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1. Introduction
DUCS is an experimental multi-level architecture that provides a distributed representation for

frame-like concept structures. (The name stands for Dynamically Updatable Conceptual Structures.)
The ultimate goal of this research is to develop a powerful short term memory that can construct and
manipulate concepts rapidly. Such a memory could play an important role in neural network models of
higher level cognitive phenomena such as language understanding or problem solving. As an example,
consider how one might represent the knowledge that "Down by the hen house, John threw a rock at the
fox." With a case frame representation1, this sentence could be represented by the following structure:

AGENT: JOHN

VERB: THROW

OBJECT: ROCK

DESTINATION: FOX

LOCATION: HEN HOUSE

In this paper I show how such structures can be realized in DUCS as distributed activity patterns
over a space of neuron-like computing elements. DUCS can retrieve a slot filler from its concept buffer
given the slot name; it can also retrieve entire concepts from its concept memory given some name/filler
pairs as cues. In order to be useful as a short term concept memory, DUCS was designed to have the
following properties:

• Concepts can be created, modified, or deleted simply by changing an activity pattern; it is not
necessary to go through a series of incremental weight changes and resettlings.

• Concepts can contain any number of slots. Accuracy of retrieval degrades gradually as the number
of slots stored exceeds the capacity of the network.

• Individual slots of a concept can be accessed by associative retrieval. If the pattern for a slot name
doesn't exactly match what was previously stored, e.g., if we try to access an elephant's TRUNK slot
by referring to his NOSE, assuming the two slot names have similar but not identical microfeatures
the retrieval will succeed and simultaneously the query will be corrected to read TRUNK.

• More than one slot of a concept can be accessed simultaneously, e.g., it is po?:ible to access the
AGENT and the OBJECT slots of an action in parallel.

• Concepts can be associatively retrieved by combining several name/filler pairs into one cue. For
example, if John did things in various places and if several things happened at the hen house, to

1 McClelland and Kawamoto (1986) have also explored connectionist case frame representations. Their model performs
lexical disambiguation and case role assignment for single sentences using four fixed cases.



recall what action John took at the hen house one combines the cues AGENT: JOHN and LOCATION:
HEN HOUSE.

• Concepts that have been accessed recently remain in the concept memory, while those that have
not been accessed fade out.

Perhaps the simplest way to implement concept structures (not the way chosen by DUCS) is as a
collection of three-part bit vectors of form (concept-tag slot-name slot-filler). The tags could be
meaningful patterns or randomly-generated ones; their purpose is to group together slots belonging to
the same concept. A collection of these tripartite patterns could be stored in an associative memory, and
given a concept tag and slot name it would be easy to retrieve the corresponding filler. However, this
approach lacks several other properties important for a short term concept memory.

One issue is the need to access multiple slots in parallel. In a conventional associative memory, such
as Hopfield's or Willshaw's models (Hopfield, 1982; Willshaw, 1981), information resides in the weights
between units. In order to access several slots in parallel one must make several copies of the associative
network and keep the weights identical in each copy. An alternative is to represent concepts as activity
patterns rather than as weights, with the activity pattern transmitted from a central buffer to a number
of input/output groups for retrieving different components simultaneously. DUCS uses this technique.

A second issue is the ability to associatively retrieve a particular concept by combining multiple
name/filler pairs to form a cue. This also appears to require an activity-based representation for slots.
One might attempt to concatenate all the slots of a concept to form one huge vector in order to effect
this sort of retrieval, but since concepts contain a varying and unbounded number of slots, and the space
of possible slot names is quite large, that approach would not be viable.

Finally, since the available biological evidence is that activity patterns can be modified more quickly
than weights, it makes sense to explore activity-based representations when designing a short term working
memory. The solution presented here is one of the key features of DUCS: it has error correcting and
associative retrieval properties similar to a classical associative memory, but it is organized on different
principles.

2. Overview of the Architecture
At the lowest level of DUCS, individual slots are created by setting up an activity pattern in one of

several slot name groups and its associated slot filler group; see Figure 1. The name and filler patterns
then jointly cause a pattern to appear in the selector group. Selector groups function as a combination
pullout network (Mozer, 1984; Touretzky, 1986; Touretzky & Hinton, 1986) and viewpoint mapping
device (Hinton, 1981a); they do the real work of storing and retrieving things. The detailed structure of
the various groups will be described in the next section.

Slots are collected into concepts in DUCS by superimposing in the concept buffer the activity patterns
of all the selector groups. Conversely, slots are extracted from the concept buffer by clamping their names
into slot name groups and allowing the selector and slot filler groups to settle; the corresponding filler
for each slot then appears in the associated slot filler group.

The highest level of DUCS is the concept memory, which can hold multiple concepts simultaneously.
New concepts enter the memory one at a time through the concept buffer. Concepts can be recalled by
combining some slots in the concept buffer and using the resulting activity pattern as a cue to associatively
retrieve and fill in the rest of the concept buffer pattern from concept memory.
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Figure 1: The DUCS Architecture.

