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Causal Analysis and Inductive Learning

JOHN R. ANDERSON (ANDERSON®@A.PSY.CMU.EDU)

Department of Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213 U.S.A.

Abstract

PUPS learning mechanisms center around the representation of causal relationships between objects
or events. These learning mechanisms involve (1) a set of principles for inducing causal relationships
in absence of a domain theory; (2) a set of analogical mechanisms for extrapolating the causal anal-
ysis of one situation in order to predict or problem solve in another situation; and (3) compilation

procedures for turning these extrapolations into general production rules. These learning mechanisms
are illustrated with respect to a detailed example from the algebra tutor where they do a good job of
reproducing the instructionless learning we observe of students.

1. Introduction

Inductive learning is concerned with the extraction of general principles from ex-
amples. It is one of the major goals of research in machine learning. The various
methods that have been proposed have been successful in situations where there was
a regularity in the domain that was congruent with the assumptions of the inductive
method. There has been some uneasiness with the almost magic-like character by
which a method just happens to capture a domain regularity. Presumably this dissat-
isfaction is part of what motivated the work in explanation-based learning (Mitchell,
Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986). In explanation-based learn-
ing an axiomatization of the domain is provided which explains the regularities. This
axiomatization is used to direct the derivation of general principles. However, now
learning loses its inductive-like character. The products of the learning process are
really just theorems given the axiomatization. The phrase ’knowledge compilation’
(e.g., Anderson, 1983) has been used to describe this learning and to contrast it with
inductive learning. Inductive learning in an explanation-based learning paradigm
would amount to acquiring the axioms.

Humans manage inductive learning in absence of a prior axiomatization. On
the other hand their learning is seldom of the syntactic variety that characterizes
most machine learning approaches to inductive learning. Despite the lack of a prior
axiomatization it is directed by an attempt to understand the problem domain. We
have been working on a theory of learning called PUPS (Anderson & Thompson, 1986)
which attempts to capture these properties of human learning and which we think
promises to be much more general and robust than most machine learning methods.
A key difference in this theory and my earlier theories of human learning (Anderson,
1983) is the process of causal induction by which PUPS infers that one thing in the
environment caused another. These causal inferences provide something on the order
of an axiomatization of domain from which PUPS can then analogically extrapolate to
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provide predictions about new experiences. If successful these extrapolations will be
compiled into rules for later use. The three major steps in the evolution of general rules
from experience, then, are causal inference, analogical extrapolation, and compilation.

Twelve pages is much too little to give a careful development of this theory (espe-
cially as [ sit here in Adelaide isolated from my machines trying to get it on my IBM
convertible computer and printer). In lieu of that I will provide a brief discussion of
each of these three aspects and will conclude with an extended illustration of their
application to learning from our algebra tutor (Lewis, Milson, & Anderson, in press).

2. Causal Induction

People have an almost irresistable urge, when they encounter an event or object,
to ascribe a cause to it where that cause is some other event or object. The majority
of our adult causal ascriptions flow from theories we have already acquired, but people
are quite capable of making these ascriptions in the absence of a domain theory. It is
from these pre-theoretical inferences that domain theories eventually arise. Note I am
making no claims in this paper about what causality is like in the real world or indeed
if there is such a thing as causality. I am only asserting that people naturally perceive
causality whether it is really there or not. The beauty of human causal perception is
that it ignores the philosophical dilemmas about causality and so produces knowledge.

There are at least three well-documented factors inducing people to perceive one
thing as causing another in the absence of an existing theory (Lewis, 1986; Shultz,
1982). Each of these can be fairly easily justified as a rational basis for making causal
ascriptions:

1. Contiguity — People tend to perceive something as the cause the closer in time
and space it is to the effect with the strong discontinuous provision that effects
cannot precede their causes.

2. Similarity — People tend to perceive something as a cause the more similar it
is to the effect. It is difficult to specify an all-encomposing metric for similarity,
but for our purposes the important feature is that two things are more similar
if they overlap in a number of components. For instance, suppose we observe
two events involving an unknown computer system—the user points to an icon
of an apple and he points to an icon of a dog. After both these events a third
event happens—the icon of the apple disappears. We are more likely to think
the cause of the third event is the pointing to the apple icon than the dog icon.
This is because both cause and effect involve the apple icon.

3. Statistical — If a cause has been accompanied fairly regularly by an effect and
the effect has seldom occurred in the absence of the cause, we are likely to
perceive a causal relationship. Note perception of causality does not demand a
perfect predictive relationship. There can always be extenuating circumstances.
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It is something of an open question just how these three factors should be computed
and combined to produce an attribution of a causal relationship. Psychological re-
search can take the form of creating somewhat artificial situations to test for refined
predictions of one scheme versus another. However, typically casual attributions are
highly overdetermined. For instance, suppose we have no knowledge of computers
and that we see (+ 2 3) typed into the computer and see 5 as a response. We would
decide that the typing caused the 5 on the basis of contiguity, similarity (5 is the sum
of 2 and 3), or statistical trials noting the regularity of the relationship.

