
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Efficient Specialization
of Relational Concepts

Technical Report PCG-9

Kurt VanLehn

Departments of Psychology and Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15217 U.S.A.

1 July 1987

Running Head: Specialization of Relational Concepts

Acknowledgments

This research was supported by the Information Sciences Division, Office of the Naval
Research, under contract number N00014-86-K-0678. Reproduction in whole or in part is
permitted for any purpose of the United States Government. Approved for public release;
distribution unlimited.

006,3

Unclassified
lASSlfiCAtiON

REPORT DOCUMENTATION PAGE

U . REPORT SECURITY CLASSiHCA I ION

Uncla
2a. SECURITY CLASSIFICATION AUTHORITY

2b. (^CLASSIFICATION / DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

PCG-9

6*. NAME OF PERFORMING

Carnegie-Mellon University

6b. OFFICE SYMBOL
(if applicable)

6c AOORESS (Gty, State, and ZIP Cod*)

Departments of Psychology and Computer Sciencje
Pittsburgh, PA 15213

1b. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
Distribution unlimited

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Same as Performing Organization

7a NAME OF MONITORING ORGANIZATION

Information Sciences Division
Office of Naval Research (Code'1133)

7b AOORESS (Cty, State, and ZIP Cod*)

800 N. Quincy St.
Arlington, VA 22217-5000

8a. NAME OF PONDING/ SPONSORING
ORGANIZATION

Same as Monitoring Organization

8b. OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUM8ER

N00014-86-K-0678

8c. AODRESS(Gfy, State, and ZIP Code) 10 SOURCE OF gUNQiNG NUMBERS p4Q0005ub201 / 7 - 4 - 8 6
PROGRAM
ELEMENT NO

N/A

PROJECT
NO

N/A

TASK
NO

N/A

WORK UNIT
ACCESSION NO

N/A
n TITLE (Include Security Classification)

Efficient Specialization of Relational Concepts

12 PERSONAL AUTHOR(S)
Kurt VanLehn

13a. TYPE OF REPORT
Technical

13b. TIME COVERED
PROM 86Sepl5 TO 91Sepl5

14 OATE OF REPORT [Year, Month, Oay)
87 July 1

15. PAGE COUNT

'6 SUPPLEMENTARY NOTATION

COSATI COOES

r i ELD GROUP SU8-GROUP

8 SUSJECT TERMS {Continue on reverse if necessary and identify by block number)

Machine learning, artificial intelligence, version
spaces, concept induction

i i i _

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

See reverse side.

20 DISTRIBUTION/AVAILA8IL1TY OF ABSTRACT

• UNCLASSIFIED/UNLIMITED E SAME AS RPT • DTiC USERS
21 ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RESPONSIBLE 'NOIVIDUAL
Alan Mevrowitz

22b. T

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted.

All other editions are obsolete.

iCE SYM8OL

SECURITY CLASSIFICATION OF THIS

Unclassified C:^^ University
15213

Abstract

This research note presents an algorithm for a common induction problem, the specialization of

overly general concepts. A concept is too general when it matches a negative example. The

particular case addressed here assumes that concepts are represented as conjunctions of

predicates, that specialization is performed by conjoining predicates to the overly general concept,

and that the resulting specializations are to be as general as possible. It is shown that the problem

is simple if the concept representation language is propositional, but NP-complete if the language

is first-order (i.e., relational). Nonetheless, there exists an algorithm, based on manipulation of bit

vectors, that provides good average-case performance.

This research note presents an adequately efficient algorithm for a common type of induction

problem, the specialization of overly general concepts. A concept is too general when it matches a

negative example. This problem is fairly common in inductive concept formation. For instance,

when updating the G set of a version space (Mitchell, 1982), if the current example is negative and

some of the elements of the G set match it, then the first step of the update-G process is to

specialize those concepts. In algorithms, such as ID3 (Quinlan, 1986), that represent concepts as

decision trees, extending a node of the tree is specialization of the concept expressed by the

branch of the tree ascending from that node to the root.

This note concerns the special case wherein concepts are represented as a conjunction of

atomic predicates. Much work in concept formation has used such conjunctive representations. It

is also assumed that specialization is limited to conjoining predicates to the overly general concept.

Although there are several other ways to specialize concepts, this is one of the most common

ones. For instance, it is the only form of specialization allowed in ID3. Lastly, it is assumed that

the induction algorithm should produce concepts that are as general as possible. Again, this is a

common assumption in machine learning work.

