlap of two semantic nets. See Gentner (in press) and Holyoak (1985) for two

contrasting views on how people do it. The identical elements view and the mapping view of

transfer can be seen as compatible hypotheses which examine the same phenomenon at different

levels of description. Identical elements theory counts the number of units transfered, while

mapping theories explain exactly what parts of an element are transfered.

Having presented a few basic concepts about specific transfer and analogy, a few findings

from this large and rapidly growing literature can be presented.

Asymmetric transfer occurs when one task subsumes another.

The identical elements theory of transfer predicts that when one task's productions are a

subset of another's, transfer will appear to be asymmetric even though it is underlyingly symmetric.

Training on the harder task-the one with more productions-will cause complete competence in the

easier task because all the units for the easier task will have been learned. On the other hand,

training in the easy task will cause only partial competence in the harder task. Thus, although the

same number of units is being transfered in either case (i.e., the underlying transfer is symmetric),

the measured transfer is asymmetric. This prediction is consistent with several findings of

asymmetric transfer where competence in the more difficult task transfers to the easier task, but

not vice versa (Reed, Ernst & Banerji, 1974; Kotovsky, Hayes & Simon, 1985; Singley, 1986)

Negative transfer is rare.

Negative transfer occurs when prior training on one task slows down the learning of another

task or blocks its performance completely. The identical elements theory predicts that there will

never be negative transfer. Singley and Anderson (1985, in press) tested this implication by using

two versions of the same text editor. The only difference between the editors was the assignment
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of keys to commands. They trained two groups of subjects on the two editors for 6 hours, then

switched one group to the other editor, and trained that group for 6 hours. If negative transfer

occurs, then the learning curve for the transfer group after it had been switched over should start

lower and/or rise more slowly than the learning curve on the control group during its first 6 hours of

training. This did not occur. Instead, the learning curve for the transfer group started higher than

the learning curve for the control group, thus indicating substantial positive transfer. Moreover, the

transfer group's curve paralleled the control group's curve, indicating that there was no detrimental

affect of the prior training on subsequent learning. Thus, the experimental results fit the predictions

of the identical elements theory quite well. Kieras and Bovair (1986) found a similar lack of

negative transfer.

Singley and Anderson (1985) point out that editor users probably hope for total positive

transfer when they switch editors. That is, they anticipate being able to use the new editor just as

well as they used the old. Because their actual performance on the new editor is not as fluid as

their old performance, they say they have suffered "negative transfer." However, because their

actual performance is much better than a novice, they actually are enjoying a large degree of

positive transfer, even though it is not the total transfer they hoped for.

Set effects

The lack of negative transfer contradicts intuition. For instance, Fitts and Posner (1967) give

the following rather compelling examples of negative transfer:
If you drive in a country in which traffic moves on the opposite side of the road from the side on

which your are accustomed to driving, you are likely to find it difficult and confusing to reverse your
previous learning; similarly, in cases where the faucets which control hot and cold water are
reversed from their usual positions, months of learning are often required before their operation is
smooth, [pg. 20]

The first example probably does not constitute true negative transfer, because it probably takes

less time to learn to drive on the opposite side of the road than it takes to learn to drive initially.

This is another case of frustrated expectations for massive positive transfer. On the other hand, it

does not take months to learn the positions of the hot and cold water controls initially, so the last

example constutes a clear case of negative transfer. How does this example differ from the

Singley and Anderson experiments?

In a more fine-grained analysis of their data, Singley and Anderson (in press) found that
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subjects would sometimes choose a less efficient method during the transfer task for achieving

certain of their text editing goals, presumably because the chosen method was more familiar to

them from their prior training. This is similar to the set effects observed by Luchins, Duncker and

others (Luchins, 1942; Duncker, 1945; Greeno, Magone & Chaiklin, 1979; Sweller & Gee, 1978).

Set effects occur when there are alternatives in a problem solving task, and some of the

alternatives are more familiar than others. The set effect is that the subjects tend to pick the

familiar alternative even if it is not the best. The hot and cold water controls are an example of a set

effect. In short, set effects are a special kind of negative transfer that does seem to take place.

Moreover, its existence is not predicted by the identical elements theory.

