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Abstract’

Several current theories of procedural knowledge hypothesize that procedures are organized
as hierarchies of goals, wherein accomplishing a goal requires accomplishing all or some of its
subgoals. This form of knowledge is most naturally executed with the aid of a temporary last-in-
first-out stack of goals. This article presents evidence that a stack regime is not flexible enough to
account for the procedural problem solving exhibited by a sample of 26 third-graders.solving
subtraction problems. Two alternative control regimes are investigated. Qne stores goals on an
agenda (an unordered set) and the other stores goals in a tree. Both the agenda regime and the
tree regime employ a rule-based scheduler that picks the next goal for execution. Both regimes
succeed at modelling our subjects’ problem solving strategies. The tree regime is able to account
for data from another study as well. However, a closer examination of the fit between models and
data shows that some students change their execution strategies in the midst of problem solving.

This finding challenges fundamental assumptions underlying research on cognitive architectures.

'This is the final report on ONR Contract Number N00014-85-C-0688, which has
explored mental representations of procedural knowledge and how people acquire them.
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1. Introduction

Much research has been devoted to uncovering the cognitive architecture that underlies
human problem solving and skill acquisition. (See Newell, Laird and Rosenbloom (in press) for a
review.) Many models for the cognitive architecture have been developed, including GPs (Ernst &
Newell, 1969), production systems (Newell & Simon, 1972; Newell, 1978; Newell, 1973), ACT*
(Anderson, 1983), applicative and-or graphs (VanLehn, 1983a; VanLehn, 1983b) and SOAR (Laijrd,
Rosenbloom, & Newell, 1986). The theorists differ considerably on whether their models are to be
taken as literal models of human cognitive architecture, or as mere notations that happen to
accurately predict certain aspects of human behavior. Nonetheless, all involved would agree that
people have some kind of procedural knowledge and some mechanism for turning that knowledge
into action. Most investigators (but not all) assume that the mechanism is fairly simple, and that its
translation of knowledge into action is fairly direct. That is, they assume that the mechanism is
similar to the mechanisms used by computers to execute computer programs. This report
classifies the various proposed knowledge-executing mechanisms that have been appeared in the
literature, and shows which types of cognitive architectures are consistent with some new

experimental evidence from the task domain of arithmetic calculation.

The classification of cognitive architectures employed here is actually one developed by
computer science as a classification of program execution mechanisms. The classification is
based on the features that the mechanism makes available to the programmer. The classes are
called control regimes. For example, some programming languages (e.g., LISP, C, PASCAL) permit
recursive programs, and other programming languages (e.g., FORTRAN, BASIC) do not. The
execution mechanisms for the recursion-allowing languages are said to obey a recursive control

regime, while those for FORTRAN and its ilk are said to obey a non-recursive control regime.

Control regimes are determined mostly by how the machine stores the temporary information
that it uses to control the execution of the program, so control regimes are often named by the type
of data structure used for temporary information. For instance, the control regime used by some
versions of LISP is based on using a last-in-first-out stack for storing control information, so it is
called a stack regime. A stack regime is one type of recursive control regime. Another type of
recursive control regime is based on keeping control information in a randomly accessible list,

called an agenda, so this control regime is called an agenda regime. Although the nomenclature




emphasizes storage mechanisms, the classification is defined by the capabilities it allows. For
instance, the agenda regime allows a type of pseudo-parallel processing called co-routining,

whereas the stack regime does not permit co-routining.

Control régimes are classes of mechanisms, so it makes sense to ask what the control
regime of the human cognitive architecture is. Knowing the control regime would tell us what
capabilities (e.g., recursion, co-routining) mental programs could have. This in turn would tell us
something about the initial stages of skill acquisition, where new programs are "written." For
instance, suppose we knew that the human cognitive architecture obeyed a stack regime.
Because a stack regime allows recursive programs, we could infer that people could learn
recursive mental programs, such as the goal recursion strategy for solving the tower of Hanoi
puzzle (Simon, 1975) or a top-down method of coding LISP (Anderson, Farrell, & Saurers, 1984).
On the other hand, it the students’ architecture obeys a non-recursive control regime, then the
same training would engender a non-recursive mental program, and in particular, the program

would probably have separate pieces for each level of recursion illustrated in the training:.

It may seem that the control regime of the cognitive architecture is so far removed from
observation that it would be impossible to ascertain its identity experimentally. However, it does
have empirical consequences,- and they can even be fairly direct. Suppose the training experiment
just mentioned was performed for the tower of Hanoi. If the control regime is nonrecursive, the
acquired program would have separate pieces for each level of recursion. This predicts that the
subject could not solve problems requiring more recursive levels than the problems they received
in training. This is a false prediction (Anzai & Simon, 1979). People can generalize from training on
small problems to larger problems (e.g., from the 4 disk version of the tower of Hanoi to the 6 disk
version). On the other hand, if the cognitive architecture obeys a recursive control regime, such as
a stack regime, the acquired program could use the same pieces of knowledge for all levels of
recursion, which accounts tor how people can transfer their competence from the 4-disk to the
6-disk puzzle.? This illustrates that the control regime issue is not only an important one, but one

that makes testible predictions.

2A proper argument would have to be considerably more complicated than this one. It would have to show that students
acqguired a recursive program and not an iterative cne. See VanlLehn (1983) for a proper argument in support of recursive
control regimes.



This article delineates four recursive control regimes (section 1), presents an experiment
(section 2), and shows that the experiment’s results, when combined with other data from the same
task domain, are compatible with only one of the four control regimes (section 3). However, when
a simulation model based on this control regime is fit to the experiment’'s data (in section 4),
several regularities are found that are not consistent with the usual hypothesis that a subject has
just one mental program for a task. It seems instead that subjects acquire several strategies during

training and switch among them during testing. The architectural implications of these findings are

discussed in section 5.

2. Control Regimes

The four control regimes are all recursive ones. There is convincing argumentation that
procedural knowledge is hierarchical (Simon, 1969), and recursive control regimes are the most
natural control regimes for such organizations. Although there is only a little direct evidence for
recursive control regimes (VanLehn, 1383c), most current accounts of cognitive architecture

assume some type of recursive control regime (Anderson, 1983; Laird, Rosenbloom, & Newell,

1986, VanLehn, 1983b).

In computer science, control regimes idealize the mechanisms they describe because they
do not mention the capacity limitations of the control storage. In early LiSP, the stack was limited to
holding a few thousand function invocations because it was in fact implemented by a table of finite
size. However, the control regime is still called a stack regime, because the last-in-first-out
protocol is the appropriate characterization of its behavior. In applying the control regime idea to
cognitive architectures, we will continue the tradition of ignoring capacity limitations. In pan, this is
because the old sto.ry of seven chunks of short-term memory has developed into rich, complicated
set of hypotheses (see, e.g., Zhang and Simon, 1985, or Schneider and Detweiler, 1987). For
instance, there is evidence that massive training increases the apparent capacity for temporary
information (Chase & Ericsson, 1982). Clearly, execution of cognitve procedures is something
adults have had much practice at. Perhaps this practice has caused them to develop a large
capacity memory for temporary control information. Although it is not yet clear how oné should
apply the more recent work on short term memory to the control component of cognitive

architectures, it would clearly be naive to assume, for example, that a stack could hold at most



seven goals.3

Unlimited capacity for control storage is also the idealization employed by current work on
architectures (op cit.). Mostly, this idealization is left undefended. However, Anderson (1983)
explains that when control information is forgotten due to capacity limitations, the person will
reconstruct it as needed from the state of the external world. Although no one has tried to model
this reconstructive process or investigate it experimentally, it seems intuitively plausible. Indeed, in
the "situated action" account of procedural behavior (Suchman, 1385), the whole notion of internal,
mental storage of control information is replaced by a reconstructive processes that constantly
interprets the external world (the situation) in such a way as to provide roughly the same
functionality as an unlimited capacity control store. Regardless of how control storage is
implemented, either as mental information or interpreted situations, the issue of control regime
remains. It amounts to asking what kinds of information are stored and what conventions goverh

its access.
The four control regimes to be investigated are delineated in subsequent paragraphs.

The deterministic stack regime. Goals are accessed according to a last-in, first-out
convention. Thus, when a goal calls a subgoal, the goal's state is "pushed" onto a "stack.” When
the subgoal is completed, the goal is "popped" from the stack and resumes execution. The usual
stack regimes (i.e., in computer languages such as PASCAL) have the added convention that the
drder in which subgoals are executed is fixed. Every time a goal is processed, its subgoals are
executed in the same order. Usually, the order in encoded by the order invwhich the subgoals
appear in the (written) program. We call this stack regime the deterministic stack regime because
subgoal orders are fully determined. This control regime is used by Repair Theory (Brown &

VanLehn, 1980; VanLehn, 1983a; VanLehn, 1983b), ACT" (Anderson, 1983), GRAPES (Anderson,

3The architecture literature uses the term "goal” for the units of modularity in procedural knowledge, so we use substitue
“goal” for "tunction” or "procedure” when applying the control regime idea to cognition. In addition to acting as units of
control modularity, many goals also describe a state that the person would like the worid to be in. However, there are some
notorious goals, such as "hide from Joe", that cannot be simply expressed as predicates on the state of the world.
Moreover, when one tries t0 simulate even moderately complicated problem solving, it is frequently necessary to use such
"state-less” goals to control the execution of the simulation. [n this article, we will assume only that goais are units of
control, and not that goals specify desired states of the world.



| Farrell, & Saurers, 1984)* and other cognitive models.

The nondeterministic stack regime. This control regime also accesses goals according to
the last-in-first-out convention. However, the subgoal order is not tixed. Instead, there is a distinct
component of the program that is responsible for choosing which subgoal to execute. The
knowledge encoded in this component is called a scheduling strategy and the component of the
architecture responsible for enactind the scheduling strategy is called a scheduler. In the
architecture literature, GPs (Ernst & Newell, 1969; Newell & Simon, 1972) was the first to employ a
nondeterministic stack regime. It obeyed a nondeterministic stack regime when it was configured
to perform means-ends analysis. When the current goal has several unsatisfied preconditions, GPS
treats these as subgoals and uses a simple scheduler to choose which one to work on. Newell's
group’s most recent general problem solver, SOAR (Laird, Rosenbloom, & Newell, 1986) has a
much more powerful scheduler. However, SOAR still enforces the last-in-first-out convention that
characterizes means-end analysis. All subgoals must be satisfied before a goal can be popped

from the stack.>

The tree regime. Architectures obeying a tree regime remember all goals ever invoked
during the course of solving a problem and allow unrestricted access to all of them. The goal-
subgoal relationships are also stored, which means that the stored information can be viewed as a
tree of goals. As an illustration, suppose someone is following the goal recursion strategy for the
3-disk tower of Hanoi (i.e., to move a pyramid of N disks from peg S to peg T, move a pyramid of
N-1 disks from peg S to O, move the Nth disk from S to T, then move the pyramid of N-1 disks from
Oto T.). The top goal in the tree (see table 1)is "move the 3 disk pyramid from peg A to peg C:
Directly beneath it are the three subgoals (1) Move the 2-disk pyramid from A to B, (2) move disk 3
from A to C, and (3) move the 2-disk pyramid from B to C. Beneath the first subgoal are three more
goals (1.1) move disk 1 from Ato C, (1.2) move disk 2 from A to B, and (1.3) move disk 1 from C to

B. After the person completes the first move, subgoal 1.1 is marked "satisfied.” After the first three

“GRAPES stores goals in a tree. As will be seen shortly, storing a goal tree allows an architecture to employ a tree
regime. However, GRAPES' default scheduling strategy is to search the tree depth-first, in left to right order, until it finds a
pending goal, i.e., a goal that can be executed. This strategy means that GRAPES' default control regime is a deterministic
stack regime. However, a GRAPES program can use special devices to edit the goal tree after it has been built, and this
might allow one to implement other control regimes than the default one.

SSOAR has an undocumented mechanism for suspending and resuming partially completed goals, but itis rarely used (J.
Laird, personai communication)



moves, goals 1.1, 1.2, 1.3 and 1 are marked satistied. On the fourth move, goal 2 is marked done,
and goal 3, move the 2-disk pyramid from B to C, is expanded producing three subgoals.

Execution consists of expanding goals and marking goals satistied. Tree structure is never

deleted.

