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Descriptions of Mind 1

Abstract

Cirrus is a tool for protocol analysis. Given an encoded protocol of a subject solving
problems, it constructs a model that will produce the same protocol as the subject when it
is applied to the same problems. In order to parameterize Cirrus for a task domain, the
user must supply it with a problem space:. a vocabulary of attributes and vglues for
describing spaces, a set of primitive operators, and a set of macro-operators. Cirrus’' model
of the subject is a hierarchical plan that is designed to be executed by an agenda-based

plan follower. In this paper, the philosophical and mathematical foundations of Cirrus are

explored.
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Descriptions of Mind 2
1. Introduction

1.1. Function and Structure: Two Alternatives in Describing Cognition

In this section we outline a distinction between Functional and Structural viewpoints in
psychological theory. We postulate that the source of the distinction is in the source of
constraints that inform theory building. Subsequently, we propose that functional level theories

should hypothesize only functional relationships and we present a computational model

describing this process.

Dreyfus and Dreyfus (1987) trace the history of two alternative approaches in the
developement of the new sciences of cognition. One approach, which we label the functional
approach, saw that there was a common level of description between the symbol-
manipulating capacities of the digital computer, and the apparent symbol-manipulating
capacities of the human information processor. This common level was described by the
Physical Symbol System hypothesis (Newell, 1980, 1982), and in short, stated that the
necessary and sufficient ingredient for intelligence was a system capable of manipulating
symbols, regardless of whether this system was implemented in silicon or organic substrates.
The analogy drawn by Newell is on a formal level, that is, the bridge between brains and

computers lies in the their representational ability.

The second approach, which we label the structural approach. drew its inspiration not from
the capacities of the digital computer, but from the emerging neurological sciences.
Rosenblatt (1962) considered that cognition should begin in the processes and organization

of the physical system underlying intelligence.

It is both easier and more profitable to axiomatize 'h~ physical System and then
investigate this system analytically to determine its behaviour. than to axiomatize the
behaviour and then design a physical system by techniques of logical systhesis.
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(Rosenbiatt, 1962; in Dreyfus and Dreyfus, 1987). This approach is currently represented by
the burgeoning school called connectionism, which utilizes massively parallel connections of

simple computational neuron-iike units to model cognitive phenomena (McClelland and

Rumelhart, 1986).

These two approaches have different points of view as to what constitutes an ‘adeguate
basis for describing cognition. Currently there is much debate over the veracity, purpose and
usefulness of one over the other of these viewpoints. The difference has been described as
a symbolic-subsymbolic distinction (Smolensky, 1984, 1986) although both classes of models
are clearly symbolic in that both seek to represent (symbolize) certain aspects of cognition.
Others have argued that the difference Is one of levels of description, an implementational
level as constrasted to an algorithmic level of descripdon (Anderson, 1987; Marr, 1982). We
prefer to avoid this terminology since it implies a definite causal ordering; i.e., that the
implementational level merely exists to implement pre-existing aigorithms. To avoid this

implication, we have termed the two viewpoints functional and structural.

We wish to argue that the difference between the two classes of theory stems from the
different sources of constraint that informs the two classes of theory. The functional
approach argues that representation is the basis of cognition. Cognition should be
described in terms of the formal structures capable of manipulating the relationship between
such symbolic objects to achieve the logical requirements for computation. Smoiensky
(1986) describes this as follows: we have }heories with descriptive entities such as formal
logic, that capture human information processing in some high level domains (such as
mathematics and circuit analysis). Symbolic theorists attempt to extend this high level of
description “down the abyss”, to attempt to describe the vast middle ground of cogniticn.
for which there is no formal domain theory. in terms of rules and effective procedures.

Thus, the source of constraints for these types of theories is the actual task domain. This
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appeals to a more functional level of analysis, where the constraints for a computational

theory are drawn from the functional requirements of the task. (c.f., Chomsky's notion of

competence).

The connectionists on the other hand, stated that cognition was an emergant property of
the arrangement of the physical units of the brain. Their paradigm is that intermediate
cognition is of the same kind as low level perceptual processing and is well described by
reference to low-level constraints on the type of computation that can be performed by the
brain. | These constraints are dictated by structural considerations, such as the parallel
nature of neuronal structure and computational abilities of richly interconnected units with
only local information. Thus, connectionists attempt to climb "up the abyss” to the mid-
ground of cognition from a structural level of description whose constraints derive from

neural considerations.

Our current concern is not to contrast these'two theoretical approaches, but to draw an
implication from the distinction. The functional approach describes the competencies
required by certain tasks, while implementational level theories give structural accounts of
how such functional competencies may be achieved in a neurally plausible way. We argue
that this distinction should be taken seriously in cognitive science, and should dictate the
kind of theoretical entities that are appropriate at each level. We further wish to argue that
the model of cognition presented here, which certainly falls within the functional approach,
demonstrated how this distinction might be taken seriously. It does so by presenting a
method of inducing the functional competancy of a particular domain skill without invoking

hypothesized structure.

The argument is as follows: Some domains of human competence are rule-like. they

embody a theory or an effective procedure. Usually this rule structure is something derived
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from the environment and serves to describe the structure of the task. For example, there
are rules for performing subtraction procedures. These rules are codified in the teaching

environment and the succesful learner is one who suceeds in internalizing these rules.

Functional theories are capable of describing this level of rule-using competence. They
are descriptive, detalling at the level of logic and computation, the abilities req'ulred for
executing a particular task. Descriptive devices to describe such abilities are rules and
representations. For example, consider the production rule formulation from Ancerson’'s well-

known ACT" theory (1983).

IF the goal is to subtract the digits in a column
and the subtrahend is larger than the minuend
THEN set a subgoal to borrow.
This rule formalizes a particular piece of competency required to accomplish that task. Note

that as such, it is descriptive of the task domain rather than of the performer of the task.

A collection of such rules can describe the competency required to perform a particular
skill in a certain domain. To verify completeness and sufficiency, such rules can actually be
“run” in a computational formalism called a production system, which effectively provides the
control structures to determine the order of firing of these rules, and provides the storage
facilities to keep track of inputs and partial answers. We argue that the produétion system

itself is useful in determining the sufficency of the postulated set of rules.

One problem with this approach to determining functional knowledge is that the rule set
must be deduced apriori. For domains which have a clear formal domain theonry. this is nnt
a huge problem (c.f., the rule sets for geometry ‘proofs in Anderson et al. 1981). In effect
determining the knowledge that a probiem-solver-has in a domain then becomes a generate
and test cycle. We generate a set of rules and then test them in a producticn system o

determine the sufficiency of the postulated rule set. Note that no claims for necessity can
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be made for such a derivation method.

An alternative to this approach would be to attempt to determine this functional knowledge
from the actual performance of a problem solver. Rather than extract the proposed
competence from the task domain, it may be instructive to derive this knowledge from the

student. We may be able to look through the students eye’'s at the acquired domain

knowledge, rather than just postulating necessary knowledge.

A secondary concern with the functional approach is that the mechanism for determining
the completeness of the rule set (e.g., the production system interpreter) may start to ook
attractive as the structural basis with which such competence is achieved. By eliminating
the generate and test cycle, and deriving the rule set that characterizes a task domain from
actual performance data, wé eliminate the need for an executing mechanism to gaurantee
sufficiency, and thus avoid the need for statements about structural hardware employed Dby
the problem solver. This avoids the problem of making structural propositions based on a

functional source of constraints. We return to this problem in our conclusions.