The following illustrates the schema-like notation we have developed for represent-
ing knowledge in PUPS. We have used it to encode the (+ 2 3) example:

example: isa typing
form: (list + two three)
function: (cause event)
precondition: (example context CommonLISP)
context: CommonLISP

event: isa response two: isa integer
form: (text five) form: (text 2)
function: (caused-by example) function: (first fact)
three: isa integer five: isa integer
form: (text 3) form: (text 5)

function: (third fact) function: (fifth fact)

fact: isa addition-fact
form: (sequence two plus three is five)

The form slot is used to record the physical form of the object or event while the
function slot is used to encode causal and positional information. Thus, the function
slots for example and event encode their causal relationship, while the function slots
for two, three, and five encode their position in the addition fact 2 + 3 = 5. There
can be multiple functions associated with a PUPS knowledge structure. Preconditions
can be attached to functions. Thus example has the precondition that it produces
event in the context of CommonLISP. Context is just another slot associated with the
example knowledge structure.

3. Knowledge Extrapolation

Knowledge extrapolation involves trying to extend a causal analysis to a new
situation. Suppose for instance, one wanted to predict what would happen when (+ 3
5) was typed into CommonLISP. Analogical extrapolation allows one to map the past
example onto the current example provided the categories (isa slots) of the objects
are the same. In effect, we can extract from the example the following rule:
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[F' =structure: isa typing
form: (list + =numl =num2)
context: CommonLISP
=numl: isa integer
function: (first =fact)
=num2: isa integer
function: (third =fact)
=fact: isa addition-fact
form: (sequence =numl plus =num?2 is =num3)
=numaJ: isa integer
THEN =structure function: (cause =event)
=event: 1sa response
form: (text =num3)

The rule above is a production rule which predicts the function of =structure given
its form. We can also create problem-solving productions in which the form necessary
to achieve a function is specified:

[F goal: 1sa typing
function: (cause =event)
context: CommonLISP
=event: 1sa response
form: (text =num3)
=numJ: isa integer
function: (fifth =fact)
=fact: 1sa addition-fact
form: (sequence =numl plus =num2 is =num3)
=numl: 1sa integer
=num?2: 1sa integer
THEN goal form: (list + =numl =num?2)

These analogical extrapolations depend on two basic assumptions. First, all members
of a category behave identically with respect to their causal properties. Secondly,
terms that bear the same functional relationships behave identically with respect to
their causal properties. If I had room to unpack the evolution of categorical and
functional structures in PUPS I could motivate the assertion that both of these ex-
trapolations are reasonable inductive leaps although either could be in error in any
particular case. We call these safe extrapolations.

In some problem-solving situations there may be no safe extrapolations of one’s
knowledge which will enable one to solve the problem. Then problem solvers may
choose to push extrapolations beyond these safe bounds. This can occur in at least
three ways. First, the problem-solver might try to apply the knowledge despite vio-
lated preconditions. For instance, the problem-solver might try (+ 2 3) in contexts
other than CommonLISP. Second, the problem-solver might ignore category restric-
tions. Thus, despite the fact that (+ 2 3) is encoded as restricted to integers, he might
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try it with reals. The third possibility is that, if the problem-solver has no example
that can be extrapolated to solving the whole problem, he might try extrapolating an
example that will solve part of the problem. An example we have observed is when
we ask beginning LISP programmers to “Multiply X by the sum of Y and Z”. Not
knowing how to embed one operation within another they will type (+ Y Z) and then
think about how they will achieve the requested multiplication.

The effect of such forced extrapolations is to try out the bounds of one’s knowledge
and discover new knowledge in the process. Thus, one might discover that the +
operator is not restricted to integers.

Two components of this forced extrapolation throw problem-solvers into the large
search spaces Al is typically associated with. First, students may subgoal satisfying
preconditions such as finding a CommonLISP system. Second, there is the process
of searching through different knowledge structures looking for one that will succeed.
Managing search of such problem spaces is a major issue of control which shall also
be ignored here.

4. Knowledge Compilation

The processes of causal inference and knowledge extrapolation produce general
rules that can be used for prediction and problem solving. Those rules that prove
successful get permanently recorded as production rules. In the domains of problem
solving we have been studying (LISP programming, geometry theorem proving, al-
gebraic symbol manipulation), there is a marked speedup after the first successful
application of a piece of knowledge. The next application typically takes half as long.
In our view this reflects the greater efficiency of rule recognition relative to knowledge
extrapolation. Once a rule has been codified as a production it can accrue strength as
it proves repeatedly successful. There is a gradual continued improvement in speed
of rule application with practice.