Move 3-disk pyramid from Ato C

1. Move 2-disk pyramid from A to B

1.1 Move 1-disk pyramid from Ato C
1.2 Move disk 2 from Ato B

1.3 Move 1 disk pyramid from C to B
Move disk 3 from Ato C

Move 2-disk pyramid from B to C

3.1 Move 1-disk pyramid from B to A
3.2 Move disk 2 from B to C

3.3 Move 1-disk pyramid from Ato C

Table 1: Complete goal tree for 3-disk tower of Hanoi solution

wp

In computer science, tree regimes invariably employ a scheduler that is allowed to pick any
pending goal, where a pending goal is leaf of the tree that is not marked "satisfied.” A scheduling -
strategy determines how the scheduler makes its choices. Consequently, a tree regime can do

anything that a nondeterministic stack regime can do.

However, the tree regime permits a behavior, sometimes called co-routining or time-sharing,
wherein control alternates back and forth between two or more tasks. To see how, suppose that a
tree has two main goals, A and B, beneath its top node, and that A and B both have numerous
subgoals. The scheduler can pick pending subgoals of A for a while, then pick subgoals of B, then
go back to choosing subgoals of A. This alternation is a form of pseudo-parallel processing. It can

not be done by a stack regime.

There have been no experimental tests of whether people can co-routine. In part, this is due
to the types of tasks studied in the literature. Some tasks, such as the tower of Hanoi, do not
permit the usual recursive solution procedures to be executed in co-routine fashion. Refering back
to the tree mentioned earlier, the puzzle is constructed so that a person physically cannot work on

goal 3 until goal 1 has been completed.

In lieu of experimental evidence, we can consult the intuition about whether people can

co-routine. However, the intuition fails to give a clear answer. For instance, an experienced cook



can alternate between chopping vegetables for a salad and basting a roast. At first glance, this
apparent co-routining seems to show that the architecture obeys a tree regime. However, because
we do not know what the expert cook’s procedural knowledge is, we can not say with certainty that
salad-making and réast-basting are adjacent goals in the meal preparation tree. Their subgoals
could have been combined into one large salad/roast goal while the cook was learning how to
orchestrate a meal. This salad/roast goal could be executed on a stack regime architecture,
yielding the same surface behavior. Indeed, the circumstances under which beginning cooks could
perform the salad/roast co-routine are unknown. They might need to use a timer, in which case a
different, less powerful control regime (e.g., a stack regime with the ability to handle interrupts)
suffices. The moral of this homely example is that one can not infer the control regime directly from
surface behavior. One must know the structure of subjects’ procedural knowledge. This important

methodological prerequisite is discussed again later.

The tree regime has the odd property that satisfied goals are remembered forever. This
might be approximately correct, if goal storage is implemented as episodic memory of some kind,
or it could be just an idealization. The last control regime permits co-routining but store goals more

economically.

The agenda regime. The agenda regime is like the tree regime, except that only the pending
goals are stored. The goals are viewed as an unordered set. As an illustration, consider again the
tower of Hanoi example. After the first move, the agenda is {1.2, 1.3, 2, 3}. Just after the fourth
move, the agenda is {3}. On the next cycle, the scheduler picks goal 3. Processing it modifies the
agenda to be {3.1, 3.2, 3.3}. Goal 3 has been removed, since it is no longer pending, and its three
subgoals have been placed on the agenda. An agenda control regime supports co-routining just at

the tree regime does.

Although agenda control regimes are common among current Artificial Intelligence problem
solver (see Nii(1986) for a review of a particularly popular one, called the black-board architecture),

no cognitive architecture has employed one. It would be an interesting direction to explore.

This completes the introduction of the four control regimes to be considered here. There are,
of course, many other control regimes in computer science. For instance, we are ignoring control

regimes for object-oriented programming languages. We are considering only control regimes for




von Neuman style architectures because those are the ones that have been employed successfuily
in explaining human problem solving behavior and skill acquisition. Connectionist architectures are,
so far, the only challengers, but they have a long ways to go before they can model behavior that
takes longer than a minute or two. We are interested in problem solving that takes several minutes

or hours to perform, so we have concentrated on von Neuman architectures.

3. The experiment

Before discussing the experiment per se, some methodological issues will be raised and

dealt with.

3.1. Methodological issues

It is difficult to unequivqcally determine which control regime governs the cognitive .
architecture because one control regime can emulate another. For instance, a nondeterminis_iic
stack regime emulates a deterministic stack regime when the scheduler employs the scheduling
strategy of ordering pending goals by their order in the procedural knowledge structure. Indeed,
the four control regimes under discussion happen to fall into a total order. When listed in the order
(1) deterministic stack regime, (2) nondeterministic stack regime, (3) agenda regime, and (4) tree
regime, each control regime can emulate the control regimes that precede it in the list. The ability
of one control regime to emulate another means that the determination of control regime might
have to rely on assumptions of simplicity and parsimony. If subjects are acting in such a way that
the deterministic stack regime can model their behavior, then all the other control regimes can
model their behavior as well and one would have to invoke parsimony and simplicity in order to
argue that they are actually using a deterministic stack regime. As it turns out, this particular
methodological difficulty does not arise, since the data favor the tree regime, which none of the

other regimes can emuiate.

A second difficulty in determining a subject’s control regime is that it is not the control regime
alone that determines the subject’'s problem solving behavior. The subject is executing some
procedure or plan. As illustrated earlier, given an appropriate procedure, even the weakest control

regime can act just like the strongest. So inferences about the subject’s control regime are
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impossible without some knowledge of the procedure that they are executing.

In order to make strong assumptions about the procedural knowledge being executed, we
choose a task domain in which skill acquisition is well understood. The subjects’ task is subtraction

of multidigit whole numbers (e.g., 324-68). There are several comments to make about this task

domain.

Unlike the classic 1970’s studies of puzzle solving, where subjects are given a description of
the solution state and asked to find a path to it, the subtraction task gives subjects a procedure and
asks them to follow it. However, these two types of tasks are not as different as one might think.
Often, the subjects in puzzle solving experiments invent partial plans and follow them. Structurally,
plans and procedures are identical, and the control regimes that can be used in following them are
the same. So the difference between classic puzzle solving and procedure following is only in the
source of the plan/procedure being followed, and not in the way that that procedural knowledge
structure is followed. Consequently, the' claims presented here, supported by a procedure
following task, may also hoid for planning tasks. Further research would, of course, be required in

order to test this purported generality.

Despite the fact that subjects are taught a procedure for subtraction, one can not assume
that that specific procedure is the one that they are following because skill acquisition may not be
so straightforward. For instance, it is known that some students follow buggy procedures, which
are systematic and stable procedures that happen to yield incorrect answers (Brown & Burton,
1978; VanLehn, 1882). However, there has been extensive work on how subtraction procedures
are acquired. A model exists that explains why some students develop bugs (VénLehn, 1983b;
VanLehn, 1983a). More imponrtantly for the purposes of this paper, this model generates a set of
procedures, called core procedures, that are potential outcomes of instruction in subtraction. Some
of the core procedures have been observed (albeit, indirectly), and others are predictions about
procedures that may be observed in the future. We will assume that the subjects in the experiment
reported here are tollowing one of the 30 core procedures generated by the model when it is
"taught” with the same instructional material that the subjects were taught with (see
VanLehn(1983b), chapter 2). This assumption replaces the simple (and false) assumption that

subjects follow the procedure that their teacher intends them to learn.
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A by-product of this assumption is that when fitting a particular control regime to a subject’s
behavior, one must choose a core procedure from the set. Fortunately, for the data discussed

below, there was never any ambiguity; only one choice was appropriate for each subject.

Another caveat to mention is that the choices of a procedure and a control regime (along
with a scheduling strategy, if the control regime needs one) do not totally predict behavior. They
only predict behavior as long as things go according to plan. They do not specify what hapbens at
impasses, where the procedure/control regime says to do something which can not be done given
the current state of the problem. Impasses have been extensively studied (Brown & VanLehn,
1980; VanLehn, 1983a; VanLehn, 1383b). In situations where subjects may not seek help, they
resort to one of a small variety of heuristic repairs, which are local perturbations to the control state.
For instance, one repair is deciding to give up on the current goal. In the stack regime, this is
implemented by popping the stack. In the tree regime, is this implemented by marking the current
goal and all its subgoals "non-pending.” Qur theory of repairs (called Repair Theory) specifies this .
set, although it does not indicate the circumstances under which subjects will choose one repair,’in
preference to the other applicable repairs. This means that matching a model to a subject’s
behavior requires fitting a parameter, the choice of repair at each impasse. Because repairs
perform such local changes to the control state, this parameter does not allow much control over
the model's behavior. (In particular, one can not get one control regime to emulate another.) This is

good, because it usually makes the choice of repair at each impasse unambiguous.

A last comment is that subjects do not always do what they intend. They sometimes make
unintended actions, called s/ips (Norman, 1981). To deal with slips, we edit them from our data
(see the discussion below), along with intended behavior that lies outside the task domain, such as

rewriting answers to make them more legible.

To summarize, there are four major difficulties in determining a subject’'s control regime: (1)
some control regimes can emulate others, so simplicity and parsimony may sometimes play a role
in deciding which regime the subject has; (2) all control regimes execute a procedure, so one must
choose a procedure when fitting a proposed model to a subject’'s behavior; (3) the control regime
and procedure do not determine the subject’'s behavior at impasses, so their behavior at their
impasses (if any) must be fit from a set of repairs; (4) slips and othere behavior from outside the

task domain infest the data. None of these difficulties are insurmountable, chiefly because of



12

extensive prior work on the particular task domain chosen for investigation.

3.2. Subjects and methods
The subjects for the experiments were drawn from three third-grade classrooms. The
classrooms were pre-tested twice using a paper-and-pencil diagnostic test. We selected 33

students whose errors on the pre-tests either showed an uncommon bug or were not systematic

enough to be analyzed as deriving from bugs.

These 33 subjects were tested individually in a small room adjacent to their classroom. Each
student solved an individualized paper-and-pencil test whose items were designed to elicit the
errors we saw on that student’s pre-tests. In order to collect the exact writing actions, the test page
was taped to an electronic tablet, and students filled out the test with a special pen. Equipment
malfunctions caused the data from 7 students to be lost. Tablet data from each of the remaining 26
students were converted into a sequence of character-writing actions, separated by measured

pauses.® These 26 sequences are the "protocols" used throughout this article as data.

3.3. Results: qualitative version

It is difficult to summarize protocol data in a theory-neutral way, so this section will adopt a
classification that is useful for the purpose of comparing control regimes, and summarize the data
in terms of that classification. A later section treats the data in a rﬁore quantitive fashion. The
observed orders are classified into standard order, locally nonstandard orders, and globally
nonstandard orders. A later section will show that all three types of orders occurred. This section

merely defines the three classes, along with some other nomenclature that will be useful later.

We define a standard order to be an execution order that was taught to the students.
Unfortunately, we do not know exactly which standard order was taught. We know the textbooks
that the students were taught from, but the textbook’'s examples and discussions are consistent

with more than one standard order. One would have to watch the teacher present examples at the

$The original purpose of the experiment was to find chronometric evidence for repair by measuring the pauses between
writting actions. However, the pause data turned out to be very noisy. Long pauses seemed to be caused mostly by
episodes of counting (e.g., in order to determine a number fact, such as the ditference between 15 and 7), by fiddling with
the pen or by other theoretically irrelevant activities. Against this high background variation in pause length, it would be
difficult to measure the duration of repair episodes relative to the duration of non-repair actions. We have not undertaken a
thorough analysis of the pause data. |
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blackboard in order to determine unambiguously which orders were taught. However, under any of
the standard orders permitted by the textbook, the columns are processed in right-to-left order, and
all borrowing actions for a column are completed before the answer to the column is calculated. It

will be assumed that these two properties define the standard orders of subtraction execution.

We found that most subjects employed a standard order, but eight subjects ordefed their
writing actions in nonstandard ways (see table 2).” For instance, some students did all the
borrowing first, on one right-to-left pass across the columns of a problem, then returned left-to-right
filling in the column answers. Although the small sample size and and its biased selection prevents
us from drawing strong conclusions about the overall population, the tact that one third of the

sample used nonstandard orders indicates that phenomenon is not a trivial or idiosyncratic one.

Standard order 15
Nonstandard orders 8
No scratch marks 3
Total _ 26

Table 2: Number of students with standard and nonstandard orders

For the purposes of comparing control regimes, it is helpful to divide the nonstandard orders
iInto two classes: locally nonstandard orders and globally nonstandard orders. To do so requires

that some notation be introduced.