The model of cognition presented here directly confronts the need to extract the functional
knowlgdge of a problem solver, without being seduced into making structural assumptions.
(We will later argue that structural hypotheses should be made within structurally constrainted
theories). This paper presents a theory of how the description of the mind should proceed.
We describe how a theory of cognition at the symbolic level should be descriptive of what is
the mental competence of the subject under exploration. In the next section. we detail what
we see as the principle assumptions required by models of cognition that recognize their

inherantly descriptive nature.
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2. Fundamentals of Descriptive Cognition

At the "symbolic timescale” (when we consider cognitive actions in .5 to 10 second
chunks), some forms of cognitive behavior' can be meaningfully described as a series of
operators that move the cognizer through a sequence of states, leading to a more desired
state, namely the goal of the sequence of actions. This formulation was proposed initially by
Newell and Simon (1972) and was termed the Problem Space hypothesis. They characterized
problem solving and other phenomena as search within the problem space, which consisted
of all the possible knowledge states in a particular domain, and which was traversed by the
application of operators to transtorm one state into the next. The path so traced through the
hypothesized problem space was termed a solution path. The problem space hypothesis
suggests that we may understand problem solving behavior in terms of operator application

sequences leading to the goal state.

How- can we understand what gave rise to such a sequ.nc;e of behaviours? We posit that
the task for a functional theory of cognition is to describe the states that lead to such a
sequence of behavior. Historically, this was also the task that the behaviorist tradition set for
itself. They proposed that to understand the responses made by an organism, one only need
know the stimulus conditions holding at the time of a response, since what the cognizer
really knew was an association between this stimulus configuration and the response. This
notion is embodied in Clark Hull's formulation of the famous rule Behavior = F  (Stimulus

Intensity, Drive, Habit Strength, Incentive Reinforcement). stating this association.

In line with this behaviorist credo, we accept that there will be features of the stimulus
situation that wili be causally related to the particular response of the organism. Further,

understanding such an association is a fruitful way to describe and understand the

1+ } : . .
That is, behavior sequences for which there exists a tormal domain theory
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competence of the subject. This leads to our first principle of functional cognitive theory.

.Cognitive behavior can be described as a sequence of State (S) - Operator (O) pairs such

that there exists a function F that maps from S. to O. We term this the Regularity principle.

However, since we are proposing a theory of cognition rather than behavior, we need to
consider more than just the external state at the time of the behavior. We must aiso
consider features of the internal state, attributes describing the state of the information
processor. Internal state attributes may describe features relating to goals of the organism,
partial resulits, past history and the state of the processor itself. Thus, the Regularity
principle needs to be extended to include internal state such that any response of the
organism is best described by the salient features of internal state and/or external state. This

leads to our next assumption about function theory.

QOur second principle concerns the nature of the;= response of the organism. Just as a
cognitive theory needs the capacity to represent internal state, it also needs the capacity to
represent internal operators that may change internal state. This is just another way of
saying that observed behavior is not necessarily the result of a unitary internal act, but that
multiple internal states and operators, in a sequence of state-operator changes, may have
preceded the externally observed behavior. Much has been written about the
decomposability of compiex skills, generally under the rubric of hierarchical goal structured
behavior. The most convienient way of describing such decomposability is by way of a

grammar. We title our second principle the Decomposition principle.

To summarize the two principles that we have suggested form the basis of a descriptive
functional-level theory of cognition, we have suggested firstly, that cognitive behavior at the
symbolic level, may best be understood by knowing features of the internal and external

world that were significant at the time of the behavior (the Regularity principle). Secondly.
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we acknowledge the need to describe internal operations. Note that we Jdo not feel
constrained 1o say how these operations may be implemented. Rather they exist because of
task demands and external theories that the learner has internalized. They correlate with
theories of task decomposition. These internal task decompositions may best be described
as a grammar, and so we label our second principle the decomposition principle.. These
two principles in themseilves do not consititute a functional theory of cognition. In fact. we
label them principles since they are not falsifyable. However, they do establish the
framework for a descriptive functional theory of cognition, which we consider in the next

section.

2.1. A Functional Theory: Fundamental Hypotheses
We have just considered how a functional theory of cognition should determine the

relevant parameters of behavior which are Operator = F (State State In this

internal’ extema}) )

section we consider some of the assumptions necessary to mechanistically determine this
relationship. We do this by detailing the assumptional basis for a computational

implementation of this theory called Cirrus.

External state is given as data. but how are we to determine internal state? Internal state
is determined by a theory of aomaln structure. That is, the specification of internal state is
a theory given by the experimenter as to how a certain competency may be achieved. In
the procedural skills that we will discuss, the internal state theory describes how the top-
level task is decomposed into smaller task steps. It is reasonable to assume that compiex
tasks. particularily those taught in formal education, have an asscciated method for “divide
‘and conquer”, specifications how difficult problems can be reduced to simpler problems for
which the student has already acquired competence. This task decomposition can e
described‘ as a grammar hypothesis. which describes the hierachicai structure of the task

The grammar specifies how a given skill is decomposed hierarchically tc give internal goal
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states.

We can decompose the knowledge implied by the grammar into two components. One
component, the goal component is the actual task decomposition, its goal structure. This
component is given by the rewrite rules of the grammar. However, grammers may be non-
deterministic. That is, one left hand side (LHS) clause may expand into multiple right rcwand
side (RHS) rules. This component may be labelled the method knowledge, which of a set of
possible operations to apply. We can extend the grammar to be an annotated grammar to
include this information. In the present model. we assume this information to b‘e included in
the operators. which contain general base restrictions for when they are appropriate.
Adopting this approach simplifies the models constructed. For example, a grammar rule
might specify that the operator Sub1Co/ could be replaced by either ShowTop or Difference.
Which operator was produced by expanding this rule is dictated by conditions for

applicability for the operator (i.e., that the bottom digit equals 0 for ShowTop).

In addition to a specification of the task decomposition rules, we need to specify an
ordering hypothesis. This hypothesis covers the way we theorize that the skill performance is
ordered, that is, what determines the order of subgoal expansion. As a model of how such
a goal tree may be o-rdered, we could appeal to a stack model of subgoal processing (c.f.,
Soar, (Laird, Rosenbloom and Newell, 1984, 1985, 1986: Rosenbloom, Laird, McDermott,
Newell and Orciuch, 1985) with its universal subgoaling). That is, the order of expanding

subgoal nodes is given by a deterministic order.

However, we feel that the stack model is a special case of the more general agenda
model, in which the order of subgoal expansion is non-deterministic. Roughly. the agenda
ordering hypothesis states that the subgoal operators expanded frcm a goal are executed in

an order that is not specified by the goal tree. Note that the assumption of an agenda

s A i S A 8 L
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mechanism does nof imply that we hypothesize that there is an ”"agenda scheduling device”
hardwired into the brain. Rather, we feel this is a suitably general descriptive formalism to
describe how internal states may be orcered. That they need ordering is assumed from the

fact that skills are described by a hierarchical task structure (decomposition principle).

