
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Parse Completion:
A Study of an Inductive Domain

Technical Report PCG-11

Steve Nowlan

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213 U.S.A

July 1, 1987

Running head: Parse Completion

Acknowledgments

This research was supported by the Computer Science Division, Office of the Naval Research,
and DARPA under Contract No. N00014-85-C-0678. Reproduction in whole or in part is
permitted for any purpose of the United States Government. Approved for public release;
distribution unlimited.



\^ G^ w/ y



Unclassified
?LASS1F1CAHON OF rmS PAGE

REPORT DOCUMENTATION PAGE
la . REPORT SECURITY CLASSlFICAriON

Uncla ,
2*. SECURITY CLASSIFICATION AUTHORITY

2b. OECLASSIRCATION / DOWNGRADING SCHEDULE

1b. RESTRICTIVE MARKINGS

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
Distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUM8ER(S)

PCG-11

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Same as Performing Organization

6a. NAME OF PERFORMING ORGANIZATION

Carnegie-Mellon University

6b. OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION
Information Sciences Division
Office of Naval Research (Code 1133)

6c. AOORESS (City, State, and ZIP Code) 7b AOORESS (Cty, Start, and ZIP Cod*)

Departments of Psychology and Computer Sciencje
Pittsburgh, PA 15213

800 N. Quincy St.
Arlington, VA 22217-5000

8a. NAME OF PONDING/SPONSORING
ORGANIZATION

Same as Monitoring Organization

8b. OFFICE SYMBOL
(If

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUM8ER

N00014-86-K-0678

8c AOORESS (Oty, State, and ZIP Code) 10 SOURCE OF FUNOfNG NUMBERS p 4 0 0 0 0 5 u b 2 0 1 / 7 - 4 - 8 6
PROGRAM
ELEMENT NO

N/A

PROJECT
NO

N/A

TASK
NO

N/A

WORK UNIT
ACCESSION NO

N/A
11 TITLE (Include Security Classification)

Parse Completion: A study of an Inductive Domain

12 PERSONAL AUTNOR(S)
Steve Nowlan

:3a. TYPE OF REPORT
Technical

13b. TIME COVERED
PROM 86Sepl5 TO 91Sepl5

14 DATE OF REPORT [Year, Month, Oay)
87 July 1

IS . PAGE COUNT

SUPPLEMENTARY NOTATION

COSAT1 CODES

GROUP SUB-GROUP

18 S U 8 J E C T TERMS (Continue on reverse if necessary and identify by biock number)

Induction, machine learning, parse completion,
grammatical inference, grammar induction

'9 ABSTRACT [Continue on reverse if necessary and identify by block number)

See reverse side.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

D UNCLASSIFIED/UNLIMITED Jp SAME AS RPT • SERS
22a NAME OF RESPONSIBLE INDIVIDUAL

Alan Meyrowitz

0 0 FORM 1473,84 MAR

21 ABSTRACT SECURITY CLASSIFICATION

33 APR edition may oe used until exnausted
All other editions are obsolete

22c. OFriCE SYMBOL
1143

SECURITY CU^SSiFlCATlQN OF THIS PAGE

Unclassif iedU n h / e r s l tV Libraries
Carnegie Meiion Unhwsfty

Piv^ftNrgtr Pennsyhranta 1521?



1

Abstract

Hierarchical knowledge structures are pervasive in Artificial Intelligence, yet very little is

understood about how such structures may be effectively acquired. One way to represent the

hierarchical component of knowledge structures is to use grammars. The grammar framework

also provides a natural way to apply failure-driven learning to guide the induction of hierarchical

knowledge structures. The conjunction of hierarchical knowledge structures and failare-driven

learning defines a class of algorithms, which we call Parse Completion algorithms. This paper

presents a theoretical exploration of this class that attempts to understand what makes this

induction problem difficult, and to suggest where appropriate biases might lie to limit the search

without overly restricting the richness of discoverable solutions. The explorations in this paper

are not intended to produce a practical induction algorithm, although fruitful paths for such

development are suggested.



1 Introduction
Hierarchical knowledge structures are pervasive in artificial intelligence systems. Classic

examples include semantic networks [21], scripts [24], and frames [15] and their descendants,

which are employed in current knowledge representation technology. Planning and plan

recognition systems [8, 7, 23] make extensive use of procedural hierarchical structures. Despite

this pervasiveness, very little is understood about how such knowledge structures may be

effectively acquired.

We focus on executable hierarchies: those that represent control strategies, plans or procedures

[27, 10]. Grammars can provide a uniform representation for such hierarchical control

structures. The hierarchy of control is implicit in the rules of the grammar, but becomes explicit

in the derivation tree1 for a particular string.2 In this context, one can regard the rewrite rules of

a grammar as a way of transforming some goal into a group of sub-goals. Consider for example

the problem of multi-column subtraction. We can regard a subtraction problem as composed of

several atomic procedures, such as one column subtraction (-), shift of attention left one column

(1), shift of attention right (r), decrement (d) and add (a). The last two operations are needed to

represent the decrement in one column and increment in the next required of the borrow

operation. In this representation the subtraction problem 25-13 could be represented by the

string -/— which would be interpreted as subtracting the first column, moving left and

subtracting the second column. Figure 1 illustrates one possible grammar for multi-column

problems that do not involve borrowing, and the incomplete derivation tree that is produced

when the procedure represented by this grammar is applied to a problem that requires borrow

operations.

The idea of creating sub-goals to hierarchically solve a complex problem goes back at least to

GPS [18], and is the basis for several models of cognitive architecture [14, 1, 2, 26]. Different

types of grammars correspond to different classes of control structure; the activation of a sub-

goal may depend only on the presence of its parent goal, or it may also depend on the concurrent

1The term derivation tree is synonymous with parse tree, and in this context is equivalent to a trace of the
subgoals in a procedure. The derivation tree can be a general graph for context-sensitive grammars.

2Throughout this paper we will use the term string to represent the end product of a derivation using a grammar.
The string is not necessarily a string of characters, but may equally well be a sequence of operations for performing
some task.



activation of other goals with different parents (i.e. context free vs. context sensitive grammars).

An effective algorithm for inducing grammars may also be a powerful tool for learning

hierarchical control structures from experience [27].

Mitchell [16] highlights the importance of biases in induction problems. Failure (or impasse)

driven learning [25, 22, 27] is a particular bias that can make many induction problems more

tractable. This bias favours using the existing knowledge structures as much as possible.to solve

a problem. When an impasse is reached, it adds just enough additional control knowledge to

bridge the gap and complete the solution. This bias may have psychological validity as well as

practical utility [28].

The combination of failure-driven learning and grammar induction yields a class of algorithms

which we have referred to as Parse Completion algorithms. In Parse Completion one attempts to

build a derivation tree for some string, using existing rules of the grammar, until no existing

rules can be applied. The process may be thought of as a combination of top-down and bottom-

up parsing (Fig. 1). When the derivation tree is as complete as possible, new rules are added ta

the grammar to fill in any remaining gaps in the derivation tree.

S Grainmar
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/ I \ . S -> 1 S

: : : S —» - S

S
I I / \
1 I - s
1 I I / \

: : : I 1 S

1 d r a - 1 -
: - Completion Site

Figure 1: Incomplete derivation tree prior to Parse Completion

Parse Completion is not a new idea. Specializations of it have been used in programs that learn

plans [13], procedures [27, 10], programs from examples [3,4], and models of cognitive skills

[26]. Although the concept has been used by a variety of researchers, there has been no attempt



to characterize the space of parse completion algorithms, or to systematically examine where

biases [16, 27] may be most effectively introduced.

2 The Parse Completion Design Space
In this section the intent is to introduce the concept of parse completion at an intuitive level

and to present some of the alternative design choices for induction algorithms based on the parse

completion paradigm. Results are presented here in an incomplete fashion. Later sections expand

on this outline and provide the missing details.

Parse completion is a particular approach to induction problems. An induction problem is the

discovery of expressions in some representation language (generalizations) such that each is (1)

consistent with the examples and (2) preferred by learning biases. The set of expressions is

partially ordered by a more-specific-tharr predicate [17]. The induction problem is to discover

some expression that encompasses all positive examples and no negative ones, by searching the

tangled hierarchy of expressions.

The goal of parse completion is to build a complete derivation tree for some string starting

from an existing grammar. If the existing grammar is powerful enough to parse the string then a

complete derivation tree may be built. The interesting case occurs when the existing grammar is

inadequate to parse the string. If we attempt a top-down parse, we will produce a partial

derivation tree that contains a number of gaps (Figure 1). Each gap becomes a completion site, a

point at which additional rules must be added to the grammar to complete the derivation tree.

The new grammar will be a generalization of the old grammar, since it will be able to parse at

least one string that the old grammar could not parse.

Although the above may appear to be a tight description of an algorithm, there are in fact a

wide variety of design choices to be made within this general framework. Each choice may

produce an algorithm with dramatically different characteristics. We wish to explore these design

choices in some systematic fashion.

At each completion site there usually exist many different ways in which the grammar may be

generalized to allow the derivation to continue. Each of these new grammars represents an

3More-specific-than(x,y) is true iff the denotation of x (i.e., all possible instances of x) is a subset of the
denotation of y.



alternate node within the tangled generalization hierarchy of grammars. Our first decision point

is whether to consider all or just one of these alternate generalizations. This is a least-

commitment versus most-commitment distinction: a most-commitment algorithm will select just

one alternative, and continue its search in a depth first fashion, back tracking if necessary. Most

grammar induction algorithms fall in this category [9, 5, 19]. A least-commitment algorithm

attempts to explore all of the generalization alternatives in parallel, without committing itself to

one particular path. In this sense it is more like a breadth first search. The best known example

of a least-commitment induction algorithm is the version space algorithm [17].

Least-commitment algorithms are memory intensive compared to their most committment

counterparts, and are thus regarded with disfavour for most machine learning applications.

However, if the induction domain itself is ill understood, then a least-commitment algorithm can

offer valuable information about the domain. If we are interested in the impact of certain design

choices on an induction algorithm, then we need to know more than just the final solution

obtained by an algorithm. We would also like some idea of the blind alleys explored, and those

avoided. This ability to see more than just a narrow view is one advantage of a least-commitment'

algorithm.

There are many other design choices available. A grammar may be generalized in two different

ways: by introducing new rules into the grammar, or by merging old non-terminals in existing

rules. Each approach defines a partial order over the set of grammars consistent with a set of

examples, and in both cases the partial order is a strict suborder of the partial order based on the

predicate more-specific-than. The partial order defined by merging old non-terminals has been

investigated elsewhere [29, 12, 20].