A rule-based notation is used for core procedures. Table 3 shows a core procedure. Each
subscripted symbol is a goal, and each rule is a method for achieving the goal on its left side. The
subscripts indicate the way a goal passes arguments to its subgoals. In the.case of subtraction,
the arguments always happen to be columns. For instance, the rule C, --> A, F,_, - means that the
column processing goal, C, can be achieved for column i by achieving three subgoals: adding ten
to the top digit of column i (A), performing the borrow-from subgoal on the next column (F,_,), and
taking the difference between the two digits of column i and writing it in the answer position of

column i (-). Alongside each rule is a condition indicating when the rule is applicable. Thus, the

rule just stated is applicable when the top digit in column i is less than the bottom digit (T,<B;).

"Three students used no scratch marks. Consequently, we can tell almost nothing about the order they used.
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Sub - C, For each column,
Ci — - When T, 2 B,

Ci > A Fi .y When T, < B,

F. — SD, WhenT, # 0

F. > F,,y A SD, WhenT; =0

SD; —» S; D Always

Table 3: A core procedure written in a rule-based notation

This notation is designed to subordinate information which is not needed in the arguments
presented- below. However, it leaves intact the feature of procedures tﬁat is essential for the
arguments, which is that they are hierarchies of goals. In fact, this procedure is recursive, because
the borrow-from goal calls itself. Such hierarchical, recursive knowledge representations have
been widely used in cognitive science tor representing procedural knowledge (e.g., Newell &
Simon, 1972; Anderson, 1983; Laird, Rosenbloom, & Newell, 1886). VanlLehn (1983) argues from
bug data to show that students in subtraction are best represented as having knowledge structures

like the one in table 3.

The set of core procedures contains 30 procedures, including the one of table 3 (VanLehn,
1983b). Some core procedures are complete and correct, but different from the procedure of table
3 in that they have slightly different conventions for borrowing (e.g., for borrowing across zero, F,
calls F,_, and 9;, where 9, is a primitive goal that changes the top digit of column i to 9). Cther
procedures are partial versions of a taught procedure (e.qg., if borrowing from zero has not been

learned, then the rule F, —» F,_, A, SD, is missing). Other procedures have overgeneralized or

I+1
overspecialized test conditions (e.g., C; borrows when the top digit in column i is less than or equal

to the bottom digit).

A trace tree is a way of displaying the history of execution of a procedure. Its leaves are the
primitive, observabie actions of the procedure. The nonleaf nodes are instances of nonprimitive
goals. A node with its descendents corresponds to a rule: the node is the left side of the rule,
instantiated, and the descendents correspond to the subgoals on the right side of the rule.
Descendents of a node are arranged chronologically so that the leftmost descendent corresponds
to the subgoal that was first executed, and the rightmost descendent to the last subgoal. This
implies that the leaves are ordered so that the primitive actions they represented occur in the

left-to-right order of the leaves. Figure 1 shows a trace tree for a standard order execution of the
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core procedure shown in table 3.

When a procedure is executed so that the descendents of a node have the same order as
the right side of the rule, then one of the standard orders is generated. This is a consequence of
the learning model, (VanLehn, 1983a; VanlLehn, 1983b) which constructs core procedures by

generalizing the example execution that the teacher presents.

With the notations for core procedures and trace trees introduced, the subclassifications of

nonstandard orders can now be defined.

A locally nonstandard order produces a trace tree where the order of descendents of some
node does not correspond to the right-side ordering of the corresponding rule. The trace tree in
figure 2 corresponds to a nonstandard order execution, because the ordering of subgoals for

borrowing does not correspond to the A F. , -, order of the right side of the borrowing rule of the

i+1 i
core procedure of table 3. Indeed, none of the 30 core procedures use the order shown in the:
trace tree, wherein the column is answer before borrowing is completed. Thus, the protocol shown :
the figure, which corresponds to the leaves of the tree, can not be modelled by a standard
execution of any core procedure. When we say that a person has a locally nonstandard order, we
mean that there is no core procedure which allows a standard order execution, and there is at least

one core procedure that allows a locally nonstandard order execution.

A globally nonstandard order produces a trace tree which is nonplanar, in that the branches
cross. Figure 3 shows a globally nonstandard order execution for the core procedure of table 3.
Notice that the borrowing actions of all columns are completed first, then the columns are
answered in left-to-right order. There is no core procedure that allows this sequence of actions to
be executed in a standard or locally nonstandard order, so we say that it is a globally nonstandard

order.

The main points to be taken from this discussion of the data are that there are three types of
orders, standard, locally nonstandard and globally nonstandardand, and that all three types occur
in the data. Moreover, the orders often occur mixed together in the performance of a single

student.
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4. Which control regimes are consistent with the data?
Each of the four control regimes will be considered in turn for their ability to produce

nonstandard orders.

The deterministic stack regime. A deterministic stack regime. IS the weakest control regime.
When a subgoal is being executéd, the goal resides on a stack, along with an index into its list of
subgoals. The index indicates which subgoal to call next when the present subgoal is finished.
Figure 4 shows the stack at each cycle of interpretation during a standard order execution of the

procedure of table 3 on the problem 306 - 28.

In a deterministic stack regime, the order of execution of subgoals is fixed by the contents of
the procedure. The order is the order in which the subgoals were listed on the right side of the rule.
However, this fixed ordering makes it impossible for the deterministic stack regime to model even

the locally nonstandard orders, let alone the globally nonstandard ones.

Nondeterministic stack regime. The nondetermistic stack regime is the next step up in pov;/eri
from the deterministic stack regime. It does not fix the order of subgoal execution in advance, but
instead employs a scheduler that chooses which subgoal to execute. Thus, when a rule is about to
be executed for the first time, the scheduler chooses which subgoal from the right side to execute
first. The chosen subgoal is instantiated, the current goal is pushed onto the stack, and execution
of the subgoal begins. When its execution is finished, scheduler chooses one of the remaining
subgoals as the second one to be executed. When all the subgoals have been executed, the goal

IS popped and control returns to the goal that called it.

The implementation of GPS described by Newell and Simon (1972) obeys a nondeterministic
stack regime and uses a simple scheduler based on a total order of goal types. When a goal is
begun or continued, the subgoals are categorized and their types are looked up in a list. The
subgoal whose type occurs first in the list is chosen for execution. If two subgoals tie, because they
have the same type, then the model is underdetermined at that point. It does not predict which
choice the subject will make. This is why the control regime is called a nondeterministic stack
regime. The list of goal types is a parameter to the model. It represents a scheduling strategy.

Since the types are task specific, the scheduling strategy is necessarily task specific as well.
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For subtraction, a total order of goal types would merely cause emulation of the deterministic
stack regime, so a slightly more powerful scheduling mechanism is used. Goal types are partially
ordered instead of totally ordered. A scheduling strategy is riotated by a set of transitive,
antisymetric ordering constraints. For instance, the ordering relation S5;>D, means that slashing is
preferred over decrementing given that both refer to the same column, i. This constraint will cause
the scheduler to first pick S, off the agenda when both S, and D, are on it unless, of course, there
is some other goal on the agenda that is even more highly preferred then S,. Once S, has been
executed and is therefore off the agenda, the scheduler is free to pick D,. Another example is the

constraint C;>C,,,, which means that the column processing goals will to be processed in right to

+1

left order.

The scheduler uses the paﬂié! order established by such constraints to choose one of the
remaining subgoals of a goal whenever that goal is begun or continued. Because the order is
partial and not total, it is possible for two goals to tie for tirst place even when they are of ditferent
types. For instance, suppose that A>-. is the only constraint relevant to the borrowing goa’l'si
subgoals, A, F._., and -. When the goal is begun, two goals will tie for first place, the add-ten -
subgoal, A, and the borrow-from subgoal, F. ;. Thus, the model does not predict which goal will

be choosen by the subject. It will be consistent with either one.

This is, of course, not the only way to notate scheduling strategies. It is merely the next step
up in power from GPS’'s notation. Indeed, it will turn out later that this notation is not powerful
enough to represent some of the regularities in the data. However, the notation does allow a

precise comparision of control regimes, which is all that we need of it for the purposes of this

paper.

The nondeterministic stack regime can be parameterized so that it will generate the locally
nonstandard orders as well as the standard ones. For instance, in order to generate the
nonstandard order illustrated in figure 2, the constraints ->F. , and A>- are used to order the

subgoals of borrowing. However, there is no way to parameterize the model so that the globally

nonstandard orders are generated.

The agenda regime. Another type of control regime uses an agenda as its goal memory. An

agenda is an unordered set of instantiated goals. When a goal is executed, it is first removed from
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the agenda, then all its subgoals are instantiated and placed on the agenda. Thus, an agenda
represents a set of pending goals, i.e., an unordered plan for all the things that need to be done to

finish the problem. Figure 4 shows the agenda during execution of the procedure of figure 3.

An agenda regime requires a scheduler to choose which of the goals on the agenda to
execute next. The agenda regimes in Al have tended to use very complicated schedulers (Nii,
1986). Since this scheduler is part of a comparision between control regimes, it makes sense to
use the same scheduler as was used in the nondeterministic stack regime. This means that

differences in generative power will be due to the control regime and not differences in the power of

the scheduler.

An agenda regime» allows enough flexibility to model both globally and locally nonstandard
orders. The key to this flexibility is that the agenda regime can mix the execution of subgoails from
two different goals, because the agenda allows access to all pending subgoals. The
nondeterministic stack regime allows access to only the most recent goal's subgoals. As an
ilustration of this power, figure 5 shows the agenda at each step of a globally nonstandard
execution order. The problem 345-189 is solved in two passes, with all the borrowing on the first
pass and all the column differences on the second pass. Table 4 gives a scheduling strategy that
will produce this order. The agenda regime is the first of the regimes to be discussed that has

sufficient power to model all the observed execution orders.

The tree regime. The fourth type of control regime for recursive programs is based on
keeping a tree of instantiated goals. When the procedure has finished, the tree is exactly the trace
tree for the procedure on that problem. During execution, this tree is constructed incrementally. A
system of markers is used to differentiate pending goals from those that have been executed. As
with the agenda regime, a scheduler picks which of the pending goals to execute. Again, we will
assume that the scheduler is guided by a scheduling strategy that is represented as a partial order.

Figure 4 shows a few cycles of interpretation using a tree regime.

The tree regime can emulate the agenda regime because whenever the agenda always
corresponds to the set of goals in the tree that are marked pending. In particular, both the tree
regime and the agenda regime can handle all three types of orders. The agenda regime is slightly

more elegant because it maintains the minimal temporary state needed to do its job. The extra
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C;>Ci, Do columns right-to-left

—-i> = Do column differences left-to-right
S;>D, Do slash before decrementing

X, >A for X=F,S,D,A Do all borrowing-from before add 10
X;>—., for X=8,A,F,SD,S,0,Z, or 9 Do column differences last

Table 4: Constraints for the two-pass scheduling strategy

nodes in the tree serve no purpose as far as scheduling is concerned. However, this is not a
sufficient reason to prefer the agenda regime over the tree regime. More empirical evidence is

needed. Fortunately, such evidence is already at hand.

In our earlier work on repair (Brown & VanlLehn, 1980; VanLehn, 1983c¢), it was shown that a
common repair is to retreat to a super-goal of the goal where the impasse occurs and resume
interpretation there. This kind of repair is called hierarchical backup. It is different from
chronological backup (the kind used in (Newell & Simon, 1972)) or dependency directed backup
(deKleer, 1986). It resembles a nonlocal "return” in hierarchical programming languages (e.g., the
catch-throw construct in CommonLisp). In order to function properly, hierarchical backup requires
that the architecture maintain either a stack or tree of goals so that hierarchical backup can easily
access a supergoal of the currently active goal. With an agenda, which has only pending goals,
backing up to a supergoal would require a reverse interpretation process to reconstruct the chain of
supergoals that called the currently active goal. Reverse interpretation is complex because it can
be non-deterministic. If a goal is called from two different supergoals, the reverse interpreter must
guess which one was in fact the one that called the goal. In short, the agenda just does not have
as much information as the tree, and moreover, that missing information is sometimes crucial for
the backup repair. The backup evidence shows that the architecture obeys a tree regime rather

than an agenda regime.

It seems that the tree-based control regime is uniquely capable of modelling both the
ordering data and the repair data. We can tentatively conclude that the tree-based control regime

is obeyed by the mental architecture that human procedures are executed by.
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5. How well does the tree regime fit the protocol data®?

So far, the argument has been based on a qualitative treatment of the protocol data. It was
asserted that some subjects, on some problems, used execution orders that only the tree and
agenda regimes can model. This section fits the tree regime to the protocol data in order to
determine how much of the variability in student’s execution orders can be captured. This will yield
an intuitive assessment of the absolute quality of the tree regime, rather than its quality relative to
the other control regimes. It will also demonstrate the instability of subject’s scheduling strategies

over time.