If the representation is further restricted so that the predicates have no arguments, then the

representation is equivalent to a feature set or an attribute-value vector. For this propositional case,

there are several well-know algorithms for solving the specialization problem. An easy one to

describe is the problem of updating a version space where both concepts and examples are

represented as sets of features, and matching is implemented by set inclusion. The algorithm takes

three arguments: the overly general concept, C; the negative example, N; and a third concept, P,

which is a member of the S set of the version space. The algorithm simply takes each feature in

the set difference P-N, and creates a new concept by adding it to C. The algorithm returns this set

of concepts, each of which specializes C (i.e., it is a superset of C) and fails to match N (i.e., it is

not a subset of N). The basic idea of this algorithm appears in the other propositional algorithms as

well, with the modification that the source, P, of positive features may not be a member of the S set

but may instead be a positive example (as in Langley's (1987) discrimination algorithm) or even the

whole vocabulary of predicates (as in ID3).

The basic idea of the proposition algorithms is to find a set of differences between P and N,

and add each to C. Because the new concepts are required to be as general as possible, only

2.
3 .
4 .
5.
6.

Q
P
P
P
P

(x,y)
(x,y)
(y,x)
(y,x)
(x,y)

&
&
&

Q
p
Q

(x,
(x,
(x,

y)
y)
y)

"minimal" differences between P and N are added to C. If the representation is propositional, then

minimal differences are always exactly one predicate, and never a conjunction of predicates.

However, when the algorthm is extended to relational representations (i.e., conjunctions of

predicates with variables) a minimal difference between P and N is not necessarily a single

relation, but in some cases can be a small conjunction of relations. For instance, consider the

following situation, where numbers represent objects and letters are variables:

N = P (l , 2) & Q (2 , l)
S = P(y,x) & Q(x,y) & P(x,y)

The minimal differences between P and N are subconcepts of P that do not match N. In this case,

there are seven such subconcepts, and only three fail to match N:

1. P(y,x) Matches under the substitution {x/2, y/1}
Matches under the substitution {x/2, y/1}
Matches under the substitution {x/1, y/2}
Matches under the substitution {x/2, y/1}

No match
No match

7. P(y,x) & Q(x,y) & P (x, y) No match.

Given some overly general concept C that matches N, any of the last three could be conjoined to C

in order to specialize it. However, the last subconcept is not a minimal difference, because it

properly includes other subconcepts that do not match N (i.e., subconcepts 5 and 6), so only

subconcepts 5 and 6 should be added to C. This produces two new maximally general concepts,

assuming that C was maximally general before N was received. The main point of this example is

that the smallest concepts that serve to specialize C are conjunctions of two predicates.

Incidentally, conjoining a subconcept to C can be nontrivial. For instance, if C is p (u, v) &

Q(v ,u) , then conjoining P(x ,y) & Q(x,y) to it should yield both P(u ,v) & Q(v,u) &

Q (u, v) and P (u, v) & P(v,u) & Q(v ,u) . Fortunately, this problem is similar to the Update-S

problem, and nearly the same algorithm can be used for it.

A direct, but inefficient way to generate minimal differences between P and N is to search for

them by chaining together predicates that share variables. At one time, the procedure-learning

program Sierra (VanLehn, 1987) used this technique for updating its version spaces. It often took

30 hours or more just to handle a few negative examples. With some help from Johan de Kleer, a

much faster algorithm was invented. Now Sierra completes the same calculations in a minute or

two.

The key idea is to convert the problem of finding minimal differences into a set covering

problem. The first step is to enumerate all substitutions of objects in N for variables in P. For

example, if there were 5 variables in P and 7 objects in N, then there are either 75 possible

substitutions when distinct variables can be bound to the same object, or 7*6*5*4*3 substitutions

when distinct variables must be bound to distinct objects.1 Having enumerated the substitutions,

each predicate in P is assigned a bit vector. The bit vector has one bit for each substitution. If the

predicate is in N under a given substitution, then the bit is zero. If the predicate is not in N, then the

bit is one. If any predicate has a bit vector that is all ones, then it is not in N under any substitution,

so it is a minimal difference between P and N. Assuming there are no such predicates, the

algorithm must to find a small set of predicates such that the union of their bit vectors is all ones.

Attaching bit vectors to predicates converts the minimal difference problem into a well-known

problem, the set covering problem: Given a target set and a collection of subsets of it, find a cover

for the target set, where a cover is a set of subsets such that the union of those subsets equals the

target set. There are several different versions of the set covering problems, depending on the

kind of cover desired. An irredundant cover is a cover that is not properly included in any other

cover (i.e., none of its subsets is redundant in that it can be removed from the cover without

affecting the cover's equality to the target set). Irredundant covers correspond to minimal

differences between P and N, which in turn are the differences that lead to maximally general

specializations of C. So for most applications, the covering algorithm desired will be one that finds

irredundant covers. Another possibility is an algorithm for calculating minimal covers, which are

covers with the fewest number of elements. This would cause the specialization algorithm to

generate some, but not necessarily all, of the maximally general concepts.