Finally, we assume that states can be adequately described by attﬁbute-pair
representations. That is, for each state, we can specify the universe of attributes that
adequately represent the complete set of properties and relations and their value. We
interpret an “attribute” rather loosely. any piece of information at all can be expressed,.
limited only by whai is considered relevant to the domain. For example, we could postulate
an attribute that a cetain piece of information was in memory with a value true or false, or
that certain actions had just taken place, or that something existed or had existed in the
external environment. It is considered crucial to actually encode all such facts that may bear

on the task domain.

All these assumptions, the grammar hypothesis, ordering hypotheses and representation
assumption, come under the decomposition principle These allow us to specify a theory of
internal operators, that we can combine with the data-given external operators. We can also
specify internal state given this theory. Of course, the task theory and the hypotheses we
use to operationalize it may be wrong, and later we discuss how theories may be accepted

or rejected in a proposal for hypothesis testing.

However, our descriptive task is not yet complete. Even though we now have a way to
specify which states go with which operators. this information is not useful. A state
description contains the universe of attributes applicable to a domain which may be true or
false (or valued, at that given time. The regularity principle leads us to infer that ou! of this

universe of attributes, some will be meaningfully (perhaps causally) related to the operator
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application. Thus the second function of a descriptive theory of cognition must be to define
a method to extract the most informative attributes from the complete universe. This is
clearly an inductive task over the universe of attributes. The question is, which attributes are
most highly predictive of an operator application. Thus the basis of the model is a general
induction algorithm, in that the most predictive features will also be the most general
features associated with an operator application. The model employs an induction formalism
to determine which features of internal and external state are the most predictive. There is
a parallel between the notion of concept formation, with its selection of the most general
features of the instances of a concept, and the inductive task as it is performed by Cirrus.
This parallel is discussed subsequently in the section on Induction and Psychological

Modelling. The way in which the inductive generalization is accomplished is discussed below

under Attribute Selection.

3. Induction and Psychological Modelling: a brief review

Cirrus utilizes an induction formalism known as decision trees (Dtrees). This formalism has
a rich psychological background which is traced in this section. Direes had their first
psychological application in the work on concept formation. The 'paradigm for this line of
research was established by Bruner, Goodnow and Austin (1956). They studied how subjects
form hypotheses about a concept on the basis of positive and negative exemplars. In these
studies, concepts and thereby concept attainment was defined by critical attributes of the set
of objects to be classified. Subjects were presented cards containing objects that could
vary along four dimensions; number of objects, their shape. their colour énd the number of
borders surrounding them. Subjects had to discover a concept (i.e.. cetain values on 1 or
more of the four attributes) that covered the positive instances presented but none of the
negative instances. To do so. they had to identify which attributes were relevant (attribute

identification) and the kind of rule which connects those attributes (conjunctive. disjunctive or
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relational) (Anderson, 1980). Cirrus applies the notion of critical attributes of a concept

formation rule to the critical features of a rule of operator application.

_The combination of attributes selected was used as a rule for the application of a
particular concept. As an extension of this, concepts can also be represented as a
sequence of tests of the values of individual attributes. Simon and Feigenbaum (1979)
employed such a formalism in their EPAM model of perceptual recognition. Tests on
attributes of thg stimuli led naturally to a decision tree representation, where attributes form
a test at each node of a tree, whose branches are the values of that attribute. A concept
is thus sorted down successive branches of the tree, until it arrives at a /eaf of the tree.
The name of the leaf is the label for the concept identifiled while the denotation of that
name is the set of concepts sorted to that leaf. Thus the concept is the decision rule
formed by tracing that path in the dtree. Cirrus adopts an EPAM-like tree representation,
except that operator ciasses instead of concept classes are the l|labels of the |eaves of the

tree.

The EPAM model was an incremental model of concept formation unilike the model
formulated by Hunt, Marin and Stone (1966) in their Concept Leaming System. LS was
intended to solve single-concept learning tasks, the learned procedure then being capable of
classifying new instances. They presented the decision tree process with a complete set of
examples initially. For Hunt, Marin and Stone (1966) CLS was a device that discovered
rules for combining previously learned concepts (attributes) to form a new decision rule.
Similarily, Cirrus is presented with all the positive and negative instances at one time. Thus
Cirrus is not a model of the acquisition process for operator-state pairing knowledge. rather
it represents that knowledge of the problem solver as defined by their performance at that
point in time. Quinlan (1985, 1986) extended the CLS model to deal with noise. n-ary

attributes rather than binary, and with complex relational attributes rather than the feature-
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value representation used in CLS. These improvements in the Dtree formalism were adopted

in Cirrus, except that the feature-value representation format was retained.

Langely, Ohisson and Sage (1984a, 1984b) have applied the decision tree formalism to
modelling of student data in a similar manner to that presented here. However there are
some important differences between the two models. Their model (ACM) takes as input,' the
answers to a probiem domain rather than the actual solution paths, and ACM determines
the solution path taken to arrive at that answer. It chooses the minimum cost solution path,
which is an untenable assumption for students. For example, even in the simplified world of
subtraction they employ, actual students show marked variation in solution paths while
arriving at the correct answer. In more complex domains such as algebra, the varience in

solution paths is quite astounding, even given students with the same learning history.

ACM forms separate decision trees for each operator, in contrast to Cirrus which forms
only one Dtree to classify all the operators for a particular skill. In ACM’s case, attributes
arg given positive or negative values according to whether they were present when the
particular operator was applied. Staies are then sorted down the tree according to whether
they were a positive instance of operator application or a negative instance. In Cirrus, the
decision tree is formed over the whole pfoblem space rather than over an individual
operator. For Cirrus, adequate classification is assured since discrimination is incomplete
(and marked as such) unless each leaf of the dtree contains only one class of operator. In
Langley et al.'s formalism, inadequate discrimination between operators is not addressed.
Finally, ACM employs a different mechanism for selecting the next attribute in building the
tree. This point will be discussed in more detail under Attribute Selection. However. the
major distinction between the two models is in the fact that Cirrus employs real protocol
data rather than hypothesized or ideal data. This motivated many of the features of Cirrus.

such as the noise-filter added to the attribute-selection mechanism. Overall, the inductive



Descriptions of Mind 15

formalism that Cirrus uses to extract information from the universe of state features has a

long history in the psychological literature.

3.1. Attribute Selection
The essential element of the regularity principle is to extract the most informative aspects
of the external and internal state that predict the application of an operator. This section

details the process of selecting these features from the universe that characterizes the state.

Dtrees work inductively to make classificatory decisions. In this case the tree contains
nodes for the critical attributes only, rather than specifying the universe of attributes U. Such
a partial description may be realized by several equivalent trees. Different attribute sets may
adequately classify the universe of objects, but some will be better than others. The
mechanism that determines the 'quality’ of the generalization is that which chooses the
attribute to discriminate at sucessive roots of the Dtree. Several methods have been

employed in the previously discussed models and these are compared further in this section.

Hunt et al. (1966) proposes criteria based on cost minimization, costs associated with
measurement, complexity of the tree and understandability for their CLS model. The optimal
attribute for the root of the tree was chosen by a look-ahead method. This was

accomplished as follows.