5.1. The fitting procedure

This section describes how the tree regime is fit to the data. There are three parameters that
must be given values: (1) the procedure, (2) the scheduling strategy, and (3) the repairs to any
impasses that-occur. The parameterization method is to first choose a procedure and repairs, then
fit a scheduling strategy. In all cases, the choice of procedure and repairs was quite clear cut, so it -

was done by hand. Table 5 shows the procedures assigned to each student.

The choice of scheduling strategy was less clear. We had to find a good fit by running the
model with our best guess at a set of constraints, then examining the residuals. Residuals are

places where the model and the protocol disagree. There are two kinds of residuals:

o Underprediction. More than one pending goal is maximal according to the constraint
set, and the student’'s choice is among the maximal items. The model partially
explains the student’s choice, but falls short of exactly predicting it.

o Misprediction. The student’s choice is not among the maximal pendmg goals. The
model mispredicts the student’s behavior.

To arrive at a numerical evaluation of the model's fit to a student’s protocol, we counted the cases
of underprediction and misprediction. In general, these two counts are inversely related. If the
underprediction count is high, then adding ordering constraints will bring that count down.
'However, this usually causes the model to make some wrong choices, driving the misprediction

count up.

In general, we preferred to minimize mispredictions. A model that predicts that the students

sometimes act on guesses is preferable to a model that predicts that they have a scheduling



26

Angela Hilda
Ci—- Fia A Ci—- Fi.y A+
Janine and Tanya Paul and Pete
Ci- A Fiy s Ci = Fiar A+
Fi— 9 Fiy Fi> Fiag A S D
Robby Primitives
Ci — - - Take ditterence in column i
Ci—=> A Fiy - A; Add ten to top of column |
F. — SO, S, Slash top digit of column i

D, Decrement top digit of column i
Trina SD, Slash and decrement column i
Ci — - 9. Change top digit of columnito 9
Ci - A Fiyq
Fi = A Fiy

Table 5: Procedures for the Nonstandard order students.
Hilda, Trina and Robby have bugs. The others students are bug-free.

strategy that they do not obey.8

Table 6 shows the best fitting models for the eight nonstandard order students. The
scheduling strategies for all the students except Tanya included ordering relations needed for
standard procedures to be executed in such a way that they produce a correct answer. We call
these the base set of relations. Table 7 lists them. They are included by reference in the figure 6.

Tanya's constraint set included some, but not all, of the base relations.

Table 6 shows that the number of underdetermined choices is high. It ranges from 8% to
51% of the total number of choices made during the protocol, with a mean of 33%. This is not

good. Taken literally, it means that the students are guessing one-third of the time.

8There is a second reason for avoiding mispredictions, which is that mispredictions are harder to count than
underpredictions. When a model has been forced to take a choice that it would not have chosen itseif, it is frequently the
case that there will be a second choice that it must be forced to make. The first forced choice pushes the model off its
preferred track and the second forced choice pushes it back on. It is not clear whether to count this as one case of
misprediction or two. When the model makes frequent mispredictions, the forced choices can interfer with each other,
making the counting of mispredictions a very messy business.
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Subject Miss Under Total Scheduling strategy

Angela Oo/o 463°/O 1 38 Ai+1>Ai’ F’+1 >Ai’ SDi+1 >Ai’
Fi+j>—i’ Ai+i> ~i baSe

H”da OO/O 1 6.3°/O 1 23 F|+1 >Ai’ SH-])AI’ - i>Ci+j' base

Janlﬂe OO/O 42.60/0 155 A'>F'+1, AH'-’)—I' SDH’])-"
SDi+j>Ci’ 9i>Fi+1’ 9i+j.>—i’ base

Paul 0% 19.6% 158 A, >A, F >A. S >A,
A>Ci,q, =G, base

Pete OO/O 51 .Oo/o 1 OO Fi+1>Ai' Si+1>Ai’ - i>"‘i+1 , base

RObby OO/O 43.40/0 1 45 SD‘+1>A', AH-]) - i' FH‘]> - i'

Tanya Oo/o 7.9°/o 114 SDI+]>AI’ 9i> Fi+1 ,

X;>-for X=F, SD, A, S, or 9,
X,>—ifor X=F, SD, A, S, or 9.

Table 6: Best fitting agenda models for the eight nonstandard order students.
Miss = Percentage of total choices mispredicted by the model.
Under = Percentage of total choice underpredicted by the model.
Total = Number of agenda choices total.

C>C; Subtract columns from right to left
X>C. for X=F, S, D, SD, 9, A Change column before testing T>B
A>—. Avoid subtracting larger from smaller
S;>D; Slash before decrement
A>SD, Avoid decrementing 0 during BFZ
A>S, Add10 before slash during BFZ

|

A>D. Add10 before decrement during BFZ
Table 7: The base set of relations

When we examined the students’ supposed guesses, we discovered an underlying pattern.
Some students use more than one execution strategy. To illustrate it, we'll consider one student,
Paul, in detail. A facsimile of Paul’s test sheet is included as figure 6. His protocols are given in

table 8.
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Before going over Paul’'s protocol in detail, it should be mentioned that the protocoi data for
all the students has been edited in order to remove actions that can not be accounted for by the
simple core procedures we used. For instance, in problem 1, Paul actually did -y -, -, -, -3. He
rewrote his answers to the units and the tens columns, probably because he thought that they were
illegible (they looked illegible to us, too.). The simple core procedures produced by the learning
model can not represent these extra actions, so they were removed from the data. The appendix
presents the raw data alongside the edited data, and explains why each edit was made. We feel

that the cleaned up data remains adequate for testing the fit of the tree regime.

Figure 6: Paul's test

On some problems (problems 12 and most of problem 11), Paul consistently decrements
before adding ten during borrowing. On other problems (problems 4, 5, 6, 8 and 9), he adds ten
and subtracts the column before decrementing. On problems 7 and 10, he sometimes decrements
first and sometimes adds ten first. The remaining problems (problems 1 through 3) do not require
any borrowing, so we can not tell what scheduling strategy he was using for them. Consequently,
the largest constraint set that avoids mispredictions is one that does not take a stand on how the
decrement operation is ordered with respect to the other borrowing operations. This five-member

constraint set is the one shown in in table 6. It exactly predicts Paul's performance only on the
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.*17273

1727374

717273

. SpA1-1 D22

Sy Ay -y D3

. SpA1-1 D223

Sy Ay-1D3S3A203-254A3-3D0,4

Sy Ay-1D2S3A5-3 D33
9.5;A;-1D3S3A2-2D03-34

10.S5 Ay -1 D3-3S4 A3 Dy -3 -4

11.8, A1 -1 D2S505A4S4D4A35303A2-2-3745

12.54 D4 A3 S3D3A; S, Dy Ay -1 27374

Table 8: Paul's protocols

® N OO AW N

three problems that do not require borrowing. However, Paul’s choices on the test can be almost -
exactly predicted if the model employs one constraint set (i.e., the original five plus ->D,_,) én
some problems (problems 4,5,6,8 and 9, and parts of problems 7,10 and 11), a different constraint
set (i.e., the original five plus D, ,>A;) on others (problem 12 and the remainder of problem 11),

and a third constraint set on two columns in the middle of problems 7 and 10.

Paul is not alternating randomly among the possible legal orderings of borrowing operations,
as the scheduling strategy of figure 6 predicts. There are several more permutations of borrowing
operations than the three that Paul uses.® Paul has definite preferences about which orders to do

borrowing, and these constraints sets capture them exactly.

We found similar patterns for six of the eight students with nonstandard orders. Table 9
shows the results of fitting the model to minimize underprediction by using multiple constraint sets.

The appendix presents the strategies fit to each student.

In three cases (Hilda, Paul and Tanya), we found sets of constraints that would yield an

exact match, indicating that the students were aiternating among multiple scheduling strategies. In

9There are three orders that Paul does not use: (1) add ten, slash, decrement, difference; (2) add ten, slash, difference,
decrement; (3) add ten, difference, slash, decrement.
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Subject Sets Miss Under
Angela 1 3.6% 1.4%
Hilda 3 0% 0%
Janine 4 0% 71%
Paul 3 0% 0%
Pete 3 0% 5%
Robby 3 0% 5.2%
Tanya 2 0% 0%
Trina 1 8.4% 0%

Table 9: Fits, allowing multiple scheduling strategies
Sets = number of constraint sets.
Miss = Percentage of agenda choices mispredicted.
Under = Percentage of agenda choices underpredicted.

three other cases (Janine, Pete and Robby), the use of multiple strategies instead of one helped
the fit, but did not yield an exact match. In the remaining two cases (Angela and Trina), using two

or more strategies did not help the fit much at all.

Fit with one scheduling strategy 1.
Fit with two or three scheduling strategies 6
Poor fit al

8

Total
| Table 10: - Summary of the fit of the agenda model

The overall fit of the model is summarized in table 10. It shows two basic findings. First,
good fits were obtained for all the students except Trina. We judge that the model’s fit to Trina is a
"poor” fit, although it is not as bad as the fit of, say, the deterministic stack regime to her protocol.
We just can not see any pattern in Trina’'s performance. The second basic finding is that 75% of

the nonstandard order students seem to be using multiple scheduling strategies.

We conclude that the tree regime allows an excellent fit to the data, but that it fits well only at
the cost of adding a mystery: what causes students to shift strategies? The next section presents

our speculations on this issue.
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6. Multiple strategies: what, when and why?
At this time, we do not have an explanation of why some students have muitiple strategies
and what causes them to shift among them. However, there are some interesting aspects to the

multiple-strategy data that hint at the underlying causes.

The first question to ask is what sort of strategies tend to appear together in one student’s
behavior. There is no way to answer such a clustering question in a principled manner, so a
heuristic, intuitive classification will have to suffice. The eight subjects can be classified into two
groups of four each. The first group (Hilda, Paul, Robby, and Tanya) have strategies that differ
only in the way they order the subgoals of borrowing, whereas the second group (Angela, Pete,
Janine and Trina) have strategies that differ in the way they order the column subgoals. For
example, Tanya is in the first, "borrow variations" group because all her strategies are similar. She
always does all her borrowing before any column is answered. She borrows from right to left, then
she answers columns from right to left. However, she uses two strategies for borrowing.
Sometimes she adds ten then borrows-from, and other times she borrows-from then adds ten. So °

her strategies are minor variations of each other.

We conjecture that students in the "borrow variations" group actually have a single, uniform
strategy, but our representation for strategies can not express that strategy. In fact, we found
uniform strategies for two of the students, Paul and Tanya. Tanya's strategy can be expressed as:
if i=1 then A>F, else if i=2 then F,>A,. Paul's strategy (except for problems 7 and 10) seems to be:
if borrowing from zero, then D, ,>A,, else ->D;_,. These strategies are conditional on the state of

the problem solving, so the partial order cannot express them.

We have developed a more expressive representation for scheduling strategies as well as a
program that will automatically fit a strategy, expressed in this representation, to the subject’s
behavior (VanLehn & Garlick, 1987). With this tool, we hope to discover precise, uniform strategies
for all the students in the borrow variations group, which is a first step towards explaining what

students are doing and why.

For instance, having noted that Paul’'s strategy is "if borrowing from zero, then D, ;>A,, else

->D

>D._,," one can immediately see a compelling intuitive explanation. Paul does a standard order

on borrow-from-zero problems because he thinks those problems are hard and he would increase
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his chances of getting them right by using the teacher’s strategy. This implies that he knows two
distinct strategies, his and the teacher’s, and uses meta-cognitive reasoning to select one. This
explanation is consistent with a phenomenon that has been occasionally observed but has not yet
received systematic investigation. Some» students seem to have two or more distinct procedures.
For instance, one student we interviewed answered a whole test by taking the absoiute ditference
in every column, even those requiring borrowing. Afterwards, the interviewer asked her if she knew
about borrowing. She said she did, and showed us by answering two borrowing problems
correctly. Resnick and Omanson (1986) observed several subjects who seem to have multiple
procedures. Only a little prompting (their “prohibition” condition) sufficed to make them switch from
a buggy procedure to a correct one. Paul is similar to these students in that he seems to know two
distinct strategies, believes they both give correct answers, but have different resource or accuracy

characteristics.

If this conjectured multiplicity of procedures and strategies withstands empirical testing, then
one of the central assumptions of cognitive modelling must be modified. It has always been
assumed that subjects in skill acquisition and problem solving experiments have just one
knowledge structure, but these findings indicate there might be several, with a "big switch" that

selects one or the other.

