NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PARSE COMPLETION;
A STUDY OF AN INDUCTIVE DOMAIN

Technical Report AIP-16

Steve Nowlan

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

29 September 1987

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number NO00014-86-K-0678. Reproduction in whole or in part

is permitted for purposes of the United States Government. Approved for public release;
distribution unlimited.

Lnc.assified

] LASSIFICATION QF THIS PA

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 15. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIACATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AIP - 16

6a. NAME OF PERFORMING ORGANIZATION
Carnegie-Mellon University

Approved for public release;
Distribution unlinited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION
Computer Sciences Division

Office of Naval Research (Code 1133)
7. ADORESS (City, State, and 2IP Code)
800 N. Quincy Street

arlington, Virginia 22.17-5000

6b. OFFICE SYMBOL
(If applicable)

% ADORESS (City, State, and ZIP Code)
epartrent ot Psychology

Pittsburgh, Pennsylvania 15213

8b. QFFICE SYMBOL
(If applicabie)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

Same as Momitoring Organizatio
8¢c. ADDRESS (City, State, and 2IP Code)

NOOO14-86-K-0678

PROGRAM
ELEMENT NO

N/A

PROJECT
NO.

N/A

WORK UNIT
ACCESSION NO

N/a

LR

TITLE (Include Security Classification)

Parse Completion: A Study of an Inductive Domain

12 P AUTHOR '
2 Egs.ch.{.%"wlgn OR(S)
13a. TYPE OF REPORT 13b. TIME COVERED. 14 DATE QF REPORT Year, Month, Ody) [IS. PAGE COUNT

'@ SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse f necessary and 'dentify by block number)
GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse !f necessary and dentify by block number)

Hierarchical knowledge structures are pervasive in Artificial Intelligence, yet very little is understood about
how such structures may be etfectively acquired. One way to represent the hierarchical component of
knowledge structures is to use grammars. The grammar framework also provides a natural way to apply
failure-driven learning to guide the induction of hierarchical knowledge structures. The conjunction of
hierarchical knowledge structures and failure-driven learning defines a class of algorithms, which we call
Parse Completion algorithms. This paper presents a theoretical exploration of this class that attempts to
understand what makes this induction problem difficult, and to suggest where appropriate biases might lie to
limit the search without overly restricting the richness of discoverable solutions. The explorations in this paper
are not intended to produce a practical induction aigorithm, although fruitful paths for such development are

suggested.

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT ABSTRACT SECURITY CLASStFlCATlON‘

DUNCLAssaFcED/UNLIMlTED X samMe as RPT CJ] oric USERS

22a NAME OF RESPONSIBLE INDIVIOUAL
Ur. Alan L. Mevrowitz

2!

22b TELEPHONE (Include Area Code) | 22¢. OOFB*fZ SYMBOL

(202) 696-4300 N

DD FORM 1473, 3a MAR 83 APR edition may be used until exnausted.

Y -
All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

UNIVERSITY LIBRARIES
CARNEGIE MELLON UNIVERSITY

PITTTR: tmmse

1 Introduction

Hierarchical knowledge structures are pervasive in artificial intelligence systems. Classic
examples include semantic networks [21], scripts [24], and frames [15] and their descendants,
which are employed in current knowledge representation technology. Planning and plan
recognition systems (8, 7, 23] make extensive use of procedural hierarchical structures. Despite

this pervasiveness, very little is understood about how such knowledge structures may be

effectively acquired.

We focus on executable hierarchies: those that represent control strategies, plans or procedures
[27,10]. Grammars can provide a uniform representation for such hierarchical control
structures. The hierarchy of control is implicit in the rules of the grammar, but becomes explicit
in the derivation tree! for a particular string.? In this context, one can regard the rewrite rules of
a grammar as a way of ransforming some goal into a group of sub-goals. Consider for example
the problem of multi-column subtraction. We can regard a subtraction problem as composed of
several atomic procedures, such as one column subtraction (-), shift of attention left one column
(1), shift of artention right (r), decrement (d) and add (a). The last two operations are needed to
represent the decrement in one column and increment in the next required of the borrow
operation. In this representation the subtraction problem 25-13 could be represented by the
string —/— which would be interpreted as subtracting the first column, moving left and
subtracting the second column. Figure 1 ilustrates one possible grammar for multi-column
problems that do not involve borrowing, and the incomplete derivation tree that is produced
when the procedure represented by this grammar is applied to a problem that requires borrow

operations.

The idea of creating sub-goals to hierarchically solve a complex problem goes back at least to
GPS [18], and is the basis for several models of cognitive architecture (14, I, 2, 26]. Different
types of grammars correspond to different classes of control structure; the activation of a sub-

goal may depend only on the presence of its parent goal, or it may also depend on the concurrent

'The term derivation tree is synonymous with parse tree, and in this context is equivalent to a trace of the
subgoals in a procedure. The derivaton tree can be a general graph for context-sensitive grammars.

“Throughout this paper we will use the term string to represent the end product of a derivaton using a grammar.
The string is oot necessanly a sting of characters, but may equally well be a sequence of operations for performing
some task.

activation of other goals with different parents (i.e. context free vs. context sensitive grammars).
An effective algonithm for inducing grammars may also be a powerful tool for learning

hierarchical control structures from experience (27].

Mitchell [16] highlights the importance of biases in induction problems. Failure (or impasse)
driven learning (25, 22, 27] 1s a particular bias that can make many induction problems more
tractable. This bias favours using the existing knowledge structures as much as possible .to solve
a problem. When an impasse is reached, it adds just enough additional control knowledge to

bridge the gap and complete the solution. This bias may have psychological validity as well as
practucal utility [28].

The combination of failure-driven learmning and grammar induction yields a class of algorithms
which we have referred to as Parse Complenion algonthms. In Parse Completion one attempts to
build a derivation tree for some string, using existing rules of the grammar, until no existing
rules can be applied. The process may be thought of as a combination of top-down and bottom-
up parsing (Fig. 1). When the denivation tree is as complete as possible, new rules are added to

the grammar to fi// in any remaining gaps in the derivation tree.

Figure 1: Incomplete derivation tree prior to Parse Completion

Parse Completion is not a new idea. Specializations of it have been used in programs that leamn
plans [13], procedures [27, 10], programs from examples [3, 4], and models of cogrutive skills

[26]. Although the concept has been used by a variety of researchers, there has been no attempt

to characterize the space of parse completion algonithms, or to systematically examine where

biases [16, 27] may be most effectively introduced.

2 The Parse Completion Design Space

In this section the intent is to introduce the concept of parse completion at an intuitive level
and to present some of the alternative design choices for induction algonithms based on the parse
completion paradigm. Results are presented here in an incomplete fashion. Later sectdons expand

on this outline and provide the missing details.

Parse completion is a particular approach to induction problems. An induction problem is the
discovery of expressions in some representation language (generalizations) such that each is (1)
consistent with the examples and (2) preferred by learning biases. The set of expressions is
partially ordered by a more-specific-than’ predicate [17]. The inductuon problem is to discover
some expression that encompasses all positive examples and no negatve ones, by searching the

tangled hierarchy of expressions.

The goal of parse completion is to build a complete derivation tree for some string starting
from an existing grammar. If the existing grammar is powerful enough to parse the string then a
complete derivation tree may be built. The interesting case occurs when the existng grammar is
inadequate to parse the string. If we arttempt a top-down parse, we will produce a parmal
denivauon tree that contains a number of gaps (Figure 1). Each gap becomes a completion site, a
point at which additional rules must be added to the grammar to complete the denivation tree.
The new grammar will be a generalization of the old grammar, since it will be able to parse at

least one string that the old grammar could not parse.

Although the above may appear to be a ught description of an algorithm, there are in fact a
wide variety of design choices to be made within this general framework. Each choice may
produce an algorithm with dramatically different charactenistics. We wish to explore these design

choices 1n some systematic fashion.

At each completion site there usually exist many different ways in which the grammar may be

generalized to allow the derivation to continue. Each of these new grammars represents an

*More-specific-than(x,y) is true iff the denotarion of x (i.e., all possible instances of x) is a subset of the
denotaton of y.

alternate node within the tangled generalization hierarchy of grammars. Our first decision point
is whether to consider all or just one of these alternate generalizations. This is a least-
commuitment versus most-commitmnent distinction: a most-commitment algorithm will select just
one alternative, and continue its search in a depth first fashion, back tracking if necessary. Most
grammar induction algorithms fall in this category [9, 5, 19]. A least-commitment algorithm
attemnpts to explore all of the generalization alternatuves in parallel, without commuitting itself to
one particular path. In this sense it 1s more like a breadth first search. The best known éxamplc

of a least-commitment inducton algorithm is the version space algorithm [17].

[east-commimment algorithms are memory intensive compared to their most committment
counterparts, and are thus regarded with disfavour for most machine learmning applications.
However, if the induction domain 1tself is il understood, then a least-commitment algorithm can
offer valuable information about the domain. If we are interested in the impact of certain design
choices on an induction algorithm, then we need to know more than just the final solution
obtained by an algonthm. We would also like some idea of the blind alleys explored, and those

‘avoided. This ability to see more than just a narrow view is one advantage of a least-commitment”

al gorithm.‘

There are many other design choices ava.ilable; A grammar may be generalized in two different
ways: by introducing new rules into the grammar, or by merging old non-terminals in existing
rules. Each approach defines a partial order over the set of grammars consistent with a set of
examples, and in both cases the partial order is a strict suborder of the partial order based on the
predicate more-specific-than. The partal order defined by merging old non-terminals has been

invesugated elsewhere (29, 12, 20].

The parse completion algorithm provides an effective means to deal systematically with the
different alternatives possible within the paradigm of generalization through the addition of
rules. The approach taken is to classify rules added to a grammar in terms of the format of the
night hand side (RHS). A natural classification scheme can be derived from the process of
performung a top-down parse on a sming. One can think of parsing a string as involving two
steps. The first step partitions a string into several contiguous substrings. Each partition element
1s then labelled with some symbol from the grammar, either a terminal or non-terminal. The
partitioning and labelling steps are repeated on each partition element labelled with a non-

terminal, until all elements are labelled with terminals. At each stage the number of elements in

the partition and the labels assigned to each element correspond to the RHS of some rule in the
grammar. Conversely, a new rule RHS can be formed by taking a parution of a sting and
labelling its elements. In figure 1 the existing grammar is able to parse the first character in the
string, 1, and the last three characters, - | -. If we allow the non-terminal S to cover the last three
characters, then the unparsed subsming is d r a S. We can generate new rules to complete this

parse by considering the partitions and labellings for this substring (Figure 2).

e IR WIS YN GED SED wUR NS SN N D GAD AN RN NS WED AND A Wb WM D WL WD MR AED WP WHD GNP P GUS GNP THD WND P GID WS W YED CES WP MNP R WL SIS YN WD IS AR GNS WP G A D G WP AR AN WD G W AR R D AR R WD GD D W AP WS R G A e .

1 Partition Labels Rules 1

| t

| (d z a S) - S - dr a s ;

| (d =z a) (3) A, - S = A S l

| A - dr a '

| (d =) (a S) A,3 S = A B

; A - 4d r

l B — a S

| (d) (= a) (3) A,8, - S — A B S

1 A - d i

| B — r a [

i (d =) (a) (9) A,B, - S — A B S |
A - d -]
B = a |

- YD aEP YD G AN Gl GNP D D EN T R NS P AN GRS GED GU Gk NP SED GNP VR AN NP AR WD SER WH 4D GED ANy AER Yy AR A NP A iR AR TR S AR YNy WP AR P AR ANy ANR WP S W) G 4TS D AED D AP ANS Ay P VI WD AER YR A W A D P GNP D 4NN e YN

Figure 2: Some partitions and labellings for the denvanon tree in figure 1.

LA A

-" represents an unlabelled partition.

We can generate a variety of different algorithms from the parse completion framework by
giving specific functions for generating parutions and labelling the elements. At one extreme, we
could restict the parmitioning and labelling so that only rules already existing within our
grammar could be generated. Under this restriction the parse completion algorithm becomes a

simple top-down parser. With different restrictions new rules of varying power may be added to

an existing grammar.