1. A search was made for an attribute value which appeared in al/l the positive
instance descriptions and never in the negative instance descriptions. The dtree-
building method halted if such an attribute was found, since it completely
differentiated the world of objects. |

2. If this search failed, the above procedure was then applied to negative objects.

3. If both steps 1. and 2. fail, then the attribute which has the highest frequency
for a given value was selected.

Such a procedure assumes that only binary attributes are encoded. Since all n-ary
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attributes could be recoded in a binary format, this is conceptually non-problematic, but
psychologically is less plausible. The procedure used by the CLS falls into the class of
category validity methods of attribute selection, after Rosch's (1975) notions of family
resemblance. Category validity methods seeks to maximize the coverage of each critical
attribute over all the positive instances (Smith and Medin, 1'981). That is, a feature is high
in category validity to the extent of the number of instances of the category contain that
feature. Although much research supports the category validity model (Rasch and Mervis,
1975 : Medin, Wattenmaker and Michalski; in press), the CLS procedure for attribute
selection is computationally intractable, since it can involve up to 3 serial searches, which

seems uneconomic if the attribute space is large.

A more psychologically satisfying method was employed by Langley et al. (1984) in ACM.
Their system computes the number of positive instances matching a given test (M+) and the
number of negative instances failing that test (U-), and the total number of positive (T+) and
negative instances (T-). ACM caiculates the sum of the proportion of instance class to total

class S = _A_/_[_*_” +£]_- and then computes E = max(S$.2-S) It is easy to see that an optimal
T, . T
+ .

test would be one that completely discriminated all the positive and negative examples. Such
a test would receive a score of 1 + 1 = 2. Similarily, a test with no discrimination would

match only half the positive as well as half the negative examples, and so would score one.

0 - S gives the discriminability of negated tests.

This method works in- the case of single attribute selections but fails when multiple attribute
selections are considered. To illustrate the shortcomings of the above evaluation function. we
shall treat the dtree as an information source. that is. the dtree can be seen as providing a
classification and hence information. Information theory tells us that an act is informative to

the extent that it reduces uncertainty, and the amount of information received is proportional
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to the extent of uncertainty about the information to be received. Consider the foliowing
example taken from Garner (1962). If a coin Is tossed in the air, then the uncertainty of
that message is obviously determined by the number of possible.outcomes, in this case two.
If instead, a die is rolled, then the uncertainty would be greater since there are six possibie
outcomes. Thus, the roll of the die contains more information potential than the toss c¢f the

coin, since the outcome of the die is more uncertain.

Thus one measure of information would be the uncertainty of the event, measured by the
number of outcomes for that event. This is the measure suggested by Langley et ali (198:H
for ACM, since an attribute is selected as more informative if it accounts for more of the
total uncertainty. (i.e., the sum of postive and negative outcomes it correctly discriminates).
How'ever, consider the case when two coins or two die are tossed in the air. Two coins
have 4 possible outcomes whereas two dice have 36 possible outcomes. Eunher, three coins

do not provide us with 6 units of information potential (i.e., states of uncertainty) but 8.

Thus a simple linear additive model of accumulated information is clearly inadequate. The
number of possible outcomes of an event does not give a measure of the uncertainty of
that event. The measure which satisfies the above state of affairs must be a logarithmic
model, rather than the linear model employed by ACM. This is so because a logarithmic
function is monotonically related to the number of outcomes and each successive event adds

the same amount of uncertainty as preceeding events.

This leads to the definition of the bit, the basic measurement unit of information. The

uncertainty U of an event, and hence its potential for carrying information., can be measured

by U = cloghk where k is the number of outcomes of an event and ¢ is a proportionality

J

constant. It is accepted practise in information thecry to utilize base 2 ‘cganthme and o

define the unit of measurement so that ¢ = 1. Thus U = log,k Intuitively, one bit of
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information enables us to decide between two outcomes, whereas one bit of uncertainty

involves doubling the number of categories of an outcome.

The above formula for uncertainty assumes that each value in k has an equal chance of
occuring. Since the probability p(x) of any one event occuring is the reciprocal of the total

number of values in k, then U = Iog2 _1__ (Garner, 1962). Thus U = -log2p(x) Is the meésure
pix)

of average uncertainty when all categories of x are equally likely. When there is a discrete
probability distribution for x, the average uncertainty is computed by determining the
uncertainty for each item and obtaining a weighted sum of these uncertainties. This weight
will be just the probability of that category occuring. This transformation thus gives us

Shannon’s measure of average information: Ulx) = -S pix) log, plx).

The preceding formula allows us to measure how informative any particular feature of
internal or external state will be in deci&ing the correct operator to apply. A derivation of
this measure is used in Cirrus to select the next attribute, the details of which will be
discussed in a later section. The point here was to demonstrate the superiority of an
information theoretic measure over the linear probability method employed by Langley et al..
particularily when combinations of attributes must be considered. With regard to Smith and
Medin's (1981) classification of éttribute classes, this measure provides a basis for attribute
selection according to the cue validity class of models, such that each attribute seeks to
maximize the discriminability of the concept. Thus, a feature is selected according to how
well it differentiates the application of an operator (c.f.. concept) from the space of all the
domain operators. We will return to a discussion of cue validity vs. category validity models

ot attribute selection in discussing shortcomings of the model.
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3.2. Summary

In this section, we have argued that we could understand the process of operator
selection, termed search contro/ if we knew what were the critical features of the internal
state (features related to a domain theory of task decomposition) and the external state (the
state of the problem or task). We claimed that although external features are given by the
data, internal features need to be generated by a domain theory of task performance. This
theory related to the decomposition of the top-level task into a subgoal hierarchy that is
specified by the grammar hypothesis. Ordering of the task was scheduled by an agenda
(agenda hypothesis) and the states so produced were encoded by an attribute-value

representation.

To determine which of these feature were most informative, we argued that an information
theoretic measure is the most appropriate to inductively select the critical featurés from the
universe of internal and external features present at the time of each operator application.
These assumptions, grouped under the grammar principle and regularity principle, allow the
mechanization of determining the functional association of states and operators. In the
following sections, we first discuss the actual implementation of Cirrus as a computer

program, and then we illustrate its use in analysing solution path protocols from the domain

of subtraction.

4. Computational Details of Cirrus

Cirrus is a multi-stage serial process with the following stages.

e Data Encoding

o State Parsing

o Attribute Encoding

o Decision Tree construction

e Application
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The following section describes each of these processing stages in turn.  First, some
general comments will be made on the computational basis of Cirrus. Overall, Cirrus is an
example of the class of similarity-based induction formalisms (Mitchell, Keller and Kedar-
Cabelli, 1986). It uses multiple training instances (solution path protocols) and an information
theoretic inductive bias (Shannon’'s measure of average information, Quinian, 1983). The
output is expressed as a decision tree. It is not limited to conjunctive generalizations, as are
some popular inductive formalisms, such as Version spaces (Mitchell, Utgoff & Banerji, 1983).
Decision trees can handle disjunctive concepts equally well. This merely means that one
concept (operator) will occupy multiple leaves of the tree. With that definition of the class
of inductive methods, we can turn to examining the inputs or parameters that need to be

given to Cirrus. To illustrate some of the computational mechanisms, examples from the

domain of subtraction will be emplioyed.