Although the patterns of behavior in the borrow variations group nmay soon yield to
explanations with important theoretical implications, the patterns of behavior in the other group
(Angela, Janine, Pete and Trina) are more difficult to understand. Intuitively, it appears that all four
students start out with a standard order strategy at the beginning of the test, then become
increasing nonstandard towards the end. All four ended with a strategy that involves answering
columns in a “wild" order, i.e., one that is neither right-to-left nor left-to-right. One possible
explanation for this behavior is that they become increasingly confident as the test progresses and
begin to show oft their skills. There are, of course, other equally plausible explanations.
Considerable empirical and theoretical work will be needed in order to understand and differentiate

such explanations.
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6.1. Execution of procedures as search

This section is speculative. It introduces a generalization of the tree-based control regime
that makes intuitive sense and connects the results presented earlier with the existing litterature on
puzzle solving. However, the results do not conclusively support this model over a simpler tree-

based model. This conjecture should be understood as an outline for future research.

Under the tree regime, two different mechanisms are searching the goal tree -- one is the
scheduler, and the other is the mechanism that does repairs. Both search for a goal to perform
next. We conjecture that they are the same cognitive process because the student is trying to
solve the same problem. The student’s problem is "which goal should | do next?" and it should be
solved in such a way that the resuiting solutions should look on paper like the standard procedure
had been executed in a standard order. As both scheduling and repair seem to respect this
constraint, it seems likely that they result from the same process, rather than being two different

processes, as they are under the tree regime.

The proposed process is like classical problem solving, except that the problem to be solved
is not at the level of the task, but is meta to the task. In particular, the problem is not to solve a

subtraction problem but to find a goal in the subtraction procedure to execute.

As a species of (meta-) problem solving, one would expect the cognitive process to have
some of the attributes found in ordinary, base-level problem solving. |n panrticular, just as some
subjects alternate among search strategies while solving puzzles (Newell & Simon, 1972), one
would expect to find subjects switching among search strategies while doing (meta-level problem
solving. As mentioned earlier, most of the nonstandard order subjects do shift among strategies.
This does not explain why they switch strategies, nor where they got the strategies that they switch
among. However, it is somehow comforting that the same familiar mysteries appear in both meta-

level and base-level problem solving.

This view of procedure execution seems consistent with observations by Suchman and
Wynn (1884) in their study of office procedures. They studied clerks in a customer service office.
They found that much of the daily work of the clerks was not simply following the prescribed office
procedures (i.e., the ones found in the procedure manuals of the corporation). Although some tasks

were accomplished according to standard procedure, much of the time went into handling cases
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where the prescribed procedure could not be followed exactly. In such cases, the clerks may do
some complicated problem solving so that it will appear that the prescribed procedure has been

followed. Suchman and Wynn recorded the following account of a clerk who attempted to get a

customer to pay a bill when the bill is incorrect:

Okay, you call the buyer, the buyer says, um, the reason why I'm not paying this is, | said | would
pay twenty dollars and seventy-three cents for a carton, not twenty-four dollars and seventy-two
cents, which you bill me on this five thousand dollar shipment of paper. So then you say, that's all |
need to know, let me get back with you. You get back, you go through your billing system, you try to
find out, you know, how it (pause): In the meantime, let's suppose time is running out and you do
not have time to get a billing adjustment through. So you got to sit there and think, How can / get
this person to pay this invoice? It's wrong, they got the wrong PO, they billed them wrong, accounts
payable doesn't want to do anything with it. So you call them back up and say, I'm not asking you to
pay something that is not due. What | want you to do is pay (pause) according to your PO. Pay the
invoice short, okay? Then he says, | will not pay that invoice short because I've had too many
problems with that. Unless | get a typed invoice from you specifically. So you sit there and think, |
can't go through the billing system, it's too late. | can type them an invoice. Set the system going
through the billing system at the same time. Coordinate that so when he pays the check shon, there
will be a balance on the account. When the credit issues through I'll have the billing department
hold that credit, deliver that credit to me, not deliver it to the customer cause the customer will
wonder why am | getting the credit if they think they're already gonna receive a bill, right? Then |
would just clean up their account later. But in the meantime....(Suchman & Wynn, 1984, pg. 34)

This episode dramatically illustrates how complicated the problem solving of procedure
following can be. This clerk is clearly an expert at it. Our current conjecture is that nonstandard

orders and repair, which we have observed in our studies of subtraction, are just simple forms of

this type of problem solving.
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Appendix:

This appendix presents the protocols of each of the eight subjects exhibiting a
nonstandard order, and our analyses of them. There are eight sections, one for each
subject. Each section has three subsections: 1) the subject's protocol, annotated to
indicate our idealizations of it; 2) the constraint sets for each scheduling strategy; and
3) a figure showing how each strategy fares on predicting the subject's agenda choices.
The figures require some explanation. The large tick marks indicate agenda selections.
The vertical stripe beneath a small tick mark is black if the strategy correctly predicts
the subject's agenda selection, and white if it does not. In cases where the subject seems
to use multiple strategies, the figure also shows a bar, labelled "Union," that shows the
best fit one can obtain by assuming the subject switches strategies.
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Pr Anal for Angel

562
- 3 SD2’A1"1!'21‘3

742 |
- 136 502’A1:'1"2"3

50
- 23 SDzsA1"1:'

. 8303 [SD ,, A,, SD,, A,, -, , <write 1 in column 2> ],

“23"3 174

 We count it a slip that she borrows starting in column 1
with 5 over 3; so the idealized protocoldoes - 1,-2 ,-3 ,-4 .

106
- 70 SD 3 Ag-0i71573
716
- 598 SDzyA1,'1,['2]s'3
» She does a -2 instead of initiating a borrow; the idealized
protocol does the borrow.
1564

- 887 SDz,A1,-1,SDS,A2,-2,SD4,A3,-3,-4

6591
- 2697 SDz!A1"1’['2]aSD4aA3a'3 .|

« We count it a slip that she fails to borrow in column 2 with
8 over 9; the idealized protocol inserts ([SD4 , A, ]priorto - 2.

311
- 214 [SD,, A, -, ,[A;],-; , [<crossout ans ;>], SD,, A, -, ]

« We do not model this problem at all, because of a slip she
makes in doing a Borrow-From-Zero over the 1 in column 2
(a slip she does not make in the earlier problem: 716 - 538).



. 102
- 34 SD3, Ay [-2,8D,, A7 11 -3

« She inserts [- 5 ] before the sequence [SD2, A4, - 1], instead of after
that sequence (as the idealized protocol handles it).

9007
. 6880 -11:5D4,A3,[-3,SD3,A2,-21],-4

« Sheinserts [- 3] before [SD 4, Az, -7 ] instead of following. Idealized
protocol uses [SD 3, A 2, -2, 3 ] for the bracketed sequence.

702
- 108 SDgsAgsSDZaA1s'1a'2s'3

CONSTRAINTS

Base:
Ci > C i1
Xi > Cj X=F SD,A
Ai > SD;
Ai> - |

A1 > Aj - Needed for Bormow-From-Zero

Common:;

Since we only have one fully constrained set for Angela,
common = standard order.

Standard:
Fi > X X=C,F A -SD
SDi+1 > SD
Ai >C 41
“i > Ciyj
SDi+1 > A
Fir1 > Aj

COMPARISON OF AGENDA SELECTIONS: ANGELA
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Pr nal for Hild
647

- 45 “149 "2 °3

_ 33: "1y %2y *3
83

- 44 321A1! D'Z’.1’-2
8305

- 3 "1y "2y "3 "4
50

- 23 321 D2’ A1:'1s’2
562

- 3 S2'SA1!DZs'1a‘2"3
742

- 136 821 A11'1’D2"2"3

106 ‘
- 70 '13833031A2s'23'3

9007
- 6880 1,954, Ag,-2,D4 *

« The idealized protocol finishes answering columns 3 and 4. There is an
impasse on trying to decrement 4, because it is already decremented. She
does a Quit repair. We model it as a Force repair.

4015
- 607 82,02,A1,'1,'2,S4,A3,D4,'3,°4

702
- 108 [SZ]!S3aA1aD3a'19'21'3

« We count as a slip her slash of column 2.

2006
. 42 -1, [crossout ans ; and redo], [S3], Ss, A2, D4, -2 =%

« The idealized protocol finishes answering columns 3 and 4.



CONSTRAINTS

Base:
Ci >Cis1
X; >C; X=- FASD
S; >Dj
Aj >-j

Common:
-i > Ci+§
Sisj > Aj
Fi+j > Aj
Xi > Ciyj X=F,ASD

Standard:
Diyj > A

Weave:
Ai > Di+j
Disj > -

Slash-Reminds-to Decrement:
Ai > D|+‘
i > Diyj

COMPARISON OF AGENDA SELECTIONS: HILDA

-
-~ I
~ N
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Pr

83
- 44

50
- 23

742
- 136

106

716
- 598

1564
887

102
39

9007
6880

702
108

2006

42

{ an nal for nin

A1 y SDZ! "1,y =2

A1 ’ SDQ, “15 =2

A1 y 1 SDZ!-Z’ -3

*1) AzysD31'2 *

« Janine does not do the - in column 3, since it is just a matter of
bringing down a 0. The ideal protocol does the - .

A‘h SDZ! A2’ SDG"H'Z:‘S

A1asozsA2,303!A3aso4s'1"21'3 *

« This is another instance of a neglected - in the last column. The
ideal protocol does the - .

A,, - ,[correct ans, ], S9,,-,, SD, *

« Another neglected - in the last column. The ideal protocol does
the -

"1, A2 ’ S9 3 SD4’ "2, "3 "4

Ay, =% ,9,,-,S8D,;,-,, [rewrite 6 over column 3]

 She inexplicably rewrites the Decrement over Top 3. Also, she neglects
to slash Top 2 before writing 9.

"1 A2"2: [93 ’ SB]! SDM "3y "4

« She does the 9, then the slash. The ideal protocol reverses the order.



10012
- 214 A1’SDZ’A2: 393:894! SDS!'1!'2:'3"4 *

« This is another instance of a neglected - in the last column. The ideal
protocol executes the - .

8001
. 43 A1! 392’3933304!'4"3!'2"1

401
- 206 A1:8923'1"21SDS!'3

CONSTRAINTS

Base:
Xi > G X=F A SD,-,S9
Aj>-|
Ci > Cis1

Common:
Sgi > Fi
SDi+j > -j
Ai > Fiyq

Prepfirst (Do everything except - on every column, then come back and do
all the - s in order from right to left):

A+ > -
‘Fi > Ci
"Fi-c»j >
<l > =+
C>-
*SD; > Ci

* Needed because - no longer eliminates C.
** Needed because C is processed before - to its right is done.

Prepfirst/LR (Same as Prepfirst, but answers from left to right):
Same constraints as Prepfirst, except:

-i4] > - insteadof - > -4
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Reverse (Does A, then SD, then - when processing Borrow-From):

->C

Oisj> - i

Fi > -i
SDjj> -i Have to do any to the left because of the Write 9 Borrow-From-Zero.
Fisgj > =i Have to do any to the left because of the Write 9 Borrow-From-Zero.

Onepass (Does the A and the - before proceeding to the Borrow-From):

->C
SQi+j> - i
-i> Fi Notice that this replaces the last three in the Reverse set.
F, >Cj ‘ o
SD;, ;> Ci } Needed since the Cs are no longer always eliminated by - s.

NOTE that none of the foregoing constraint sets handles problems 7, 9, and 13, in
which she interrupts her Borrow-From-Zero procedure to process a column.

COMPARISON OF AGENDA SELECTIONS: JANINE

Prepthrst

Preg. st-left-1a-nght




647

8305

885
- 205

83

S0

562

6591
- 2697

311
- 214

1813
- 215

4015
- 607

10012

- 214

nal for Paul

'19'2:['1:'2]:'3

« Paul "stutters” in rewriting his answer in columns 1 and 2.

15 °25 "3

S2,A1,-1,D2, -2

S2,A1,-1,D2,-2

S2,A1,-1:D2,-2,-3

Sz, Aq -1, bz,Ss, Az,D3,-2,54,A3,-3,D4,-4
S2:A4:-1: 02,53, A2,-2,D3, -5
S2,A4,-1,D2,33,A,-2Dj3,-3, -4
S2,A4,-1,02,-2,54,A3,D4,-3,-2

32,A1"1’ 021 859 st A49 S41 D4s A3, 83’ D3: Az,
2573 "4s [- 5]

e Paul does not write the column 5 "0" in the answer row.