The RHS of rules may be classified according to whether they contain terminals, non-terminals
that have previously appeared in the grammar, new non-terminals, and vanous combinanons of
the above. In addition, classification may be based on the length of the rules, or the order of the
RHS constdruents (i.e., new rules may only be formed by adding to the right end of the RHS of
an existing rule). Using these classification schemes, a partial order of RHS formats may be
defined (see Section 4). This partial order of RHS formats is distinct from the partial order of

gram‘mars in the generalization hierarchy, although we show in Section 5 that the two are closely

related. The algonthm is designed so that a particular point in this partial order may be selected,
or the program may be permitted to move through the partial order itself. In this latter mode, the
most specific class of RHS format is tried first. and less specific RHS formats are tried only if
the more specific ones fail to allow the parse to succeed. In this manner the program searches

automatically for useful combinations of RHS formats.

Grammars may be classified by the syntactic structure of the rewrite rules that may appear in
the grammar. Common classifications for grammars for regular and context free languages

include:

® Right Linear - all productions are of the form A — aB or A — a where A,B are
non-termunals and o a terminal string.

® Left Linear - all productions are of the form A — Ba or A — a where A, B are non-
termuinals and o a termunal string.

o Chomsky Normal Form - all productions are of the form 4 — BC or A — g, where
A,B,C are non-terminals and g 1s a terrmunal.

e Greibach Normal Form - all productions are of the form A — af8, where A is a non-
terminal, g is a terminal, and [is a (possibly empty) string of non-terminals.

RHS format restrictions can be derived which will guarantee that all grammars generated belong
to a particular class. Section 4 presents proof of these results for the classes of Right Linear and
Chomsky Normal Form.

In section 4 and 5 we examine the RHS formats for Right Linear and Chomsky Normal Form
grammars in detail. These two grammar classes were chosen as they can capture the classes of
Regular and Context Free languages. The other grammar forms may be converted to one of these

two forms by a simple mechanical ransformation [11].

A simple syntactié distinction in the RHS formats was found to have a profound effect on the
characterisucs of the grammars generated by parse completnon. For Right Linear and Chomsky
Normal Form grammars the allowed RHS formats could be divided into those which introduced
new non-terminals and those which reused exisang non-termunals. In Section 3 it 1s shown that a
restriction to new non-terminals can produce a grammar that has a finite language which 1s equal
to the set of positive example strings presented to the algorithm. On the other hand, the use of
existing non-terminals allows recursive rewrite rules to be introduced (i.e. a rule whose RHS
may eventually be reduced to a string that contains an occurence of the non-terminals on its

LHS). Recursive rewnite rules introduce the possibility of grammars which accept infinute

languages. Since many interesting languages are recursive, RHS formats which allow reusing
non-terminals are desirable. However, RHS formats which exclusively allow reusing old non-
terminals can only use existing structure in the grammar in new combinations. Assume that we
start with a situation in which we have a grammar that contains no recursive rules. In this
grammar, for an arbitrary non-terminal A, there are a finite number of derivation trees which may
be built with A as their root. When we create a new rule which uses this existing non-terminal A
we are introducing a new situation in which the structures (i.e. trees) already associated with A
can be introduced. This idea of using existing structure in novel situations is a very powerful
generalization tool, but it cannot work 1n a vaccuum. There must be some initial structures to be
manipulated, and these can only be introduced by the use of new non-terminals. So both types of

RHS formats are necessary and the interesting question is whether we can always tell how much

of each 1s required.

The RHS formats for Right or Left Linear grammars and Chomsky Normal Form grammars
can both be shown to define a partial order over the set of grammars consistent with the
examples. (Note that this is a partial order over the grammars themselves, not over the RHS
formats.) Furthermore, these partial orders are well defined and finitely bounded,* and can
therefore be used to define a version space-like structure for these grammar classes (see Section
5). This structure is useful in deriving a number of properties about induction a.lgbrithms for

these grammar classes.

One important result that can be derived is that under certain conditions, and given only a set
of positive example strings, a least-commitment induction algorithm will always converge to a
grammar set containing at least one grammar for the target language in bounded time (for proofs
see Section 5). The key idea is that it is not possible to arbitrarily introduce RHS formats which
add structure and RHS formats which reuse existing structure. Unless a certain minimal amount
of structure is present first, the grammars produced will be overly general and the partial order of

grammars induced will fail to contain a grammar which captures only the target language.

The important question is how much structure is necessary to prevent over-generalizauon. One

can show that if the examples are ordered so that the shortest ones come first, and if the leamer

“The bounds however are quite large, even for simple grammars, hence computation of the entire partial order is
often not pracucal.

starts out by adding only rules that introduce structure, then there is a well defined point at which
no further structure need be added, and one can begin to introduce rules which use existing
structure recursively.’ Identifying the point at which no further stucture need be added is

equivalent to defining a space complexity bound for the language being induced.

The derivation of the above results also suggests that certain feliciry conditions [26] can be
defined which will permit convergence. These conditions require the teacher to identify to the
student whether a particular example is an example of a new concept in the domain, or merely a

generalization of concepts the student has seen before (for details see Section 6).

3 The Parse Completion Algorithm

It is perhaps easiest to get an intuitive feel for the parse completion algorithm by considering a
simple example. A simple grammar 1s defined in figure 3, part a, along with a new example
string which is a member of the language. The first step in the algorithm is to attempt to parse
the string from the top down. Applying the first rule in the grasmar we get the partial derivaton
tree shown in part b of figure 3. It should be obvious to the reader at this point that the exisﬁné
grammar cannot successfully complete this parse. We can extend the partial derivation tree by
applying the second rule of the grammar to the non-terminal A, leaving the non-terminal B to
cover the substring abb. When we consider a string to be parsed it is convenient to number the
positions between each pair of termunals in the string, and before and after the string. Thus the
substring ab in our new example string (figure 3 a) is found berween positions 1 and 3.% A node
in the denvation tree 1s said to cover a particular substring if the left-most leaf of the sub-tee
rooted at that node 1s the first element of the substring and the nght-most leaf of the sub-tree 1s
the last element of the substring. Thus 1n figure 3 f the node labelled with the non-terminal B in

the left tree covers the substring in positions 1 through 4 (i.e. abb).’

As we have noted it is possible to extend the derivanon tree in figure 3 b by applying the

These results are based on the Pumping Lemmas for regular and context free languages and are discussed 1n
Secton §.

p—

The numbering of positions is from left to right, starting from 0 for the start of the string.

"Note that nomally a given sequence of terminals may appear several times within a string, hence to avoid
ambiguity we will usually refer to substrings via the position numbers. Similarly, when the labels on a parse tree are
not unique, we will number the nodes in the tree in breadth first fashion starting at the root, and refer to the node by
number, rather than by its label. The node labelled B in figure 3 could also be referred to as node 3.

Figure 3: A simple parse completion example.

S— A48

B —>¢
57"'“\).‘ Ooéb

a) Gr‘ommar MJ gamf/e S-‘?Lm'nj

Pl 4
a abb
aa b6
aab b
Cc) /OorTL/ Cion 0?[5‘36’ 2 {c':r fam/:/e
57L"4n3
5 > a C é’ — 6)

C) ! e fj/d/(" /aéc//mjs O{

TAe fafq/ ,dorf,-f,c‘d (a (a) (AA))

a abh
a b4
ab 4
a b6 4

d/ 54‘bj,"é”'/"}f/'ofls ol Fhe 5ecc/r:c/
/0/' 7‘/./“/'05 C/C"Cﬁf

S S

7\ /4/ \5

A B
7N . P
d G C / ,‘
/ a b0

44

10

second rule in the grammar, but if we do this then we are restricting our derivanon by forcing the
third node in our derivation tree (the one labelled B) to cover the rest of the substring. It is not
clear that we wish to introduce this bias into our algonthm. If the language we are attempting to
describe can be defined by the regular expression a*b*, then one possible grammar for the

language would be:

S—AB
A—aA
A—a
B —bB
B—>b

However, if we used the bias suggested then we could never discover this language. So it is not
always best to artempt to extend the parse as far as possible before adding new rules to the
grammar. This particular bias may also be undesirable because its effects are subtle, hence hard

to specify in a non-procedural fashion.

One important issue to be resolved is how far one should attempt to push the parse with the
existung grammar before considering additional rules. For the purposes of this example, a.ssurne;
that we stop with the partial derivation tree of figure 3 b. We have two non-leaf nodes beneath
which we wish to build sub-trees to complete the parse. There will be one leaf node for each
terminal of our saring, and the problem 1s to decide how to allocate these leaves to the two sub-
trees. We can regard this as a parutioning problem; tn general we will wish to partion some
string between posiaons £ and / into m non-overlapping substings such that the substings when
concatenated in left to night order form the original string and each substring 1s of length at least
one. Each substring in a partinon is called an elemen: of the partiion. The size of a partition is
the number of elements in the partition. The lengrh of a partition element 1s the length of the
corresponding substring. For the example problem the possible partitions of size two are shown
in figure 3 c. Each parttion element, if it is of length greater than one, may be partitioned
further. Consider the first of the three partitions 1n figure 3 c¢; the substring a will be covered by
the node labelled A and the substing abb will be covered by the node labelled B. The first
element of this partition cannot be partitioned further, but the second may be left as a single
element of length three, or may be partitioned further into partitions of size two or three. (See
figure 3 d.) In ger;eral each element of a partition may be partitioned further, and each paruinon
for one element may be combined with any partition for the next element in forming a valid roral

partition. A total partiion 1s a sequence of nested partitions: (a (a) (bb)) and (a (a) (b) (b)) are

11

both total partitions for this example. Each total partinon corresponds to a different topology for

the sub-trees used to complete a parse.

For a fixed total partition, there are still a variety of sub-trees which represent different
completions of the parse. Each of these is distinguished by a different set of labels for the interior
nodes of the sub-tree.® Each different labelling of the set of children of some node in the
derivation tree corresponds to a different night hand side (RHS) for a rule whose left hand side
corresponds to the label of the parent node. The lengrh of the RHS is defined to be the length of
the corresponding partition. If we consider the total partidon (a (a) (bb)), the new rules added
by two possible labellings of this total partition are shown in figure 3 e and the corresponding
derivation trees for the completed parses are shown in part f of the figure. These are only two of

the many possible trees derivable by considering all possible partitions and all possible labellings

of those parutions.

The careful reader will have noted that we introduced two restrictions into the types of
grammars we will consider in the preceding example. The restriction that all partition elemems;
had to be of length at least one means that we will not allow €-rules in our grammars.’ This
restriction is of little consequence since it can be proven [11] that for any grammar containing
g-rules there is an equivalent grammar without any g-rules.!0 The more significant restriction is
that we assumed that the LHS of any rule in the grammar was simply the label on the parent
node 1n the derivation tree. This assumption means that we are restricting ourselves to the class
of Context Free grammars.!! Although this class does not include all computable functions, it
still contains a large and interesting class of algorithms, including those which can be computed

with a sumple stack.

The basic parse completion algorithm is presented in Figure 4. There are two steps at each

%The leaf nodes will always be labelled identcally, since they correspond to the same substring in every case.
’An e-rule is simply a rule whose RHS is empty.

'OThis is true if and only if the language defined by the grammar does not contain the empty string, an assumption
we shall make henceforth.

1A Context Free grammar is one in which the RHS of rules may be any combination of terminals and non-
terminais, but the LHS of a rule is restricted to being a single non-terminal. Procedurally, this restricton is
equivalent to the invocaton of a sub-goal being dependent only on the presence of its parent goal. and not on the
presence of siblings of its parent.