3. A Glimpse of the Details
This section presents a concise summary of the wiring pattern of DUCS. To begin, slot names and slot

fillers are iV-bit and F-bit binary feature vectors, respectively, appended to their logical complements.
That is, a slot name a is a 2iV-bit vector where a» = ci(i+N) for 1 < i < iV, and a slot filler v is a 2f-bit
vector where v» = v^i+F) for 1 < » < -F\ The selector groups and the concept buffer are both organized
as 4F x 2R arrays of units, where A i s a parameter between 0 and N. The arrays are AF bits wide
because slot fillers are stored redundantly — each bit and its complement are represented twice. Simple
voting circuitry shown in Figure 2 is used to arrive at the correct slot filler vector during retrieval even
when some of the concept buffer or selector units are in error. Such errors are unavoidable when using
distributed representations,2 as DUCS does, unless memory is kept very sparse, because slots will overlap
in the concept buffer. The error rate for retrieval of individual slots is a function of the number of slots
superimposed in the concept buffer, and also of the "breadth" of the buffer, which is a function of R.
For N = 20 and F = 20, with R = 4 the concept buffer has a breadth of 16 units and can store three
to four slots before retrieval errors occur. Increasing R makes the representation more sparse, thereby
reducing the chance for slots to overlap and cause errors. The accuracy of the selector groups can also
be increased by widening the concept buffer to 6F or 8F units. While the degree of sparseness will be
unchanged, the extra redundancy aids error correction.

Storing filler v in the slot named a generates a AF x 2R pattern over the selector units {*ij}- Each
bit v, is copied into one of the 2R locations in column t of the selector array, and, independently, into one
of the 2R locations in column i + 2F. A unit's position j within a column is based on a randomly-chosen

2Hinton, McClelland, and Rumelhart (1986) describe some properties and applications of distributed representations.
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Figure 2: Error correction circuitry to exploit the redundant storage of slot fillers. The figure shows bit
V{ of a slot filler, its complement bit t7t, and the corresponding selector units for four copies of the bit
(two of Vi and two of F».

R-bit subset of a; a different subset is chosen for each of the 4F columns. All selector groups use the
same subsets for their corresponding columns. Figure 3 shows the wiring for mapping a single slot filler
bit V{ into some st<; and from there to the corresponding bit bij in the concept buffer. Here R = 2 so
the the value of j is determined by two slot name bits, ax and ay. Note that vt will also be copied into
column t + IF in some position A:, where k is determined by a (probably) different pair of slot name bits
at and au. Also, v^+p) which is t7» will be copied into some position in columns t + F and t + 3F, based
on two other pairs of slot name bits. This redundancy is necessary not only for error correction, but also
for associative retrieval, as will be explained shortly.

Selector units function as a skeleton filter.3 The units in each column % are organized in a mutually
inhibitory winner-take-all network such that the winner will be the unit that receives excitation on every
one of its R inputs from the slot name group. The winning 5,,; functions as a mapping unit allowing
activation to pass between the concept buffer unit 6t,y and the slot filler unit V{.

DUCS uses non-linear units with variable gain and outputs restricted to the unit interval; all connec-
tions are symmetric. This is commonly known as a Hopfield and Tank model (Hopfield & Tank, 1985).
To retrieve a slot, the name is loaded into the slot name group and then it and the concept buffer are
clamped, with the gain initially set very low. As the net settles, the selector units will copy the states of
the chosen 6«,/s (1 < * < 4F) to the slot filler group's v/s. The variable gain feature is important for
getting the retrieval to work properly, especially when the slot name does not exactly match what was
stored, but the gain can rise quickly: fewer than 20 cycles are required for a retrieval.

Although increasing R increases the capacity of the concept buffer, smaller R values make it easier to
retrieve a slot based on an inexact name match. For example, suppose we try to retrieve the contents of
Clyde the elephant's TRUNK slot using the pattern for NOSE instead. If the two patterns differ in a single
microfeature, then of the (^) distinct R-bit subsets of the TRUNK pattern, the fraction that differ from
NOSE is R/N. Assuming R <i N} this fraction is small. Let slot filler unit v» be one that happens to be
mapped using the bit where the two patterns differ. Due to this difference, some selector *<,* rather than

3So called because only a skeleton subset of the units are enabled at any one time. Hinton (1981b) describes the use of
skeleton filters in a connectionist implementation of a semantic network. Sejnowski (1981) presents arguments for the
existence of skeleton filters in the brain.
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Figure 3: Hashing one copy of the slot filler bit v» into one of 2R concept memory bits based on a random
/2-bit subset of the slot name. In the figure, R = 2. All connections have positive weights unless shown
otherwise. Mutually inhibitory connections among the 2R selector units have been omitted for clarity.

5t,y will most likely be the winner in column t, and so v, may be pressured to take on the value of 6,,̂
rather than 6,,y. But if R <C N, chances are very good that the redundant copies of t\ represented by
selectors in columns i + Ft i + 2 / \ and t + ZF probably chose subsets that didn't include the erroneous
bit, and so these three selectors will be mapped correctly and apply pressure on vt to assume the correct
value. In turn, v» will try to make sXtJ rather than J,-,* the winner in column t, and due to the symmetry
of connections, this will apply pressure to change the state of the erroneous slot name bit. When the slot
name group is undamped part way through the process of raising the gain during retrieval, the pattern
will spontaneously change from NOSE to TRUNK. In preliminary experiments using N = 30, F = 100,
and R = 5, the slot name did in fact correct itself during retrieval, even with two or three bit errors.