There are two major kinds of set effects in the literature. Functional fixity refers a familiarity

bias in the choice of functions for an object. In Duncker's famous task of constructing a wall-

mounted candle holder, the subjects tend to view the box as a container for tacks, rather than as a

platform for the candle (Duncker, 1945; Weisberg & Alba, 1981; Greeno, Magone & Chaiklin,

1979). Einstellung refers to a familiarity bias in the choice of a plan. In Luchin's water jug task, the

subjects are given a series of problems that can all be solved with the same sequence of

operations. Presumably, this induces the person to formulate this repetitive sequence as a plan,

and reuse it on the later problems in the series. The Einstellung effect occurs when the subject is

given a problem that can be solved two ways. The plan will solve it, and so will a sequence of

operations that is much shorter than the plan. Although the short sequence of operations is the

best choice, many subjects use the plan instead (Luchins, 1942).

Spontaneous noticing of a potential analogy is rare.

In the experiments on negative transfer, the stimuli were identical in the training and transfer

phases, but the responses were supposed to be different. In experiments on problem solving by

analogy, there are also training and transfer phases, but it is the stimuli (tasks) that are different

across the two phases. The responses are supposed to be the same, or at least analogous. For

instance, a subject might be given one puzzle to solve, then another isomorphic puzzle. If they use

the solution of the first puzzle in solving the second, then they are said to have done problem

solving by analogy. Problem solving by analogy can be detected by a number of means, such as

verbal protocols or decreases in solution times compared to a control.
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!n some analogy experiments, the subjects are not told that the two tasks are related.

Instead, they are simply given training on one task, then switched to another task without comment.

In such circumstances, it is common to find that no transfer occurs. For instance, Reed, Ernst and

Banerji had subjects solve two problem isomorphs in the same 30 minute experiment. They

demonstrated that transfer occurred only when subjects were told the relationship between the two

puzzles, otherwise the subjects did not seem to notice that the two tasks were analogous. Similar

findings are reported by Gick and Holyoak (1980, 1983), Gentner (in press), and others.

This result is consistent with the common finding that problem solving by analogy is often

used by students working problems in an instructional setting (Anderson, Farrell, & Saurers, 1984;

Pirolli. & Anderson, 1985; LeFevre & Dixon, 1986; Chi, Bassok, Lewis, Reimann & Glaser, ress).

For instance, a student working physics problems at the end of a chapter expects that problems

solved as examples in the chapter will use the same methods, so they actively page through the

chapter seeking such solved problems in order to use them as analogs (Chi, Bassok, Lewis,

Reimann & Glaser, ress). Although students may not have been explicitly told that the chapter's

examples are similar to the exercises, experienced students make that assumption anyway.

Spontaneous noticing is based on superficial features.

Even in experiments where subjects are neither told to look for analogies nor led by their

past experience to look for them, spontaneous noticing of analogies does sometimes occur. When

it does, it seems to be based most frequently on noticing superficial similarities between the tasks.

Ross (1984, 1987) taught subjects several methods for solving probability problems. Each method

was taught with the aid of an example. The example contents varied (e.g., dice, car choice, exam

scores, etc.). Subjects were tested with problems whose contents were either new, superficially

similar to some training example for the appropriate method for solving that problem, or

superficially similar to an inappropriate example. Subjects often chose to use the method whose

example is similar to the test problem, even if that method is inappropriate. Thus, subjects seem to

have been cued by the surface similarities, rather than the deep structures of the examples. Similar

effects have been found for text editing (Ross, 1984), algebra story problems (Reed, 1987), and

simple stories (Gentner & Toupin, 1986).

Noticing that an analogy is useful is only part of the process of solving problems by analogy.
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In some cases, it is quite non-trivial to map the solution from the analog over to the target problem.

Several studies (Reed, Dempster & Ettinger, 1985; Catrambone & Holyoak, 1987) have shown that

even when subjects are told about the existence of the analogy, they sometimes have difficulty

making use of them. However, the conditions that facilitate and inhibit such transfers are not yet

entirely clear.