12

stage of the parse: partitioning and subsatution. Partitioning has already been discussed;
substitution involves labelling each element of a partition with a non-terminal or a terminal
string. A labelled partition corresponds to the RHS of a rule whose LHS will be the argument
LHS passed in to the procedure. If a rule matching this LHS and RHS already exists in the
grammar the grammar is unchanged, otherwise a new rule is added. A single old grammar can
serve as parent to several new grammars, since a particular substring may be partitioned and
labelled in several ways, each distinct way representing an aglternate rule which may be added to
the old grammar. The algonthm is then applied recursively to each new partition until all
partitions are labelled with terminals, at which point we have a complete top-down dervation of
the string. The algorithm is called initially with the start symbol, S, and with the left and right

pointers set to the beginning and end of the string to be parsed.

parse-ccamplete (left right LHS old-grammars)

for each grammar in old-grammars do

if LHS is a terminal symbol then
if the terminal symbol matches the string between left and right

parse succeeds and return old-grammar
else
parse fails and return fail (LHS left right)
else
if the string between left and right has length 1
add a rule of form LHS ~--> terminal to grammar
if necessary and return modified grammar

else
for all partitions of the string between left and right do

for all substitutions for a partition do
if the LHS, RHS pair are not already in the grammar add
a rule of form LHS --> RHS to grammar to form mod-grammar
for each partition element (left right) and element label
parse-~-complete (laft right label mod-grammar)
1f no successful parses were found, create a fail
marker fail (LHS left right) and place it on list of
new grammars
else
add list of grammars returned o new grammars.

Return list of new grammars.
Figure 4: Basic Parse Completion Algorithm

Several comments may be made about the basic algorithm. The test for partition size of one is
a check for the case when a node in the denivation tree has only one child. In this case we force

the child to be a terminal string!?, and hence a leaf node in the derivation tree. This restriction

12Which may be a string of length one.

13

eliminates the infinite class of redundant extensions to a grammar which have rules of the form
A, —> A, where A, A, | are arbitrary non-terminal symbols. The elimination of this class of
grammars does not give up any representational power as any grammar that contains rules of this
form can be reduced to a grammar that accepts the same language but contains no rules of this
form [11]. The process of combining new rules and old grammars to create new grammars must
also be treated with care. In general, there may be several ways to complete the parse for each
element of a partition. Each completion for a particular element will have some set of new rules
associated with it!3 and the set of new rules introduced by a particular parse is formed by

unioning one of these sets from each partition element with any of the sets from the other

partition elements.

Failure of a parse can occur in two ways; either a mismatch occurs between a terminal
introduced as a label in the denivanon and the terminal in the corresponding position in the
string, or the set of substitutons at some point in the parse 1s empty. When a failure occurs, a fail
marker 1s generated which indicates the label of the node where the failure occurred, and the
substring to be spanned by the node. These fail markers allow the algorithm'’s efficiency to be:
improved considerably, since if a parse' fails to succeed, it is only necessary to reparse with a
different class of partitions or substitutions from the fail markers, rather than restarting the parse

from the top of the derivation tree.

There 1s one potential difficulty with the fail markers. Consider the two grammars in figure 5,
both of which parse the single string ba. Assume that we have now given a new string bb to the
algorithm. For the grammar in part a of the figure the fail marker generated would be (1 2 B).
Reparsing from this point and allowing new terminals for rule RHS would add the rule B - b to
the grammar. However for the grammar in part b the fail marker created is (1 2 a). We do not
allow rules of the form @ — b in our grammars, so any attempt to reparse from this fail marker is
doomed to fail. In this case the rule we wish to modify is actually the parent of the node at which
the failure occurred, so it is necessary to promote the fail marker up to this parent rule. (i.e. The
desired fail marker is (0 2 S)). When promoting fail markers in this way, one must be careful to

remove any fail-markers associated with other children of the node the failure was promoted to.

The basic algonithm described thus far may be instantiated to a particular algorithm by

3Which may be empty.

14

Grommar: Gfam,na/...
S—A B S — 4.

0@ riyo 7L/\an ((Jf 55] 06/‘, o . on 1[0,- éé:
S
7\ S

-
A P
/ ; .
A [
b b

) (4)
Figure 5: Two grammars for the string ba, and partnal derivations for bb.
specifying functions for generating partitions and substitutions. For example, we may restrict the
partitions and substitutions so that only partition and substitution pairs which correspond to

exisung grammar rules are generated. If our grammar contained just the rules:

S—-al
S—->a

then we would only generate partitions of size one with label a assigned to the single partition
element or partitions of size two, with the first element labelled a and the second element
labelled S. With this pair of generators specified for the parttions and substitutions the parse

completion algorithm becomes a simple top-down parser.

In section 4 a partial order of substitudons for the RHS of a rule will be described. It is
possible for the parse completion algorithm to pick a particular point in this partal order and
hold it fixed throughout a learning trial.14 More interesting behaviour is generated however if the
algorithm 1s allowed to move through this partial order on each example string. Imually, the

most specific class of substitutions is tried and more general substitutions are used only if the

'4A learning trial is defined as a set of positive examples and a (possibly empty) set of negative examples drawn
from the language of a parucular grammar.

1S

more schiﬁc ones fail to allow a parse to succeed. If this second approach is taken, there is still
a control issue to be resolved: One may either move through the partial order each time a failure
in the parse occurs, or one can fix a point in the partial order at the start of the parse, and oniy
move up a level in the partial order if all attempts at completing the parse at the current level fail.
Fixing the substtution class once at the start of the parse would correspond to the algorithm

illustrated in figure 6, while moving through the parual order at each failure would require a
modification to the basic parse completion algorithm.(See figure 7.)

subst _level = 0

while no successful parse do
parse-complete (start end S empty)
subst level = subst_ level + 1

Figure 6: Algonthm for fixing substitution level at start of parse.

parse-complete (left right LHS old-grammars)

for each grammar in old-grammars do
if LHS is a terminal symbol then
if the terminal symbol matches the string between left and rzight

parse succeeds and return old-grammar

else
parse fails and return fail (LHS left right)

else
if the string between left and right has length 1
add a rule of form LHS --> terminal to grammar
if necessary and return modified grammar

else
for all partitions of the string between left and right do

for all substitutions for a partition do
if the LHS, RHS pair are not already in the grammar add
a rule of form LHS --> RHS to grammar to form mod-grammar

for each partition element (left right) and element label
subst level = 0
while no successful parse and subst_leVQl <= max do

parse-coamplete (left right label mod-grammar)
if no successful parses were found create a fail
marker fail (LHS left right) and place it on list of
new Jgrammars
else
add list of grammars returned to new grammars.

Return list of new grammars.

Figure 7: Parse Completion with movement through the substitution levels at
each parse failure.

Both control strategies were tried. The approach in which one moved through the partial order
each ume the parse reached a failure point produces new grammars from old through hybnd

substitutions which span multiple levels of the partial order. This makes it difficult to determune

16

the charactenistics of the grammars produced under a particular substitution strategy. For
purposes of examining the properties of grammars under different classes of substitution, the

approach in which an entire parse is attempted at one level before the next level of substitution is

considered is preferred.

Before considering the classes of substitutions and partitions in more detail, we shall conclude
this section with some comments on the complexity of this algorithm. The basic processes of
partitioning and labelling in the algorithm can be equivalently rcgarded‘as constructing a rooted
tree (i.e. a tree in which one node is distinguished as the root), and then labelling this oee
according to the restrictions imposed by the current point in the substitution hierarchy. One can

measure the complexity of the algorithm in terms of the number of possible trees that can be

generated.

The trees we are interested in are rooted, and have n ordered leaves. In general when we
partition, each node is allowed to have anywhere from two to n children. However we will ﬁrst_
consider the simpler problem of the number of ordered binary trees with n leaves. We may
assign the first r leaves to the left sub-tree and the remaining (n - r) to the right sub-tree of thc.
root. If we let g, be the number of rooted ordered binary trees with k leaves, then there are a,
distinct left sub-trees and g, _, distinct right sub-trees when we assign r leaves to the left sub-
tree. Thus the total number of distinct owees with 7 leaves in the left sub-tree i1s g,a, _,. Since we

may assign anywhere from one to n - [leaves to the left sub-tree we have the recurrence

formula:

n-1
a,= Z akan—k
o= | .
for the number of rooted ordered binary trees with n leaves. This recurrence formula corresponds

to the Catalan series (6] and it can be shown that the number of rooted binary trees with n leaves

is the n-Ist Catalan number which is defined by C,_ =-(%-%). It can be shown that (¥) is

bounded above by 2%.13 Thus an upper bound on the number of rooted ordered binary trees with

n leaves is 0(4—;).

In the more general case, our trees are still rooted and ordered, but a node may have two or

SInwitively this is obvious as 2% is the total number of subsets of 2k items while (2,“‘) is the number of subsets
containing exactly k items.

17

more children. The analysis in this case is greatly simplified by the fact that the rooted ordered
rees with n vertices may be put in one to one correspondence with the number of rooted ordered
binary trees with n - [leaves. [6] From our previous results we can see that the number of rooted
ordered trees on n vertices is the n - 2nd Catalan number. We are interested in the number of
rees with n leaves rather than n vertices, but since every node but a leaf must have at least two
children, with n leaves, every oee has at least n + [vertices and no more than 2n - / vertices.

We may simply sum over the number of trees for each number of vertices:

- b ok anes
“ZHCk-z-’ HZWH',;]'(k-z) -"5(2n-3)

Using the upper bound for () from before we have that the number of rooted ordered trees with

n leaves 1s O (167).

In most cases the more general partitoning algorithm 1is applied, but for certain cases (see
section 4) we consider the more restrictive binary parutioning for the string. The important point
is that the complexity bound in both cases is exponenual. An exhaustive examination of all th§
possible structures is clearly infeasible for practical problems. However before one can
understand the effects of various heuristics, one needs a map of the space of possible structures.
The purpose of this algonthm was to provide a tool to help sketch out this space, and the rest of
this paper is devoted to a description of some of the characteristics of this space that have been

discovered.

4 A Space of RHS-formats

We can now begin to exarmine the types of rules that may be added to a grammar through the
process of parse completnon. The basic manner in which a new rule is formed is to first partution
some substring of the current input. The length of this substring determines the length of the
RHS of this new rule. However the composition of the RHS, and hence to a large extent the
properties of the resulting grammar, i1s dependent on what sorts of labels are allowed for the RHS
of the new rule. To give a mivial example, if we were to restrict our rules to allow only terminals
to appear as partition labels then it i1s apparent that for any posituve set of sample stings we
would generate the mvial grammar that generates exactly that set of sample strings and no other
strings. At the other extreme, if we restrict the RHS of new rules to be labelled only by the

non-terminal S or a termunal, then, if X is the alphabet used in our sample strings, we will

18

generate a grammar for I” (i.e. the language of all possible finite length strings over I).

If we extend the arguments in the previous paragraph, we find that we can define a paral
order over the RHS formats. This partial order is based on the generality of the grammars that
can be produced by allowing only this type of RHS format to be used when performing parse
completion. It is convenient to first characterize the RHS formats along two dimensions. One
dimension of variation is the composition of the RHS, what sort of terms we allow to appear on a
RHS. The three natural compositonal categories are rerminals, new non-terminals and old
non-terminals. New non-terminals are simply those which have not appeared in any previous
rule in the grammar, while old non-terminals have appeared previously. The second dimension
of variation we have considered is the dimension of order. For example the class of regular
grammars can be captured by left or night linear grammars, which have the restriction thar all
non-terminals either precede or follow all terminals in each RHS. Similarly center-embedded

grammars can be characterized by imposing a restriction on the order of terminals and non-

terminals in rule RHS’s.

It 1s difficult to capture all of the order variation that is possible, so we have simplified the
variability along this dimension by grouping the order restrictions into three broad classes.
Admittedly these classes are somewhat arbitrary, but as a first pass they do capture some
important distinctions. The three categories selected are existing order, extension, and
unrestricted. Existing order limits RHS formats to those already exisung in the grammar.
Extension permits adding new components to the right of existing RHS formats only. This
restriction allows one to capture the class of right linear grammars. Unresmicted allows the
addition of new components to either end of an exisung RHS format as well as arbitrary
replacement of existing components. The three order restrictions may be applied to each type of
RHS constituent independantly producing the two dimensional matrix of RHS restrictions shown
in figure 8. For convenience, each cell in this matrix has been numbered and these numbers will
be used to refer to the particular combination of constituent and order restriction represented by
each cell. Note that the combination of new varnables and existing order is not a legal
combination since by definition a new varnable cannot have a previously defined positon in any

rule.