The parse completion algorithm provides an effective means to deal systematically with the

different altematives possible within the paradigm of generalization through the addition of

rules. The approach taken is to classify rules added to a grammar in terms of the format of the

right hand side (RHS). A natural classification scheme can be derived from the process of

performing a top-down parse on a string. One can think of parsing a string as involving two

steps. The first step partitions a string into several contiguous substrings. Each partition element

is then labelled with some symbol from the grammar, either a terminal or non-terminal. The

partitioning and labelling steps are repeated on each partition element labelled with a non-

terminal, until all elements are labelled with terminals. At each stage the number of elements in



the partition and the labels assigned to each element correspond to the RHS of some rule in the

grammar. Conversely, a new rule RHS can be formed by taking a partition of a string and

labelling its elements. In figure 1 the existing grammar is able to parse the first character in the

string, 1, and the last three characters, -1 -. If we allow the non-terminal S to cover the last three

characters, then the unparsed substring is d r a S. We can generate new rules to complete this

parse by considering the partitions and labellings for this substring (Figure 2).
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Figure 2: Some partitions and labellings for the derivation tree in figure 1.
"-" represents an unlabelled partition.

We can generate a variety of different algorithms from the parse completion framework by

giving specific functions for generating partitions and labelling the elements. At one extreme, we

could restrict the partitioning and labelling so that only rules already existing within our

grammar could be generated. Under this restriction the parse completion algorithm becomes a

simple top-down parser. With different restrictions new rules of varying power may be added to

an existing grammar.

The RHS of rules may be classified according to whether they contain terminals, non-terminals

that have previously appeared in the grammar, new non-terminals, and various combinations of

the above. In addition, classification may be based on the length of the rules, or the order of the

RHS constituents (i.e., new rules may only be formed by adding to the right end of the RHS of

an existing rule). Using these classification schemes, a partial order of RHS formats may be

defined (see Section 4). This partial order of RHS formats is distinct from the partial order of

grammars in the generalization hierarchy, although we show in Section 5 that the two are closely



related. The algorithm is designed so that a particular point in this partial order may be selected,

or the program may be permitted to move through the partial order itself. In this latter mode, the

most specific class of RHS format is tried first, and less specific RHS formats are tried only if

the more specific ones fail to allow the parse to succeed. In this manner the program searches

automatically for useful combinations of RHS formats.

Grammars may be classified by the syntactic structure of the rewrite rules that may appear in

the grammar. Common classifications for grammars for regular and context free languages

include:
• Right Linear - all productions are of the form A —> a£ or A —> a where A,B are

non-terminals and a a terminal string.

• Left Linear - all productions are of the form A —» 5oc or A —» a where A, B are non-
terminals and a a terminal string.

• Chomsky Normal Form - all productions are of the form A —> BC or A —> a, where
A,ByC are non-terminals and a is a terminal.

• Greibach Normal Form - all productions are of the form A —» ap, where A is a non-
terminal, a is a terminal, and P is a (possibly empty) string of non-terminals.

RHS format restrictions can be derived which will guarantee that all grammars generated belong

to a particular class. Section 4 presents proof of these results for the classes of Right Linear and

Chomsky Normal Form.

In section 4 and 5 we examine the RHS formats for Right Linear and Chomsky Normal Form

grammars in detail. These two grammar classes were chosen as they can capture the classes of

Regular and Context Free languages. The other grammar forms may be converted to one of these

two forms by a simple mechanical transformation [11].

A simple syntactic distinction in the RHS formats was found to have a profound effect on the

characteristics of the grammars generated by parse completion. For Right Linear and Chomsky

Normal Form grammars the allowed RHS formats could be divided into those which introduced

new non-terminals and those which reused existing non-terminals. In Section 5 it is shown that a

restriction to new non-terminals can produce a grammar that has a finite language which is equal

to the set of positive example strings presented to the algorithm. On the other hand, the use of

existing non-terminals allows recursive rewrite rules to be introduced (i.e. a rule whose RHS

may eventually be reduced to a string that contains an occurence of the non-terminals on its

LHS). Recursive rewrite rules introduce the possibility of grammars which accept infinite



languages. Since many interesting languages are recursive, RHS formats which allow reusing

non-terminals are desirable. However, RHS formats which exclusively allow reusing old non-

terminals can only use existing structure in the grammar in new combinations. Assume that we

start with a situation in which we have a grammar that contains no recursive rules. In this

grammar, for an arbitrary non-terminal A, there are a finite number of derivation trees which may

be built with A as their root. When we create a new rule which uses this existing non-terminal A

we are introducing a new situation in which the structures (i.e. trees) already associated with A

can be introduced. This idea of using existing structure in novel situations is a very powerful

generalization tool, but it cannot work in a vaccuum. There must be some initial structures to be

manipulated, and these can only be introduced by the use of new non-terminals. So both types of

RHS formats are necessary and the interesting question is whether we can always tell how much

of each is required.

The RHS formats for Right or Left Linear grammars and Chomsky Normal Form grammars

can both be shown to define a partial order over the set of grammars consistent with the

examples. (Note that this is a partial order over the grammars themselves, not over the RHS

formats.) Furthermore, these partial orders are well defined and finitely bounded,4 and can

therefore be used to define a version space-like structure for these grammar classes (see Section

5). This structure is useful in deriving a number of properties about induction algorithms for

these grammar classes.

One important result that can be derived is that under certain conditions, and given only a set

of positive example strings, a least-commitment induction algorithm will always converge to a

grammar set containing at least one grammar for the target language in bounded time (for proofs

see Section 5). The key idea is that it is not possible to arbitrarily introduce RHS formats which

add structure and RHS formats which reuse existing structure. Unless a certain minimal amount

of structure is present first, the grammars produced will be overly general and the partial order of

grammars induced will fail to contain a grammar which captures only the target language.

The important question is how much structure is necessary to prevent over-generalization. One

can show that if the examples are ordered so that the shortest ones come first, and if the learner

4The bounds however are quite large, even for simple grammars, hence computation of the entire partial order is
often not practical.
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starts out by adding only rules that introduce structure, then there is a well defined point at which

no further structure need be added, and one can begin to introduce rules which use existing

structure recursively.5 Identifying the point at which no further structure need be added is

equivalent to defining a space complexity bound for the language being induced.

The derivation of the above results also suggests that certain felicity conditions [26] can be

defined which will permit convergence. These conditions require the teacher to identify to the

student whether a particular example is an example of a new concept in the domain, or merely a

generalization of concepts the student has seen before (for details see Section 6).

3 The Parse Completion Algorithm
It is perhaps easiest to get an intuitive feel for the parse completion algorithm by considering a

simple example. A simple grammar is defined in figure 3, part a, along with a new example

string which is a member of the language. The first step in the algorithm is to attempt to parse

the string from the top down. Applying the first rule in the grammar we get the partial derivation

tree shown in part b of figure 3. It should be obvious to the reader at this point that the existing

grammar cannot successfully complete this parse. We can extend the partial derivation tree by

applying the second rule of the grammar to the non-terminal A, leaving the non-terminal B to

cover the substring abb. When we consider a string to be parsed it is convenient to number the

positions between each pair of terminals in the string, and before and after the string. Thus the

substring ab in our new example string (figure 3 a) is found between positions 1 and 3.6 A node

in the derivation tree is said to cover a particular substring if the left-most leaf of the sub-tree

rooted at that node is the first element of the substring and the right-most leaf of the sub-tree is

the last element of the substring. Thus in figure 3 f the node labelled with the non-terminal B in

the left tree covers the substring in positions 1 through 4 (i.e. abb).7

As we have noted it is possible to extend the derivation tree in figure 3 b by applying the

5These results are based on the Pumping Lemmas for regular and context free languages and are discussed in
Section 5.

^The numbering of positions is from left to right, starting from 0 for the start of the string.

7Note that normally a given sequence of terminals may appear several times within a string, hence to avoid
ambiguity we will usually refer to substrings via the position numbers. Similarly, when the labels on a parse tree are
not unique, we will number the nodes in the tree in breadth first fashion starting at the root, and refer to the node by
number, rather than by its label. The node labelled B in figure 3 could also be referred to as node 3.



Figure 3: A simple parse completion example.
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second rule in the grammar, but if we do this then we are restricting our derivation by forcing the

third node in our derivation tree (the one labelled B) to cover the rest of the substring. It is not

clear that we wish to introduce this bias into our algorithm. If the language we are attempting to

describe can be defined by the regular expression a+b+ , then one possible grammar for the

language would be:

A -> aA
A —> a
B-^bB

However, if we used the bias suggested then we could never discover this language. So it is not

always best to attempt to extend the parse as far as possible before adding new rules to the

grammar. This particular bias may also be undesirable because its effects are subtle, hence hard

to specify in a non-procedural fashion.

One important issue to be resolved is how far one should attempt to push the parse with the

existing grammar before considering additional rules. For the purposes of this example, assume

that we stop with the partial derivation tree of figure 3 b. We have two non-leaf nodes beneath

which we wish to build sub-trees to complete the parse. There will be one leaf node for each

terminal of our string, and the problem is to decide how to allocate these leaves to the two sub-

trees. We can regard this as a partitioning problem; in general we will wish to partition some

string between positions k and / into m non-overlapping substrings such that the substrings when

concatenated in left to right order form the original string and each substring is of length at least

one. Each substring in a partition is called an element of the partition. The size of a partition is

the number of elements in the partition. The length of a partition element is the length of the

corresponding substring. For the example problem the possible partitions of size two are shown

in figure 3 c. Each partition element, if it is of length greater than one, may be partitioned

further. Consider the first of the three partitions in figure 3 c; the substring a will be covered by

the node labelled A and the substring abb will be covered by the node labelled B. The first

element of this partition cannot be partitioned further, but the second may be left as a single

element of length three, or may be partitioned further into partitions of size two or three. (See

figure 3 d.) In general each element of a partition may be partitioned further, and each partition

for one element may be combined with any partition for the next element in forming a valid total

partition. A total partition is a sequence of nested partitions: (a (a) (bb)) and (a (a) (b) (b)) are
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both total partitions for this example. Each total partition corresponds to a different topology for

the sub-trees used to complete a parse.

For a fixed total partition, there are still a variety of sub-trees which represent different

completions of the parse. Each of these is distinguished by a different set of labels for the interior

nodes of the sub-tree.8 Each different labelling of the set of children of some node in the

derivation tree corresponds to a different right hand side (RHS) for a rule whose left hand side

corresponds to the label of the parent node. The length of the RHS is defined to be the length of

the corresponding partition. If we consider the total partition (a (a) (bb)), the new rules added

by two possible labellings of this total partition are shown in figure 3 e and the corresponding

derivation trees for the completed parses are shown in part f of the figure. These are only two of

the many possible trees derivable by considering all possible partitions and all possible labellings

of those partitions.