This process of codifying successful rules we call knowledge compilation. It really
does not change the behavioral potentials of the system, abstractly defined. For
instance, an extracted rule can take precedence over a compiled rule if it offers a better
fit to the problem situation. The only effect of knowledge compilation is to reduce the
resource costs of manifesting knowledge. Of course, by changing the resource costs,
one can change the effective behavior of a system even if not the abstract behavioral
potentials. Paths of problem-solution which were too consuming of time or working
memory now become feasible.

5. An Extended Example: The Algebra Tutor

For an example of these learning mechanisms actually producing learning in a
significant knowledge acquisition situation, I would like to turn to an example from
our algebra tutor. Learning with the algebra tutor is chosen rather than free-form
learning because the algebra tutor provides a very well-defined situation and one for
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Lesson 30 - Isolating a Variable

1
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Figure 1. The tutor screen used for instruction

which we have ample empirical data. One of our observations of students behavior
with the algebra tutor is that they tend to ignore instruction and work from examples.
The same observation has been made of the learning of algebra in the classroom

(Neves, 1978).

Figure 1 reproduces a screen image of an example used to tutor our students on
the 30th unit of our algebra curriculum which concerns isolation of variables. The
problem is initially presented to the student as “Isolation X is 3X=6 —> ?7?”. If the
student can write the resulting equation he can put that in the result box (the “???”)
and go onto the next problem. If not, however, the problem is broken down into a
number of substeps which is what is illustrated in Figure 1. Each substep corresponds
to an operation which the student has learned to do in a previous lesson.

Performing a substep amounts to selecting the operator (e.g., “reciprocal” from a
menu, mousing in the arguments to the operator, and mousing in the result). After
producing the result to the final substep the student can move that result to the result
box for the original problem.

In our analysis of this example we will assume that the student knows the basic
facts of arithmetic and has mastered the previous 29 lessons and so knows how to
produce answers for each of the substeps in Figure 1. We will focus on how the
student understands the relationships among the lines in Figure 1, extrapolates this
knowledge to solving new problems, and codifies rules to represent the lessons of these
extrapolations. In particular, we want to show how he extracts a rule that will directly
produce an answer to the goal of isolating a variable. This rule will be in the same
format as we are assuming for the rules acquired from previous lessons for doing the
substeps.

Responding to length constraints (and good sense), I will restrict this discussion
to the goal line, the first substep, and the last substep.

e

i
Simplify gu —3‘4 =) X=% Simplify Equadion

Simplify Equation

i
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5.1 The Goal Line
The following is the PUPS encoding of the goal line in Figure 1:

top-goal: isa tutor-line
form: (line isolate terml in expl ~> exp2)

expl: isa expression
form: (list term2 term3 = term4)

exp2: isa expression
form: (list term5 = termS6)

terml: isa variable term2: isa number
form: (text X) form: (text 3)
term3: isa variable term4: 1sa number
form: (text X) form: (text 6)
term5: isa variable term6: isa number
form: (text X) | form: (text 2)

Note that we have just given PUPS the forms of these lines. The causal relationships
are to be inferred. I will postpone analysis of the second expression, exp2, until after
the last substep because that is when it appears in interacting with the tutor. The
one thing that PUPS does respond to in this goal line is the identity between the first
X, terml, and the second X, term3, in expl. This identity and the contiguity of the
two leads to the inference that the first is the cause of the second. It is a bit tricky
to judge whether this causal inference is correct or not. One might argue that the
second X is the cause of the first because the second X is not isolated. Fortunately,
this turns out to a causal inference that does not figure into later extrapolations.

5.2 The First Substep
The first substep is encoded in PUPS as:

linel: isa tutor-line
form: (line reciprocal of term6 is term?7)

term6: isa number term?7: isa fraction
form: (text 3) form: (stack term8 — term9)
term8: isa number ‘ term9: 1sa number

form: (text 1) form: (text 3)
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PUPS uses the overlap between the goal line and the first line to introduce a causal
link between the two. It also correctly identifies the cause of the first 3, term6, as the
3, term2, from the goal line. On the other hand, it uses the knowledge it already has
of the reciprocal to predict the 1/3 in the result box.

When it comes to solving a later variable-isolation problem PUPS can use the
causal hooks it has built to set up the first step on the way to solving the problem.
The following is the rule that can be extrapolated from the causal analysis:

[F =problem: isa tutor-line
form: (line isolate =terml in =exp -> =box)
=exp: 1sa expression
form: (list =term2 =term3 = =term4)
=term2: isa number
form: (text =value)
THEN =problem function: (cause =nextline)
=nextline: isa tutor-line
form: (line reciprocal of =term6 is =term?7)

=term6: isa number
form: (text =value)

where =term7 will be filled by another production. Similarly PUPS analyzes substep
2 (Multiply) as being caused by the goal line and substep 3 (first Simplify) as being

caused by substep 2.