Expert-novice differences: problem solving studies

The next few sections contrast expert and novice problem solvers. The term "expert" is

usually reserved for subjects with several thousand hours of experience (there are 2000 working

hours in a year). Hayes (1981) argues that no one, not even a child prodigy, becomes a world-

class expert without at least 20,000 hours of experience. Although the term "expert" is used in a

fairly uniform way, there is substantial variation in the literature on the use of "novice." For some

experiments, subjects who know nothing about the task domain are selected, given an hour or two

of training, and then asked to solve the experimental problems. In other experiments, the novices

are students who have taken one or two college courses in the subject. These substantial

differences in training explain many of the apparent contradictions in the findings. In order to keep

things straight in this chapter, "pre-novice" will be defined to mean someone with only a few hours

training, and "novice" will mean someone with several hundred hours of training (approximately a

college course's worth). Given these definitions, there are several unsurprising findings to mention

before bringing out the findings that could really be called discoveries.

Experts can perform faster than novices.

If required to perform quickly, an expert can generally perform faster than a novice. For

instance, a master chess player can play lightning chess but a novice cannot (de Groot, 1965).

Somewhat surprisingly, if experts are not required to perform quickly, they often take about as long

to solve a task as novices (Chi, Glaser & Rees, 1982).

Experts are more accurate than novices.

Expertise is correlated with the quality of the solution given by the subject. With one

exception, all the expert-novice studies cited in this section show that experts perform better than

novices.11 The exception is making decisions based on uncertain evidence. In a recent review,

Johnson (1988) summarizes the evidence as follows:
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In many studies, experts have not performed impressively at all. For example, many expert judges
fail to do significantly better than novices who, at best, have slight familiarity wrth the task at hand.
This result has b«en replicated in diverse domains such as clinical psychology (Goldberg, 1970),
graduate admissions (Dawes, 1971), and economic forecasting (Armstrong, 1978). Not surprisingly,
this has led to strong recomendations. Consider the following recomendation about experts'
forecasts: "Expertise beyond a minimal level in the subject area is of almost no value...The
implication is obvious and clear cut: Do not hire the best expert you can - or even close to the best.
Hire the cheapest expert." (Armstrong, 1978, pg. 84-85).

Note that these authors, while denigrating the performance of experts, never claim that experts

perform worse than novices. In fact, Johnson's review goes on to show that experts are usually

better than novices, although they are sometimes substantially worse than simple mathematical

decision-making models.

Strategy differences.

In as much as general strategy can be characterized, it appears that experts and novices

tend to use the same general strategy for a given problem, but pre-novices sometimes use quite

different strategies. For instance, Jeffries, Turner, Atwood and Poison (1983) contrasted the

protocols of expert, novice and pre-novice software engineers as they solved a complex design

problem. Both experts and novices used a top down, breadth-first, progressive-refinement design

strategy. They decomposed the overall system into a few big modules, refined each module into

submodules, then refined each submodules into sub-submodules, and so on until the design was

detailed enough that they could begin writing program code. The pre-novice, however, began

writing code almost immediately, with no sign of a top-down design strategy. Similarly, in the

solution of physics problems, no strategic differences were found between experts and novices

(Chi, Glaser & Rees, 1982), but pre-novices were found to use a different strategy than either

novices (Sweller, Mawer & Ward, 1983) or experts (Simon & Simon, 1978). Several other

investigators (de Groot, 1965; Charness, 1981; Lewis, 1981) found no major strategic differences

between experts and novices. In short, at a general level of description, the strategies of experts

and novices are the same, while pre-novices may have a quite different strategy.

Self-monitoring skill

Experts seem better at monitoring the progress of their problem solving and allocating their

effort appropriately. Schoenfeld (1981) analyzed protocols of experts and novices who were

solving unusual mathematical problems. Both experts and novices had to search; the problems

were not routine even for the expert. However, the experts' search was more closely monitored.
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Approximately once a minute, the experts would make some comment that either evaluated their

current direction (e.g., "Isn't that what I want?"), or assessed the likelihood of a contemplated

approach (e.g., "knock this off with a sledgehammer" meaning that the approach is too-high

powered and unlikely to work), or assessed the difficulty of a subproblem before attempting it (e.g.,

"this is going to be interesting ....M). In contrast, the novices would generally adopt a single

approach with little assessment of the liklihood of success, then follow it for ten or twenty minutes,

without considering abandoning it. Schoenfeld concludes that "metacognitive or managerial skills

are of paramount importance in human problem solving.1' The same sort of managerial monitoring

is also evident in Larkin's (1983) protocols of physicists and Jeffries et al. (1981) protocols of

programmers.