The careful reader will have noted that we introduced two restrictions into the types of

grammars we will consider in the preceding example. The restriction that all partition elements

had to be of length at least one means that we will not allow e-rules in our grammars.9 This

restriction is of little consequence since it can be proven [11] that for any grammar containing

e-rules there is an equivalent grammar without any e-rules.10 The more significant restriction is

that we assumed that the LHS of any rule in the grammar was simply the label on the parent

node in the derivation tree. This assumption means that we are restricting ourselves to the class

of Context Free grammars.11 Although this class does not include all computable functions, it

still contains a large and interesting class of algorithms, including those which can be computed

with a simple stack.

The basic parse completion algorithm is presented in Figure 4. There are two steps at each

8The leaf nodes will always be labelled identically, since they correspond to the same substring in every case.

9An e-rule is simply a rule whose RHS is empty.

10This is true if and only if the language defined by the grammar does not contain the empty string, an assumption
we shall make henceforth.

n A Context Free grammar is one in which the RHS of rules may be any combination of terminals and non-
terminals, but the LHS of a rule is restricted to being a single non-terminal. Procedurally, this restriction is
equivalent to the invocation of a sub-goal being dependent only on the presence of its parent goal, and not on the
presence of siblings of its parent.
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stage of the parse: partitioning and substitution. Partitioning has already been discussed;

substitution involves labelling each element of a partition with a non-terminal or a terminal

string. A labelled partition corresponds to the RHS of a rule whose LHS will be the argument

LHS passed in to the procedure. If a rule matching this LHS and RHS already exists in the

grammar the grammar is unchanged, otherwise a new rule is added. A single old grammar can

serve as parent to several new grammars, since a particular substring may be partitioned and

labelled in several ways, each distinct way representing an alternate rule which may be added to

the old grammar. The algorithm is then applied recursively to each new partition until all

partitions are labelled with terminals, at which point we have a complete top-down derivation of

the string. The algorithm is called initially with the start symbol, S, and with the left and right

pointers set to the beginning and end of the string to be parsed.

parse-complete(left right LHS old-grammars)

for each grammar in old-grammars do
if LHS is a terminal symbol then

if the terminal symbol matches the string between left and right
parse succeeds and return old-grammar
le ' •
parse fails and return fail (LHS left right).

if the string between left and right has length 1
add a rule of form LHS — > terminal to grammar
if necessary and return modified grammar

for all partitions of the string between left and right do
for all substitutions for a partition do
if the LHS, RHS pair are not already in the grammar add
a rule of form LHS — > RHS to grammar to form mod-grammar

for each partition element (left right) and element label
parse-complete(left right label mod-grammar)
if no successful parses were found, create a fail
marker fail(LHS left right) and place it on list of
new grammars

add list of grammars returned to new grammars.
Return list of new grammars.

Figure 4: Basic Parse Completion Algorithm

Several comments may be made about the basic algorithm. The test for partition size of one is

a check for the case when a node in the derivation tree has only one child. In this case we force

the child to be a terminal string12, and hence a leaf node in the derivation tree. This restriction

l2Which may be a string of length one.
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eliminates the infinite class of redundant extensions to a grammar which have rules of the form

A • —> A/+1, where Ai9 AUI are arbitrary non-terminal symbols. The elimination of this class of

grammars does not give up any representational power as any grammar that contains rules of this

form can be reduced to a grammar that accepts the same language but contains no rules of this

form [11]. The process of combining new rules and old grammars to create new grammars must

also be treated with care. In general, there may be several ways to complete the parse for each

element of a partition. Each completion for a particular element will have some set of new rules

associated with i t^ and the set of new rules introduced by a particular parse is formed by

unioning one of these sets from each partition element with any of the sets from the other

partition elements.

Failure of a parse can occur in two ways; either a mismatch occurs between a terminal

introduced as a label in the derivation and the terminal in the corresponding position in the

string, or the set of substitutions at some point in the parse is empty. When a failure occurs, a/az7

marker is generated which indicates the label of the node where the failure occurred, and the-

substring to be spanned by the node. These fail markers allow the algorithm's efficiency to be!

improved considerably, since if a parse'fails to succeed, it is only necessary to reparse with a

different class of partitions or substitutions from the fail markers, rather than restarting the parse

from the top of the derivation tree.

There is one potential difficulty with the fail markers. Consider the two grammars in figure 5,

both of which parse the single string ba. Assume that we have now given a new string bb to the

algorithm. For the grammar in part a of the figure the fail marker generated would be (1 2 B).

Reparsing from this point and allowing new terminals for rule RHS would add the rule B —•• b to

the grammar. However for the grammar in part b the fail marker created is (12 a). We do not

allow rules of the form a —> b in our grammars, so any attempt to reparse from this fail marker is

doomed to fail. In this case the rule we wish to modify is actually the parent of the node at which

the failure occurred, so it is necessary to promote the fail marker up to this parent rule. (i.e. The

desired fail marker is (0 2 S)). When promoting fail markers in this way, one must be careful to

remove any fail-markers associated with other children of the node the failure was promoted to.

The basic algorithm described thus far may be instantiated to a particular algorithm by

I3Which may be empty.
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Figure 5: Two grammars for the string ba, and partial derivations for bb.

specifying functions for generating partitions and substitutions. For example, we may restrict the

partitions and substitutions so that only partition and substitution pairs which correspond to

existing grammar rules are generated. If our grammar contained just the rules:

S

then we would only generate partitions of size one with label a assigned to the single partition

element or partitions of size two, with the first element labelled a and the second element

labelled 5. With this pair of generators specified for the partitions and substitutions the parse

completion algorithm becomes a simple top-down parser.

In section 4 a partial order of substitutions for the RHS of a rule will be described. It is

possible for the parse completion algorithm to pick a particular point in this partial order and

hold it fixed throughout a learning trial.14 More interesting behaviour is generated however if the

algorithm is allowed to move through this partial order on each example string. Initially, the

most specific class of substitutions is tried and more general substitutions are used only if the

14A learning trial is defined as a set of positive examples and a (possibly empty) set of negative examples drawn
from the language of a particular grammar.
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more specific ones fail to allow a parse to succeed. If this second approach is taken, there is still

a control issue to be resolved: One may either move through the partial order each time a failure

in the parse occurs, or one can fix a point in the partial order at the start of the parse, and only

move up a level in the partial order if all attempts at completing the parse at the current level fail.

Fixing the substitution class once at the start of the parse would correspond to the algorithm

illustrated in figure 6, while moving through the partial order at each failure would require a

modification to the basic parse completion algorithm.(See figure 7.)

subst_level = 0
while no successful parse do

parse-complete(start end S empty)
subst level = subst_level + 1

Figure 6: Algorithm for fixing substitution level at start of parse.

parse-complete(left right LHS old-grammars)

for each grammar in old-grammars do
if LHS is a terminal symbol then

if the terminal symbol matches the string between left and right
parse succeeds and return old-grammar

parse fails and return fail(LHS left right)
else

if the string between left and right has length 1
add a rule of form LHS — > terminal to grammar
if necessary and return modified grammar

else
for all partitions of the string between left and right do

for all substitutions for a partition do
if the LHS, RHS pair are not already in the grammar add

a rule of form LHS — > RHS to grammar to form mod-grammar
for each partition element (left right) and element label

subst_level = 0
while no successful parse and subst_level <= max do

parse-complete(left right label mod-grammar)
if no successful parses were found create a fail
marker fail(LHS left right) and place it on list of
new grammars

else
add list of grammars returned to new grammars.

Return list of new grammars.

Figure 7: Parse Completion with movement through the substitution'levels at
each parse failure.

Both control strategies were tried. The approach in which one moved through the partial order

each time the parse reached a failure point produces new grammars from old through hybrid

substitutions which span multiple levels of the partial order. This makes it difficult to determine
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the characteristics of the grammars produced under a particular substitution strategy. For

purposes of examining the properties of grammars under different classes of substitution, the

approach in which an entire parse is attempted at one level before the next level of substitution is

considered is preferred.

Before considering the classes of substitutions and partitions in more detail, we shall conclude

this section with some comments on the complexity of this algorithm. The basic processes of

partitioning and labelling in the algorithm can be equivalently regarded as constructing a rooted

tree (i.e. a tree in which one node is distinguished as the root), and then labelling this tree

according to the restrictions imposed by the current point in the substitution hierarchy. One can

measure the complexity of the algorithm in terms of the number of possible trees that can be

generated.

The trees we are interested in are rooted, and have n ordered leaves. In general when we

partition, each node is allowed to have anywhere from two to n children. However we will first

consider the simpler problem of the number of ordered binary trees with n leaves. We may

assign the first r leaves to the left sub-tree and the remaining (n - r) to the right sub-tree of the

root. If we let ak be the number of rooted ordered binary trees with k leaves, then there are ar

distinct left sub-trees and an_r distinct right sub-trees when we assign r leaves to the left sub-

tree. Thus the total number of distinct trees with r leaves in the left sub-tree is aram r. Since we
r n — r

may assign anywhere from one to n - 1 leaves to the left sub-tree we have the recurrence

formula:

for the number of rooted ordered binary trees with n leaves. This recurrence formula corresponds

to the Catalan series [6] and it can be shown that the number of rooted binary trees with n leaves

is the n-lst Catalan number which is defined by C/l_1
 ==-(^lJTi2)- ^ c a n ^ shown that (^) is

bounded above by 22*.15 Thus an upper bound on the number of rooted ordered binary trees with

n leaves is O(—).

In the more general case, our trees are still rooted and ordered, but a node may have two or

l5Intuitively this is obvious as I2* is the total number of subsets of 2k items while Q*) is the number of subsets

containing exactly k items.
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more children. The analysis in this case is greatly simplified by the fact that the rooted ordered

trees with n vertices may be put in one to one correspondence with the number of rooted ordered

binary trees with n -1 leaves. [6] From our previous results we can see that the number of rooted

ordered trees on n vertices is the n - 2nd Catalan number. We are interested in the number of

trees with n leaves rather than n vertices, but since every node but a leaf must have at least two

children, with n leaves, every tree has at least n + / vertices and no more than 2n - 1 vertices.

We may simply sum over the number of trees for each number of vertices:

2n - 1 In - 1 1 1

Z r _ V /2*-4\ /4/!-6\
c*-2 - JL k A k-2 I s 2 ^ 2 * - 3 /

Using the upper bound for Q*) from before we have that the number of rooted ordered trees with

n leaves is 0(16").

In most cases the more general partitioning algorithm is applied, but for certain cases (see

section 4) we consider the more restrictive binary partitioning for the string. The important point

is that the complexity bound in both cases is exponential. An exhaustive examination of all th?

possible structures is clearly infeasible for practical problems. However before one can

understand the effects of various heuristics, one needs a map of the space of possible structures.

The purpose of this algorithm was to provide a tool to help sketch out this space, and the rest of

this paper is devoted to a description of some of the characteristics of this space that have been

discovered.