The most straightforward way to generate irredundant covers is breadth-first search.

However, this approach is very space inefficient. Sierra uses an algorithm from Wells (1971,

section 6.4.3), which is based on depth-first search. The trick is to prune the search whenever

adding a new subset to the cover causes the cover to become redundant. Well's algorithm is

presented in table 1. The second clause of the Cond implements the search pruning.

1 Sierra's concept representation enforces additional constraints that reduces the number of substitutions still further. This
reduction is crucial, because Sierra's concepts usually had between 10 and 50 variables. In retrospect, the same reduction
could be achieved more elegantly by assigning types to variables and objects, then enumerating only substitutions that
paired objects and variables of the same type.

Table 1 : An algorithm for finding irredundant covers

(Defun FindCover (Cover Covered Duplicates Usable)
(And Usable
(Let
((Candidate (Car Usable))
(NewCover (Cons Candidate Cover))
(NewCovered (Union Covered (BitVector Candidate)))
(NewDuplicates
(Union Duplicates (Intersect Covered (BitVector Candidate)))

(NewUsable (Cdr Usable))
(Cond
((For X in NewCover thereis

(SubsetP (BitVector X) NewDuplicates))
(FindCover Cover Covered Duplicates NewUsable))

((TotalSetP NewCovered)
(Cons NewCover
(FindCover Cover Covered Duplicates NewUsable))

(T
(Append
(FindCover NewCover NewCovered NewDuplicates NewUsable)
(FindCover Cover Covered Duplicates NewUsable))))))))

FindCover returns a list of irredundant covers. Cover is a list of predicates paired with their bit
vectors. Covered is the bit vector for the current coverage of the cover. Duplicates is the bit vector
for the substitutions that are covered twice by members of the cover. Usable is a list of potential
candidates for adding to the cover.

Table 2 presents estimates for the time and space complexity of this depth-first algorithm,

the breadth-first algorithm, and the algorithm based on chaining through variables. Note that all the

algorithms are exponential. This is inevitable, because set covering is an NP-complete problem

(Aho, Hopcroft & Ullman, 1974, theorem 10.2.9). However, the exponents tends to be small in

typical applications. For Sierra, p and n are usually about 100, and m is usually 1 or 2.

Table 2: Complexity estimates for three minimal difference algorithms

Algorithm

Depth-first

Breadth-first

Chaining

Where: p is the number of predicates in P, n is the number of predicates in N, m is the average
number of predicates in a minimal difference, and v is the average number of variables in a minimal
difference.

Time

(P log p)m

p m

pmnv

Space

plogp

p m

p m

As mentioned earlier, this algorithm was used with success as part of a version space

maintenance module. It would be equally useful in machine learning programs, such as AQ11

(Michalski & Larson, 1978), that employ version-space-like techniques as components. It would

probably be useful for programs, such as ID3 (Quinlan, 1986) and PRISM (Langley, 1987), that

induce decision trees. All these programs were initially developed with propositional concept

representations. The algorithm described above extends them for use with relational concept

representations.

References

Aho, A.V., Hopcroft, J.E. & Ullman, J.D. (1974). The Design and Analysis of Computer Algorithms.

Reading, MA: Addison-Wesley.

Langley, P. (1987). A general theory of discrimination learning. In Klahr, D., Langley, P. &

Neches, R. (Ed.), Production System Models of Learning and Development Cambridge,

MA: MIT Press.

Michalski, R.S. & Larson, J.B. (1978). Selection of most representative training examples and

incremental generation of VL1 hypotheses: the underlying methodology and the description

of programs ESEL and AQ11 (Technical Report 867). Computer Science Department,

University of Illinois.

Mitchell, T.M. (1982). Generalization as search. Artificial Intelligence, 18, 203-226.

Quinlan, J. R. (1986). The effect of noise on concept learning. In R. S. Michalski, J. G. Carbonell,

& T. M. Mitchell (Ed.), Machine Learning: An Artificial Intelligence Approach. Volume II. Los

Altos, CA: Morgan Kaufman.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 31(1), 1-40.

Wells, M.B. (1971). Elements of Combinatorial Computing. New York, NY: Pergamon Press.