5.3 Fourth Substep
PUPS encoding of the fourth substep is:

line4: isa tutor-line
form: (line simplify exp7 -> exp8)

exp7: isa expression
form: (list term28 = term29 term30)

exp8: isa expression
form: (list term31 = term32)

term28: isa variable term?29: isa fraction

form: (text X) form: (stack term33 — term34)
term30: isa number term31: isa variable

form: (text 6) form: (text X)
term32: 1sa number term33: 1sa number

form: (text 2) form: (text 1)
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term34: isa number
form: (text 3)

PUPS makes two causal ascriptions: It relates this line to the previous and exp7 to
the result of the previous line. From its knowledge of simplification it also predicts
the result of this line. The rule which does so was acquired from previous lessons and
has the form:

IF =line: isa tutor-line
form: (line simplify =expl -> =exp2)
=expl: isa expression

form: (list =terml = =fraction =term?2)
=fraction: isa fraction
form: (stack =term3 — =term4)

=terml: isa variable
form: (text =name)
=term2: isa number
form: (text =value2)
=term3: isa number
form: (text 1)
=term4: isa number
form: (text =valuel)
=fact: isa multiplication-fact
form: (sequence =value3 times =value2 is =valuel)
THEN =expl function: (cause =exp2)
=exp2: isa expression
form: (list =term5 = =terms§)
=term5: isa variable
form: (text =name)
=term6: isa number
form: (text =value3)

5.4 Answer to Goal Line

The final thing that PUPS does is to process the filling in of the answer in the
result slot of the goal line. It correctly attributes this as caused by the result of the
fourth substep. PUPS has inserted causal chains leading from the original expression
3X = 6 and the multiplication fact “2 times 3 is 6” to the result of the goal line,
X = 2. Figure 2 illustrates these causal chains. By composing these causal chains
PUPS infers that 3X = 6 caused X = 2 and that the 2 in the result is caused by the
multiplication fact. It can compile a rule from these composed causal links directly
prescribing what should go into the result box of the goal line. The rule that can be
compiled, in the same form as the rule for the fourth line, is given below:
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3] SIXl = |6
_ \ A
v/ 13 11/3
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Figure 2. Representation of the critical causal linkages in PUPS analysis of Figure 1.

IF =line: isa tutor-line
form: (line isolate =terml in =expl -> =exp2)
=expl: isa expression
form: (list =term2 =term3 = =term4)
=terml: isa variable
form: (text =name)
=term2: isa number
form: (text =value2)
=term3: isa variable
form: (text =name)
=term4: isa number
form: (text =valuel)
=fact: 1sa multiplication-fact
form: (sequence =value3 times =value2 is =valuel)
THEN =expl function: (cause =exp2)
=exp2: 1sa expression
form: (list =term5 = =termS6)
=termS3: isa variable
form: (text =name)
=term6: isa number
form: (text=value3)

5.5 Comments of the Algebra Tutor Example

The algebra domain seems to be particularly well-chosen for purposes of testing
out the PUPS learning mechanisms. For instance, we can define routines to go from
the tutor screen to the form encodings on which the PUPS causal routines operate.
Thus we can automate the entire process of knowledge acquisition. Perhaps by the
time of the conference, we will have had enough time to report a complete or nearly
complete simulation of learning with the tutor in contrast to this hand simulation.
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It needs to be said that we already know that PUPS learning with the algebra
tutor is far from perfect. In particular, PUPS does not really learn the reasons for
performing the steps in an algebraic manipulation. For instance, it does not represent
that the reason for performing isolation is that the variable X is embedded in an
expression on the left hand side of the equation. When it later uses isolate-variable as
part of equation-solving it will view that operation as being caused by previous tutor
lines—just as it analyzed the sequence of steps underlying isolation. Thus, PUPS
makes what we call rote errors where it performs a substep which is usually part of
a sequence of steps but which is not required in a current context. For instance, the
variable might already be isolated. However, it needs to be added that students are
very prone to these rote errors. Thus, the problem is not really one with PUPS but
rather with the learning situation. These rote errors provide students and PUPS with
the occasion for learning the critical features controlling these operations. In PUPS
these features would be stored as preconditions not causes.

The fact that we can put PUPS behavior in correspondence to student behavior
illustrates another advantage of working with the tutor. The PUPS analysis of these
errors suggests that the tutor should be amended to teach students the features which
control the setting of goals such as isolate. Students, like PUPS, tend to react to the
salient features of the problem and infer that such features are the causes. We need
to make salient the more abstract and relational features such as the fact that X is
embedded with other terms on one side of the equation.
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