45
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8001
. 43 S4,D4,A3,33,D3,A2,sz,Dz,A1,'1,'2,'3,'4

CONSTRAINTS

Base:
Ci > Cis1 ¢
Xi > Cj X=F SD A
Si > Di
Ai > -
Ai >Sj
Ais1>Aj

Common:
-i >C i+
Fie1 > Aj
Sis1 > A

Slash-Reminds-to Decrement (As in standard borrow, process the Borrow-From goal
and its Slash subgoal, but then shift back to do Add10 and Diff, using
the slash mark to "remind" that the column needs to be decremented):

Ai> Dist

“i > Dis1

Di > Disi _ |

Ci > Dist } Needed for Borrow-From-Zero (which he doesn't do)

Weave (As in standard borrow, process Borrow-From goal and its Slash subgoal first, but
| then shift back to do the Add10, then shift columns again to finish the
Borrow-From's other subgoal, Decr, before doing the Diff):

Aj > Diyq
Divt > -
Div1 > S

Standard: Paul uses the standard order when he does a Borrow-From-Zero..

Di+1 > A
Ai > Cipq



COMPARISON OF AGENDA SELECTIONS: PAUL

Slash-rem-Oecr
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Pr

647

885
- 205

83

8305

50

562

742
- 136

106

106

311
- 214

| an nal for P

-1, =2, = [rewrite ans 3]

« He rewrites his answer to column 2. The model does not.

S, A4,-1, D4, -

32,A1,02,-1,-2,-3

“1, "2y °3

« Takes absolute differences instead of borrowing.

S3, Az, D2, S, A

« Borrows when he shouidn't.

531A2v02’A1v"1"2

 Borrows when he shouldn't.

sSsDS:A2332aDZ:A11'1:'2:'3

- Borrows trom "Zero” even though it's a 1.

—  We excluded these from the
idealized protocol.




6591
- 2697 32, Aq, Dzs SS, A 2, 03’ 34, 041 A3"'1! "2y "3 "4

1564
- 887 82!A1’D2’S33A2QD3!S4,D43 A3:'1s_"2:"3 %

* He does not do the final column Diff when it's just a zero.

716
- 598 321A1’[SS’D3’DZLAZ"N'Z"S

*_Ideal protocol substitutes for his sequence [S 3, D3, D, | the sequence

49

[D2,S3 D3]
4 
CONSTRAINTS
Base:
Ci> Cj,q
Xi > Cj X=FAS,D
Si>Dj
Ajp>-
Common:
Fie1 > Aj
Siz1 > Aj
Ai > Diyq -
Weave :
Dit1> -
=i > Cipq

Slash-Reminds-to-Dezrement:
=i> Dist
-i> Cisq

Prepfirst-Weave (Does all top processing in Weave-like manner before writing any answers):

ol > - i+

X> - X=C,F ASD
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COMPARISON OF AGENDA SELECTIONS: PETE

Weave

Slash-rem-Oecr

Prepfrst-weave

]
| Bl
__ | EEl




885
- 205

8305

83

907
607

106

6591

- 2697

108

1236
- 497

1813
215

102

nal for R

“19 %29 %31 74

SD:,A1"13'2

“13 "2 {' 3}

« He math-slips at column 3: 9-6 = 4.

-y, Ay , SD3, -2, ['correct” ans 3], -3

« He "corrects” his answer in column 2. The ideal protocol sequence leaves
it alone.

A1 y SDZ! [' 2]a A31 SD41 "4y 3,5 "1

* He does 8 - 9 = 1. Ideal protocol does Borrow procedure, so for [-5 ], the
ideal does [A 2, -2, SD3].

1 A2 ’ SD3: *3y "2 [CorreCt ans 2]

- He math-slips at column 2 answer and corrects. Ideal gets it right. -

Ays Sk 2791 R2,S% 3,5, A5,53, %,

« He does not write his decrement in column 2 or column 3, and fails to Borrow
from column 4. Ideal adds these steps.

A1 ) {'1 }a* y T2 SD3! “3 *4

 Math-slip at column 1. Robby does not write his SD 5 or A,. Ideal protocol does.

A1 g {'1 }a A2aSDS3 ~ 29 °3

« Math-slipincolumn 1. 12-39 =4,

51
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9007
- 6880 “1» A2 ’ "2 9 A31 "3 [504], “4

« He decrements 9 to 7. Possibly he accumulates decrements, but we've modelled

his Borrow-From-Zero as a No-Operation Borrow-From-Zero, so we don't catch this,
and decrement 9 to 8.

4015
- 607 A1"1’* Dg,-z,A3,SD4,-3,-4

- He does not write the Slash in column 2. Ideal protocol does.

104
- 27 [S3*],A1,-1,A2,-2,-3

+ He does not write the decrement in column 3. I|deal protocol does. Also,
we can't get his order, given the No-Operation Borrow-From-Zero.

The Idealizations at problems 11 and 13 point to problems with our model of Robby
at the core procedure level, i.e. giving him a No-Operation Borrow-From-Zero.

CONSTRAINTS

Base:
Ci > Cist
Xi > Cj X=AF, SD
Aji> -

Reverse (When processing a Borrow goal, do A, then F, then - ):

Ai > Fi+t
Ai > SDi+1
Fier > -

SDi+1 > -

Onepass (Do A and - before doing F):

Aj > Fiyq
Aij > SDj.q
-i > Fig1

-i > SDi+1

Standard: (NB: He only uses this order on problem 3)
Five1 > A
SDi+1 > A
Ai > Cis+t



COMPARISON OF AGENDA SELECTIONS: ROBBY

Standard

T
L
I T TTITT
g

33
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Protocol and analyses for Tanya

647

885
- 205

83

8305

50

106

716
- 598

311
- 214

102

9007
- 6880

4015
- 607

A,,SD,,SD,, A,, -y, =, [rewrite ans ,], -,

« She rewrites her initially incorrect answer in column 2. Ideal does not.

A1 ’ 502’ SD 3 AZ: “ 1972973

Ay ,92,SD 3 -4,-2,-3

A1’SDZs [AZ: 93: * ]s'1a'2a'3:'4

» She slips and does a borrow originating in column 2. Ideal does not.
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205
20 “19 "2 °3
100
60 1y "2 *3
CONSTRAINTS
Base:
Aji > -
X; > Ci X=A F, 9, SD (i.e., forthe same column)
Ci > Cis1
Common = Nailed
Xi > - j X # -
i B P
Xj > C; X=AF,9 SD (i.e., forany coumn)
9i > Fii
A1 > Fz .
Fo > A } Note the completely regular flip-tflop she does.
SDis1 > Aj

COMPARISON OF AGENDA SELECTIONS: TANYA
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Pr

716
- 598

102

9007

- 6880

4015
- 607

702
- 108

2006

10012
- 214

n nal for Trina

SDZ’A1"1"2

A1 s “1 sSDZs'2a'3

A1 ’ "1 SDZ"Z: "3

-4, [corrects ans 4], A,, -, , SD3, *

« She corrects her column 1 answer: she does not write 0 in column 3.

Ay, ,SD,,3D 3, Ay, -2,

A1"'1 ’Az’soav'z"a

"1, A2sA3s SD31'21'3

A1 ’y "1 SDZ: 2 A3! "3 SDM "4

[SD2], A1s'1s AZ! 8031'3a'2

» She does a weird SD of 0 in column 2, which the ideal protocol does not do.

'1’A2!A31 SD4:'4$'3:'2

A1 1 "1 SDZ! A3s A4s SD 59 A2!'2r "31 "4 "5

¢
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8001
. 43 A1 s "1 [Sz], A3, SD4, [‘4,'2, Az], [writeO in column 2]
« She does a Slash in column 2, and a write 0 over her 10 at some point.
We also did not modelthe [-4 , -5, Ao] sequence, using instead [A2,-2,-3,-4],
after the order in the previous problem, 10012 - 214,
CONSTRAINTS
Base:
Aj > -j
Xi > Cj X=A,F SD (for same column)
Ci > Cisq
Common:
Xj > Cj X=A, F, SD (for all coumns)
-i > G

Onepass (When processing a Borrow goal, do A and - before doing the F):

A > Fis1

-i > Fis1

Reverse (When processing a Borrow goal, do A, then F, then come
back for the - ).

Fiv1 > -

SDi+1> -i

Fisj > -i } Needed to handle her Borrow-From -Zero procedure

COMPARISON OF AGENDA SELECTIONS: TRINA
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Dr. Beth Adelson
Department of Computer Science
Tufts University
Medford. MA 021893

Dr Robert Ahlers

Code N711

Human Fectors Laborastory
Neval Treining Systems Center
Orlando. FL 32813

Dr. Ed Aiken
Nevy Personnel R&D Center
Sen Diego. CA 92152-6800

Dr. Robert Alken

Temple University

School of Business Administration

Department of Computer and
Informetion Sciences

Philadelphia. PA 19122

Dr. Jemes Algine
University of Florida
Geainesville. FL 326095

Dr. John Allen
Depertment of Psychology
George Mason University
4400 University Drive
Fairfax. VA 22030

Dr. Willtam E. Alley
AFHRL/MOT '
Brooks AFB. TX 7823)%

Dr. John R Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh. PA 13521)

Dr Thomas H. Anderson

Center for the Study of Reading
174 Children' s Research Center
351 Gerty Drive

Chempeign. IL 61820

Dr. Steve Andriole

George Mason University

School of Information
Technology & Engineering

4400 University Draive

Fairfex, VA 22030

Technicel Director. ARIJ
3001 Eisenhower Avenue
Alexandria. VA 22333

Dr Alan Baddeley
Medical Research Counci|
Applied Psychology Unit
135 Chaucer Road
Cambridge CB2 2EF
ENGLAND

Dr Patricia Baggett
University of Colorado
Depertment of Psychology
Box 3493

Boulder. CO 80309

Dr Eva L Baker

UCLA Center for the Study
of Evaluation

145 Moore Hall

University of California

Los Angeles. CA 90024

Dr Meryl S Baker
Navy Personnel R&D Center
Sen Diego. CA 92152-6800

Dr Ilsesac Bejar
Educational Testing Service
Princeton. NJ 08450

Leo Beltracch)

United Stetes Nuclear
Regulatory Commission

Washington DC 20535

Dr Merk H Bickherd
University of Texes
EDB 3504 ED Psych
Austin, TX 78712

Dr. John Black
Teachers College
Columbie University
928 West 1213t Streel
New York, NY 10027

Dr. Arthur S Blaiwes

Code N711

Neval Treaining Systems Center
Ocrlando. FL 32813

Dr. Robert Blanchard
Navy Personnel! R&D Center
Sen Diego. CA 92152-6600

Dr R. Darrell Bock
University of Chicago
NORC

6030 South Ellis
Chicego. IL 606137

Dr Jelf! Bonar

Learning R&D Center
University of Pittsburgh
Pittsburgh. PA 15260

Dr. Richard Braby
NTSC Code 10
Orlando. FL 327351

Dr Jomills H Breaddock 1|1
Center for the Social
Orgsnization of Schools
The Johns Hopkins Unaiversity
3509 North Charles Street
Belt i more., MD 21218

Dr. Robert Breaux

Code N-093R

Neval Treaining Systems Center
Orlando. FL 32813

Dr. Ann Brown

Center for the Study of Reading
University of [llinois

S1 Gerty Drave

Champeign. IL 61280

Commanding Otfficer

CAPT Lorin W Brown
NROTC Unit
I1linois Institute of Techn
J300 S. Federal Street
Chicago, IL 606816-3793

ology

Dr John S Brown

XEROX Palo Alto Research
Center

3333 Coyote Road

Palo Alto. CA 94304

Dr John Bruer

The James S McDonnell
Foundation

University Club Tower. Suite 1610

1034 South Brentwood Bivd

St Louts. MO 63117

Dr Bruce Buchanan
Computer Science Department
Stanford University
Stenford. CA 9430%

Dr Petricia A Butler

OERI

955 New Jersey Ave NW
Washington. DC 20208

Dr Tom Cafflerty

Dept of Psychology
University of South Cerolins
Columbia. SC 29208

Dr Joseph C Campione

Center for the Study of Reading
University of Illinoss

51 Gerty Drive

Chempeign. 1L 61820

Joanne Cepper

Center for Research i1nto Practice
1718 Connecticut Ave . N W
Weshington. DC 20009

Dr Susan Cerey

Harvard Graduate School of
Education

337 Gutmen Library

Appien Way

Cambridge. MA 021238



Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh. PA 15213

Dr. John M. Cearroll

iBM Watson Research Center
User Interface Institute

P O. Box 2108

Yorktown Heights.  NY 10598

LCDR Robert Carter
Office of the Chiet

of Naval Operetions
oP-018
Pentegon
Washington. DC 20350-2000
Dr. Alphonse Chapanis
8415 Bellona Lane
Suite 210
Buxton Towers
Baltimore. MD 21204