A RHS format is defined as an ordered triple of restrictions, <,3,0>. The first element of the

triple is the restricton that applies to terminal constituents in the RHS, the second element refers

19

/NVew O/

TC rm /I Na /.S /Van - ferm :’na/; Non - fermvn 4/}
E)(l':fl'nj

Order 1 2'
wo | 3| & |5
Unrestricted 6 7 8

~¢

™

X

Figure 8: Matrix of RHS restrictions
to new non-terminal constituents, and the third to old non-terminal constituents. Each element is
one of {J,3,E, U}, where & means no constituents of this type are allowed, 3 means existing
order, and £ and U refer to extension and unrestricted respectively. The format is the union of
the sets represented by the three elements in the triple. The triple <E, 3, E> corresponds to the set
of all RHS formats which can be formed by taking old non-terminals in their existing order and

allowing extension with terminals or new non-terminals.

There is a total order over the restrictions. The set of RHS formats without a particular
constituent is a sict subset of the set of RHS formats with that constutuent in its existing order.
The set of RHS formats with a particular constituent only in its existing order is a strict subset of
the set of RHS formats which allow that constituent in its existing order and also as extensions to
an existung format. Similarly, the set of RHS formats which allow extension with a particular
constituent are a strict subset of the set of RHS formats which allow unrestricted use of that
constituent. However, restrictions applied to distinct constituents (i.e. terminals and new non-
terminals) are not directly comparable, meaning that we cannot define a total order over the RHS

formats. We can define a partial order over the RHS formats:

<a,b,c>><a’ b, c> iffaza &b2b"&c2¢
where abca’ b’ c’ e {D,3,E,U}
and U>E>3> 3.

This partial order has a unique upper and lower bound. The lower bound is defined by the triple

<3,0,3>. This format allows only terminals and old variables in the same order as an existing

20

rule in the grammar, so the lower bound corresponds to parsing a string with the existing
grammar. The upper bound is defined by <U, U, U> and allows unrestricted use of all three basic
constituents (terminals, old and new non-terminals). This format contains the set of all RHS
formats that contain terminals and non-terminals from the existing grammar plus up to n new
non-terminals where n is the length of the partiion. It is easy to show that this is the most

general set of RHS formats allowed under the parse completion paradigm.

The partial order of RHS formats is related to the partial order of grammars deveioped in
Section 5. The relationship arises because in parse completion the only mechanism to generalize
a grammar (/.e. increase the set of strings accepted by the grammar) is to add additional rules to
the grammar. One implication of this 1s that in parse completion the grammars always increase
monotonically in size. Adding additional rules to a grammar may make a grammar more general
than it was; however, the addition of rules to a grammar can never make a grammar less general
than it currentdy is. Thus, once our induction process over-generalizes in this domain, we are
stuck.!® The second implication is that how much more general a grammar becomes when one.
additional rule is added is a function of the power of that rule. If the RHS format allows
unrestricted use of old non-terrmunals then it becomes possible to create recursive rewrite rules
and convert a grammar that accepts only a finite set of strings into one which accepts an infinite
set of strings. On the other hand a RHS format which allows only the use of terminals or new
non-terminals cannot convert a finite grammar into an }nﬁnite one. In general, if we consider a
grammar G and some string s which cannot be parsed by G and two different RHS formats g and
a’, then if @’ > g and we let § be the set of candidate rules for completing the parse allowed by g,
and S’ the set of candidate rules allowed by @’ then § is a subset of §’, and there will be rules in
S’ that when added to & formm a new grammar more general than any grammar that could be
formed by adding rules from S to G. In this fashion the partial order of RHS formats determines
how large a "step” we take in generalizing the grammar by adding one rule to it.

To dlustrate some of the ideas discussed above we will now work through a few simple
examples. Consider first the case of a simple regular language (0+1)*. Assume the system has

already been rained on some example strings and has generated the following initial grammar:

'6This, of course, is true only if there is not some external backtracking mechanism capable of retracting a
hypothesized grammar and returning the system to some previous state.

21

S—-0
S — 0S5

This is a right linear grammar for 0*. Now if we are given a new string 01 the partial derivation
tree generated for this string will be as shown in figure 9. The parse will fail at the leaf labelled S
and the fail marker retumed will be (S 1 2). Now, since this is a partition of size 1, we will only
consider the use of terminals for the RHS consatuent. Also, since no exisung rule begins with
the string 1, we cannot extend an existing rule. hence our RHS format 1s an unrestricted terminal
(i.e. <U,D,D>). This RHS format leads to the introduction of a new rule S — 1 and our new
grammar 1s:

S—0
S—->1
S —> 0S5

This grammar is still not general enough (it corresponds to the regular expression 0°(0+1)). Now
consider adding another example string, 011. The paral denvation tree generated will be the
same as that illustrated in figure 9, but in this case our fail marker will be (S 1 3), corresponding
to the subsming 11. In this case a variety of RHS format restrictions may be applied and it 15

instructive to consider the outcome under different RHS formats.
1. The RHS format <U,J, J> which allows unrestricted terminals only.

In this case the rule § — 11 1s added to the grammar and we still have a grammar
which 1s not general enough.

2. The RHS format <, U, > which allows unrestricted old non-terminals only.

In this case the rule S 5 S35 is added to the grammar, and the denvation is
completed using exisung rules in the grammar. This grammar is in fact a grammar
for (O+1)7. It should be noted however that this grammar is not right linear, and
hence 1s actually more powerful than strictly necessary to capture this language.

3. The RHS format <, E, 0> which allows extension with old non-terminals only.

In this case we can start with the rule § — 1 and extend it to yield the rule § — 1S.
The parse may be completed after the application of this rule by using rules already
in the grammar. The new grammar produced 1s a night linear grammar for the
regular language (0+1)™, and is thus the most desirable grammar for this particular
language.

The intent of this simple example was to Ulustrate how the choice of RHS format can affect the
structure of the induced grammar (the second RHS format above does not preserve the nght
lineanity of the grammar), and how well the induced grammar generalizes the given example

strings.

Two interesting and well studied classes of language are regular languages and context free

22

Fa// Morkcr (5L 2)

Figure 9: Partial derivation tree for the string 01

languages. Regular languages can be shown to be captured precisely by right linear grammars,
while context free languages can be shown to be captured by Chomsky Normal Form (CNF)
grammars [11]. The following two theorems show that these two grammar classes can be.

éaptured by an appropnate restriction of partitioning and RHS formats.

Theorem 1: Given a night linear granunar G, if we apply parse completion to it with the
following restrictions, then the resulting grammar G’ will always be right linear. The restrictions
are that only partitions of size one or size two are allowed and that only the following two RHS

formats are used in the indicated order!”:
1. Extension with old or new non-terminals.<3, £, E>

2. Unrestricted terminals.<lU,J, >

Proof: Assume that the parse of an existing string fails, and we are left with a fail marker (N i
J) where N 1s a non-terminal and i1 and j denote the start and end of the unparsed substring. There
are two possiblc cases depending on whether we partition this substring into one piece or two

pleces:
1. A partition of size one. Since all rules in G already have RHS of length at least one,
we cannot extend an old rule to match a partition of size one. Thus we fall through

to our second RHS format, which only permits unresmicted terminals. Our new
RHS will be the entire unmatched substring, forming a new rule N — 3, where § is

17Recall that the general parse completion algorithm assumes that the set of RHS formats it uses is ordered. and
will atempt to complete the parse with one RHS format before considering the next format in the order.

23

a string of terminals. Hence the new rule is a valid night linear rule.

2. A partuon of size two. The second RHS format would allow us to substitute
terminal strings for both parts of the partition, producing a rule of the form
N — B,B,, which is a valid right linear rule of the form N — a where a = 3,35, and

is thus the same as case 1. The other choice is to extend an existing rule using the
first RHS format. The only candidates for extension are rules with RHS length less
than two. (Recall that we count a string of termunals not seperated by any non-
terminals as one element when computing RHS length.) Since G is nght linear,
these rules must all be of the form A — a where « 1s a terminal string. Extending a
rule of this form with either an old or a new non-terminal produces a rule of the
form A — oB, where a is a terminal string and B a non-terrmunal. This rule is a
legal right linear rule.

In both cases the new rules added to the grammar will preserve the right linearity of the

grammar. This completes the proof.

Theorem 2: Given a CNF grammar G, if we apply parse completion to it with the following
restrictions, then the resulting grammar G’ will always be CNF. The restrictions are that only
partitions of size two are allowed except when the substring has length one, and that only the

following two RHS formats are used in the indicated order:
1. Unrestricted old and new non-terminals.<<, U, U>

2. Substitution of termunals only at leaves of derivation tree (i.e. at parutions of size
one).

The second RHS format specified is really just unrestricted substitution of termunals for

partitions of size one (i.e. <U,,>).

Proof: Assume that the parse of an existing string fails, and we are left with a fail marker (N i
j) where N is a non-termunal and i and j denote the start and end of the unparsed substing. Once

again we must consider two cases, depending on the length of the substring.

1. The length of the substring is one. In this case our partition must be of size one,
and we substitute the corresponding terminal in the substring for our RHS format
yielding a rule of the form N — a, where a is a termunal. This new rule i1s a valid
CNF rule.

2. The length of the substring 1s greater than one. In this case we consider all possible
partitions of size two. For each such partition we only allow the first RHS format
which will produce a rule of the form A — BC where B and C are both non-
terminals. This new rule will also be a valid CNF rule. y

Thus at each point where we are unable to complete the parse we add a rule according to case
1 or case 2. In both cases the rule added will preserve the CNF. Finally, this process will always

terminate since the substring corresponding to each element of the new partition is smaller than

24

the original unparsed substring, and once we reach a substring of length one we must stop. This

completes the proof.

There is one other common form of grammar which also encompasses the class of context free
grammars, this is Greibach Normal Form. In a manner analogous to the above one can show that

you will generate only Greibach Normal Form grammars if you restrict the parse completion

algorithm in the following manner:
1. Allow only partiions where the length of the first element of the partition is one.

2. Use a RHS format which allows extension with new or old non-terminals for
partitions of size greater than one.

3. Use a RHS format which allows unrestricted substtution of terminals for partitions
of size one.

S A Partial Order for Grammars

While developing the RHS formats for right linear grammars described in the previous section,
biases which favoured using either old or new non-terminals first were also tried. Both of these
biases tum out to be undesirable, but for different reasons. The bias in favour of new non:
terminals will always produce a grammar for a finite language, since the grammar will never
contain recursive rewrite rules. (A rewrite rule is recursive if the same non-terminal occurs in the
LHS and RHS, or if a non-terminal in the RHS may eventually be rewritten as a string which
contains the non-terminal on the LHS.) On the other hand, a bias in favour of old non-terminals
will always produce a grammar for an infinite language, but the grammar rules will always
contain only a single non-terminal. It is easy to show that any grammar of this form corresponds
to a regular language18 of the form (o +a,+ ... +ai)'(B1+B2+ +Bj) or of the form (a;+a,+ ...
+04)(By+By+ ... +Bj)' where o; and f3; are strings of terminals. The problem is that this language
is usually much more general than the target language of the induction. The reason for this
overgeneralization is that recursive rewrite rules were introduced into the grammar before the

grammar contained sufficient structure to adequately capture the target language.

The effects of the bias in favour of either new non-terminals before old non-terminals or vice

versa reveals a partial order of the grammars induced by parse completion for both the cases of

'8The grammar is not necessarily Right Linear, it could be CNF or Greibach or several other forms. This is no
paradox, the regular languages are a proper subset of the context free languages, so a CNF grammar could quite
easily correspond to a regular language.

right linear grammars and CNF grammars.

Consider first the case of right linear grammars. The following theorem is used to show that a
bias in favour of old non-terminals will always produce a grammar for the language Z*, where &
is the alphabet of the sample strings, once a sufficient number of sample strings are given. This

language is almost always more general than the target language, so the algorithm is always

over-generalizing.

Definition: Let S be a set of stings. Post(S), the set of postfix strings on S, is defined to be
(B]|3a aff € P and lengrh(q) 2 0}. Note that S is a subset of Post(S).

Theorem: Given a regular language, L, a set of positive examples, P, and a known alphabet. X,
if we have a bias in favour of old non-terminals as RHS constituents, then the RHS formats

allowed for right linear grammars will produce only grammars of the form:

S—>al o e PostP)
S—B, B, e PostP)

Proof: This is easily proven by induction on the number of rules in the grammar.