A related finding is that experts are able to estimate the difficulty of a task with higher

accuracy than novices. For instance, Chi, Glaser and Rees (1982) found that experts are more

accurate than novices at rating the difficulty of physics problems. Chi (1978) found that expert

chess players are better than novices at estimating how many times they will need to see a given

board position before being able to reproduce it correctly. This ability to estimate the difficulty of

subtasks is probably important for allocating effort.

The hypothesis that experts have more schemas than novices is consistent with their

superior self-monitoring ability. Suppose that subjects estimate the difficulty of a subproblem by

first finding the best fitting schema, then combining its known difficulty with an estimate of the

quality of the fit. The estimated quality of fit is needed because a poorly fitting schema means

some extra work may be required in order to derive the information the schema needs from the

problem. If this is how subjects estimate difficulty, then experts should be better at it, because their

schemas more plentiful and more specialized, so the fits will be better. Thus, their estimates of

difficulty are dominated by the known difficulties of the schema, which is presemably more accurate

than the process that estimates the quality of the fit.
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Expert-novice differences: memory studies

As the preceding subsection indicated, the speed and accuracy of experts is not

accomplished by major, qualitative changes in their problem solving strategies. The effects of

expertise are more subtle. For instance, whenever an expert and a novice are deciding which

chess move to make, both consider the same number of moves and investigate each move for

about the same amount of time. The difference is that the expert only considers the good moves

and usually chooses the best one, while the novice considers mediocre moves as well, and often

do not choose the best move from those considered (de Groot, 1965; Chamess, 1981). Thus,

expertise lies not in having a more powerful overall strategy or approach, but rather in having better

knowledge for making decisions at the points where the overall strategy calls for a problem-specific

choice.

Protocol data is excellent for studying overall strategies because the strategies can be

inferred from the patterns of observable moves. However, protocols of even the most articulate

subjects are too often silent at the points where the subject is making a problem-specific decision.

When subjects do talk, they often say that the choice was obvious (de Groot, 1965). In short,

protocols have not proven to be a rich source of data about how experts make decisions. Other

types of experiments, however, have been much more illuminating. This sections discusses some

of the more robust findings.

Classification of problems

Chi, Feltovitch and Glaser (1981) pioneered the use of a card-sorting technique for

assessing differences in how experts and novices classify problems. In the study each card holds

the text and diagram for a single elementary physics problem. The subject is asked to sort 24

cards into piles, placing problems that Hseem to go together" into the same pile. Subject could sort

at their own rate. The novices tended to sort problems on the basis of literal, surface features,

such as the types of objects involved (i.e.. inclined planes, pulleys, etc.). On the other hand, the

experts tended to sort problems on the basis of the physics principles used to solve the problem

(e.g., Newton's second law, or work-energy). Moreover, the names for the piles given by the

experts and novices reflected these observational characterizations. A specially constructed set of

problems that crossed surface features with solution principles replicated the result. Similar results

have been found in mathematics (Silver, 1979; Schoenfeld & Herrmann, 1982) and programming
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(Weiser & Shertz, 1983).

It is possible that the classification difference is due to some between-subjects factor For

instance, a natural aptitude for mathematics or physics might cause both the classification

difference and the career choice of the subject. Schoenfeld and Herrmann (1982) and Silver

(1979) showed that this could not be the case. They tested mathematics students before and after

courses in mathematical problem solving. The training causes student's classifications to become

more expert-like.

These results led Chi and the other authors to hypothesize that experts have problem

schemas that novices lack. Roughly put, subjects would put problems into the same category if

those problems could be solved using the same problem schema.