4.1. Data Encoding

As noted earlier, a problem space consists of states, particularily an initial state, and
operators that transform those states. The sucession of states from the initial to the goal
state is termed the so/ution path for that problem. Cirrus accepts as input the solution path
employed in solving a given problem. The sequence of states are displayed and the
operator is asked to name the primitive operators corresponding the state change,
transforming the data to a series of state-operator tuples. Note that the set of standard
operators may need to be supplemented with various buggy operators if the student has
non-standard primitives. Figure 1 illustrates the set of state-operator tuples that result from

encoding a subtraction protocol.

INSERT FIGURE 1 ABROUT HERE
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4.2. Parsing

Parsing converts the sequence of primitive operators into a goal structure according to a
grammar that can successfully cover the input string. Figure 2 illustrates the standarc order
grammar that corresponds to the algorithm most commonly taught in schools for performing
subtraction. Figure 3 shows a parse tree resuiting from parsing a subtraction probiem. it is
clear from this diagram how a grammar can specify the goal hierachy implicit in an
instructed skill. Note that the adequacy of a grammar (and hence of the domain theory) is
determined by its sufficency to parse the input string, thus giving an empirical validation of

the task decompostition theory.

INSERT FIGURES 2 AND 3 ABOUT HERE

Cirrus employs a bottom-up parsing algorithm with a variable constraint mechanism. The
need for variable constraint parsing deserves cioser attention as it illustrates some of the

features of protocol data.  An ordinary context-free parser builds parse trees that obey

several constraints:

1. Constituents of a phrase appear in the order specified by the rule that sanctions
building the phrase. ‘

2. Constituents of a phrase abut each other; you can not skip over pieces of the
string.

3. Constituents of a phrase do not overlap each other, they have to abut.

4. Constituents of a phrase have a category/type that is specified by the grammar
rule that sanctions building the phrase.

These constraints are too confining for analyzing protocols. if one wishes to consider the
possibility of non-deterministic order of sub-goal expansion. as implied by agenda scheduling
The Cirrus parser relaxes the first two constraints to allow for such possibilities. That is.

constituents need not be ordered nor abutting but they are still required to be non-
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overlapping and to obey type restrictions. If the grammar hypothesis specifies that
constituents abut or appear Iin a certain order, these requirements can be represented as

predicates attached to the grammar rules. These predicates act as constaints such that the

user can specify added requirements beyond those required by Cirrus.

As discussed previously, the grammar hypothesis specifies the task decomposition. -This
grammar must be extended to an annotated grammar to include specification of which
method, if there are alternatives, is to be applied. For simplicity, the model assumes that
in the case of a non-deterministic grammar rule (l.e., with muitiple RHS), the operator itself

encodes the information necessary to determine its applicability.

The output of the parsing stage is a goal-tree structure of state operator tuples. This tree
is converted to an episodic sequence of tuples by a tree walk proceedure that generates the
hypothesized internal states (such as stack or agenda contents, and focus of attention
contents). Thus the tree walk procedure specifies the remainder of the grammar hypothesis,
the internal informational states resulting from the specified task decomposition. In this way,

the internal state is built from the primitive operator sequence specified by the external

solution path protocol.

4.3. Attribute Encoding

Each operator-state tuple is converted to an operator-attribute/set tuple by running the set
of all domain attribute predicates over each state description. Recall that the state
description includes the actual scratch marks made by the subject as well as the
hypothesized internal state given by the parsing mechanism. Additionally. some attributes
have access to the previous history of the problem solver (e.g.. to episodic STM traces)

The set of attributes classes that we determined adequate for the domain of subtraction

can be classified as follows.
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e Internal State attributes.
These attributes encode features of the internal state and are thus specific to

the hypothesized model being explored. For example (add/10-on-agenda,
top-of-stack).

e Problem State Constant attributes.

These encode features of the problem that are constant from state to state.
For example ( number-zeros, number-columns, number-blanks).

e Focus of Attention attributes. ‘
These attributes encode features of the external state with respect to the column
of the subtraction problem that the student is currently attending to. For example
( top<bottom, top < bottomn-originally, bottom = blank).

e Rightmost Unanswered Column attributes.

These attributes encode features of the external state with respect to the

rightmost column whose answer row is still a blank. The actual features encoded
are identical to the focus of attention attributes.

e History attributes.
These attributes encode previous events in the problem solving history. Most of
these concern the previous operator applied, but some are flags indicating once
only events. For example (just-borrowed, borrowed-ever).

Of course, new attribute sets need to be constructed for each task domain. In general, a
task analysis is usually sufficent to establish the universe of necessary attributes. Note that
some of the complexity in the above description of thef attribute set stems from the use of
a propositional encoding of attribute-value pairs as opposed to a more powerful first-order
predicate encoding. Thus attributes cannot take arguments, such as column-type. This
explains why it is necessary to specify Focus of Attention problems distinct from Rightmost
Unanswered Column problems. The output of this stage is a sequential list of operator-

attribute tuples for each problem.

4.4. Decision Tree Construction
The final stage recursively constructs a decision tree. At each node. the most informative

attribute, as defined subsequently, is selected. The operators sorted to this node are further

by

s halts i 2l the

ER I

)

discriminated according to their value on the selected attribute. The proce

operators scorted to the node are identical (e.g.. the unary set) or if there are no attributes
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remaining which can discriminate the operators.

4.5. Attribute Selection

An information theoretic measure is utilized to determine the choice of the root and
subsequent attributes in the Dtree. It is based on Shannon and Weaver's dictum that an
event is informative to the degree that it permits one to decide among a set of alternative
possibilities as to what it might have been. The justification for the following selection criteria

is outlined in detail in Quinlan (1983, 1986) and is only briefly summarized here.

At any particular node, let C be the set of objects sorted to that node. C will contain the
classes of operator P..N with p..n objects per class. Let N be the total number of objects in
C. It a decision tree were to classify a random object at this point in the tree, it would

assign the object to class P with the probability £. Thus, the information required to

N
classify an object as one of P..N is then:
n 1 l
I(p..n) = - 2 —]-\-flog2 —1\_/
i=p
An attribute A with values JA, . . . A} will partition C into {C, . .. C_} leaves,

where C; contains objects in C that have value A; on attribute A. This set of objects will
contain p items of class P and so on through class N. Thus the information that is given
by the attribute A over the class of C objects is a weighted average of the total expected
information, where the weight for each branch is the proportion of objects in C that belong

to that branch:

U p+ o0 +”I'

!

Eld) = > Iip o
pt+ . .. +n ‘ ’

I = |

Thus. the gain in information given by attribute A is the actual information needed to
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generate a classification minus the expected information:

gain(A) = I{p..n) - E(A)
So, at each node in the Dtree, this quantity is computed for ail the attributes that are not
parents of the current node. The attribute which maximizes the gain of information at this
node in the tree is selected, and the operators that have been sorted 10 this node are

further discriminated by their values on the attribute so seiected.

Two other factors must be considered in attribute selection; the influence of noisy data on
attrib.. 2 selection, and the inflation of information content by muitiply-valued attributes
(Quinlan, 1986). The source of noise could be misclassified objects on the basis of incorrect
attribute value assignation or classification. Thus the tree building mechanism must know
when the attribute set is unable to fully distinquish the classes of objects. and also when

not to needlessly complicate the tree to classify incorrectly valued objects.