Base Case: The first rule added to the grammar must be of the form § — & where a is the first

example string, hence a is an element of Post(P).

Inductive Case: Assume that all of the first n - / rules added to the grammar are of the form
indicated, and now consider the addition of the nth rule to the grammar. This rule will be
introduced at a point where the parse of the string with the existing grammar failed. The fail
marker returmned (after promotion) must be of the from (S 1 j) as S s the only non-terminal
currently in the grammar, thus S will be the LHS of the new rule. Now since our grammar is
right linear any derivation can be organized so 1t i1s a leftmost denivation, hence our unparsed
substring must extend from the point at which the parse failed to the end of the string. There are

two cases to consider:

1. The unparsed substring contains no prefix that matches the RHS of an existing
rule. In this case the second RHS format for nght linear grammars must be applied
and a new rule of the form § — o will be created where o equals the unparsed
substring. Since this substring i1s a postfix of the string currently being parsed, the
new rule 1s of the correct form.

2. The unparsed substring contains some prefix that matches the RHS of an existing
. rule. Let B be the RHS of the existing rule, by the induction hypothesis € Post(P).
Since f exists the first RHS format may be applied in this case. Also since S is a

26

non-terminal already appearing in the grammar the bias in favour of old non-
terminals will ensure that S is used in forming the new rule. Thus the new rule will
have the form § — S which is of the correct form.

This completes the proof of the inductive case and the theorem.

Assume now that rather than an arbitrary presentation of sample strings, the su'ings In our
sample set P are presented in order of nondecreasing length. It is now possible to allow only
terminal strings of length one in our rewrite rules. In this case the form of our grammar under the

bias of old non-terminals becomes:

§—as a.e X
§—-b, bek

where X denotes the set of all terminals which have appeared in any string in P. If we let 4
denote the set of a; appearing in the rules and sirmularly let B denote the set of b, then when
sufficient examples have been presented we will have A=B=X. At this point a grammar of the

above form defines a most general grammar G, where L(G) = Z*.

Similarly, we can show that a bias exclusively favouring new non-terminals can define a mosr;
specific grammar Gg. If we have a bias in favour of using new non-terminals then given a
language that 1s regular and a set of positive examples P and a known alphabet Z we will produce

a grammmar of the form:

S — b,
S —=aB,
B,— b,
B,—a.B,

B, —>b,

B,—a,B, q>n
where a;, b; are elements of Z and B; are non-terminals. Note that the condition g > n ensures that
there are no recursive rewrite rules in this grammar. Also in the above analysis we have assumed
that all termunal string substitutions are of length one. (It 1s easy to modify the algorithm to
ensure that this condition is met.) The grammar just described, which we can denote as Gg is a
finite grammar with L(Gg) = P. This is thus the most specific possible grammar which will

generate the entire set of examples P.

We have just shown how a simple bias in favour of old or new non-terminals can generate a

27

most general and a most specific grammar for a parucular set of example strings P. The bias
towards using old non-terminals if used exclusively will overgeneralize and produce a grammar
for the universal language X*, on the other hand using stictdy new non-terminals vields the
relatively uninteresting finite grammar for the set of strings given as example stings. The
interesting cases arise when one uses a combination of biases, at different points in the
presentation of the sample strings. In fact it is possible to define a partial order over the
grammars generated from a set of sample strings. Assume that we 1nitially use only the bias in
favour of new non-terminals until we have some base grammar Gg. Parse completion now
provides us with a principled way to generalize this grammar, by adding additional rules in
which the constituents are either terminals or old non-terminals. These rules will convert Gg into
a grammar for an infinite language by adding recursive rewrte rules. Further, each new sample
string will produce a set of new grammars from each previous candidate grammar, and each of

these new grammars will be strictly more general than at least one of the previous candidate

grammars.

The following example will clarify this process. Assume that our target language is the rcgular:
language L = 0(0 + 1)". To generate our initial Gg we will consider all of our positive sample
strings of length two or less. (We will see below why this is a good way to initialize Gg.) Thus
the set of sample strings from which Gq is generated 1s {0, 00, 01}. Applying parse completion
restricted to the RHS forms for night linear grammars and with a bias for new non-terminals, the

following grammar, Gg, is generated:

S—-0
S — 04,

S — 0A,

AI—->O-
A, > 1

Assume that we now start generalizing Gg by applying a bias in favour of old non-terminals. The
next sample string is 000 which yields the partial derivation shown in figure 10 which returns the
fail marker (A, 1 3). The first RHS format for right linear grammars may be applied to this fail
marker and allowing only extension with old non-terminals this RHS format yields 3 new

candidate rules:

A, — 04,
A, = 04,
A - 0§

The first and third rule above permit the successful completion of the parse, so these two rules

Figure 10: Partial denivation for the string 000

may be added to Gq producing two new more general grammars. Our next sample string is 011
which yields the partial denivation shown in figure 11. Applying parse completion with the same

restrictions as before again yields three candidate rules:

A, = 1A,
A, = 1A,
A, = 1§

[n this case only the first of these rules will allow a successful completion of the parse, and this
1s the only candidate kept. Thus in this case each candidate grammar produces only one new
more general grammar. The progression of grammars generated in this process 1s summarized by
the tree structure presented in figure 12. This tree structure in fact represents the partial order of
grammars induced by this set of sample strings. Any grammar in this tree is stictly more general
than any ancestor in the tree. (This follows because of the monotonic increase in the number of
rules in a grammar as you get further from the root and the fact that each rule is added because
the parent grammar failed to parse a string.) One branch of the tree has been extended to show
the effects of two additional sample strings 001 and 010. After these strings have been added a
grammar 1s produced which exactly captures the target language. As with a version space, the
only part of this upward growing tree which needs to be maintained is the current leaf set. The

leaf set of this structure is analogous to the S set of a version space [17].

The important question is how to decide when to switch from rules that use new non-terminals

to rules that use old non-terminals. More generally the question is at what point should we start

29

Figure 11: Partial derivation for the staing 011

.S-Om’,’f, ;-7“/';,3?
!

0

b
"
N
{

)
1N

C/-'l.l fﬁz ——~7]/42 fAj\ "'"7.7/4\2
000 G tA—=0A, G Fa4,—0S

/7
N\ .

Figure 12: Tree of grammars derived for the language 0(0 + 1)".
adding recursive rewrite rules to our grammar. The existence of G clearly illustrates that if we
start adding recursive rewrite rules too early we will overgeneralize the target grammar. We have
already noted that because parse completion only adds rules to existing grammars, the grammars

produced increase monotonically in generality. This means that once over-generalization occurs

30

the parse complenon algorithm cannot recover from it. Thus we must ensure that initially Gg has
enough "stuff’ in it that our target grammar will appear somewhere in the partial order of

grammars induced from Gq.

Can we build a suitable Gg from only a finite set of sample strings? For the case of regular

languages and right linear grammars the answer is yes. This result follows from the Pumping

Lemma for regular languages.

Pumping Lemma: Let L be a regular language. Then there is a constant n such that if - is any
string in L and |z| 2 n, we may write z=uvw 1n such a way that luv|<n, |v|2 1, and for all i 2 0,
uvw is in L. Furthermore, n is no greater than the number of states of the smallest finite

automaton (FA) accepting L. [11]

The important key is not the existence of the Lemma, but the ideas used 1in its proof. The proof
relies on the fact that for any regular language there is a deterministic finite automaton (FA)
accepting it. We let n be the number of states in the automaton and then show that in accepting a
string of length greater than n the automaton must repeat a state. The path in ‘the transition
diagram for the automaton must therefore contain a loop, and this loop corresponds to the string
v on which we pump. In fact, if we resmict the terminal strings in rules to length one, then we can
create a correspondence between the transition diagram of our FA and our right linear grammar.
We construct our FA so it has a unique start state & and a unique final state .1 Each rule of the
form § — a; corresponds to a transition from a to B with label a;. Each rule of the form A > a,
corresponds to a transition from a state Aj to B with label a,. Finally a rule of the form A —aA,
corresponds to a transition from a state A; to a state Ay with label a,. (If 4;= S then the transition
is from a to state Ay.) For our example language 0(0 +)" the induced grammar and
corresponding FA are shown in figure 13. The important point about this correspondence is that
for each non-terminal in the grammar there 1s a unique state in the FA. In fact if our FA has n
states and we number these from 1 to n, with & numbered 1, B numbered 7, and the other states
numbered in the order in which the non-terminals which label the states were introduced to the
grammar, and we remove all transitions in the FA which go from state i to some state £ < i, then

the resulting FA accepts precisely L(Gg). Thus we can now bound our Gg. If the minimum FA

It is easy to show that any FA with multiple final states can be converted into an FA with a unique final
state. {11]

31

that accepts language L has 7 states, then Gg must contain at least n non-terminals to be able to

model any FA that accepts language L.

G/‘OMM anr

§—=>0
5 = 0A,
A =0
A —0A4
A =04,
A, =

AZQ]AJ

Figure 13: Grammar and FA for the language 0(0 + 1)".

We shall now state and prove these results more formally. What we will prove is that there is a
subset of the strings in L of length < 27-1 from which we can define Gg using parse completion
and a bias for new non-terminals. We can then guarantee that there is at least one grammar in the
partial order generalized from Gg for the target language. The idea behind the proof is to show
that given a mirumal n-state FA for our target language, we can construct another machine which
accepts exactly the same language and further contains all of the arcs and states that correspond
to a grammar Gg built from some subset of the strings in the language of length < 2n—1. Finally
we show that the second machine corresponds to some point in the partial order of grammars

generalized from Gg.

Theorem: Given a regular language L there exists a finite subset of the strings in L whach, if
these strings are presented in increasing order of length, and parse completion for nght linear
grammars is applied with a bias in favour of new non-terminals, will generate a grammar, Gq,
with the following property: The partial order of grammars generated from Gg by applying parse

completion, with a bias for old non-terminals, contains at least one grammar for the language L.

Proof: The proof is by construction of appropniate FA’s, and relies on the one to one

correspondence between machine and right linear grammars already described.

32

Let M be a minimal FA for L. and let n be the number of states in M. Let the start state of M be
a, and the final state of M be B. Assume, without loss of generality, that M has one final state

and does not have any € transitions. Let G be the directed graph corresponding to the transition

diagram for M.

We construct a new machine Mg from M. Mg is a machine that corresponds to our most
specific grammar Gg. This implies that the ransition diagram of Mg must be an acyclic directed
graph and furthermore, that every node must lie on at least one path from a to B. The first
property is required by the fact that the ransitions in Mg that do not terminate at 3 correspond to
productions of the form A, — a A, where £ > i. Thus the nodes in the transition graph may be
topologically ordered, hence the transition graph must be acyclic. The second property comes
from the manner in which Ggq is constructed. A node is added to Mg when a production of the
form A, = a,A,, where A, is a new non-terminal, is added to Gq. In parse comletion such a rule is
added only if it is needed to complete the parse of the new string, so every non-terrmunal is used
in the derivation of at least one strin.g. So, the node in the transition graph corresponding to that

non-terminal must lie on at least one path from a to B.

Initialize Mq to have start state & and final state . Set i equal to one. Do a breadth first search
of G starting at node . For each arc out of a, if the node at the other end has not yet been
labelled, we add that node to a queue of nodes to be scanned, label that node A,, increment i, and
add the newly labelled node and the arc just examined to M. If the arc scanned terminates at 3,
we also add this arc to Mg. If an arc out of a terminates in a labelled node, the arc is not added to
M. When all the arcs out of & have been examined, the first node in the queue is removed and
the arcs out of 1t are examined in the same manner. The process continues until the queue is
empty. It is easy to show the resulting graph is acyclic. Each node is labelled just once, so the
node labels can define a topological order on the nodes. The existence of a topological order on

the nodes shows the graph is acyclic.