However, it could be that the classifications/schemas of experts are not causally related to

their improved problem-solving ability. Although this is difficult to test unequivocally, Chi, Feltovitch

and Glaser (1981) found that experts could give an abstract "basic approach" to a physics problem

(e.g., "I'd use dynamics, F=MAM), while novices could not. Instead, the novices would either give

very global statements (e.g., "First, I figured out what was happening ... then I, I started seeing how

these different things were related to each other..." [op cit., pg 142]) or they would launch into a

detailed solution of the problem. Voss and his colleagues (Voss, Tyler & Yengo, 1983) also found

that experts and not novices tended to state basic approaches as they solved problems in

governmental policy formation.

In short, it seems that experts and not novices are able to classify problems according

problem schemas, and that these same schemas are used to solve problems.

Association structures.

A variety of experimental techniques have been used in memory research to find out about

the connectivity of the semantic network of concepts that is assumed to constitute people's

declarative knowledge base (see chapter ??, this book). Some of these have been used to try to

differentiate the associative structures of experts and novices. For instance, Schvaneveldt et al.

(1985) asked expert and novice fighter pilots to rate the similarities of pairs of technical terms from

combat flying (e.g., "high yo yoH, "switchology"). They used two multi-dimensional scaling
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algorithms to uncover how the underlying association structures of experts differed from novies.

McKeithen, Reitman, Rueter and Hirtle (1981) and Adelson (1981) used item order in free recall,

and Pennington (1985) used priming, and Chi, Feltovitch and Glaser (1981) used an elaboration

technique to contrast the knowledge structures of experts and novices. All these studies showed

that traditional methods for measuring semantic distance or connectedness succeeded in

uncovering expert-novice differences in knowledge structure, and in most cases, these differences

are readily interpretable in terms of their utility in solving problems.

Episodic memory for problems and solutions

Since Tulving (1972), it is customary to distinguish between semantic memory, which

contains generic knowledge applicable to many situations, and episodic memory, which contains

specific episodes in the subject's history. The preceding findings concerned differences in the

semantic memory of expert and novices. There are also differences in the episodic memory of

experts and novices.

A typical experiment on episodic memory presents a stimulus to the subject for a certain

length of time, then occupies the subject in various ways for another interval of time, then asks the

subject either to recall the stimulus, sometimes with the aid of a cue (hint), or to recognize the

stimulus from amongst a set of similar items. Sometimes these three phases are repeated until the

subject is able to recall the stimulus perfectly.

The general finding is that experts outperform novices in all versions of this paradigm that

have been used so far, but only it the stimuli are ones that the expert would normally encounter in

the course of problem solving.

The first experiment of this type was de Groot's (1965) demonstration that chess masters

could recall almost all the pieces and positions of a chess board after having seen the board for

only five seconds. Novices could recall only a few peices. Moreover, if the stimulus was a chess

board with the pieces arranged randomly, the recall of the expert sank to the level of a novice. This

finding has been replicated many times with stimuli consisting of chess boards (Chase & Simon,

1973a; Charness, 1976; Frey & Adesman, 1976), Go boards (Reitman, 1976), electronic circuit

diagrams (Egan & Schwartz, 1979), and bridge hands (Engle & Bukstel, 1978; Charness, 1979). In
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all these experiments, the subject was tested almost immediately after the stimulus was presented.

Thus, it seems that experts have better shcrt-term memory for problems.

Long-term memory for problems and solutions has also been measured. Chiesi, Spiiich and

Voss (1979) demonstrated that experts have better long-term recognition and recall of episodes of

baseball games. The experts long-term memory is also better for chess games (Chase & Simon,

1973b), bridge hands (Engle & Bukstel, 1978; Charness, 1979) and mathematics problems

(Krutetskii, 1976).

These results on episodic memory present a puzzle. Suppose it is assumed that the major

knowledge difference between experts and novices is that experts have more schemas. This

assumption is quite compatible with the finding that experts have better long-term episodic memory

for problems and solutions. As Bartlett (1932) and many others have shown, stimuli that fit well into

an existing schema are recalled better than stimuli that fit poorly. Since experts have more

schemas than novices, chances are better that they can select a schema that fits the problems or

solutions well, and hence, they will have better long term recall. However, it is not so easy to see

how schemas facilitate short-term memory. This issue is so important that is has been given a

subsection of it own, which follows this one.

Recall structures.