4 A Space of RHS-formats
We can now begin to examine the types of rules that may be added to a grammar through the

process of parse completion. The basic manner in which a new rule is formed is to first partition

some substring of the current input. The length of this substring determines the length of the

RHS of this new rule. However the composition of the RHS, and hence to a large extent the

properties of the resulting grammar, is dependent on what sorts of labels are allowed for the RHS

of the new rule. To give a trivial example, if we were to restrict our rules to allow only terminals

to appear as partition labels then it is apparent that for any positive set of sample strings we

would generate the trivial grammar that generates exactly that set of sample strings and no other

strings. At the other extreme, if we restrict the RHS of new rules to be labelled only by the

non-terminal S or a terminal, then, if Z is the alphabet used in our sample strings, we will
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generate a grammar for Z* (i.e. the language of all possible finite length strings over S).

If we extend the arguments in the previous paragraph, we find that we can define a partial

order over the RHS formats. This partial order is based on the generality of the grammars that

can be produced by allowing only this type of RHS format to be used when performing parse

completion. It is convenient to first characterize the RHS formats along two dimensions. One

dimension of variation is the composition of the RHS, what sort of terms we allow to appear on a

RHS. The three natural compositional categories are terminals, new non-terminals and old

non-terminals. New non-terminals are simply those which have not appeared in any previous

rule in the grammar, while old non-terminals have appeared previously. The second dimension

of variation we have considered is the dimension of order. For example the class of regular

grammars can be captured by left or right linear grammars, which have the restriction that all

non-terminals either precede or follow all terminals in each RHS. Similarly center-embedded

grammars can be characterized by imposing a restriction on the order of terminals and non-

terminals in rule RHS's.

It is difficult to capture all of the order variation that is possible, so we have simplified the

variability along this dimension by grouping the order restrictions into three broad classes.

Admittedly these classes are somewhat arbitrary, but as a first pass they do capture some

important distinctions. The three categories selected are existing order, extension, and

unrestricted. Existing order limits RHS formats to those already existing in the grammar.

Extension permits adding new components to the right of existing RHS formats only. This

restriction allows one to capture the class of right linear grammars. Unrestricted allows the

addition of new components to either end of an existing RHS format as well as arbitrary

replacement of existing components. The three order restrictions may be applied to each type of

RHS constituent independantly producing the two dimensional matrix of RHS restrictions shown

in figure 8. For convenience, each cell in this matrix has been numbered and these numbers will

be used to refer to the particular combination of constituent and order restriction represented by

each cell. Note that the combination of new variables and existing order is not a legal

combination since by definition a new variable cannot have a previously defined position in any

rule.

A RHS format is defined as an ordered triple of restrictions, <a,(3,5>. The first element of the

triple is the restriction that applies to terminal constituents in the RHS, the second element refers
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Figure 8: Matrix of RHS restrictions

to new non-terminal constituents, and the third to old non-terminal constituents. Each element is

one of {0,3,£, £/}, where 0 means no constituents of this type are allowed, 3 means existing

order, and E and U refer to extension and unrestricted respectively. The format is the union of

the sets represented by the three elements in the triple. The triple <£,3,£> corresponds to the set

of all RHS formats which can be formed by taking old non-terminals in their existing order and

allowing extension with terminals or new non-terminals.

There is a total order over the restrictions. The set of RHS formats without a particular

constituent is a strict subset of the set of RHS formats with that constituent in its existing order.

The set of RHS formats with a particular constituent only in its existing order is a strict subset of

the set of RHS formats which allow that constituent in its existing order and also as extensions to

an existing format. Similarly, the set of RHS formats which allow extension with a particular

constituent are a strict subset of the set of RHS formats which allow unrestricted use of that

constituent. However, restrictions applied to distinct constituents {i.e. terminals and new non-

terminals) are not directly comparable, meaning that we cannot define a total order over the RHS

formats. We can define a partial order over the RHS formats:

<a,byc> > <a\b\c> iff a>a & b>b'& c>c'
where a,b,c,d\b'\c e {0,3JE,U}
and U > E > 3 > 0 .

This partial order has a unique upper and lower bound. The lower bound is defined by the triple

<3,0,3>. This format allows only terminals and old variables in the same order as an existing
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rule in the grammar, so the lower bound corresponds to parsing a string with the existing

grammar. The upper bound is defined by <£/, U, U> and allows unrestricted use of all three basic

constituents (terminals, old and new non-terminals). This format contains the set of all RHS

formats that contain terminals and non-terminals from the existing grammar plus up to n new

non-terminals where n is the length of the partition. It is easy to show that this is the most

general set of RHS formats allowed under the parse completion paradigm.

The partial order of RHS formats is related to the partial order of grammars developed in

Section 5. The relationship arises because in parse completion the only mechanism to generalize

a grammar (i.e. increase the set of strings accepted by the grammar) is to add additional rules to

the grammar. One implication of this is that in parse completion the grammars always increase

monotonically in size. Adding additional rules to a grammar may make a grammar more general

than it was; however, the addition of rules to a grammar can never make a grammar less general

than it currently is. Thus, once our induction process over-generalizes in this domain, we are

stuck. ̂  The second implication is that how much more general a grammar becomes when one

additional rule is added is a function of the power of that rule. If the RHS format allows

unrestricted use of old non-terminals then it becomes possible to create recursive rewrite rules

and convert a grammar that accepts only a finite set of strings into one which accepts an infinite

set of strings. On the other hand a RHS format which allows only the use of terminals or new

non-terminals cannot convert a finite grammar into an infinite one. In general, if we consider a

grammar G and some string s which cannot be parsed by G and two different RHS formats a and

a', then if a' > a and we let S be the set of candidate rules for completing the parse allowed by a,

and 5' the set of candidate rules allowed by a! then S is a subset of 5', and there will be rules in

S' that when added to G form a new grammar more general than any grammar that could be

formed by adding rules from S to G. In this fashion the partial order of RHS formats determines

how large a "step" we take in generalizing the grammar by adding one rule to it.

To illustrate some of the ideas discussed above we will now work through a few simple

examples. Consider first the case of a simple regular language (0+1)"1". Assume the system has

already been trained on some example strings and has generated the following initial grammar:

l6This, of course, is true ooly if there is not some external backtracking mechanism capable of retracting a
hypothesized grammar and returning the system to some previous state.
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This is a right linear grammar for 0+. Now if we are given a new string 01 the partial derivation

tree generated for this string will be as shown in figure 9. The parse will fail at the leaf labelled S

and the fail marker returned will be (S 1 2). Now, since this is a partition of size 1, we will only

consider the use of terminals for the RHS constituent. Also, since no existing rule begins with

the string 1, we cannot extend an existing rule, hence our RHS format is an unrestricted terminal

(i.e. <£/,0,0>). This RHS format leads to the introduction of a new rule S —> 1 and our new

grammar is:

1
S->0S

This grammar is still not general enough (it corresponds to the regular expression 0*(0+l)). Now

consider adding another example string, Oil. The partial derivation tree generated will be the

same as that illustrated in figure 9, but in this case our fail marker will be (S 1 3), corresponding

to the substring 11. In this case a variety of RHS format restrictions may be applied and it is

instructive to consider the outcome under different RHS formats.

1. The RHS format <U, 0 , 0 > which allows unrestricted terminals only.

In this case the rule S —> 11 is added to the grammar and we still have a grammar
which is not general enough.

2. The RHS format <0 , Uy0> which allows unrestricted old non-terminals only.

In this case the rule S —> SS is added to the grammar, and the derivation is
completed using existing rules in the grammar. This grammar is in fact a grammar
for (0+1)+. It should be noted however that this grammar is not right linear, and
hence is actually more powerful than strictly necessary to capture this language.

3. The RHS format < 0 , £ , 0 > which allows extension with old non-terminals only.

In this case we can start with the rule S —» 1 and extend it to yield the rule S —» 15.
The parse may be completed after the application of this rule by using rules already
in the grammar. The new grammar produced is a right linear grammar for the
regular language (0+1)+, and is thus the most desirable grammar for this particular
language.

The intent of this simple example was to illustrate how the choice of RHS format can affect the

structure of the induced grammar (the second RHS format above does not preserve the right

linearity of the grammar), and how well the induced grammar generalizes the given example

strings.

Two interesting and well studied classes of language are regular languages and context free
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languages. Regular languages can be shown to be captured precisely by right linear grammars,

while context free languages can be shown to be captured by Chomsky Normal Form (CNF>

grammars [11]. The following two theorems show that these two grammar classes can. bel

captured by an appropriate restriction of partitioning and RHS formats.

Theorem 1: Given a right linear grammar G, if we apply parse completion to it with the

following restrictions, then the resulting grammar G' will always be right linear. The restrictions

are that only partitions of size one or size two are allowed and that only the following two RHS

formats are used in the indicated order17:

1. Extension with old or new non-terminalsxB,^,^

2. Unrestricted tenninals.<[/,0,0>

Proof: Assume that the parse of an existing string fails, and we are left with a fail marker (N i

j) where N is a non-terminal and i and j denote the start and end of the unparsed substring. There

are two possible cases depending on whether we partition this substring into one piece or two

pieces:
1. A partition of size one. Since all rules in G already have RHS of length at least one,

we cannot extend an old rule to match a partition of size one. Thus we fall through
to our second RHS format, which only permits unrestricted terminals. Our new
RHS will be the entire unmatched substring, forming a new rule N —»(3, where (S is

l7Recall that the general parse completion algorithm assumes that the set of RHS formats it uses is ordered, and
will attempt to complete the parse with one RHS format before considering the next format in the order.
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a string of terminals. Hence the new rule is a valid right linear rule.

2. A partition of size two. The second RHS format would allow us to substitute
terminal strings for both parts of the partition, producing a rule of the form
N -» Pjp2, which is a valid right linear rule of the form N —» a where a = Pjf^ a nd
is thus the same as case 1. The other choice is to extend an existing rule using the
first RHS format. The only candidates for extension are rules with RHS length less
than two. (Recall that we count a string of terminals not seperated by any non-
terminals as one element when computing RHS length.) Since G is right linear,
these rules must all be of the form A —> a where a is a terminal string. Extending a
rule of this form with either an old or a new non-terminal produces a rule of the
form A —> afi, where a is a terminal string and B a non-terminal. This rule is a
legal right linear rule.

In both cases the new rules added to the grammar will preserve the right linearity of the

grammar. This completes the proof.

Theorem 2: Given a CNF grammar G, if we apply parse completion to it with the following

restrictions, then the resulting grammar G' will always be CNF. The restrictions are that only

partitions of size two are allowed except when the substring has length one, and that only the-

following two RHS formats are used in the indicated order l

1. Unrestricted old and new non-terminals.<0, U9 U>

2. Substitution of terminals only at leaves of derivation tree (i.e. at partitions of size
one).

The second RHS format specified is really just unrestricted substitution of terminals for

partitions of size one (i.e. < [ / ,0 ,0>) .