The chi-squared method (X ?2) suggested by Quinlan (1986) is employed as a noise fiiter.
If an attibute is useful in classitying an object. then there will be a correlation of the values
of the attribute with the ciass of objects in C. If an attribute is irrelevant to the classes of

object, then the expected value p'. of p. will be:

This value can be utilized as the expected value in a normal chi-squared equation. and the
resulting value checked against a stringent confidence interval (p < .01). In this way
attributes whose vaiue distribution is unassociated with class distributions wiil not pe

selected. thus giving some immunity to noise in the data.

Kononenko. Bratko and Roskar (1984, in Quinlan. 1386) report that the gain critera
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suggested by Quinlan (1984) is sensitive to the number of values in an attribute, favouring
attributes with more values. Rather than limiting feature sets to binary attributes, Cirrus

implements Quinlan’s (1986) suggestion for overcoming this selection bias.

The output from Cirrus is a graphic tree representation of the decision tree. Each node
of the tree represents an attribute which, at that node, carried the greatest Information
content in the overall discrimination of the operators. The arcs of the tree are the values of
the discriminating attribute. The leaves of the tree represent the operator/s, thus the path
from the root of the tree to that leaf represents the rule for applying that particular class of
operators. Note that the most influential attributes (i.e., most informative) for an operators
application will be high in the tree whereas the more trivial attributes, along with any
remaining “noise” will be lower in the tree. This concludes our discussion of the
implementation details of Cirrus. In the following section, we apply Cirrus to protocol data

from the domain of subtraction. to illustrate this style of induction-based protocol analysis.

5. An Analysis of Subtraction Protocols
In this section, we apply the Cirrus method of descriptive analysis to subtraction protocol

data. We will utilize as our Grammar hypothesis the standard order grammar depicted in

Figure 3.

5.1. Procedure

The data analysed were 12 subtraction problems solved by P.D., a 3rd grade student. This
student solved these items by paper and péncil test. In order to collect the exact writing
actions, the test page was tapéd to an electronic tablet and PD filled out the test with a
special pen. Tablet data was then converted to a sequence of character writing actions.
separated by measured pauses. (Vanlehn. 1982, 1985: VanLehn and Ball. 1987) Each

scratch mark made on the page defined an external state transition. hence each problem
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could be encoded as a sequence of state transitions. The problem set is illustrated in
Figure 4. The set of problems was designed so that Borrow and Borrow from Zero
procedures were tested as well. Figure 5 illustrates the sequences of external states that

PD wrote in the solution of one problem.

INSERT FIGURES 4 AND 5 ABOUT HERE

These sequences of solution path protocols were encoded as cartesian-coordinate probiem
representations. The first stage of Cirrus sequentially displayed the externa! state changes of
the page and queried the operator for which of a predefined set of primitive operators could
produce such a state change. The set of operators unambigously corresponded to these
external state changes. The list of normal and buggy operators that were found sufficient to
encode a number of different subject's subtraction protocols is given in Tabie 1, along with
the action implied by the operator's name. Each scratch mark made on the page defined

an external state transition., hence each problem could be encoded as a sequence of state

transitions.

INSERT TABLE t ABOUT HERE

The standard order grammar illustrated earlier was used to parse these external state/
primitive operator pairs. The internalized state descriptions produced by the grammar
hypothesis. along with the attribute set described previously complete the input parameters to

Cirrus.  From this input, Cirrus produced Otrees that collapse across the 12 examples fed 10

the program.
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S5.2. Results

Figure 6 diagrams the results of Cirrus's analysis of the data® This tree structure requires
some explanation before the actual resuilts can be discussed. The nodes of the tree
propose an attribute whose values are maximally informative in discriminating operators in the
subtree below the node. Attributes that are higher in the tree are more informative than
those lower in the tree. Values of the attribute (often just true or faise) label the links
between nodes. The tree can be seen as "sorting” operators to its leaves. The operator
appears in a box under the leat. When two or more operators appear together in a box,
that means either no state features were capable of discriminating the operators or
senseless attributes were being used in a “last ditch” effort to seperate operators that

reasonably should not be discriminated. The one case where this occured is discussed

below.

This tree needs to be considered in conjunction with the goal tree (grammar hypothesis)
proposed for subtraction (Figure 2). First consider the leftmost branch of the dtree. The
operators Sub, Sub1Column, ShowTop and Decrement can be correctly “scheduled” by
reference only to the state of the agenda. Note that primitives pop themselves from the
agenda when completed, as do goals when their subgoals have all been completed. Also,
ShowTop is assumed to have been placed on the agenda rather than Diff due t0 method
information encoded in the operator, as to its applicatility. So if we know that we want to
do a subtraction problem and we have not done anything yet (i.e., the agenda is empty)
then we apply the goal operator Subtract. Likewise. if the subgoal to take the difference has
not yet appeared on the agengja, then we want to subtract one column, and so on. ‘Nhat

is significant here is that there is sufficent information just in what has appeared on the

2 o | |

For purposes of simplifying the output. the cases where only one operatsr instance 15 sorted to a node
separated in a non-intuitive way from other class members, have been treated as 'noise” Most likely these few
instances (3 instances out of 215 operator applications) are caused by sips (Norman, 1981)
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agenda to schedule these operators with out reference to any external state or subgoal

ordering.

INSERT FIGURE 6 ABCUT HERE

The remainder of the tree divides into two main subtrees. Note that if the goa!v to take
the difference of two numbers (Diffy has been put on the agenda, then we are either going
to be able to jusi take the difference, or we will need to borrow (called Regroup here). This
is expressed by the middle branch of the tree, and of course, we decide between these two
alternatives according to whether the top digit is less that the bottom digit in the right-most
unanswered column (RUC.T<B8). Note that this is the only feature of external state chosen
by the tree. If Regroup has already been chosen and expanded, this means that the
operator Add 10 must be on the agenda (Add/710.ON.AGENDA). This attribute discriminates at

a higher level of the tree whether to process a column (Diff or Regroup) or complete the

borrowing process.

The rightmost branch of the tree deals with scheduling the operators to complete the
borrow procedure. Interestingly, the ordering of these operations (Decrement, Add/10,
ScratchMark, From and Regroup) is probably the least determined by the standard order
algorithm as taught by schools. This is reflected in the Dtree attribute nodes. which refer to
a variety of internal states, including memory states. For PD, Scratchmark is the first
operator executed whenever it appears on the agenda. This is sensible since this mark is a
temporary reminder to decrement. If we have made a scratch mark (Just/Scratchmarky then
we are going to Adad/10 or Decr. the remaining two operators left in the borrow sequence
The actual output dtree could differentiate these operators by appealing to psychologizaily
implausible attributes. (Number of top zerc's and whether the top digit was origirally zerc)

Subjects themselves show greater variability in scheduling these two operators both between
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subjects and even within subjects in the same problem. Since the order of applying these
does not affect the outcome of the procedure (l.e., its correctness) perhaps the dtree is just
reflecting a basic Indeterminacy in this scheduling and selecting only spuriously associated
state features. (Recall that the attributes lower in the tree are less important and

predictive). For this reason, we show the operators together.