Dr Davide Charney

English Department

Penn Stete University
University Park. PA 16802

Dr Paul R. Chatelaer
OUSDRE
Pentagon
Washington. DC 203%50-2000
Dr Michelene Ch)

Learning R & D Center
University of Pittsdburgh
3939 O 'Hera Street
Pittsburgh, PA 15213

Dr. L. J. Chmure

Computer Science and Systems
Code. 7390

Information Technology Division
Neval Research Ladoretory
Washington. DC 20373

Mr. Reymond E Christal
AFHRL/MOE

Brooks AFB. TX 78239

Dr. William Cleancey

Stanford University
Knowledge Systems Leboratory
701 Welch Roed. Bidg C

Pelo Alto, CA 94304

Dr. Charles Cliftlon

Tobin Hell

Department of Psychology

University of
Massachusetts

Amnherst. MA 01003

Dr Allan M Collsins

Bolt Bersnek & Newman Inc
S50 Moulton Street
Cambridge. MA 021138

Dr Stanley Collyer .
Office of Naval Technology
Code 222

B00 N Quincy Street
Arlington., VA 22217-35000

De Lynn A Cooper
Learning R&D Center
University of Pittsburgh
3939 O Hare Street
Pittsburgh. PA 15213

LT Judy Crookshanks

Chief of Navel Operations
OP-112GS
Washington. DC 20370-2000

Phail Cunnift

Commanding Officer. Code 752
Navel Undersea Werfare Engize=ring
Keyport, WA 96345

Dr Ceary Czichon

Intelligent Instructional - :'ems
Texas Instruments Al Lab

P O Box 660245

Dellas., TX 732686

Brian Dal imen
3400 TTW/TTGXS

Lowry AFB. CO 80230-5000

Dr. Natalie Dehn
Department of Computer and
Information Science
University of Oregon

Eugene, OR 97403

Dr. Gereld F. Delong
Artificral Intelligence Group
Coordineted Science Laborastory
University of Illinors

Urbanae. IL 61801

Goery Delacote

Directeur de L informatique
Scientifique et Technique

CNRS

13. Qua: Anatole France

75700 Peris  FRANCE

Dr. Thomas E DeZern
Project Engineer. Al
Genereal Dynamics

PO Box 748

Fort Worth. TX 76101

Dr. Andres d: Sessa
University of California
School of Educetion
Tolman Hall

Berkeley. CA 94720

Dr R K Dismukes

Associate Director for Life Sciences
AFOSR

Bolling AFB
Washington. DC 20332

Dr. Stephanie Doan

Code 6021

Naval Air Development Center
Warminster. PaA 18974-5000

Defense Technical
Information Center
Cameron Stattion. Bldg 5
Alexandria. VA 22314

Attn TC
(12 Copres)
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Dr Thomas M. Dut(fy
Communications Design Center
Carnegie-Mellon Universgty
Schenley Park

Pittsburgh. PA 15213

Dr Richerd Duran
University of Californie
Senta Barbaras. CA 93106

Edwerd E Eddowes
CNATRA N30}

Naval Air Station
Corpus Chrasta, TX 78419

De John Ellrs

Navy Personne! RAD Center
San Diego. CA 92252

Dr Jeffrey Elman
University of California.
Sen Diego
Department of Linguistics. C-008
La Jolla. CA 92091

Dr Susan Embretson
University of Kansas
Psvchology Department
426 Fraser

Lawrence. KS 66045

Dr Randy Engle

Department of Psychology
University of South Caroline
Columbia. SC 29208

Dr Williem Epstein
University of Wisconsin

W J Brogden Psychology Bldg
1202 W Johnson Street
Madison. Wl 53706

ERIC Fecility-Acquisitions
4833 Rugby Avenue
‘Bethesda. MD 20014

Dr K Anders Ericsson
University of Colorsdo
Department of Psychology
Boulder. CO 801309



Dr. Beatrice J. Farr
Army Research lnstitute
8001 Eisenhower Avenue
‘Alexandries. VA 22333

Dr. Marshell J Ferr
Ferr-Sight Co.

2520 Norlh Vernon Street
Arlington. VA 22207

Dr. Paul Feltovich

Southern lllinois University
School of Medicine

Medical Education Department
P O Box 3920

Springtield. IL 62708

Mr Wellace Feurzeig
Educeti1onel Technology
Bolt Beranek & Newmen
10 Moulton St.
Cembridge. MA 02238

Dr Gerhard Faischer

University of Coloredo
Department of Computer Science
Boulder. CO 80309

J D Fletcher
9931 Corsice Street
Vienna VA 22180

Dr. Linde Flower
Cernegire-Mellon University
Depertment of English
Pittsburgh. PA 15213

Dr. Kenneth D. Forbus
Universiltly of lllinoys
Department of Computer Science
1304 West Springfield Avenue
Urbana. 1L 61801

Dr. Barbara A Fox
University of Colorado
Depertment of Linguistics
Boulder. CO 80309

Dr Cer)l H. Frederiksen
McGill Universaty

3700 McTavish Streel
Montreal. Quebec H3A 1Y2
CANADA

Dr. John R Frederiksen
Bolt Beranek & Newman
%0 Moulton Street
Cambridge. MA 02130

Dr Micheel Genesereth
Stanford Universilty
Computer Science Department
Stanford, CA 943035

Dr. Dedre Gentner
University of lllinoas
Department ol Psychology
603 E Daniel St
Champeign. 1L 61820

Lee Gladwin
Route 3 -- Box 229
Winchester. VA 22601

Dr. Robert Glaser
Learning Research

& Development Center
University of Pittsburgh
3939 O Here Street
Pittsburgh. PA 15260

Dr Arthur M Glenberg
University of Wisconsin

W J Brogden Psychology Bldg
1202 W Johnson Streelt
Madison. Wl 53706

Dr Mervin D Glock
13 Stone Hall
Cornell University
Itheca. NY 14833

Dr Sem Glucksberg
Depertment of Psychology
Princeton Universaity
Princeton, NJ 068540

Dr Joseph Goguen

Computer Science Laboratory
SR!1 Internationeal

333 Ravenswood Avenue

Menlo Park. CA 940235

Dr Susean Goldmen
University of Californiae
Sente Barbara. CA 931086

Dr. Deniecl
Industriel

Gopher
Engineering

& Manegement

TECHNION

Hatfe 32000

I SRAEL

Dr. Sherrie Gott

AFHRL/MOD)J

Brooks AFB,

TX 78235

Jordan Grefmen. Ph D
2021 Lyttonsville Road
Silver Spring. MD 20910

Dr Wayne Greay
Army Research Institute
35001 Eisenhower Avenue

Alexandria.

VA 22333

Dr. Bert Green

Johns Hopk
Department

ns University
of Psychology

Charles & J4th Streelt

Baltimore,

MD 21218

Dr. Jemes G Greeno

University

of Cealifornmia

Berkeley. CA 94720

Prof Edwar
School of E

d Haertel
ducesltion

Stanford University

Stanford., C

A 941305

Dr Henry M. Halft
Half! Resources. Inc.
4918 33rd Roed. North

Arlington,

Janice Heart

VA 22207

Office of the Chief

of Navel
OP-11HD

Operations

Department of the Navy

Washington.

D C 20350-2000

Mr. William Hertung

"PEAM Produc

t Manager

Army Research Institute

Alexandrieo.

'8001 Ei1senhower Avenue

VA 22333

Dr Wayne Harvey
Center for Learning Tech

nol
Educational Development Cen:::
53 Chapel Street
Newton. MA 02160

Prof John R. Hayes
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh. PA 135213

Dr Barbara Hayes-Roth
Department of Computer Science
Stanford University

Stenford. CA 953093

Dr Joan | Heller
509 Heddon Road
Oakland. CA 946086

Dr Shelly Heller

Department of Electrical Engi-
neering & Computer Science

George Washington University

Washington DC 20052

Dr Jim Hollan
Intelligent Systems Group
Institute for

Cognitive Science (C-013)
UCSD
La Jolla. CA 92093

Dr Melissa Holland

Army Research Institute for the
Behavioral end Social Scienc:

£001 Eisenhower Avenue

Alexendria. VA 22313

Ms Julia S Hough
Lawrence Eribeum Associales
6012 Greene Street
Philadelphia. PA 19144

Dr James Howard

Dept of Psychology

Human Performance Leboratory

Catholic University of
America

washington DC 20064



Dr. Earl Hunmt

Department of Psychology
University of Weshington
Seattle. WA 98103

Dr. Ed Hutchins
Intelligent Systems Group
institute for

Cognitive Science (C-019)
ucsp
La Jolla. CA 9209)

Dr. Dillon Inouye
WICAT Educestion Institute
Provo. UT 840357

Dr. Alice lsen
Department of Psychology
University of Maryland
Catonsville. MD 21228

Dr R. J K. Jacobd

Computer Science and Systenms
Code. 7390

Information Technology Division
Neval Research Laboratory
Washington. DC 20375

Dr Zachary Jacobson

Bureau of Management Consulting
363 Laurier Avenue West

Ottawa. Ontario KIA 0SS

CANADA

Dr. Robert Jennerone
Department of Psychology
University of South Caroline
Columbia. SC 29208

Dr. Claude Janvier

Directeur. CIRADE

Universite du Quebec a Montreal
P O Box 08888. St “a-

Montreal. Quebec H3IC 3PS

CANADA

Dr. Robin Jeffries
Hewlett-Packard Laboratories
P O Box 10490

Palo Alto. Ca 94303-0971

Mergaret Jerome

c/o Dr Peter Chandler
83. The Drive

Hove

Sussex

UNITED KINGDOM

Dr Dougles H Jones
Thatcher Jones Associstes
P O Box 6840

10 Trefalgar Court
Lawrenceville. NJ 06648

Dr Marcel Just
Carnegie-Mellon University
Depertment of Psychology
Schenley Park

Pittsburgh. PA 15213

Dr Rutlh Kanter
University of Minnesota
Department of Psychology
Elliott Hall

739 E River Roed
Minneapolis. MN 55459S

Dr Milton S Katz

Army Research Institute
5001 Eisenhower Avenue
Alexandria. VA 22333

Dr Dennis Kibler
University of Caliyforniea
Department of Information

and Computer Science
Irvine. CA 92717

Dr David Kieras
University of Michigen
Technical Communication
College of Engineering

1223 E Engineering Building

Ann Arbor. M| 48109

Dr Peter Kinceid
Treining Analvs:s

& Evaluation Group
Department of the Navy
Orlando. FL 32813

Dr. Paule Kirk

Oakridge Associated Universities
University Progrems Division
P.O. Box 117

Oakridge. TN 37631-0117

Dr. David Klahr
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittaburgh. PA 15213

Dr. Stephen Kosslyn
Harvard University

12386 Williem James Hall
33 Kairkland St
Cambridge. MA 02138

Dr Kenneth Kotovsky

Depertment of Psychology

Community College of
Allegheny County

800 Allegheny Avenue

Pittsburgh, PA 15213

Dr. Benjemin Kuipers

Universily of Texas atl Austin
Depertment of Computer Sciences
T S Painter Hell 3 28

Austin. TX 78712

Dr Pet Langley
University of California
Department of Information

and Computer Science
levine., CA 92717

M. Diene Langston
Communications Design Center
Carnegie-Mellon University
Schenley Park

Pittsburgh. PA 15213

Dr. J1l) Larkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh., PA 15213

Dr R . W Lewler

ARl 6 S 10

5001 Eisenhower Avenue
Alexandrie. VA 22333-5600

Dr Alan M Lesgold
Learning Research and
Development Center
University of Pittsburgh
Pittsburgh. PA 15260

Dr Jim Levin
Department of

Educational Psychology
210 Education Building
1310 South Si1xth Street
Chempaign. IL 61820-6990

Dr John Levine

Learning R&D Center
University of Pittsburgh
Pittsburgh. PA 15260

Dr Clayton Lewms

University of Colorado
Department of Computer Science
Cempus Box 430

Boulder. CO 80309

Library
Naval War College
Newport RI 02940

Library
Naval Training Systems Center
Orlendo FL 32813

Dr Charlotte Linde
Structursl Semantics
P O Box 707

Palo Alto. CaA 94320

Dr Mearcia C Linn
Lawrence Hall of Science
University of Cealsfornia
Berkeley. CA 94720