Proof: Assume that the parse of an existing string fails, and we are left with a fail marker (N i

j) where N is a non-terminal and i and j denote the start and end of the unparsed substring. Once

again, we must consider two cases, depending on the length of the substring.
1. The length of the substring is one. In this case our partition must be of size one,

and we substitute the corresponding terminal in the substring for our RHS format
yielding a rule of the form N —» a, where a is a terminal. This new rule is a valid
CNF rule.

2. The length of the substring is greater than one. In this case we consider all possible
partitions of size two. For each such partition we only allow the first RHS format
which will produce a rule of the form A —» BC where B and C are both non-
terminals. This new rule will also be a valid CNF rule.

Thus at each point where we are unable to complete the parse we add a rule according to case

1 or case 2. In both cases the rule added will preserve the CNF. Finally, this process will always

terminate since the substring corresponding to each element of the new partition is smaller than
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the original unparsed substring, and once we reach a substring of length one we must stop. This

completes the proof.

There is one other common form of grammar which also encompasses the class of context free

grammars, this is Greibach Normal Form. In a manner analogous to the above one can show that

you will generate only Greibach Normal Form grammars if you restrict the parse completion

algorithm in the following manner:
1. Allow only partitions where the length of the first element of the partition is one.

2. Use a RHS format which allows extension with new or old non-terminals for
partitions of size greater than one.

3. Use a RHS format which allows unrestricted substitution of terminals for partitions
of size one.

5 A Partial Order for Grammars
While developing the RHS formats for right linear grammars described in the previous section,

biases which favoured using either old or new non-terminals first were also tried. Both of these

biases turn out to be undesirable, but for different reasons. The bias in favour of new non-'

terminals will always produce a grammar for a finite language, since the grammar will never

contain recursive rewrite rules. (A rewrite rule is recursive if the same non-terminal occurs in the

LHS and RHS, or if a non-terminal in the RHS may eventually be rewritten as a string which

contains the non-terminal on the LHS.) On the other hand, a bias in favour of old non-terminals

will always produce a grammar for an infinite language, but the grammar rules will always

contain only a single non-terminal. It is easy to show that any grammar of this form corresponds

to a regular language1** of the form (0^+02+ ... +ai)*((31+P2+ ••• +Pj) or of the form (a1+oc2+ ...

+oci)(f31+(32+ ... +Pj) where 0̂  and (3: are strings of terminals. The problem is that this language

is usually much more general than the target language of the induction. The reason for this

overgeneralization is that recursive rewrite rules were introduced into the grammar before the

grammar contained sufficient structure to adequately capture the target language.

The effects of the bias in favour of either new non-terminals before old non-terminals or vice

versa reveals a partial order of the grammars induced by parse completion for both the cases of

18The grammar is not necessarily Right Linear, it could be CNF or Greibach or several other forms. This is no
paradox, the regular languages are a proper subset of the context free languages, so a CNF grammar could quite
easily correspond to a regular language.
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right linear grammars and CNF grammars.

Consider first the case of right linear grammars. The following theorem is used to show that a

bias in favour of old non-terminals will always produce a grammar for the language Z"\ where Z

is the alphabet of the sample strings, once a sufficient number of sample strings are given. This

language is almost always more general than the target language, so the algorithm is always

over-generalizing.

Definition: Let S be a set of strings. Post(S), the set of postfix strings on S, is defined to be

{ p | 3a ap € P and length(a) > 0}. Note that S is a subset of Post(S).

Theorem: Given a regular language, L, a set of positive examples, P, and a known alphabet, I ,

if we have a bias in favour of old non-terminals as RHS constituents, then the RHS formats

allowed for right linear grammars will produce only grammars of the form:

S -» oĉ S af. e Post(P)
S -> p. P,. € Post(P)

Proof: This is easily proven by induction on the number of rules in the grammar.

Base Case: The first rule added to the grammar must be of the form S —» a where a is the first

example string, hence a is an element of Post(P).

Inductive Case: Assume that all of the first n - 1 rules added to the grammar are of the form

indicated, and now consider the addition of the nth rule to the grammar. This rule will be

introduced at a point where the parse of the string with the existing grammar failed. The fail

marker returned (after promotion) must be of the from (S i j) as S is the only non-terminal

currently in the grammar, thus S will be the LHS of the new rule. Now since our grammar is

right linear any derivation can be organized so it is a leftmost derivation, hence our unparsed

substring must extend from the point at which the parse failed to the end of the string. There are

two cases to consider
1. The unparsed substring contains no prefix that matches the RHS of an existing

rule. In this case the second RHS format for right linear grammars must be applied
and a new rule of the form S —> a will be created where a equals the unparsed
substring. Since this substring is a postfix of the string currently being parsed, the
new rule is of the correct form.

2. The unparsed substring contains some prefix that matches the RHS of an existing
rule. Let p be the RHS of the existing rule, by the induction hypothesis pe Post(P).
Since P exists the first RHS format may be applied in this case. Also since S is a
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non-terminal already appearing in the grammar the bias in favour of old non-
terminals will ensure that S is used in forming the new rule. Thus the new rule will
have the form 5 —»(35 which is of the correct form.

This completes the proof of the inductive case and the theorem.

Assume now that rather than an arbitrary presentation of sample strings, the strings in our

sample set P are presented in order of nondecreasing length. It is now possible to allow only

terminal strings of length one in our rewrite rules. In this case the form of our grammar under the

bias of old non-terminals becomes:

where Z denotes the set of all terminals which have appeared in any string in P. If we let A

denote the set of ai appearing in the rules and similarly let B denote the set of £>t, then when

sufficient examples have been presented we will have A=£=Z. At this point a grammar of the

above form defines a most general grammar GG> where L(G) = Z+.

Similarly, we can show that a bias exclusively favouring new non-terminals can define a most

specific grammar G s . If we have a bias in favour of using new non-terminals then given a

language that is regular and a set of positive examples P and a known alphabet Z we will produce

a grammar of the form:

where a^ b-x are elements of Z and Bx are non-terminals. Note that the condition q > n ensures that

there are no recursive rewrite rules in this grammar. Also in the above analysis we have assumed

that all terminal string substitutions are of length one. (It is easy to modify the algorithm to

ensure that this condition is met.) The grammar just described, which we can denote as G s is a

finite grammar with L(GS) = P. This is thus the most specific possible grammar which will

generate the entire set of examples P.

We have just shown how a simple bias in favour of old or new non-terminals can generate a
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most general and a most specific grammar for a particular set of example strings P. The bias

towards using old non-terminals if used exclusively will overgeneralize and produce a grammar

for the universal language Z+, on the other hand using strictly new non-terminals yields the

relatively uninteresting finite grammar for the set of strings given as example strings. The

interesting cases arise when one uses a combination of biases, at different points in the

presentation of the sample strings. In fact it is possible to define a partial order over the

grammars generated from a set of sample strings. Assume that we initially use only the bias in

favour of new non-terminals until we have some base grammar Gg. Parse completion now

provides us with a principled way to generalize this grammar, by adding additional rules in

which the constituents are either terminals or old non-terminals. These rules will convert G s into

a grammar for an infinite language by adding recursive rewrite rules. Further, each new sample

string will produce a set of new grammars from each previous candidate grammar, and each of

these new grammars will be strictly more general than at least one of the previous candidate

grammars.

The following example will clarify this process. Assume that our target language is the regular

language L = 0(0 + 1)*. To generate our initial G s we will consider all of our positive sample

strings of length two or less. (We will see below why this is a good way to initialize Gs.) Thus

the set of sample strings from which G s is generated is {0, 00, 01}. Applying parse completion

restricted to the RHS forms for right linear grammars and with a bias for new non-terminals, the

following grammar, G s , is generated:

S
S
S
A

K
Assume that we now start generalizing Gg by applying a bias in favour of old non-terminals. The

next sample string is 000 which yields the partial derivation shown in figure 10 which returns the

fail marker (Aj 1 3). The first RHS format for right linear grammars may be applied to this fail

marker and allowing only extension with old non-terminals this RHS format yields 3 new

candidate rules:

A1-»0A1

A1->0A2

The first and third rule above permit the successful completion of the parse, so these two rules
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Figure 10: Partial derivation for the string 000

may be added to G s producing two new more general grammars. Our next sample string is Oil

which yields the partial derivation shown in figure 11. Applying parse completion with the same

restrictions as before again yields three candidate rules: / \

A2 - > IA2

A2

In this case only the first of these rules will allow a successful completion of the parse, and this

is the only candidate kept. Thus in this case each candidate grammar produces only one new

more general grammar. The progression of grammars generated in this process is summarized by

the tree structure presented in figure 12. This tree structure in fact represents the partial order of

grammars induced by this set of sample strings. Any grammar in this tree is strictly more general

than any ancestor in the tree. (This follows because of the monotonic increase in the number of

rules in a grammar as you get further from the root and the fact that each rule is added because

the parent grammar failed to parse a string.) One branch of the tree has been extended to show

the effects of two additional sample strings 001 and 010. After these strings have been added a

grammar is produced which exactly captures the target language. As with a version space, the

only part of this upward growing tree which needs to be maintained is the current leaf set. The

leaf set of this structure is analogous to the S set of a version space [17].

The important question is how to decide when to switch from rules that use new non-terminals

to rules that use old non-terminals. More generally the question is at what point should we start
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Figure 11: Partial derivation for the string Oil
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Figure 12: Tree of grammars derived for the language 0(0 +1)*.

adding recursive rewrite rules to our grammar. The existence of GQ clearly illustrates that if we

start adding recursive rewrite rules too early we will overgeneralize the target grammar. We have

already noted that because parse completion only adds rules to existing grammars, the grammars

produced increase monotonically in generality. This means that once over-generalization occurs
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the parse completion algorithm cannot recover from it. Thus we must ensure that initially G s has

enough "stuff in it that our target grammar will appear somewhere in the panial order of

grammars induced from

Can we build a suitable G s from only a finite set of sample strings? For the case of regular

languages and right linear grammars the answer is yes. This result follows from the Pumping

Lemma for regular languages.

Pumping Lemma: Let L be a regular language. Then there is a constant n such that if z is any

string in L and \z\ > n, we may write z-uvw in such a way that \uv\ < /?, |v| > 1, and for all / > 0,

uVw is in L. Furthermore, n is no greater than the number of states of the smallest finite

automaton (FA) accepting L. [11]

The important key is not the existence of the Lemma, but the ideas used in its proof. The proof

relies on the fact that for any regular language there is a deterministic finite automaton (FA)

accepting it. We let n be the number of states in the automaton and then show that in accepting a

string of length greater than n the automaton must repeat a state. The path in the transition

diagram for the automaton must therefore contain a loop, and this loop corresponds to the string

v on which we pump. In fact, if we restrict the terminal strings in rules to length one, then we can

create a correspondence between the transition diagram of our FA and our right linear grammar.