The machine we have constructed from this process is acyclic as desired, but not every node 1s
guaranteed to be on a path from a to B. It is possible that some nodes will have no arcs leaving
them. (Every node but o however must have at least one arc into it from the first time it is
scanned.) For each node, A;, with no arcs leaving it, find an acyclic path P from A, to B in G. Let
Pbe ArA, - - 1,A, 1B, where A, is a state label and ¢ is a wansition label. We add the path

AtA, --- r,,,APtﬁB to Mg, where 4, - - - A are new states. Each set of states and transitions added

33

in this fashion will not violate the acyclic nature of the trasition graph for M, and when this
process is finished every node in Mg must lie on at least one path from a to 3. Furthermore, the
longest path from « to 3 in Mg is of length at most 27— 1. Consider first all paths that only pass
through nodes that came from M. Since all paths are acyclic, they can pass through each node at
most once, so these paths are of length at most n. Now consider any path from a to B that passes
through both nodes from M and new nodes added in step two of construcung Mg. Such a path
must consist of two pieces, a prefix a - - - A, which contains only intermediate nodes from M,
and a postfix A, - - - B which contains only intermediate nodes that are not in M. The maximum
length of the prefix is n-1, since it must be acyclic and cannot contain . The postfix
corresponds to some acyclic path in G from A, to 3, hence can have length at most n. So the total

path length of any path from a to § in Mg is at most 2n—-1.

Let S be the set of sorings accepted by Mg. S must be finite as Mg is acyclic, furthermore every
string in S has length at most 2n—1. Each of these strings must also be accepted by M, hence S
is a subset of L. Using the mapping already described we can construct a Gg corresponding to

Mg, and this Gg will be a grammar of the form:

S—=b,
§—aB,
B, — b,
B, — a8,

B —-b,

B,—a,B, gq>n
That is Gg has the from of a grammar built by parse completion for nght linear grammars with a
bias in favour of new non-terminals. The required presentation order of the strings in S to
generate Gg can be derived mechanically from Mg. Start with the strings that correspond to all
paths of length one from « to B. Then consider all paths of length two using as an intermediate
node A, then each of the other nodes in topological order. Continue in this manner until you
have enumerated every path from a to B in Mg. If you take the yield of each path in this order,

the strings are enumerated in the desired presentation order.

So far we have shown that we can build a Gg, using parse completion for right linear
grammars and a bias in favour of old non-terminals, from a finite subset of the strings in L. It

now remains to show that the partial order of grammars generated from Gg by parse completion

34

contains at least one grammar for the language L.

First we prove that from Mg we can construct a machine which accepts the language L. The
required construcuon is simple; add all the arcs in M that are not in Mg to Mg. The new machine
will be idenacal to M except for the extra paths added in step two of the construction of Mq.
These additional paths cannot add any additional strings to L. The proof is by contradiction.
Assume that the new machine, M’, accepts some string [that is not accepted by M. There must
be a path from « to § with yield /. Furthermore, this path must pass through some nodes not in
M, otherwise the same path would exist in M. As noted previously, this path must consist of a
prefix - - - A, which contains only intermediate nodes from M, and a postfix A, - - - B which
contains only intermediate nodes not in M. However, the constructon in step two for Mg will
create a path AgA, - - 1A 1y if and only if there is a path Ay A, - - - 1,A 2P in M. Then the path
Q- ALA thPtBB and the path & - AgA, - -1, At must have the same yield, but the
path - AgA - -1, A 1P is contained entirely within M. Thus / must be accepted by M.

Now we must show that each arc in M - Mg (i.e. each arc in M but not in Ms) can be added by;
parse completion for right linear grammars restricted to using old non-terminals. This is
sufficient since the parual order is searched exhaustvely by parse completion and the number of
arcs in M is finite. If each of the transitions actually in M - M¢ will be added by applying parse
completion to some string 1n L, then the set of transitions corresonds to some point in the partial
order. (There may in general be many points in the partial order which correspond to this
machine, each reached via a different permutation of the arc order.) An arc i1s added by parse
completion if and only if the cormresponding rule will allow the derivation of a string to be
completed. So it is sufficient to show that for each arc in M - Mg there is a string in L whose
derivation can be completed by adding this arc to the current machine. (Note that there may be
other ways to complete the dertvation which add different arcs to the machine, but as long as at
least one complete derivation adds this arc there will be a path in the partial order leading to M’.)
There is a simple construction to generate the required string / for each arc a. Let the tail of a be
state A; and the head of a be state A. A; and A; may be any states including & or B, and A, may be
the same as A . We have already proven that every state A, in Mg lies on at least one path from «
to B. Let P, be an acyclic path from « to B passing through A;, and PJ- be an acyclic path from a to
B passing through A.. Construct / by taking the yield of the segment of the path from a to 4, the
Iabel,'on the arc a, and the yield of the segment of the path from A, to 3. We can guarantee that

35

there is at least one derivation of this string that requires the addition of the arc g, and further this

string / is in L.

Finally we note that only a finite number of strings are required to generalize Mg to a machine
that accepts L. This follows immediately from the fact that M - Mg is finite, and that each string,

/, defined above adds at least one arc in M - Mg to Mg. This completes the proof of the theorem.

Figure 14 illustrates the construction of Mg from M, and the generalization of Mq to M’ for a

particular machine M.

Thus for the case of linear grammars we have shown that there is a unique bound on the set of
strings needed to build Gg, and that the partial order induced from this minimal grammar will
contain at least one grammar for the target language, and this grammar may be found after a
finite number of steps of parse completion. This process was illustrated in our example for the
language 0(0 + 1), where n had the value two since the minimal FA for this language has two

states.

The partial order induced from Gg provides a way to generate something equivalent to the
S-set in a version space algorithm. This is only half of the version space algorithm. To complete
the algorithm we need some manner to restrict G, our most general grammar. Parse completion
yields no insights for this problem, however one way to create such a G-set for grammars has

been suggested by [29].

The results we have just presented for a partial order for nght linear grammars can be
generalized to provide a partial order for all context free langﬁéges. Assume that we are given a
language that 1s context free, a set of positive examples P and a known alphabet Z. We will again
consider applying a bias in favour of old non-terminals and one in favour of new non-terminals

to the RHS formats allowed for CNF grammars.20

If we favour old non-terminals in our RHS formats, then the resulung grammar will be of the

form:

§—-SS
S—a VaelX

QWe can restrict ourselves to CNF grammars since any context free language may be described by a CNF
grammar. [11]

36

Figure 14: Construction of Mg and M’ for a particular M

5} T/{e /Ha(/?/ne /‘7 ol %, T4 o

<
Sffp /A 15 conste

e Ly el
uc z‘/cay 748 Nadps 1a /Y
WwWere SCamaes /}1 f/e Of‘f/c’/' o< "7,

g
SC4 S 14, e
A =12 A, =0 ’
A =04, 07
A, >0 10
Ay =14, v0110
C) T/{e 7(//14/ machiqge /(7 rﬁe/), TA w1t & qj/qr
sreld 1710 Erom A a/ Correrpend, 4o a/) Gs 2ad f4e/’f$¢ﬂ/a)(/bq Order 5f ;/,-,-,,7;
n M

e) C"ene/a//'z 19 /\7 %o udel Fhe 1(‘/ TA? ’(;ha/ M7

9)/‘? Ief of f/f/hgs WA
arc A /4 wrt A /24e]l T Ae

. /fﬁ’~v~
4(/‘7// :< ?eﬂc”'d//'ee /‘z /‘O /(1,
,\cz,uf%} 17 /s z‘szc

37

This can easily be proven by case analysis. Consider the first sample string in P of length greater
than one. (Each sample string of length one can only be partitioned into one element of size one,
and the RHS format for CNF grammars in this case can only produce a rule S — a;, where g.e .)
Since this string is of length greater than one the first RHS format for CNF grammars will apply,
and a rule with two non-terminals on the RHS will be created. Further since the only non-
terminal in the grammar is S this rule will have the form indicated. Now assume our sample
string is of length n, then n—1 applications of the rule § = §§ will partition the string into n
partitions of size one. Each partition of size one will either already have a rule of the form § — g,
in the grammar, or application of the second RHS format will introduce a rule of this form. Since
the rule S — S S is sufficient to partition any string into partitions of size one, once this rule is
introduced a parse can never fail at a parution of size greater than one, so all other rules
introduced into the grammar must be of the form § — a,. The process of adding new rules of this
from must stop once we have a rule for each g; in Z, at which point we will have the grammar
Gs. This grammar, G, generates the language ¥ and is clearly the most general grammar for
the alphabet Z.

Now consider the bias favouring new non-terminals. Once again we will assume that the
strings in our sample set P are presented in order of non-decreasing length. With this assumption,

we can show that this bias will generate a most specific grammar, Gg:

Ag = AA
A—AA4 ki>i
A, —a

where A,=S,A, are non-terminals and g, are terminals. The restriction that &,/ > i implies that
there are no recursive rewrite rules, thus Gg is a finite grammar. It is easy to show that Gg must
have this form. The RHS formats for CNF grammars ensure that all rules will be of one of the
two forms in Gg, further the restriction of allowing only new non-terminals in the RHS ensures
that the condition &,/ > i holds each tme a new rule of this form is introduced to the grammar.
We will now prove that L(Gg) = P, hence that Gg is our desired most specific grammar. The
proof proceeds by induction on the number of sample strings shown to the system. Our
inductive hypothesis is that there 1s a unique derivation for each sample string seen and that these

are the only possible derivations in this grammar.

Base Case: If the first sample string @ is of length one then this string will create a grammar
with only one rule:

38

S->a
Clearly the language of this grammar is {a}. If the first sample string is of length greater than
one, then the grammar created will have rules of the form A; — A A, as well as rules of the form
A; = a,. The restriction that only new non-terminals may appear on the right hand side ensures
that each non-terminal will appear as the left hand side of at most one rule in the new grammar.
Further in parse completion rules are added to a grammar only when needed to complete the
derivation of a string, so each rule in the grammar must be used in the derivation of the initial
string. Thus there is a one to one correspondence between the internal nodes of the derivation
tree and the non-terminals of the grammar. This implies that there is only one derivation tree that
can be built with this grammar, and this tree corresponds to the derivation of the first sample

string o. Thus our inductive hypothesis holds for the base case.

Inductive Case: Assume that after the first n-/ sample strings we have a grammar with a
unique derivation for each sample string, and that these n-/ derivanons are the only ones
possible in this grammar. Now consider the derivation tree for the nth sample string. The parse
completion algorithm will attempt to complete this parse as far as possible before adding new.
rules. Let T be the partial derivation tree for the new sample string. Since T contains only
applications of rules in the existing grammar, by the induction hypothesis T must be a unique
tree. Now since T 1s a partial derivation, it will contain some leaf nodes labelled with non-
termunals. We first note that any such non-termunal will only appear in the existing grammar in
rules of the form A; — a; since we know T 1s the most complete partial denvation possible. (A
parse does not fail unul we reach a point at which the terminals in any applicable rule and the
termunals in the string do not match.) Let the non-terminals leaves in T be labelled T, to T, and
the corresponding unparsed substrings of the sample string have labels 3; to B,. Now consider
the derivation of [3; from T;. It is easy to show using the argument of the base case that the rules
added to complete this derivation alone, can generate only one derivation tree, that for the
substring [3:. Further, since only new non-terminals are used to create these rules, the only non-
terminal these new rules will have in common with the onginal grammar i1s T,. Thus the new
rules cannot interact with any of the existing rules to from any denvations other than the
derivation of §3;. Finally since T is unique and each T; will be unique, the entire derivation tree
for the new string is unique, and further since none of the new rules can interact with any old
. rules except through T, the only additional derivation possible with this new grammar is that for

the new sample string. This completes the proof of the inductive case.