It is common to try to account for observed differences in episodic memory performance in

terms of an underlying differences in the contents of the subjects' semantic memory. A standard

technique for showing the influence of semantic memory contents on episodic memory

performance is to use a stimulus consisting of several items, and allow the subject to recall the

items in any order. Subjects often reorder the items from their original presentation order and

recall them in runs of items, separated by pauses. The usual interpretation is that a run of items

corresponds to the contents of an instantiated semantic memory structure. In particular, the longer

the run, the larger the unit of semantic memory (e.g., Chase & Simon, 1973a). Thus, recall

structure is important for determining the influence of semantic memory on episodic recall.

A common experiment is to contrast recall structure with some measure of semantic

relatedness. Often, semantic relatedness is obtained by a classification task, such as asking
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experts to circle the stimulus items that go together (Reitman, 1976; Egan & Schwartz, 1979).

Sometimes a copying task is used, where the subject glances back and forth between the stimulus

array and a blank array, copying the items seen in the stimulus onto the response array (Chase &

Simon, 1973a; Reitman, 1976). The items copied with each glance are interpreted as being

semantically related. Another technique is to use an expert or textbook to obtain a list of important

relationships that one item can have to another (e.g., in chess, whether one piece defends

another). The semantic relatedness of two items can be equated with the number of relationships

connecting them (Chase & Simon, 1973a).

In experiments of this sort, the the major finding is the recall orders can be predicted by the

expertise and semantic relatedness of items, but the recall pauses cannot. In particular, for experts

and not novices, items that have strong semantical relationships to each other are more likely to be

recalled consecutively than items that have little semantical relationship (Chase & Simon, 1973a;

Reitman, 1976; Egan & Schwartz, 1979; Engle & Bukstel, 1978). On the other hand, pause times

do not correlate strongly with the degree of semantic relatedness (Reitman, 1976; Egan &

Schwartz, 1979). Thus, item order seem to be a function of the underlying knowledge structures,

but inter-item retrieval times do not. This finding turns out to play an important role in the discussion

of the next subsection.

Expert-novice differences: chunking

It is well accepted that human perceptual processes are driven by knowledge in the form of

chunks. (N.B., Earlier sections used "chunking" for the learning mechanism developed by Newell

and his collaborators (Newell, 1987; Laird, Rosenbloom, & Newell, 1986; Laird, Newell, &

Rosenbloom, 1987; Newell & Rosenbloom, 1981; Rosenbloom, 1983). This section uses the term

as it is used in the general psychological literature.) For instance, an Al expert will perceive

"SHRDLLT as a single chunk because it is the name of a famous Al program while non-experts will

see it as a string of six letters. On the other hand, someone who is unfamiliar with the Roman

alphabet will see it as a configuration of lines, because they do not have chunks for the letters. The

chunking assumption is that the perceptual system will rapidly parse the stimulus, forming a

hierarchical structure of instanstiated chunks that covers as much of the stimulus as possible given

the set of chunks known by the subject. The result is a set of instantiated chunk trees. The roots of

these chunk trees are what the subject "notices." Thus, the Al expert will have one tree/chunk,

whose decendents are trees/chunks corresponding to each of the letters of "SHRDLU." The non-
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expert will see only the six trees/chunks corresponding to the letters.

Chunks rose to prominence as the unit of measurement for memory capacity with Millers

(1956) hypothesis that short-term memory was limited to 7±2 chunks. Although Miller's simple

hypothesis is no longer tenatable, chunks still play an important role in contemporary theories of

short-term memory (Baddeley, 1986; Zhang & Simon, 1985) as well as other memory phenomena.

Chunks have played an important role in the development of theories of expert-novice

differences. In particular, a leading hypothesis, first proposed by Chase and Simon (1973a), is that

at least some of the second-order features of experts are chunks. Thus, an expert looking at a

situation litterally sees more than a novice because the expert has more chunks. Chase and

Simon pointed out that the hypothesis that experts have larger chunks than novices would explain

the de Groot (1965) result that chessmasters could recall many more pieces from a briefly exposed

chess position than novices. Assuming that both the novices and the experts have a short-term

memory capacity of 7±2 chunks, if the experts have an average chunk size of 3 or more, they they

could recall 20 or 30 chess pieces. On the other hand, if novices have only one piece per chunk,

then they can recall only a few pieces.