We construct our FA so it has a unique start state a and a unique final state p . 1 9 Each rule of the

form S —» ai corresponds to a transition from a to (3 with label ar Each rule of the form A • —» ai

corresponds to a transition from a state A- to (3 with label ar Finally a rule of the form A • —» aAk

corresponds to a transition from a state A- to a state Ak with label ar (If A: = S then the transition

is from a to state Ak.) For our example language 0(0 + 1) the induced grammar and

corresponding FA are shown in figure 13. The important point about this correspondence is that

for each non-terminal in the grammar there is a unique state in the FA. In fact if our FA has n

states and we number these from 1 to /?, with a numbered 1, (3 numbered n, and the other states

numbered in the order in which the non-terminals which label the states were introduced to the

grammar, and we remove all transitions in the FA which go from state i to some state k < /, then

the resulting FA accepts precisely L(GS). Thus we can now bound our G s . If the minimum FA

19It is easy to show that any FA with multiple final states can be converted into an FA with a unique final
state. [11]
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that accepts language L has n states, then Gg must contain at least n non-terminals to be able to

model any FA that accepts language L.

\j>ra/Y\iv\ or

S OAt

A
04,

Figure 13: Grammar and FA for the language 0(0 + 1) .

We shall now state and prove these results more formally. What we will prove is that there is a

subset of the strings in L of length < 2n -1 from which we can define G s using parse completion

and a bias for new non-terminals. We can then guarantee that there is at least one grammar in the

partial order generalized from G s for the target language. The idea behind the proof is to show

that given a minimal n-state FA for our target language, we can construct another machine which

accepts exactly the same language and further contains all of the arcs and states that correspond

to a grammar G s built from some subset of the strings in the language of length < 2/i — 1. Finally

we show that the second machine corresponds to some point in the partial order of grammars

generalized from Gs.

Theorem: Given a regular language L there exists a finite subset of the strings in L which, if

these strings are presented in increasing order of length, and parse completion for right linear

grammars is applied with a bias in favour of new non-terminals, will generate a grammar, Gs,

with the following property: The partial order of grammars generated from G s by applying parse

completion, with a bias for old non-terminals, contains at least one grammar for the language L.

Proof: The proof is by construction of appropriate FA's, and relies on the one to one

correspondence between machine and right linear grammars already described.



32

Let M be a minimal FA for L and let n be the number of states in M. Let the start state of M be

a, and the final state of M be (3. Assume, without loss of generality, that M has one final state

and does not have any £ transitions. Let G be the directed graph corresponding to the transition

diagram for M.

We construct a new machine M s from M. M s is a machine that corresponds to our most

specific grammar G§. This implies that the transition diagram of M s must be an acyclic directed

graph and furthermore, that every node must lie on at least one path from a to {3. The first

property is required by the fact that the transitions in M s that do not terminate at (3 correspond to

productions of the form Ai —> aiAk where k > i. Thus the nodes in the transition graph may be

topologically ordered, hence the transition graph must be acyclic. The second property comes

from the manner in which G s is constructed. A node is added to M s when a production of the

form Ai -» a{Ak, where Ak is a new non-terminal, is added to Gs. In parse comletion such a rule is

added only if it is needed to complete the parse of the new string, so every non-terminal is used

in the derivation of at least one string. So, the node in the transition graph corresponding to that-

non-terminal must lie on at least one path from a to p. I

Initialize M s to have start state a and final state (3. Set / equal to one. Do a breadth first search

of G starting at node a. For each arc out of a, if the node at the other end has not yet been

labelled, we add that node to a queue of nodes to be scanned, label that node A., increment /, and

add the newly labelled node and the arc just examined to M s . If the arc scanned terminates at (3,

we also add this arc to M s . If an arc out of a terminates in a labelled node, the arc is not added to

M s . When all the arcs out of a have been examined, the first node in the queue is removed and

the arcs out of it are examined in the same manner. The process continues until the queue is

empty. It is easy to show the resulting graph is acyclic. Each node is labelled just once, so the

node labels can define a topological order on the nodes. The existence of a topological order on

the nodes shows the graph is acyclic.

The machine we have constructed from this process is acyclic as desired, but not every node is

guaranteed to be on a path from a to (3. It is possible that some nodes will have no arcs leaving

them. (Every node but a however must have at least one arc into it from the first time it is

scanned.) For each node, Ai9 with no arcs leaving it, find an acyclic path P from A- to (3 in G. Let

P be Af^ • • • V4m*p{3, where Aj is a state label and t- is a transition label. We add the path

AjtkAl • • • t^A t$ to M s , where At • • • A .are new states. Each set of states and transitions added
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in this fashion will not violate the acyclic nature of the trasition graph for M s , and when this

process is finished every node in M s must lie on at least one path from a to (3. Furthermore, the

longest path from a to p in M s is of length at most 2/t— 1. Consider first all paths that only pass

through nodes that came from M. Since all paths are acyclic, they can pass through each node at

most once, so these paths are of length at most n. Now consider any path from a to (3 that passes

through both nodes from M and new nodes added in step two of constructing M s . Such a path

must consist of two pieces, a prefix a • • • Ak which contains only intermediate nodes from M,

and a postfix Ak • • • p which contains only intermediate nodes that are not in M. The maximum

length of the prefix is n - 1 , since it must be acyclic and cannot contain p. The postfix

corresponds to some acyclic path in G from Ak to P, hence can have length at most n. So the total

path length of any path from a to P in M s is at most 2/i— 1.

Let S be the set of strings accepted by M s . S must be finite as M s is acyclic, furthermore every

string in S has length at most In - 1 . Each of these strings must also be accepted by M, hence S

is a subset of L. Using the mapping already described we can construct a G s corresponding to

M s , and this G s will be a grammar of the form: 1

Bx

That is G s has the from of a grammar built by parse completion for right linear grammars with a

bias in favour of new non-terminals. The required presentation order of the strings in S to

generate G s can be derived mechanically from M s . Start with the strings that correspond to all

paths of length one from a to p. Then consider all paths of length two using as an intermediate

node A p then each of the other nodes in topological order. Continue in this manner until you

have enumerated every path from a to P in M s . If you take the yield of each path in this order,

the strings are enumerated in the desired presentation order.

So far we have shown that we can build a G s , using parse completion for right linear

grammars and a bias in favour of old non-terminals, from a finite subset of the strings in L. It

now remains to show that the partial order of grammars generated from Gg by parse completion
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contains at least one grammar for the language L.

First we prove that from M s we can construct a machine which accepts the language L. The

required construction is simple; add all the arcs in M that are not in M s to M s . The new machine

will be identical to M except for the extra paths added in step two of the construction of

These additional paths cannot add any additional strings to L. The proof is by contradiction.

Assume that the new machine, M \ accepts some string / that is not accepted by M. There must

be a path from a to (3 with yield /. Furthermore, this path must pass through some nodes not in

M, otherwise the same path would exist in M. As noted previously, this path must consist of a

prefix a • • • Ak which contains only intermediate nodes from M, and a postfix Ak • • • f3 which

contains only intermediate nodes not in M. However, the construction in step two for M s will

create a path A^Ai * • * ^A/p if a nd only if there is a path A$A- • • • t^jfi in M. Then the path

a • • • Ajf Al • - - ̂ A/pP and the path a • • • AktjAj • • • tj^jfi must have the same yield, but the

path a • • • AktAj • • • tjkjJfr is contained entirely within M. Thus / must be accepted by M.

Now we must show that each arc in M - M s (i.e. each arc in M but not in Ms) can be added byfc

parse completion for right linear grammars restricted to using old non-terminals. This is

sufficient since the partial order is searched exhaustively by parse completion and the number of

arcs in M is finite. If each of the transitions actually in M - M s will be added by applying parse

completion to some string in L, then the set of transitions corresonds to some point in the partial

order. (There may in .general be many points in the partial order which correspond to this

machine, each reached via a different permutation of the arc order.) An arc is added by parse

completion if and only if the corresponding rule will allow the derivation of a string to be

completed. So it is sufficient to show that for each arc in M - M s there is a string in L whose

derivation can be completed by adding this arc to the current machine. (Note that there may be

other ways to complete the derivation which add different arcs to the machine, but as long as at

least one complete derivation adds this arc there will be a path in the partial order leading to M\)

There is a simple construction to generate the required string / for each arc a. Let the tail of a be

state Ai and the head of a be state A •. A- and A • may be any states including a or p, and A- may be

the same as A . We have already proven that every state A. in M^ lies on at least one path from a

to p. Let P̂  be an acyclic path from a to p passing through A-, and P: be an acyclic path from a to

P passing through A . Construct / by taking the yield of the segment of the path from a to A-, the

label on the arc a, and the yield of the segment of the path from A2 to p. We can guarantee that
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there is at least one derivation of this string that requires the addition of the arc a, and further this

string / is in L.

Finally we note that only a finite number of strings are required to generalize M s to a machine

that accepts L. This follows immediately from the fact that M - M s is finite, and that each string,

/, defined above adds at least one arc in M - M s to M s . This completes the proof of the theorem.

Figure 14 illustrates the construction of M s from M, and the generalization of M s to TVT for a

particular machine M.

Thus for the case of linear grammars we have shown that there is a unique bound on the set of

strings needed to build G s , and that the partial order induced from this minimal grammar will

contain at least one grammar for the target language, and this grammar may be found after a

finite number of steps of parse completion. This process was illustrated in our example for the

language 0(0 +1)*, where n had the value two since the minimal FA for this language has two

states.

The partial order induced from G s provides a way to generate something equivalent to the

S-set in a version space algorithm. This is only half of the version space algorithm. To complete

the algorithm we need some manner to restrict GG, our most general grammar. Parse completion

yields no insights for this problem, however one way to create such a G-set for grammars has

been suggested by [29].

The results we have just presented for a partial order for right linear grammars can be

generalized to provide a partial order for all context free languages. Assume that we are given a

language that is context free, a set of positive examples P and a known alphabet Z. We will again

consider applying a bias in favour of old non-terminals and one in favour of new non-terminals

to the RHS formats allowed for CNF grammars.20

If we favour old non-terminals in our RHS formats, then the resulting grammar will be of the

form:

S->SS
S —> ai V a • €

can restrict ourselves to CNF grammars since any context free language may be described by a CNF
grammar. [11]
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Figure 14: Construction of Mg and M' for a particular M
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This can easily be proven by case analysis. Consider the first sample string in P of length greater

than one. (Each sample string of length one can only be partitioned into one element of size one,

and the RHS format for CNF grammars in this case can only produce a rule S —> ai where <z-€ Z.)