39

As for the linear grammar case we now have a G5 and a Gg for CNF grammars. We can now
define a partial order over the CNF grammars induced from a given set of sample stings P in the
same manner we defined the partial order for right linear grammars. We start with a grammar Ggq
and then generalize it by biasing our substitutions in favour of old non-terminals. The following

example illustrates this process. -

Consider the context free language a”b” as our target language. To generate an iniual Gg we
will consider all positive sample strings of length 4 or less. Thus our sample set is {ab, aabb}.
Applying parse completion restricted to CNF grammars and with a bias in favour of new non-
terminals we find that our initial Gg set will consist of a pair of grammars:

Gs ={S = A4 >a A b,
A, > AA A, 2 a, A o A
As— b, Ag— b}

G, ={S—>AA,,A, —a, A, >)b,

A, > AA, A, > Adg A, o b,
As—a,A;— b}

Assume that our next sample string is aaabbb, and that we parse with Gsz, which will yield the
partial derivation shown in figure 15. The fail marker returned by this partial derivation is (Ag 2
5). Now we start generalizing Gg by considering CNF RHS forms and allowing only old non-
terminals on the RHS. Since our current grammar has 7 non-terminals, there are 49 different
RHS forms which may be tmed to corﬁplete the parse. One of these creates the new rule
Ag; = SA, which will allow the parse to be completed using existing rules from the grammar.
Thus Gg + Ag = SA4 1s one point in the partal order of generalizations of Gg, and in fact is a
grammar for our target language a”b”. In fact the RHS formats med at this stage yield several
grammars which have L(G) = g*b”, which means that in this case there are several points one
level above Gg in our partial order which correspond to our target language. As in the regular
grammar case, repeated applications of parse completion produce an upward growing tree of
grammars which corresponds to a partial order of the grammars based on generality. The leaf set

of this tree at each stage of the algorithm is our current S set.

We now must attempt to answer the same question that faced us in the regular language case:
Can we build a Gq from a finite set of sample strings such that our target language will appear
somewhere in the partial order induced from Gg for any context free target language? We can

derive a result very similar to our result for regular lanuages using the pumping lemma for

40

Figure 15: Partial derivation for the string aaabbb.

context free languages.

Pumping Lemma: Let L be any CFL. Then there 1s a constant n depending only on L, such

that if z is in L and |z} 2n, then we may write z =uvwxy such that
L. jvx| 21

2. yvwx| £ n, and

3.forall i 20 uvwx'yisin L. [11]

As before, we are concermned with the proof of this Lemma rather than its existence. For the
context free case, the proof relies on the fact that if there are k& non-terminals in a minimal CNF
grammar for L than any string of length > 2K must have a repeated non-terminal somewhere in
its derivation tree. This follows from the fact that if the parse tree of a string generated by a CNF
grammar has no path of length greater than i, then the string is of length no greater than
21 (This can easily be proven by induction, see [11] for details.) Thus a string of length 2K must
have a longest path of length at least £ + / in its denivation tree. This longest path must have & +
2 vertices in it of which k + are labelled with non-terminals. Since there are only & distinct

non-terminals, two vertices, v, and v, on this path have the same label. Then we can replace the

41

subtree rooted at v, with the one rooted at v, producing a second copy of the yield of the subtree
rooted at vl.z1 We can repeat this process i times, and produce ! copies of part of the string as
illustrated in figure 16. Thus in this case the power to create infinite strings is produced by

having rules which allow a non-terminal to be its own ancestor 1n the derivanon tree.

Figure 16: A derivation tree for uviwxly whereu=a, v=bb, w =a,x = ¢, y = ba.

We will now prove that if there is a CNF grammar for a context free language, L, with &
non-terminals, then there is a finite subset of the strings in L from which we can define a Gg
using the procedure described. We can then guarantee that there 1s at least one grammar in the
parual order generalized from Gg for the target language. The idea behind the proof is to
construct a subset of G that is a grammar for a finite language, and to modify this subset of G so
that it contains no redundant non-terminals. We then show that the resulting Gg can be
constructed from some subset of the strings in L of length < 2?"-! by parse completion. Finally
we show that we can build a grammar G’ from Ggqg Such that L(G") (the language generated by
G’) equals L, and G’ appears in the partial order of grammars generalized from Gg.

*1The yield of a subtree is simply the substring that appears at the leaves of the tree.

42

Theorem: Given a context free language, L, there exists a finite subset of the strings in L
which, if the strings are presented in increasing order of length, and parse completion for CNF
grammars is applied with a bias for new non-terminals, will generate a grammar Gg with the
following property: The partial order of grammars generated from Gg by applying parse

completion with a bias for new non-terminals contains at least one grammar for the language L.

Proof: Let G be a non-redundant CNF grammar for L. (Non-redundant means all non-

terminals appear in at least one denivation of a string in L.) Let n be the number of non-terminals
in G.

Construct a graph T from G. The vertices of T are the non-terminals of G. There is a directed

edge from A to B if and only if there is a production of the foorm A — BC or A — CB.

A grammar Ggq built by parse completion with a bias for new non-terminals has two
characteristics: it generates a finite number of strings, and every non-terminal is used in the

derivation of at least one string. We wish to restrict G to produce a grammar Gg with these two

characterisacs.

We construct a grammar G51 which 1s a restictn of G by first finding the largest acyclic
subgraph T’ of T. We construct GS1 from G by first including all rules of the form A, — g, that
are in G. We then include each rule in G of the from A, & AA, if and only if there is an arc from
A 10 A, and an arc from A, to 4, in T". In [11] it is proven that if you construct a graph whose
vertices are the non-terminals of a grammar and which includes an arc from A to B if and only if
there is a production of the form A — BC or A — CB, then if this graph is acyclic the
corresponding grammar generates only a finite number of strings. In fact, if we define the rank
of a non-terminal, A, as the length of the longest path in the graph beginning at A, the proof in
[11] shows that if A has rank r no terminal string derived from A has length greater than 2"
Now T’ is the graph corresponding to G51 and T’ 1s acyclic, so GSl 1S a grammar for a finite

language.

GS1 has one of the two properties required of Gg, but G51 may contain some non-termunals that
cannot be reduced to terminals. Clearly these non-terminals will not appear in the derivation of
any string in L(GSI)' We must modify GS1 so that all non-terminals are reducible to terminals.
There are two ways in which a non-terminal can fail to be reducible to a terminal. The first

occurs if the non-terminal does not appear as the LHS of any rule in the grammar. The second

43

occurs if the non-terminal is part of an infinite derivational loop. (That is the non-terminal 4, can
only be reduced to strings that contain one or more occurrences of A .) The second condition can
only occur if T’ were to contain a cycle, but T’ is acyclic. So we need only be concerned with

non-terminals, A, that do not appear on the LHS of any rule in Gsl.

For each non-terminal A, that does not appear on the LHS of any rule, find a shortest derivation
A -.E o, where ol i1s a terminal string. Take the derivation tree for Aj%aj and relabe} all the
nodes except A, with non-terminals not yet occurring in the grammar. Add to Gs1 the productions
derived from this relabelled derivation tree. The new productions will all have the form A, — g,
or A, > AA, with k,/> [if we number nodes from the root of the tree in breadth first order. So
the new productions preserve the fact that the grammar generates a finite language. When this
process is finished for all A, that were not reducible to terminals in GS1’ we will have a finite
grammar in which every non-terminal is used in the derivation of at least one string. This

grammar is the required Gg.

We next bound the length of any string generated by Gg. Recall that if A has rank r, ncé
terminal saing derived from A has length greater than 2". Now GSl contains only the non-
terminals in G, hence T’ contains at most 7 nodes. Thus the rank of S 1n GSl 1s at most n-/. Now
consider the additional non-terminals added when converting GS1 to Gq. The productions that
these non-terminals appear in are derived directly from the denvation tree for a shortest
derivation AJ-%G, so the rank of any of these non-terminals 1s simply the length of the longest
path from that non-terminal to a leaf in the denivation tree. In a shortest derivation, in any path
from the root to a leaf, each non-termunal can appear at most once. (The proof is by
contradiction. If some non-terminal appears twice in the same path, call the appearance closest to
the root the first occurrence, the appearance closest to a leaf the second occurrence. We can
replace the sub-tree rooted at the first occurrence with the sub-tree rooted at the second and
produce a shorter derivation.) Now since A}.%a 1s a shortest derivation, the longest path from
the root to a leaf in the derivation tree is at most n. If we construct T'’ for Gg as T' was
constructed for Gsl, we can increase any path ;n T’ by at most the length of the longest path in
any of the derivation trees used to convert GSl to Gg. Thus the rank of any node in T will be
increased by at most n in T’’, implying that S will have rank at most 2n - [in T"’. From the

theorem in [L1] all strings generated by Gg have length at most 22~

The bound on the length of any string produced by Gg shows that L(Gg) is finite. We must

also show L(Gg) < L. GS1 is a subset of G, so any complete derivation (i.e. any derivation
whose final product is a string of terminals) in GSl must also be a derivation in G. So the string
produced as the yield of any complete derivation using only rules in GS 1s in L. Now we must
consider derivations that use both rules in GS and some of the rules r.hat contain non- terrmnals
that did not appear in G. The new non- termmals can only appear in a derivation of 4, :a for
exacdy one A; in G. Thus we may split any denivation in Gg into two parts. The first partawxll be
a derivation from S, using only non-terminals in GS1' Every rule used in this part of the
derivation also appear in G, so this partial derivation tree may also be built in G. The leaves of
this tree will either be terminals, or non-terrmunals which cannot be reduced any further using
rules in GS The second part of the denvauon will take each non-terminal, A, at a leaf and will

%
attach the sub tree corresponding to A, =§ a; to it to complete the derivation. Since A, =a., is also

&
a valid derivation in G (although 1t wxll use different productions) for each Aj, the entire
derivation tree could have been produced by G. Thus the string that is the yield of the derivation

1s in L. So L(Gg) is a subset of L.

To be complete, we must also verify that the Gg we have defined can in fact be gcncrated‘ by
parse completion, with a bias for new non-terminals, when the positive examples are the strings
in L(Gg) presented 1n increasing order of length. The proof is mechanical and the details are left

to the reader.

Now it remains to show that the partial order of grammars generated from Gg by applying
parse compledon with a bias for old non-terrminals, contains at least one grammar for the
language L. First we will show that Gg can be generalized to a grammar G’ such that L(G")
equals L. The required construction 1s simply to add the productions n G - GSl (i.e. the
production in G that do not appear in Gsl) to Gg. It is immediately clear that G’ will generate at
least every string in L, since G < G’, however, we must ensure that G’ does not generate any
string not in L. Assume that there is a string /, such that / is derivable from S in G’ but / is not in
L. There must be a derivation for / in G’. As noted before the denivation can be divided into two
pieces, an nitial partial derivation which uses only rules in G, and a second part where non-
terrmunal leaves in the initial tree are reduced to terminal strings using rules not in G. Now
consider any non-termunal A; not reduced in the first part of the denvation. Assume in the second
part of the derivation A, is reduced to the terminal swing B. If this derivation uses any rule not in

G, it must use the rules which correspond to the derivation A, ., (i.e. B= aj) since these are the
G

45

only rules not in G which could refer to A.. But in creaang Gg from GS we added rules to form
the derivation 4, =, ; if and only if there already existed in G a denvauon A -;a So for any
derivation using rulcs not in G, there must be a derivation using only rules in G Hence / must

have a derivation using only rules in G, thus /is in L.

As a final point, it is necessary to show that G’ can be generated from G by parse completion.
The proof is very similar to the proof in the regular grammar case. We show that for each
production in G - GS1 there is a sting in L which requires the addition of this production to
complete the derivation. Since G - GS1 is finite, only a finite number of strings are required to

generalize Ggto G'. The details are left to the reader. This completes the proof of the theorem.

Figure 17 illustrates the constructin of T, T, Gsx’ T, Gg, and G’ for a particular language.

6 Felicity Conditions and Biases

The proofs in the previous section for the bound on the number of strings needed to define Gg
were existence proofs only. They stated that a finite set of strings which could define Ggq cxist:d;
but in fact the construction given to build this set of strings relied on knowing a great deal about
the target language. In fact it was necessary to already have a minimal FA or CNF for the target
language. For the simple example languages in the previous section it is easy to get this
information by inspection, but for more realistic problems i1t 1s not likely that this information
will be readily available. However, both proofs relied on making the same distinction between
two types of grammar rules. On the one hand, Gg was originally created from rules which used
termunals or new non-termunals. These rules may be regarded as adding structure to the grammar.
In the regular language case, these rules correspond to adding states and initial transitions to
these states in our FA. For the CNF grammars, these rules generated an initial set of subtrees to
act as fundamental constituents in the grammar. Once Gg was established, we added recursive
rules to the grammar, by allowing RHS formats which used old non-terminals. For regular
languages, these rules corresponded to adding cycles into the FA, while in the CNF grammars
these rules corresponded to creating paths in the derivation tree in which the same non-terminal

could appear more than once.

This simple distinction between rules that add structure and those that recombine exisung
structure suggests a means by which to approximate the formal results associated with Gg.