Finally, the remainder of the tree uses a memory trace to scheduie the remaining Add/10
operators directly after a decrement operation. These Add/10 operators are different from
the previous group of Add/10 operators in that these do not occur in the context of
borrowing. Alternatively, if one has not yet performed the basic operators for borrow, (Decr
Ada/10, ScratchMark) then one executes the planning operators for borrowing;, From and
Regroup. These operators are just ordered by their appearance on the agenda, Regroup

being performed first (which indeed it must before From can be executed).

Thus the analysis of this Dtree suggests that the Cirrus method of aescriptive analysis tells
us the information used by this student in performing the complete range of subtraction
skills. It has certainly presented a coherant theory of the skills required to control the
execution of a subtraction procedure (search control). Subtraction for muiti-column problems
is viewed as a procedure rather than a skill requiring search. This is reflected in the Dtree
in that only one external state feature is needed to effectively sequence a complex collection
of skills. The top-most ordering for this skill, derives from the task decomposition given in
the grammar. This analysis aiso predicts that the only intermeadiate results that PD needs to
store in working memory (Just/Sratchmark and Just/Decr) are involved in sequencing the more
complex Borrow operation. One could speculate that the reason students have more trouble
in acquiring borrowing skills is due to this extra memory demand. Interestingly. the results
demonstrate that relativiey unstructured ordering principles such as agenda’'s ~re nevertheless

sufficient to schedule complex operator sequences with very little additional information.



Descriptions of Mind 31

In the next section, these resuits are related to a wider view of what can be

accomplished with the use of such an automated method of analysis.

6. Discussion

We take the previous example as evidence for the utility of a descriptive theory of
cognition. However, how might such results be utilized? Cirrus is seen as having three
major applications. These three applications, data reduction/analysis, student modelling and
architectural hypothesis testing are described with regard to the problem space hypothesis.

using the data just analysed.

Recall that for the problem space hypothesis, problem solving and other phenomena are
viewed as search within the domain of the problem space. One way we could describe the
process of operatbr selection (search controf) is to know which features (attributes) of the
internal and external states are most predictive (and hence, presumably causal) of operator
application. By knowing these features, we would know what external cues and internal
states of the information processor “drove” the sequence of operators observed. Previous
approaches to protocol analysis (Bhaskar and Simon, 1977 Ericsson and Simon, 1984)
offered no mechanistic way that such an analysis could be conducted. The model Cirrus
described in this paper offers an automated method for exploring these kinds of data
analysis. In the next section, we propose three difficulties in the traditional approach to

protocol analysis, and describe how Cirrus might answer these difficulties.

6.1. Limitations of Protocol Analysis of Solution Paths
As a method of enquiry, protocol analysis of solution path data has several unresolved
issues that stem from the above noted need to describe the internal states of the processor

and the external cues that predict operator application.

e TO date, most empirical studies of the problem space hypothesis have concerned
the protocol analysis of single subjects. No adequate technology as yet exists for
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comparing and contrasting the solution-paths of multiple data-sets. Nor has there
been a means of reducing the data of solution paths so that only the essential
features are considered. There is not the means for conducting hypothesis tests
of group differences, a standard resouce for data comparison. This limits
protocol-based studies to descriptive rather than evaluative formats. We term this
the need for dara reduction/analysis.

e The output of protocol analysis is potentially useful in many facets of student
modelling, from assesment of learned procedures to intelligent tutoring system
uses. However, it is at present not feasible to utilize such data in any “real .
time” sense, since protocol analysis involves tedious handcoding of large amounts
of data, and the promuigation of many "intuitive” but untested assumptions.
There is a need to automate this analysis process so that student models can
be built in real-time, with a clearly defined set of assumptions. We term this

the need for automated student modelling.

e The problem space hypothesis leaves under-determined the ordering principle,
control processes that schedule the application of operators to achieve the goal
state. There are many applicable models in the artificial intelligence literature,
from planning models to blind search modeils, but there has been no easy way
to test the architectural assumptions with respect to their fit to the data.
Anderson (1983) has argued that such an issue may in fact be undecidable,
since an infinitude of machines can model arbitary input/output relationships.
Nevertheless, such models of internal architecture have been proposed in the

literature. We feel that there is a need to evaluate such descriptive models
against real solution path data. We term such an evaluation of ordering principle

adequacy.

These three issues, of data reduction/analysis, ordering principle testing and automated

student modelling are elaborated next in greater detail, along with an indication as to how

Cirrus may solve these problems.

6.2. A Basis for Data Reduction.

There are two criterial ways in which solution path data may be utilized. Firstly, we wish
to know which of the universe of features of a problem state are the relevant ones, that is;
what aspects of the data are causal or correlated with the outcome? Secondly. how can

different sets of data, once the critical aspects of the data have been found be compared.

The first problem is one of induction over the universe of attributes. That is. which

attributes are most highly predictive of an operator applicaticn. This information is directly
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available as the result of Cirrus’'s analysis. Refering back to Figure 6, we can see what is
important in learning how to execute a subtraction procedure. For the operators that
establish the topmost goals (Sub, Sub1Cof) in subtraction, only their order of appearance on
the agenda is required. Similarily, if one does not take the difference In a column (i.e., Diff
not on agenda), then one will just write down the top digit ( ShowTop). From this, it is

tempting to hypothesize that learners learn just the sequence of activities for these

operators.

Obviously, the most crucial piece of information is whether top < bottom, in order to
decide whether to take the difference or to initiate borrowing. Thus the borrowing procedure
is executed when we have two conflicting pieces of evidence. !f Diff is on the agenda, but
top < bottom, then we must delay executing Diff and do Regroup first. Thus for this
operator, learned sequences are contingent on external states. Likewise, ordering of
operators may be contingent on the history of previous actions, as it is for Add/10 or

decrementing, which occur after making a scratch mark on the page.

Cirrus then, is capable of seperating from state representations what is importam_
knowledge in skilled performance. For further analysis, one may wish to assess the extent
of differences between subjects solution paths as a function of different treatment or
sampling conditions. Previous protocol approaches that have tried to compare across groups
have assumed a metric scaling space and rated the protocols on various dimensions within
this space, assessing similarity or difference by traditional statistical methods. However. this
approach is unsatisfactory for several reasons. Firstly, the measures that are inferred from
the data are those that fit the subjective view of the experimenter as to what is interesting
to examine. Secondly, Tversky (1977) has questioned the validity of the geometic approach
in that the assumption of a metric scaling srace is often untenable where judgements cf

similarity are concerned.
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Tversky suggests instead a contrast model of analysis, employihg a linear combination of
common and different feature sets to assess similarity. Such a matching function can
measure the degree to which two objects, viewed as a set of features, match each other.
Such an analysis needs a comparison of feature set commonalities and differences rather
than a computation of metric distances between points of inferred constructs. However,
before such a matching function can apply, there is a prior necessary process of‘ the
extraction and compilation of the relevant set of features maximally associated with an
operator application. The model Cirrus performs the preliminaries to such an analysis, by

extracting the critical features from the universe of attributes.