Since this string is of length greater than one the first RHS format for CNF grammars will apply,

and a rule with two non-terminals on the RHS will be created. Further since the only non-

terminal in the grammar is S this rule will have the form indicated. Now assume our sample

string is of length n, then n - 1 applications of the rule S —»SS will partition the string into n

partitions of size one. Each partition of size one will either already have a rule of the form S —» ai

in the grammar, or application of the second RHS format will introduce a rule of this form. Since

the rule 5 —> SS is sufficient to partition any string into partitions of size one, once this rule is

introduced a parse can never fail at a partition of size greater than one, so all other rules

introduced into the grammar must be of the form S —» a-. The process of adding new rules of this

from must stop once we have a rule for each ax in Z, at which point we will have the grammar

GQ. This grammar, GQ, generates the language Z+ and is clearly the most general grammar for

the alphabet Z.

Now consider the bias favouring new non-terminals. Once again we will assume that the

strings in our sample set P are presented in order of non-decreasing length. With this assumption,

we can show that this bias will generate a most specific grammar, Gs:

Ai - » AkAt k9l > i
A . - > a}

where A0=S,A- are non-terminals and ai are terminals. The restriction that kj> i implies that

there are no recursive rewrite rules, thus G s is a finite grammar. It is easy to show that G s must

have this form. The RHS formats for CNF grammars ensure that all rules will be of one of the

two forms in Gs, further the restriction of allowing only new non-terminals in the RHS ensures

that the condition kj > i holds each time a new rule of this form is introduced to the grammar.

We will now prove that L(GS) = P, hence that G s is our desired most specific grammar. The

proof proceeds by induction on the number of sample strings shown to the system. Our

inductive hypothesis is that there is a unique derivation for each sample string seen and that these

are the only possible derivations in this grammar.

Base Case: If the first sample string a is of length one then this string will create a grammar

with only one rule:
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a

Clearly the language of this grammar is {a}. If the first sample string is of length greater than

one, then the grammar created will have rules of the form A- -» A A, as well as rules of the form
j *

Ai —> ar The restriction that only new non-terminals may appear on the right hand side ensures

that each non-terminal will appear as the left hand side of at most one rule in the new grammar.

Further in parse completion rules are added to a grammar only when needed to complete the

derivation of a string, so each rule in the grammar must be used in the derivation of the initial

string. Thus there is a one to one correspondence between the internal nodes of the derivation

tree and the non-terminals of the grammar. This implies that there is only one derivation tree that

can be built with this grammar, and this tree corresponds to the derivation of the first sample

string a. Thus our inductive hypothesis holds for the base case.

Inductive Case: Assume that after the first n-1 sample strings we have a grammar with a

unique derivation for each sample string, and that these n-1 derivations are the only ones

possible in this grammar. Now consider the derivation tree for the nth sample string. The parse

completion algorithm will attempt to complete this parse as far as possible before adding new!

rules. Let T be the partial derivation tree for the new sample string. Since T contains only

applications of rules in the existing grammar, by the induction hypothesis T must be a unique

tree. Now since T is a partial derivation, it will contain some leaf nodes labelled with non-

terminals. We first note that any such non-terminal will only appear in the existing grammar in

rules of the form Ai —» ai since we know T is the most complete partial derivation possible. (A

parse does not fail until we reach a point at which the terminals in any applicable rule and the

terminals in the string do not match.) Let the non-terminals leaves in T be labelled T^ to Tm, and

the corresponding unparsed substrings of the sample string have labels p1 to (3n. Now consider

the derivation of Pi from T^ It is easy to show using the argument of the base case that the rules

added to complete this derivation alone, can generate only one derivation tree, that for the

substring (3̂ . Further, since only new non-terminals are used to create these rules, the only non-

terminal these new rules will have in common with the original grammar is T^ Thus the new

rules cannot interact with any of the existing rules to from any derivations other than the

derivation of (3̂  Finally since T is unique and each T-x will be unique, the entire derivation tree

for the new string is unique, and further since none of the new rules can interact with any old

rules except through T, the only additional derivation possible with this new grammar is that for

the new sample string. This completes the proof of the inductive case.
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As for the linear grammar case we now have a GG and a G s for CNF grammars. We can now

define a partial order over the CNF grammars induced from a given set of sample strings P in the

same manner we defined the partial order for right linear grammars. We start with a grammar G s

and then generalize it by biasing our substitutions in favour of old non-terminals. The following

example illustrates this process.

Consider the context free language anbn as our target language. To generate an initial G s we

will consider all positive sample strings of length 4 or less. Thus our sample set is {ab, aabb}.

Applying parse completion restricted to CNF grammars and with a bias in favour of new non-

terminals we find that our initial G s set will consist of a pair of grammars:

Gs = { 5 —> AXA2, A{ -* a, A2 —» b,

A2 —• A^A^y A^ —̂  (3, A 4 >

A5 - > b, A6 - > b

Gs = {S —> AXA2, A{ —> a, A2 -» 6,

Assume that our next sample string is aaabbb, and that we parse with Gs , which will yield the

partial derivation shown in figure 15. The fail marker returned by this partial derivation is (A^ 2

5). Now we start generalizing G s by considering CNF RHS forms and allowing only old non-

terminals on the RHS. Since our current grammar has 7 non-terminals, there are 49 different

RHS forms which may be tried to complete the parse. One of these creates the new rule

A6 -» SA6 which will allow the parse to be completed using existing rules from the grammar.

Thus Gg + A6 —» SA6 is one point in the partial order of generalizations of G§, and in fact is a

grammar for our target language anbn. In fact the RHS formats tried at this stage yield several

grammars which have L(G) = anbn
y which means that in this case there are several points one

level above G s in our partial order which correspond to our target language. As in the regular

grammar case, repeated applications of parse completion produce an upward growing tree of

grammars which corresponds to a partial order of the grammars based on generality. The leaf set

of this tree at each stage of the algorithm is our current S set.

We now must attempt to answer the same question that faced us in the regular language case:

Can we build a G s from a finite set of sample strings such that our target language will appear

somewhere in the partial order induced from Gg for any context free target language? We can

derive a result very similar to our result for regular lanuages using the pumping lemma for
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Figure 15: Partial derivation for the string aaabbb.

context free languages.

Pumping Lemma: Let L be any CFL. Then there is a constant n depending only on L, such

that if z is in L and \z\ > n, then we may write z = uvwxy such that

1. |VJC| > 1

2. \vwx\ < n, and

3. for all i > 0 uVwtfy is in L. [11]

As before, we are concerned with the proof of this Lemma rather than its existence. For the

context free case, the proof relies on the fact that if there are k non-terminals in a minimal CNF

grammar for L than any string of length > 2k must have a repeated non-terminal somewhere in

its derivation tree. This follows from the fact that if the parse tree of a string generated by a CNF

grammar has no path of length greater than /, then the string is of length no greater than

2i'1.(This can easily be proven by induction, see [11] for details.) Thus a string of length 2k must

have a longest path of length at least k + 1 in its derivation tree. This longest path must have k +

2 vertices in it of which k + 1 are labelled with non-terminals. Since there are only k distinct

non-terminals, two vertices, v1 and v2 on this path have the same label. Then we can replace the
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subtree rooted at v2 with the one rooted at vl producing a second copy of the yield of the subtree

rooted at v^ 2 1 We can repeat this process i times, and produce / copies of part of the string as

illustrated in figure 16. Thus in this case the power to create infinite strings is produced by

having rules which allow a non-terminal to be its own ancestor in the derivation tree.

i

\

Figure 16: A derivation tree for uviwxiy where u = a, v = bb, w = a, x = £, y = ba.

We will now prove that if there is a CNF grammar for a context free language, L, with k

non-terminals, then there is a finite subset of the strings in L from which we can define a G s

using the procedure described. We can then guarantee that there is at least one grammar in the

partial order generalized from G s for the target language. The idea behind the proof is to

construct a subset of G that is a grammar for a finite language, and to modify this subset of G so

that it contains no redundant non-terminals. We then show that the resulting G s can be

constructed from some subset of the strings in L of length < 22n~l by parse completion. Finally

we show that we can build a grammar G' from G s such that L(G') (the language generated by

G') equals L, and G' appears in the partial order of grammars generalized from G s .

21The yield of a subtree is simply the substring that appears at the leaves of the tree.
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Theorem: Given a context free language, L, there exists a finite subset of the strings in L

which, if the strings are presented in increasing order of length, and parse completion for CNF

grammars is applied with a bias for new non-terminals, will generate a grammar G s with the

following property: The partial order of grammars generated from G s by applying parse

completion with a bias for new non-terminals contains at least one grammar for the language L.

Proof: Let G be a non-redundant CNF grammar for L. (Non-redundant means all non-»
terminals appear in at least one derivation of a string in L.) Let n be the number of non-terminals

in G.

Construct a graph T from G. The vertices of T are the non-terminals of G. There is a directed

edge from A to B if and only if there is a production of the form A —> BC or A —» CB.

A grammar G s built by parse completion with a bias for new non-teiminals has two

characteristics: it generates a finite number of strings, and every non-tenninal is used in the

derivation of at least one string. We wish to restrict G to produce a grammar G s with these two

characteristics.

We construct a grammar G s which is a restrictin of G by first finding the largest acyclic

subgraph T of T. We construct G s from G by first including all rules of the form Ak —> ai that

are in G. We then include each rule in G of the from Ak —»AA{ if and only if there is an arc from

Ak to A{ and an arc from Ak to A-in T \ In [11] it is proven that if you construct a graph whose

vertices are the non-terminals of a grammar and which includes an arc from A to B if and only if

there is a production of the form A-*BC or A-+CB, then if this graph is acyclic the

corresponding grammar generates only a finite number of strings. In fact, if we define the rank

of a non-terminal, A, as the length of the longest path in the graph beginning at A, the proof in

[11] shows that if A has rank r no terminal string derived from A has length greater than 2r.

Now T' is the graph corresponding to G s and T* is acyclic, so G s is a grammar for a finite

language.

G s has one of the two properties required of Gs, but G s may contain some non-terminals that

cannot be reduced to terminals. Clearly these non-terminals will not appear in the derivation of

any string in L(Gg ). We must modify G§ so that all non-terminals are reducible to terminals.

There are two ways in which a non-terminal can fail to be reducible to a terminal. The first

occurs if the non-terminal does not appear as the LHS of any rule in the grammar. The second
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occurs if the non-terminal is part of an infinite derivational loop. (That is the non-terminal A can

only be reduced to strings that contain one or more occurrences of A.) The second condition can

only occur if T' were to contain a cycle, but T' is acyclic. So we need only be concerned with

non-terminals, A-, that do not appear on the LHS of any rule in G s .