Instead of requiring the input strings in non-decreasing length, and using a finite subset of the

46

Figure 17: The constuctionof T, T, Gsx’ T, Gg, and G’ for the
grammar shown in part (a).

C/) 65) 7"46 /'?;/"’f‘/(f/C;,, o X é‘ X, 7./ /Vg/(FAa? O: Py
Y

A
2 0040)‘0//(.,. 25 /‘A’/e é,{/)’ al‘(@’y /U/e el jfoam:/‘

C // TLAC /Of’(’f o (,c//(
56‘67/‘99‘ 3(T—
/:;' 02 SS—)(éA 0,~>409 5—7(‘,4 02_,0‘&/
SN Z N A:’fj Oaﬂ)gfg‘ S=(C 8 L = .13

A A & B R g, ~e As ¢ o 0, -
j / / A -4 3 <

/ Jy =4 A <>a O, —»,
¢ 4 o4 Einds J. <4 C ~a 0" 4

- = -7

B—=C, N - 7 —

E) Oerz'va/‘/'on /—"(95 /(ur‘a Wt “35 € 0‘ é 3 (‘ 01 a& -—’6
SAertes™ dar ok —4 A~>cC s

ervation for D C, =6 C 2

7 b) 6 o~
and O, n G, 0 <40 >Cy S

7_ rom sa,
F) /Ie C CS 0/) 0‘,

?) 6/0 7946"0// 20 10n ofﬂ GS w i P4
L(c')=d(G)

47

strings less than a certain length?2 to create Gg, we simply require that the teacher provide
additional information with each sample string, to indicate if this sample generalizes from
previous sample strings, or is an instance of a new class of string in the language. For those
strings which generalize previous sample strings we can apply the bias in favour of old non-
terminal substitutions; Strings which are instances of a new class of string will use the bias in
favour of new non-terminals when completing the parse. The sort of additional information
required about each string is an example of a felicity condition [27] for grammar induction. As
an example, this heuristic was applied to the set of strings {ab, aabb, aaabbb} of which only the
first was indicated as adding structure and the other two were examples of generalization. The
parse completion algorithm produced the 9 candidate grammars shown in figure 18, of which
grammars 2 and 6 are the interesting ones. These two grammars fail to capture exactly the target
language a®b®, but they do capture the closely related language that consists of all strings of a’s
and b’s that begin with an g and have an equal number of g’s and b’s. This language is only
slightly more general than the target language, so the heuristic has done quite well. In fact it is
easy to show that using only the string ab to create the structure you cannot possibly capture thc.
target language exactly since the string ab introduces only 3 non-terminals into the grammar;
while the smallest grammar for this language requires 4 non-terminals. However if we use the
sample string aabb as a stuctural example, and the strings 'ab and aaabbb as generalizing
examples, then the parse completion algorithm does producé a grammar for the target language
abph.

The most important bias, the one towards new or old non-terminals in the RHS formats, has
already been discussed in relation to the partial order of induced grammars. There is a second
bias in this system, which we may regard as a bias in favour of parsimony. When a new sample
saing 1s introduced, if it can be parsed by any grammar in the existing set, these grammars are
retained, and the other grammars are not considered further. This can be regarded as a bias in
favour of grammars which generalize the sample strings better, or as a bias in favour of

grammars with small numbers of rules.

The system at the moment contains no heuristic knowledge which allows it to prune the set of

grammars in the partial order. Even though we can show that with a fixed Ggq there are only a

2227 -1 for regular languages, 22"~ ! for context free languages.

!
X2, S=vy limwe 76 U
3 s—Uy Voe Y—=éb Voul U -syy
b S—= U Vima Uvé6 VU>iy U 2yy
5 5—-—7(,,u2’ V ~a UV - b Wi—=>5 S -V
¥

Figure 18: The 9 grammars generated from the set {ab, aabb, aaabbb}.
finite number of grammars in the partial order, this finite number may be very large. For the case
of the CNF grammars if our Gg has k non-terminals we know there are at most &3 +k{Z| rules that
can appear In any grammar in the partial order®, but as a grammar can contain any subset of
these rules this still means there are on the order of 2% *4¥ different grammars in the entire
partial order. This makes the construction of the entire partial order infeasible for all but very
small grammars. Experience has shown that generally a grammar for the target language can be
found by exploring far less than the entire parual order. But the examples presented in this paper
have been of very simple grammars precisely because an unrestricted exploration of the partal
order 1s very expensive. To build an algorithm for practical problems parse completion will have
to be augmented with additional heuristacs to control its search. The advantage of having the
basic algorithm as a base to work from is that the effects of parucular heuristics can now be

measured 1n terms of the complete partial order explored by the unrestricted algorithm.

One obvious and domain independant heuristic for CNF grammars has been suggested by the
observations made in the proof that a bound for Gg exists. In this proof 1t was noted that the
sub-trees contained in Gg serve as recursive building blocks for the denivations of longer strings.
Currently these building blocks are tried in an arbitrary order. However, by examining the yields

of these sub-trees, and selecting the sub-tree whose yield is closest to the substring that is being

SThere are at most & rules of the form A, — AA,, and HE| of the form A; — a;.

49

parsed, a form of best first search could be impiemented. The next stage in the development of

parse completon should be a systematic exploratdon of heuristics such as these to make the

algorithm more efficient.

7 Conclusion

Our purpose was to explore the class of Parse Completion algorithms. In pursuing that
purpose, we have produced a well defined design space for this class of algorithms. This design
space is defined by a partial order over the RHS formats of new rules which may be added to
complete a parse. One of the most interesting divisions based on RHS formats divided rules into
those which added additional structure to the grammar, and those which generalized existing
structure. This particular division led to the discovery of biases under which an .'mduc:tion
algorithm can be designed which will always converge to a single, most specific, context free
grammar from a finite set of positive example strings. Certain additional conditions must also be
met to guarantee convergence. These conditions can be expressed as a complexity bound on the
language, which uniquely idendfies the point at which no additional structure needs to be added
to the grammar. These conditions can also be expressed as felicity conditions, which require thc:
teacher to distinguish examples that introduce a new concept from examples that only serve to
generalize existing concepts. Perhaps the most important point to be leamned from this study is
that a systematic attempt to understand an induction domain can lead to useful insights for

designing induction algorithms for that domain.

50

References

[1] Anderson, J. R.
The Architecture of Cognition.
Harvard Unuversity Press, Cambridge, MA., 1983.

(2] Anderson, J. R.
Skill Acquisition: Compilarion of Weak-Method Problem Solutions.

Technical Report ONR-85-1, Office of Naval Research, 1985.

[3] Biermann, A. W.
On the Inference of Turing Machines from Sample Computations.
Artificial Intelligence (3):181-198, 1972.

[4] Biermann, A. W,
The Inference of Regular Lisp Programs from Examples.
[EEE Transactions on Systems, Man, and Cybernetics SMC-8(8), August, 1978.

[3] Biermann, A. W. and Feldman, J. A.

A survey of results in grammatical inference.
In S. Watanabe (editor), Frontiers of pattern recognition. Academic Press, New York,

1972.

(6] Cohen, Daniel I. A.
Basic Techniques of Combinatorial Theory.
John Wiley & Sons, New York, 1978.

(7] Fahlman, S.
A Planning System for Robot Construction Tasks.
Artificial Intelligence (5):1-49, 1974,

(8] Fikes, Hart, and Nilsson.
Learning and Executing Generalized Robot Plans.
Artificial [ntelligence (3):251-288, 1972.

(9] Fu, K. and Booth, T.
Grammaucal Inference: Introduction and survey.
[EEE Transactions on Systems, Man, and Cybernerics (5):95-111, 1975.

[10] Genesereth, M. R.
The role of plans in intelligent teaching systems.
In [ntelligent Tutoring Systems. Academic Press, New York, 1982.

[11] Hopcroft, J. E. and Ullman, J. D.
Introduction to Automara Theory, Languages, and Computation.

Addison Wesley, Reading, MA., 1979.

[12] Horning,J.J.
A study of grammatical inference.
Technical Report CS-139, Stanford University, Computer Science Department, 1969.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

51

Knoblock, C. and Carbonell, J.

Learning by Complerting Plans.

Technical Report, Computer Science Department, Camegie-Mellon University, In
Preparation.

Laird, J., Rosenbloom, P. S. and Newell, A.
Chunking in Soar: The anatomy of a general learing machine.
Technical Report, Computer Science Department, Camegie-Mellon University, 198S.

Minsky, M.
A framework for representing knowledge. ‘
In P. Winston (editor), The psychology of computer vision, pages 211-277. McGraw-Hill,

New York, 1975S.

Mitchell, T. M.
The need for biases in learning generalizations.
Technical Report CBM-TR-117, Rutgers University Computer Science Department,

1980.

Mitchell, T. M.
Generalization as search.
Artificial Intelligence (18):203-226, 1982.

Newell, A., Shaw, J. C., and Simon, H. A.
Report on a general problem-solving program for a computer.
In Information Processing: Proceedings of the International Conference on Informarion -

Processing, pages 256-264. UNESCO, Paris, 1960.

Osherson, D., Stob, M. and Weinstein, S.
Systems that Learn.
MIT Press, Cambridge, MA, 1985.

Pao, T. W.

A solution of the syntactical induction-inference problem for a non-trivial subset of
context-free languages.

Interim Report 69-19, Moore School of Electrical Engineering, University of
Pennsylvania, 1969.

Quillian, M. R.
Semantic Memory.
Semantic Information Processing.

MIT Press, Cambridge, Mass., 1968.

Riesbeck, C. K.
Failure-driven reminding for incremental learning.
In Proceedings of IJCAI 7, pages 115-120. 1981.

Sacerdoti, E.
Planning in a Hierarchy of Abstraction Spaces.
In International Joint Conference on Artificial Intelligence 3, pages 412-422. 1973.

Schank, R. C., and Abelson, R. P.
Scripts, plans, goals and understanding.
Lawrence Erlbaum, Hillsdale, N.J., 1977.

[25]

[26]

[27]

(28]

(29]

52

Schank, R.
Dynamic Memory: A Theory of Learning in Computers and People.
Cambrnidge University Press, Cambridge, 1982.

VanlLehn, K.
Human procedural skill acquisition: Theory, model and psychological validation.

In Proceedings of AAAI-83. Los Altos, CA, 1983.

VanLehn, K.
Leaming one subprocedure per lesson.
Artificial Inzelligence 31(1):1-40, January, 1987.

VanLehn, K.

Towards a Theory of Impasse Driven Leaming.

In H. Mandel and A. Lesgold (editors), Advances in Intelligent Teaching Systems
Research. Academic Press, New York, In Preparation.

VanlLehn, K. and Ball, W.
A Version Space Approach to Learning Context Free Grammars.

Machine Learning Journal , In Press.

THE BASIS OF LAWFUL BEHAVIOR 16

When they see lawfulness in behavior, cognitive scientists since
the late 50's have been quick to jump in and say that this lawful
behavior indicates knowledge of rules. While it is often
acknowledged that lawful behavior need not necessarily be based
directly on systems of rules, attempts to make explicit theories about
the mechanisms that underly lawful behavior have generally been
couched in terms of rule systems. Until recently, as Zenon Pylyshyn
once said, this approach has been the only straw afloat.

A growing group of researchers is working on a second straw.
The members of this group view our work in the development of
connectionist, distributed network models of cognitive processes as
an attempt to construct explicit theories in which lawful behavior is
an emergent property. We think this approach has great promise,
and we are now actively engaged in extending it to sentence
processing and other, higher-level cognitive tasks.

JAY MCCLELLAND
Dept of Psychology

Carnegie Mellon University
Pittsburgh PA 15213

FURTHER READING

D E Rumelhart, J L McClelland, and the PDP research group, Paralle! Distributed
Processing: Explorations in the microstructure of cognition. Volume 1I:
Foundations. (Cambridge MA: MIT Press/Bradford Books, 1986).

J L McClelland, D E Rumelhart, and the PDP research group, Paralle! Distributed
Processing: Explorations in the microstructure of cognition. Volume 2:
Psychological and Biological Models. (Cambridge MA: MIT Press/Bradford
Books, 1986).