4. Design of the Weights
All weights and thresholds in DUCS are fixed. Their signs are predetermined by the model, and their

magnitudes are estimated automatically when the network is initialized, based on the values of F, JV,
and R. A slight amount of empirical tuning is still required due to the simplicity of the current weight



estimation algorithm, which does not take into account the fact that the number of connections a slot
name unit makes with selector units varies with F. (The expected value is 2F • 2R • R/N, but there is
some variance because the 4/* columns of the concept buffer and selector group choose their R-sets of
slot name units randomly.) Another complicating factor is the fact that the amount of input each slot
name and slot filler unit receives depends on the number of slots that make up the concept, which varies
from one concept to another but is generally expected to increase with R.

Slot retrieval is a constraint satisfaction problem. The formula for choosing weights is designed to
balance the constraints that affect each type of unit. For example, selector unit a,,y should be affected
equally by concept buffer unit 6»,y, slot filler units Vi and Vj+^, and the ensemble of R slot name units
to which the selector unit connects. The selector must also be responsive to inhibitory input from the
other 2^ — 1 selectors in column i. A table of weights and their signs is given below. All connections are
bidirectional, but the number of connections from each unit of type x to units of type y is not necessarily
the same as the number from y to x.

Connection Type Symbol Sign

slot filler «-• complement Vi «-*
slot name •-> complement a, «-»
selector <-+ concept buffer ŝ y •
selector «-• slot name s^y •
selector •-• slot filler 3i^- *
seL «-> slot filler compl. s»,y •
seL «-> competing sel. a*, «-• stffc (j

# from
x to y

1
1
1
R
2
2

#
y

~2F-
2
2

from
to x

1
1
1

2R - R/N
x 2R

x2R

5. Organization of the Concept Memory

The concept memory holds a collection of concepts, which are patterns of length 4F times 2R obtained
by viewing the two-dimensional concept buffer as a one-dimensional vector. To retrieve a concept, one or
more cues are loaded into slot name/slot filler groups and, through the selector groups, superimposed in
the concept buffer. The concept buffer then has a partial pattern which can serve as a retrieval cue for
the entire concept. In the present version of DUCS the concept memory is a Willshaw-style associative
memory (Willshaw, 1981), except that the one-bit weights of Willshaw's model have been replaced with
simple processing units. These units can be used to detect failed retrievals (when no stored concept
matches the name/filler cues supplied) and retrieval collisions (more than one concept matches the cues);
more details are given in (Touretzky & Geva, 1987).

6. Discussion
DUCS is a content-independent architecture: it treats all slot name and slot filler patterns identically.

Although it is convenient to assume that these patterns will be micro-feature based, so that symbols
with similar meanings (like TRUNK and NOSE) have similar patterns, at present the model contains no
knowledge about individual microfeatures. If it did, it could use this knowledge to further constrain
the filler and slot name patterns, e.g., any filler pattern containing the microfeature human would also
have to contain the features mammal and animate. With an appropriate choice of microfeatures,
slot name patterns could also be used to constrain slot filler patterns, e.g., the pattern for AGENT
could include a bit requiring that the filler possess the animate microfeature. This approach is being
explored by Mark Derthick in his /iKLONE system (Derthick 1987; Touretzky <fc Derthick, 1987). In
/iKLONE the microfeature patterns are specified in advance and all constraints between microfeatures are
predetermined before the network is built. It might also be possible for DUCS or /xKLONE to gradually
learn (or at least fine tune) constraints between microfeatures by exposure to large numbers of examples.

6



The architecture of DUCS at the slot level bears some resemblance to the distributed AC AM (associa-
tive content addressable memory) recently described by Baum, Moody, and Wilczek (1987). The choice
of a different random /2-bit subset of the slot name for each column of selector units serves the same
hashing function as the prime factoring approach they propose. The ACAM is a hetero-associator, and
the number of weights (cf., units in DUCS) grows linearly with the size of the input and output patterns
(N and F). The capacity of the memory can be increased to any desired level by adding more units. In
contrast, the number of weights in a Hopfield auto-associator grows as (N + F)2, assuming the patterns
consist of an iV-bit slot name concatenated to an F-bit filler. Since there is no intermediate layer in the
Hopfield net, memory capacity is also limited; a Hopfield net can only store about .15(N + F) patterns
if at least 95% accuracy of recall is to be maintained.

DUCS differs from the ACAM, and most other neural networks, in that it is a two-level architecture.
At the concept level, entire concepts may be stored and associatively retrieved. But each concept is a
collection of named slots, and slots are themselves accessed associatively. The two-level structure is one
of the key features of the DUCS modeL As neural networks are applied to increasingly sophisticated
knowledge representation problems, it is likely that more complex, multi-level representations will be
required.
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