In summary, we perceived a need to discern the critical features of external and internal
state that maximally predict an operator's application. Such an analysis can firstly be
employed for data reduction, so that complex protocol data can be understood by noting
only the critical features. Futher, this type of data reduction could be futher employed as
input to an analysis of feature similarities and differences, that would serve as a basis for

within or between subject comparision. Cirrus exactly meets these requirements.

6.3. Automated Student Modelling

There is a further extension of the model beyond a theoretical basis for data reduction. If
the assumptions of the model (the grammar hypothesis and the ordering hypothesis) are
appropriate for human problem-solvers, then Cirrus can serve as a model for the process of
operator selection, that is, a student model. This is a stronger theoretical claim than the
previous one of determining the state features that “cause” an operator application. Here.
we are saying that the process utilized by Cirrus to discriminate when a particular operator
should be applied may be analogous to the process a student utilizes when solving a
problem. That is. Cirrus in this role. is describing the actual csearch control mechanism

employed by a problem solver. Thus, the output of Cirrus (decision trees), wouid be
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hypothesized to be control knowledge employed by the problem solver.

Domains such as subtraction, algebra ahd physics fall readily into the Problem Space
hypothesis approach, where the basic manipulations constitute the operators within the
problem space. The task for the student is to apply the correct sequence of operators 10
move from the initial to the goal state. Such learning may be termed Search control. How
this knowledge is induced from examples, and the form of this knowledge are interesting
questions. We imagine that the form of this knowledge could be described as falling along
what may loosely be described as an external-internal state descriptor dimension. At one
pole Is the kind of search control knowledge described by Lewis and Anderson (1985) as
schema abstracted from problem examples that predict when and when not a particuiar
operator will work. These schemata contain certain problem features that are properties of
the problem diagram and information contained in the problem description. They conclude
that search control can be described as a correlation between surface features of the

problem state (external state) and the correct rules of inference for these problems.

At the other pole are models which propose that what is learnt as search control is an
internal structure which guides the sequence of operator application. As an example,
VanLehn (1985) argues that problem solvers learn a goal hierarchy which specifies the order
of operator application. Thus, there are internal features of the processor state (internal
state) that when learnt, can guide the execution of a complex skill. Inevitably, search control
will consist of a mixture of external state features and internal state features. In terms of
modelling the search control acquired by a learner. it would be instructive to know what

these critical features are.

Cirrus exactly describes what the balance is between search tvpe attributes and internal

procedural attributes. Given solution path protocols. Cirrus can now determine the features
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of the internal and external state that the student has most likely employed in reaching a
solution. This data can then be employed in student modelling applications, be it evaluation
of the search control strategies employed by the student for research purposes, diagnosis of
incorrect operator application caused by attention to incorrect features of the problem-state
in teaching situations, determining differential procedures following differing teaching histories.

or building representations of the student in ICAl applications.

6.4. Evaluation of Decomposition and Ordering Principles

The two most significant free parameters of Cirrus are the ordering hypothesis and the
task decomposition hypothesis. Both of these can be varied and the resuitant models
evaluated on a “what if?" basis. We have argued for an agenda ordering structure on the
grounds of its generality. However, we could postulate more constrained ordering principles.
For example, we may postulate that a subject uses a stack architecture. That is, the plan
or procedure that the subject follows is represented following a stack regime, such that
when all the sub-goals of a goal are accomplished, then that goal can be popped off the
stack. Note that the stack model is a more restricted case than the agenda regime used
here. The primary feature of stack regimes is deterministic ordering of subgoal expansion,

against non-deterministic expansion order in an agenda.

The choice of ordering principle suggests the set of internal attributes to supplement the
already established set of external attributes. For example, in the case of a stack
architecture, relevant attributes may be top of stack and depth of stack. Finally, the set of
operator states (primitives plus sub-goal operators determined by the hypothesized
architecture) resulting from the parsed problem, together with the concommittant encoding of
attribute sets are utilized to construct a decision tree. The decision tree represents the

control structure that directs the execution of the procedure on the hvpothesized architecture
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Different architectural modeils and the resultant control structures may then be compared
with each other. We have no formal way of contrasting the resuitant Decision trees, instead
we rely on the following heuristics to evaluate "goodness of fit". The ordering principle that
utilizes a minimal set of features to produce decision trees of maximal simplicity and
psychological plausibility is selected on the grounds of parsimony. Further bases for
comparision arise from the fact that building such an "executable” model of searcﬁ control
demonstrates the limitations inherant in the proposed architecture. For example, the above
illustrated stack model/ architecture, with its order determined sequence of subgoal expansion

may be too inflexible to account for actual solution path data in a piausible manner.

The ability to manipulate such parameters and estimate their effect on the knowledge
structures depicted by the resultant Direes seems advantageous in the construction of

theoretical models.

6.5. Limitations and Problems

The heart of the Cirrus model is the inductive method empioyed in selecting attributes. We
have noted that the information theoretic _model emplioyed falls into the cue validity class of
induction models. That is, attributes are selected on their ability to discriminate between
operator classes. (Here, the basis of discrimination is information content). However, we
have no guarantee that this is the strategy employed by human subjects. Indeed. there is
evidence that in the domain of concept formation, humans utilize category validity methods.
Here, attributes are selected on their correlation with the se‘t of other attributes defining a
concept (Medin, Wattenmaker and Michalski, in press; Rosch and Mervis. 1975) The
difference between the knowledge structures arising from cue versus category methods has
yet to be explored, and an extension of the Cirrus model would be to incorporate an

alternative category-validity attribute selection method.
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The model uses an attribute-value encoding, a relatively weak propositional formalism for
knowledge representation. More compact and powerful state descriptions may result from
adopting a first order predicate state representation, particularily in expressing relational

information. The extent of the limitation from a propostional representation is not yet clear.

6.6. Conclusions

In the introduction, we argued that theories of cognition that drew their sources of
theoretical constraints from functional analyses of task domains should limit their hypotheses
to functionally based statements about competence. In the analysis presented here, we have
taken a theory of how subjects decompose the task of subtraction (the decomposition
hypothesis) and generated a representation of a problem-solvers internal and external state
constrained by this theory. From this, we have been able to extract the knowledge

structures utilized by the problem solver, that adequately explain the competence

demonstrated.

In doing so. we have not neéded to hypothesize an architecture that would serve 1o
execute this knowledge. We beljeve that this is an important advantage of the current
method. Not only does it obliviate the need for ad hoc test and generate cycles 10
determine the “rule structure” of a particular task domain (as would a conventional
production system analysis), but it does not build structural mechanisms based only on
functional constraints. Thus there is no temptation to reify descriptive mechanisms to the
status of an actual structural mechanism. Neither ha\;e we elevated the regquiarities found in
a subject's performance to the status of a rule. that is. something that is explicitly
represented in the neural substrate. Instead we have described observed competence. and
can leave theories concerning how such competence may be represented and processed to

theories that concern the structural requirements for computation.
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Finally, we have sketched how such a method of analysis may be applied to interesting
problems. We considered the problems of automated analysis of protocols, particularily online
protocols of say, a student in a tutoring situation. We demonstrated how Cirrus could
meaningfully extract a model of the student's competence. The applications of this to
intelligent tutors that need to build models of that same competence are apparent. We
briefly considered how the induction method of Cirrus might be used to perfcrh group

analyses of protocol data, and suggested how different domain theories might be compared.

-000-
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