For each non-terminal A • that does not appear on the LHS of any rule, find a shortest derivation

A ^ a , where OL is a terminal string. Take the derivation tree for A.=*a, and relabel all the

nodes except A with non-terminals not yet occurring in the grammar. Add to G s the productions

derived from this relabelled derivation tree. The new productions will all have the form A. —» a

or A- -» A^Ap with k,l> i if we number nodes from the root of the tree in breadth first order. So

the new productions preserve the fact that the grammar generates a finite language. When this

process is finished for all A that were not reducible to terminals in G s , we will have a finite

grammar in which every non-terminal is used in the derivation of at least one string. This

grammar is the required Gs.

We next bound the length of any string generated by Gs. Recall that if A has rank r, no

terminal string derived from A has length greater than 2r. Now Gg contains only the non-

terminals in G, hence T' contains at most n nodes. Thus the rank of S in Go is at most n-1. Now
d i

consider the additional non-terminals added when converting G s to Gs. The productions that

these non-terminals appear in are derived directly from the derivation tree for a shortest
*

derivation A =4 a, so the rank of any of these non-terminals is simply the length of the longest

path from that non-terminal to a leaf in the derivation tree. In a shortest derivation, in any path

from the root to a leaf, each non-terminal can appear at most once. (The proof is by

contradiction. If some non-terminal appears twice in the same path, call the appearance closest to

the root the first occurrence, the appearance closest to a leaf the second occurrence. We can

replace the sub-tree rooted at the first occurrence with the sub-tree rooted at the second and

produce a shorter derivation.) Now since A . ^ a is a shortest derivation, the longest path from

the root to a leaf in the derivation tree is at most n. If we construct T " for Gg as T' was

constructed for G s , we can increase any path in T' by at most the length of the longest path in

any of the derivation trees used to convert G s to Gs. Thus the rank of any node in T' will be

increased by at most n in T", implying that S will have rank at most 2n - / in T". From the

theorem in [11] all strings generated by G s have length at most 22*1"l.

The bound on the length of any string produced by G s shows that L(GS) is finite. We must



44

also show L(Gg) c L. Gg is a subset of G, so any complete derivation (i.e. any derivation

whose final product is a string of terminals) in G s must also be a derivation in G. So the string

produced as the yield of any complete derivation using only rules in G$ is in L. Now we must

consider derivations that use both rules in Go and some of the rules that contain non-terminals
*

that did not appear in G. The new non-terminals can only appear in a derivation of A- = ôc for
(x

exactly one A in G. Thus we may split any derivation in G s into two parts. The first part will be

a derivation from S, using only non-terminals in G s . Every rule used in this part of the

derivation also appear in G, so this partial derivation tree may also be built in G. The leaves of

this tree will either be terminals, or non-terminals which cannot be reduced any further using

rules in Go . The second part of the derivation will take each non-terminal, A , at a leaf and will
1 * . *

attach the sub-tree corresponding to A-^5 a, to it to complete the derivation. Since A, =̂ oc, is also
r ] <* ] J (r J

a valid derivation in G (although it will use different productions) for each A., the entire

derivation tree could have been produced by G. Thus the string that is the yield of the derivation

is in L. So L(GS) is a subset of L.

To be complete, we must also verify that the G s we have defined can in fact be generated by

parse completion, with a bias for new non-terminals, when the positive examples are the strings

in L(GS) presented in increasing order of length. The proof is mechanical and the details are left

to the reader.

Now it remains to show that the partial order of grammars generated from G s by applying

parse completion with a bias for old non-terminals, contains at least one grammar for the

language L. First we will show that G s can be generalized to a grammar G' such that L(G')

equals L. The required construction is simply to add the productions in G - G s (i.e. the

production in G that do not appear in G s ) to Gs. It is immediately clear that G' will generate at

least every string in L, since G c G\ however, we must ensure that G' does not generate any

string not in L. Assume that there is a string /, such that / is derivable from S in G' but / is not in

L. There must be a derivation for / in G'. As noted before the derivation can be divided into two

pieces, an initial partial derivation which uses only rules in G, and a second part where non-

terminal leaves in the initial tree are reduced to terminal strings using rules not in G. Now

consider any non-terminal A not reduced in the first part of the derivation. Assume in the second

part of the derivation A is reduced to the terminal string p. If this derivation uses any rule not in

G, it must use the rules which correspond to the derivation A , ^ oc; (i.e. p = CL) since these are the
J( J ~
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only rules not in G which could refer to A . But in creating Go from Go we added rules to form
* ; l *

the derivation A. =*> a. if and only if there already existed in G a derivation A «^a. So for any
£ <* J

derivation using rules not in G, there must be a derivation using only rules in G. Hence / must

have a derivation using only rules in G, thus / is in L.

As a final point, it is necessary to show that G' can be generated from G by parse completion.

The proof is very similar to the proof in the regular grammar case. We show that for each

production in G - G s there is a string in L which requires the addition of this production to

complete the derivation. Since G - G s is finite, only a finite number of strings are required to

generalize G s to G\ The details are left to the reader. This completes the proof of the theorem.

Figure 17 illustrates the constructin of T, T \ G s , T", Gs, and G' for a particular language.

6 Felicity Conditions and Biases
The proofs in the previous section for the bound on the number of strings needed to define G s

were existence proofs only. They stated that a finite set of strings which could define G s existed^

but in fact the construction given to build this set of strings relied on knowing a great deal about

the target language. In fact it was necessary to already have a minimal FA or CNF for the target

language. For the simple example languages in the previous section it is easy to get this

information by inspection, but for more realistic problems it is not likely that this information

will be readily available. However, both proofs relied on making the same distinction between

two types of grammar rules. On the one hand, G s was originally created from rules which used

terminals or new non-terminals. These rules may be regarded as adding structure to the grammar.

In the regular language case, these rules correspond to adding states and initial transitions to

these states in our FA. For the CNF grammars, these rules generated an initial set of subtrees to

act as fundamental constituents in the grammar. Once G s was established, we added recursive

rules to the grammar, by allowing RHS formats which used old non-terminals. For regular

languages, these rules corresponded to adding cycles into the FA, while in the CNF grammars

these rules corresponded to creating paths in the derivation tree in which the same non-terminal

could appear more than once.

This simple distinction between rules that add structure and those that recombine existing

structure suggests a means by which to approximate the formal results associated with

Instead of requiring the input strings in non-decreasing length, and using a finite subset of the
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Figure 17: The construction of T, T \ GSj, T", Gs, and G' for the
grammar shown in part (a).
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strings less than a certain length22 to create Gs, we simply require that the teacher provide

additional information with each sample string, to indicate if this sample generalizes from

previous sample strings, or is an instance of a new class of string in the language. For those

strings which generalize previous sample strings we can apply the bias in favour of old non-

terminal substitutions; strings which are instances of a new class of string will use the bias in

favour of new non-terminals when completing the parse. The sort of additional information

required about each string is an example of a felicity condition [27] for grammar induction. As

an example, this heuristic was applied to the set of strings {ab, aabb, aaabbb} of which only the

first was indicated as adding structure and the other two were examples of generalization. The

parse completion algorithm produced the 9 candidate grammars shown in figure 18, of which

grammars 2 and 6 are the interesting ones. These two grammars fail to capture exactly the target

language anbn, but they do capture the closely related language that consists of all strings of a's

and b's that begin with an a and have an equal number of a's and b's. This language is only

slightly more general than the target language, so the heuristic has done quite well. In fact it is

easy to show that using only the string ab to create the structure you cannot possibly capture the

target language exactly since the string ab introduces only 3 non-terminals into the grammar,

while the smallest grammar for this language requires 4 non-terminals. However if we use the

sample string aabb as a structural example, and the strings ab and aaabbb as generalizing

examples, then the parse completion algorithm does produce a grammar for the target language

The most important bias, the one towards new or old non-terminals in the RHS formats, has

already been discussed in relation to the partial order of induced grammars. There is a second

bias in this system, which we may regard as a bias in favour of parsimony. When a new sample

string is introduced, if it can be parsed by any grammar in the existing set, these grammars are

retained, and the other grammars are not considered further. This can be regarded as a bias in

favour of grammars which generalize the sample strings better, or as a bias in favour of

grammars with small numbers of rules.

The system at the moment contains no heuristic knowledge which allows it to prune the set of

grammars in the partial order. Even though we can show that with a fixed G s there are only a

222/i-1 for regular languages, 21" l for context free languages.
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Figure 18: The 9 grammars generated from the set {ab, aabb, aaabbb}.

finite number of grammars in the partial order, this finite number may be very large. For the case

of the CNF grammars if our G s has k non-teiminals we know there are at most k3 + k\L\ rules that

can appear in any grammar in the partial order2-', but as a grammar can contain any subset of

these rules this still means there are on the order of 2* +*^ different grammars in the entire

partial order. This makes the construction of the entire partial order infeasible for all but very

small grammars. Experience has shown that generally a grammar for the target language can be

found by exploring far less than the entire partial order. But the examples presented in this paper

have been of very simple grammars precisely because an unrestricted exploration of the partial

order is very expensive. To build an algorithm for practical problems parse completion will have

to be augmented with additional heuristics to control its search. The advantage of having the

basic algorithm as a base to work from is that the effects of particular heuristics can now be

measured in terms of the complete partial order explored by the unrestricted algorithm.

One obvious and domain independant heuristic for CNF grammars has been suggested by the

observations made in the proof that a bound for G s exists. In this proof it was noted that the

sub-trees contained in G s serve as recursive building blocks for the derivations of longer strings.

Currently these building blocks are tried in an arbitrary order. However, by examining the yields

of these sub-trees, and selecting the sub-tree whose yield is closest to the substring that is being

are at most h? rules of the form A- —> AAk, and £|Z| of the form A • .
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parsed, a form of best first search could be implemented. The next stage in the development of

parse completion should be a systematic exploration of heuristics such as these to make the

algorithm more efficient.

7 Conclusion
Our purpose was to explore the class of Parse Completion algorithms. In pursuing that

purpose, we have produced a well defined design space for this class of algorithms. This design

space is defined by a partial order over the RHS formats of new rules which may be added to

complete a parse. One of the most interesting divisions based on RHS formats divided rules into

those which added additional structure to the grammar, and those which generalized existing»
structure. This particular division led to the discovery of biases under which an induction

algorithm can be designed which will always converge to a single, most specific, context free

grammar from a finite set of positive example strings. Certain additional conditions must also be

met to guarantee convergence. These conditions can be expressed as a complexity bound on the

language, which uniquely identifies the point at which no additional structure needs to be added

to the grammar. These conditions can also be expressed as felicity conditions, which require ther

teacher to distinguish examples that introduce a new concept from examples that only serve to

generalize existing concepts. Perhaps the most important point to be learned from this study is

that a systematic attempt to understand an induction domain can lead to useful insights for

designing induction algorithms for that domain.
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