In order to test this prediction of their hypothesis, Chase and Simon needed some

independent measure of chunk size. They used recall structure, which was mentioned earlier.

Unfortunately, they hypothesized that pauses represented the boundaries between chunks. By this

measure, the chunk sizes of experts was only a little larger than novices (2.5 pieces vs. 1.9

pieces). Moreover, the experts recalled more chunks than the novices, contrary to the assumed

constant capacity of short-term memory. The support for the Chase and Simon hypothesis was

weakened further by Charness1 (1976) demonstration that immediate memory for chess positions

was not affected by the kinds of interference manipulations that were known to effect short-term

memory for other types of stimulus material. Also, Reitman (1976) demonstrated that pauses were

not a reliable indicator of chunk structure in the recall of Go positions, and Egan and Schwartz

(1979) demonstrated that increased study time led to larger -chunks," as determined by pause

structure. These results undermined the support for the chunk-size effect of expertise.

A few years later, Chase and Ericsson (1981) proposed a new explanation for the expert's

short term memory. They showed that training could increase the apparent short-term memory
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capacity to 22 or more chunks. The primary device employed by subjects is a version of the

venerable pattern of loci device used by mneumonists. The idea is to form a schema with specific

slots that can be filled in with the stimulus material. The material can be recalled (in fact, in any

order) by visiting the slots and reading out their contents. Chase and Ericsson named this device a

retrieval structure. They showed that their digit-span expert's schema/retrieval structure was a

specific 3-level tree whose 22 leaves consituted the slots in which stimulus material could be

stored.

Chase and Ericsson hypothesized that the superior memory of chess masters and other

experts is due to possession of schemas/retrieval structures. This hypothesis is consistent with the

findings that familiar stimuli permitted the expert to exhibit superior memory (because they can be

used to select and instantiate schemas) where as random stimuli do not. Moreover, the Chase-

Ericsson hypothesis can be used to make sense of the Chase and Simon finding that expert's runs

were only a little larger than novices, and that experts tended to have more runs than novices. If

one assumes that pauses in recall protocols correspond to moving from one slot to another, then

the number and size of the runs is a function of the instantiated retrieval structure, rather than the

subject's chunks. The Chase-Erisson hypothesis is also consistent with the finding of Charness

(1976) and Egan and Schwartz (1979) assumption that instantiated schemas are held in long-term

memory rather than short-term memory.

The Chase-Ericsson hypothesis has thus far survived empirical challenges. It is consistent

with all the major short-term memory findings in the expert-novice literature. Moreover, there is

independent evidence for schemas from several sources: (1) categorization studies (section ), (2)

protocol studies (section ), and (3) learning mechanisms (section ). Thus, it looks like schemas are

the key to understanding expertise.

However, because the Chase-Ericsson hypothesis explains everything that the Chase-Simon

hypothesis explains, there is currently no direct evidence that experts have larger chunks than

novices. But it still remains an extremely plausible hypothesis, given all the evidence for chunking

from experiments on verbal learning and perception (see chapter ??, this book).
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Summary
Three ingredients of any future theory of problem solving have been presented. They are: (1)

the existing theory of problem solving in knowledge-lean task domains; (2) ideas for analysing

expert problem solving in knowledge-rich task domains, and (3) some robust experimental findings.

Comments on the contact between theory and findings were sprinkled throughout the preceding

sections, so this summary can be mercifully brief. Table 6 lists the robust experimental findings,

organized as they were presented in section 4. Table 7 lists most of the major theoretical

concepts, organized as they were presented in sections 2 and 3.