Dr Frederic M Lord
Educational Testing Service
Princeton. NJ 08341

Dr Sandra P Marshall
Dept of Psychology

San Diego State University
San Diego. CA 92182



Dr. Richard £ Mayer

Department of Psychology
University of California
Santa Barbera. CA 931086

Dr. Jay McClelland
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 135213

Dr. Joe McLachlan
Navy Personnel R&D Center
San Diego. CA 92152-6600

Dr. James S McMichael

Navy Personnel Research
and Development Center

Code 095

Sen Diego. CA 92152

Dr. Barbars Means
Human Resources

Research Organization
1100 South Washington
Alexandria. VA 22314

Dr. Arthur Melimed

U S Department of! Education
724 Brown

Washington. DC 20208

Dr George A. Miller

Department of Psychology
Green Hall

Princeton University
Princeton. NJ 00540

Dr. James R. Miller

MCC

9430 Resecarch Blvd.

Echelon Building #1. Suite 23]
Austin. TX 78739

Dr. Mark Miller
Computer°Thought Corporation
1721 West Plano Parkway
Pleno., TX 75075

Dr. Andrew R. Molinar
Scientific and Engineering
Personnel and Educetion
Netional Science Foundation
Weshington. DC 20550

Dr. Williem Montague
NPRDC Code 13
Sen Diego. CA 921352-6800

Dr Rendy Mumaw

Program Manager

Treining Research Division
HumRRO

1100 S. Weshington
Alexandris, VA 22314

Dr. Allen Munro

Behavioral Technology
Laboratories - USC

1845 S Elena Ave . 4th Floor

Redondo Beeach. <A 90277

Dr. T Niblett

The Turing Institute

36 North Hanover Street
Glasgow Gl 2AD. Scotland
UNITED KINGDOM

Dr Richard E Nisbett
Universaity of Michigan

Institute for Social PResearch
Room 5261

Ann Arbor. Ml 40109

Dr Mary Jo Nissen
University of Minnesota
N218 Elliott Hall
Minneapolis. MN 554995

Dr A F Norcio

Computler Science and Systems
Code 7590

Informetion Technology Division

Nevael Research Laboratory
Washington. DC 20378

Dr Donald A Normen
Institute for Cognitive
Science C-019

University of Cealifornia. San D:«.>

La Jolla. California 92093

Director. Training Laboratory
NPRDC (Code 09%)
Sen Diego. CA 92152-6800

Director. Menpower end Personnel
Laboratory,
NPRDC (Code 06)

San Diego. CA 92152-6800

Director. Humen Fectlors
& Organizational Systems Lab.
NPRDC (Code 07)

Sen Diego. CA 92152-6800

Library. NPRDC
Code P201IL
Sen Diego. CA 92152-6800

Technical Director
Navy Personnel RAD Center
Sen Diego. CA 92152-6800

Dr Herold F O Nei:l.  Jr

School of Education - WPH 801

Department of Educational
Psychology & Technology

University of Southern Celifornia

Los Angeles, CA 90089-00131

Dr. Michael Oberlin

Naval Treining Systems Center
Code 711

Orlendo. FL 32813-7100

Dr Stellen Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O Hara Street
Pittsburgh. PA 15211

Director. Research Progranms.
Office of Neval Research

800 North Quincy Street

Arlington. VA 22217-5000

Office of Naval Research.
Code 1133

800 N Quincy Stlreet

Arlington. VA 22217-5000

Office of Naval Research,
Code 1142PS

600 N Quincy Street
“Arlington. VA 22217-3000

Office of Naval Research,
Code 1142CS

800 N. Quincy Street

Arlington. VA 22217-3000

(6 Copires)

Office of Naval Research.
Code 11R

800 N Quincy Streetl

Arlitngton. VA 22217-5000

Director. Technology Programs
Office of Naval Research

~Code 12

800 North Quincy Street
Arlington. VA 22217-5000

Office of Naval Research,.
Code 125

B00 N Quincy Streel

Arlington. VA 22217-5000

Psychologist

Office of Naval Research
Branch Otfice. London

Box 39

FPO New York. NY 09510

Special Assistant f(or Merine
Corps Matters.
ONR Code 0OMC

800 N Quincy St

Arlington. VA 22217-5000

Psvchologst

Office of Naval Research
Liarson Office. Far East
APO San Frencisco. CA 96503

Office of Naval Research.
Resident Representative.
ucsp

University of California,
San Diego

La Jollas. CaA 92093-0001

Assistant for Planning MANTR,
OP 01B6
Weshington. DC 20370



Assistant for MPT Research,
Development and Studies
oP 01B7

Weshington. DC 20370

Dr. Judith Oreseanu
Aray Research Institute
35001 Eisenhower Avenue
Alexandria, VA 2233]

COR R. T Parlette

Chief of Naval Operstions
OP-112G

Washington. DC 20370-2000

Dr Jeames Peulson
Department of Psychology
Portland State Universaity
P O. Box 751

Portland. OR 97207

Dr. Douglas Pearse
DCIEM

Box 2000
Downsview, Ontaraio
CANADA

Dr James W Pellegrino
University of California.
Sente Barbare
Department of Psychology
Santa Barbare. CA 93106

Dr Varginia E Pendergroass
Code 711

Neval Treining Systems Center
Orlando. FL 32813-7100

Dr. Nancy Pennington
University of Chicago
Greduate School of Business
1101 E. 508th St

Chicego., 1L 60637

Military Assistant for Treining eand
Personnel Technology.
OUSD (R & E)
Room 3D129, The Pentegon
Weshington., DC 20301-3080

Dr. Ray Pere:

ARl (PERI-11)

3001 Eisenhower Avenue
Alexandria. VA 2233

Dr. David N Perkins
Educetional Technology Center
337 Guiman Library

Appien Way

Cembridge. MA 02138

Dr Steven Pinker
Department of Psychology
E10-018

MIT

Cambridge. MA 02139

Dr Tjeerd Plomp

Twente University of Technology ]

Department of Education
P O Box 217

7500 AE ENSCHEDE

THE NETHERLANDS

Dr Marths Polson
Depertment of Psychology
Campus Box 346
University of Colorado
Boulder. CO 80309

Dr Peter Polson
University of Colorado
Department of Psychology
Boulder. CO 80309

Dr Michesel | Posner

Department of Neurology

Weshington University
Medical School

St Louis. MO 63110

Dr Joseph Psotke

ATTN . PERI-IC

Army Research Institute
5001 Eisenhower Ave
Alexandria, VA 22333

Dr Mark D. Reckase
ACT

P O Bo:x 168

jowa City. 1A 52243

Dr. Lynne Reder

Department of Psychology
Carnegie-Melion University
Schenley Park

Pittsburgh. PA 15213

Dr. Wesley Regian
AFHRL/MOD
Brooks AFB. TX 78233

Dr. Fred Re:f

Physics Department
University of Cealifornia
Berkeley. CA 94720

Dr Leuren Resnick
Learning R & D Center
University of Pittsburgh
3939 O Hera Street
Pittsburgh. PA 15213

Dr. Gil Ricard

Mail Stop CO4-14
Grumman Aerospace Corp
Bethpage, NY 11714

Mark Richer
1041 Lake Streelt
San Francisco. CA 94118

'Dr Linda G Roberts

Science, Education. and
Transportation Program

Office of Technology Assessment

Congress of the United States

Washington. DC 20510

Dr. Andcrew M. Rose
American Institutes

for Resesarch
1058 Thomes Jefferson St
Washington. DC 20007

Dr. David Rumelhart
Center for Human

- Information Processing
Univ. of Californie

La' Jolla., CA 92093

NW

Dr. James F. Senford
Department of Psychology
George Mason University
4400 Unaiversity Drive
Fairtax, VA 22030

Dr Walter Schneider
Learning R&kD Center
University of Pittsburgh
J939 O Hera Street
Pittsburgh. PA 15260

Dr Alen H Schoenfeld
University of Cealtfornia
Department of Educstion
Berkeley. CA 94720

Dr Jenet Schotield
Learning RkD Center
Universitly of Pittsburgh
Pittsburgh, PA 135260

Keren A Schriver
Department of English
Carnegie-Mellon University
Pittsburgh. PaA 15213

Dr Marc Sebrechts
Department of Psychology
Wesleyan University
Middletown. CT 06475

Dr Judith Segal

OERI

35335 New Jersey Ave . NW
Washington. DC 20208

Dr Colleen M Seifert
Intelligent Systems Group
Institute for

Cognitaive Science (C-015)
UcsD
Lea Jolle. CA 92093

Dr Ramsey W Selden
Assessment Center
CCSSO

Suite 379

400 N Cepitol). NW
Washington. DC 20001



Dr. Sylvie-A. S. Shatfto
Department of

Computer Science
Towson State University
Towson, MD 21204

Dr. Ben Shneiderman

Dept. of Computer Science
University of Marylend
College Park. MD 20742

Dr. Lee Shulman
Stanford University
1040 Cethcart Way
Stanford. CA 94305

Dr. Rendell Shumaker
Naval Research Laboratory
Code 73510

4339 Overlook Avenue. S W
Washington., DC 20375-5000

Dr. Velerie Shute
AFHRL/MOE
Brooks AFB. TX 78235

Dr Robert S. Siegler
Cernegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh. PA 15213

Dr Zita M Simut:s

Instructional Technology
Systems Aree

ARI|

5001 Eisenhower Avenue

Alexandria. VA 2233)

Dr. H. Wallace Sinaiko
Manpower Research

end Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexendria, VA 22314

Dr. Derek Sleeman

Dept . of Computing Scrence
King's College

Old Aberdeen

AB9 2UB

UNITED KINGDOM

Dr . Richard E. Snow
Department of Psychology
Stanford University
Stanford. CA 943086

Dr. Elliot Soloway

Yele University

Computer Science Department
P O Box 2158

New Haven. CT 06520

Dr Kathryn T Spoehr
Brown University
Department of Psychology
Providence. RI 02912

James J Staszewsk)
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh. PA 15213

Dr  Robert Sternberg
Department of Psychology
Yale University

Box 11A. Yale Stetion
New Haven. CT 06520

Dr Albert Stevens

Bolt Beranek & Newman. Inc
10 Moulton 3t

Cambridge. MA 02238

Dr Paul J Stiche
Senior Steff Scientist

Treining Research Division
HumRRO

1100 S Washington
Alexandria. VA 22314

Dr Thomas Sticht
Navy Personnel R&D Center
Sen Diego. CA 92152-6800

Dr  John Tangney
AFOSR/NL

Bolling AFB. DC 20332

Dr. Kikumi Tetsuoka

CERL '

232 Engineering Research
Laboratory

Urbena, IL 61801

Dr. Robert P Taylor
Teachers College

Columbie University
New York. NY 10027

Dr. Perry W Thorndyke

FMC Corporation

Central Engineering Labs
1163 Coleman Avenue. Box 580
Senta Clara. CA 95052

Dr Sharon Tkac:

Army Research Institute
35001 Eisenhower Avenue

Alexandria, VA 22313

Dr. Douglas Towne
Behavioral Technology Labs
1043 S. Elena Ave

Redondo Beach. CA 90277

Dr. Paul Twohig

Army Research Institute
3001 Eisenhower Avenue
Alexandria. VA 22333

Dr Kurt Van Lehn
Department of Psychology
Cernegie-Mellon University
Schenley Park

Pittsburgh. PA 15213

Dr. Jerry Vogt

Nevy Personnel R&D Center
Code 31

San Diego. CA 92152-6800

Dr. Beth Warren

Bolt Bereanek & Newman. Inc.
S0 Moulton Street
Cembridge. MA 02138

Dr ..Barbara White

Bolt Beranek & Newman. Inc.
10 Moulton Street
Cembridge. MA 02238

LCDR Cory deGroot Whitehead
Chief of Naval Operations
OP-112G1

Weshington. DC 20370-2000

Dr. Heeather Wild

Naval Air Development
Center

Code 6021

Warminster., PA 16974-5000

Dr William Clancey

Stanford University
Knowledge Systems Laboratory
701 Welch Rosd., Bldg C

Palo Alto. CA 94304

Dr Michael W illiams
IntelliCorp

1973 El Ceamino Real West
Mountain View, CA 94040-22)8

Dr Robert A Wisher

US Army Institute for the
Behavioral end Social Science

5001 Eisenhower Avenue

Alexandria. VA 22313)

Dr Martin F W skof!f
Nevy Personnel R & D Center
San Diego. CA 92152-6800

Dr Dan Wol2
AFHRL /MOE
Brooks AFB. TX 782135

Dr Wallece Wulfeck. 111
Navy Personnel R&D Center
San Diego. CA 92152-6800

Dr Joe Yasatuke
AFHRL/LRT
Lowry AFB. CO 80230

Dr. Joseph L Young

Memory & Cognitive
Processes

National Science Foundation

Washington. DC 20550



Dr Stleven Zornetzer
Office of Naval Research
Code 114

600 N Quincy St.
Arlington. VA 22217-%000