Practice effects

1. Reduction of verbalization
2. Tactical learning

3. The power law of practice

Problem isomorphs

4. Varying the cover story does not affect difficulty

5. Other variations significantly affect difficulty

Transfer and problem solving by analogy

6. Asymmetric transfer
7. Negative transfer
8. Set effects
9. Spontaneous noticing of potential analogies is rare

10. Spontaneous noticing is based on supericial features

Expert-novice differences: problem solving studies

11. Experts perform faster than novices
12. Experts are more accurate than novices
13. Strategy differences

14. Self-monitoring

Expert-novice differences: memory studies

15. Classification of problems
16. Association structures
17. Episodic memory for problems and solutions
18. Recall structures
Expert-novice differences: chunking
19. Experts may have larger chunks than novices

Table 6: Robust empirical findings
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The standard theory

Problem spaces
States
Operators

Understanding
Search

Backup strategies vs. proceed strategies
Heuristics
Weak methods: forward and backwards chaining, operator subgoaling, etc.
Means-ends analysis

Elaboration
Learning mechanisms

Compounding
Tuning
Chunking
Proceduralization
Strengthening

Schema-driven problem solving

Schemas
Problem half
Solution half

Selection and instantiation
Triggering
Slot filling
Second-order features

Following solution procedures
Recursion
Flexibility

Non-routine problem solving
Search
Schema compounding
Impasses and repairs

Table 7: Major theoretical terms
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Notes
1 Standard techical terms in the field are italicized when they are introduced.

2Sequence extrapolation has the expository advantage of being a simple task domain that

most readers are familiar with. However, it is not a knowledge-lean task domain because subjects

are usually not told what types of patterns are legal. Thus, the subjects must use their common

sense and/or their prior experience with the task in order to decide what kinds of patterns are legal,

and hence, what kinds of states and operators to use in the problem space. For sequence

extrapolation, the understanding process is just as important as the search process. See Kotovsky

and Simon (1973) for a serious treatment of this task domain.

3Many specific models of problem solving in the literature do not distinguish between

assertions generated by perception and assertions generated by inference. The models

sometimes produce a state with several dozen assertions in it, and this worries students who are

familiar with the limitations of human short term memory. However, some of these assertions may

represent information that does not reside in the subject's short term store. Rather, it is information

that the subject once saw in the external environment and could easily see again just by directing

their gaze to the appropriate location. Although the limitations of short term memory obviously do

place some constraints on human problem solving, it would be far to simple equate the contents of

a problem state with the contents of short term memory. Section 4.6 discusses the issue of short-

term memory limitations in more detail.

4ln principle, the initially available states could be much larger. The problem statement could

mention final states or have hints that mention intermediate states. The subjects could even derive

intermediate states deductively from their state representation language.

5Often, courses on human problem solving include discussions of the major types of state

space search algorithms, such as depth-first search, breadth-first search or even A*. Although it is

doubtful that these types of search occur in human performance, they are nonetheless an

important part of the conceptual vocabulary of a well-trained cognitive scientist. Fortunately, these

terms are almost always covered in introductory courses on Al, so a discussion of them has been

omitted in this chapter.
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6Backwards chaining and operator subgoaling are similar and often confused. However,

backwards chaining computes with concrete problem states, while operator subgoaling computes

with descriptions of desired problem states. Backwards chaining requires invertible operators, but

operator subgoaling does not.

7A special case of this strategy is called hillclimbing. It is applicable when the differences

between the current and desired states can be measured numerically. In this case, the heuristic

simply choose the operator that minimizes that numerical distance.

8The algebraic examples used in this section have the advantage that they come from a task

domain that most readers know quite well, so they make easily understood illustrations. However,

much less is known about specific schemas in algebra than in physics, where more work with

detailed computer simulations has been done. No claim about the actual existence of this

particular algebraic schema or the others mentioned herein are intended.

missionaries and cannibals puzzle is: "Three missionaries and three cannibals wish to

cross a river. There is a boat, but it holds only two people. Find a schedule of crossings that will

permit all six people to cross the river in such a way that at no time do the cannibals outnumber the

missionaries on either bank." This version of the puzzle, with three missionaries, three cannibals

and a boat that holds two, is the most common. Other versions vary the number of people, the size

of the boat and other constraints. The mathematics of river crossing puzzles is explored by Fraley,

Cooke and Detrick (1966) and others.

10Afthough the knowledge is notated as productions, Kieras and Singley have argued that

the type of knowledge transfered in some experiments is actually declarative, rather than

procedural, because these subjects had too little practice to allow them to proceduralize their

declarative knowledge before the transfer task was given.

11 This finding must be qualified slightly for some domains, such as political science, where

there is no objective measure of solution correctness or quality, so the experts' solutions are

defined to be the correct ones.



 


