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Abstract

Earlier work has shown that students often reach "impasses"” while trying to use a procedural skill that
they are acquiring. The step that they believe should be executed next cannot be performed. If they are
in a test-taking situation, where they may not receive help, they perform a specific, simple kind of problem
solving, called "repair." This report speculates about what happens when impasses occur during
instructional situations where help is available. The conjecture is that the help that students receive --
either from the teacher, from examining the textbook, or from other information sources -- is reduced to a
sequence of actions that will get the students past the particular impasse that is preventing them from
completing the exercise problem. This action sequence is generalized to become a new subprocedure.
The new subprocedure is inserted into the old procedure at the location where the impasse occurred.

The proposed learning process is called impasse-driven learning.
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Towards a Theory of Impasse-driven learning

Kurt VanLehn

1. Introduction |

Learning is widely viewed as a knowledge communication process coupled with knowledge compilation
process (Anderson, 1985). The communication process interprets instruction thereby incorporating new
information from the environment into the mental structures of the student. Knowledge compilation
occurs with practice. It transforms the initial mental structures into a form that makes performance faster
and more accurate. Moreover, the transformed mental structures are less likely to be forgotten. At one
time, psychology concerned itself exclusively with the compilation process by using such simple stimuli
(e.g., nonsense syllables) that the affects of the communication process could be ignored. The work
presented here uses more complicated stimuli, the calculational procedures of ordinary arithmetic. For
such stimuli, the effects of the knowledge communication process cannot be ignored. It will be shown
later that certain types of miscommunication can cause students to have erroneous conceptions. Thé_
long-term objective of the research reported here is to develop of theory of the neglected half of learning,
knowledge communication. Consequently, whenever the term "learning" appears below, it is intended to

mean knowledge communication.

Earlier work has shown that students often reach "impasses” while trying to use a procedural skill that
they are acquiring. An impasse occurs when the step that they believe should be executed next cannot
be performed. If they are in a test-taking situation, where they may not receive help, they perform a
specific, simple kind of problem solving, called "repair." This chapter speculates about happens when
impasses occur during instructional situations, where help is available. The conjecture is that the help
that the student receives -- either from the teacher, from examining the textbook, or from other information
sources -- is reduced to the sequence of actions that will get the student past the impasse. This action
sequence is generalized to become a new subprocedure. The new subprocedure is inserted into the old
procedure at the location where the impasse occurred. The proposed learning process is called impasse-

driven learning.

The research presented here began with the "buggy" studies of Brown and Burton (1978). Those

studies found that students of certain procedural skills, such as ordinary multicolumn subtraction, had a






surprisingly large variety of bugs (i.e., small, local misconceptions that cause systematic errors). Early
investigations into the origins of bugs yielded a theory of procedural problem solving, named Repair
Theory (Brown & Vanlehn, 1980). Among other accomplishments, Repair Theory predicted the
occurrence of certain patterns of short-term instabilities in bugs. These instabilities were subsequently
found (VanLehn, 1982). Recent research has investigated the relationship between the curriculum, the
students’ learning processes and the acquisition of bugs. A learning theory, named Step Theory, has
been added to Repair Theory, yielding an integrated explanation for the acquisition of correct and buggy
procedures (VanLehn, 1983a; VanLehn, 1983b). Step Theory describes learning at a large "grain size."
Given a lesson and a representation of what the student knows prior to the lesson, Step Theory predicts

what the student’s knowledge state will be after the lesson.

Recently, attention has turned toward describing learning at a finer grain-size. The object of the current
research is to describe the student's cognitive processing during a lesson. The research strategy is to
replace Step Theory by augmenting Repair Theory, which already provides a fine-grained account of
problem solving processes during diagnostic testing sessions, so that the new theory provides a_‘finp-
grained account of learning. If this strategy succeeds, the cognitive processes will account for .both
problem-solving behavior and lesson-learning behavior. Thus the new theory will provide a more
ihtegrated account of cognition as well as describing learning behavior at a finer grain size. In order to
make it easier to contrast old and new theories, the new one will be dubbed RT2, and the old theory,

which is a conglomerate of Repair Theory and Step Theory, will be referred to as RT1.

This chapter introduces RT2. It is, for the most part, speculation. Unlike RT1, RT2 has not been
implemented as computer simulation, nor has its internal coherence and empirical accuracy been
scrutinized with competitive argumentation (VanLehn, Brown & Greeno, 1984). Although the ideas behind
RT2 are simple extensions of the principles of RT1, they seem capable of explaining much about human
behavior. Moreover, they relate to current research in machine learning and language acquisition. A
discussion of RT2, even in its current underdeveloped form, should be at least timely, and perhaps

interesting as well.

The chapter begins with a discussion of the task domain and the kinds of behavior one finds students
displaying. It then introduces the old theory, RT1. Readers who are familiar with RT1 from earlier
publications may safely skip sections 2 and 3. The remainder of the chapter presents RT2 and discusses

its relationship to other work in cognitive science.



2. Learning elementary mathematical skills

The goal of this research is to develop a rigorously supported theory of learning by taking advantage of
Al's new modelling power. The long term research strategy is to begin by studying a particular kind of
cognition, then if all goes well, to test the theory’s generality on other kinds of cognition. The initial studies
focused on how elementary school students learn ordinary, written arithmetic calculations. The main
advantage of arithmetic procedures, from a methodological point of view, is that they are virtually
meaningless to most students (Resnick, 1982). Most students treat arithmetic procedures as arbitrary
formal manipulations (i.e., "symbol pushing"). Although this may frustrate teachers, it allows
psychologists to study a complex skill without having to model a whole world’s worth of background

knowledge.

This section introduces the domain. First it describes the instruction that students receive, and then it
describes the behavior they produce. The theory’s main job is to explain what kinds of mental structures
are engendered by that instruction and how those structures guide the production of the observed

behavior.

2.1. Learning from lesson sequences of examples and exercises

In a typical American school, mathematical procedures are taught incrementally via a lesson sequence
that extends over several years. In the case of subtraction, there are about ten lessons in the sequence
that introduce new material. The lesson sequence introduces the procedure incrementally, one step per
lesson, so to speak. For instance, the first lesson might show how to do subtraction of two-column
problems. The second lesson demonstrates three-column problem solving. The third introduces
borrowing, and so on. The ten lessons are spread over about three years, starting in the late second
grade (i.e., at about age seven). These lessons are interleaved with lessons on other topics, as well as
many lessons for reviewing and practicing the material introduced by the ten lessons. In the classroom, a
typical lesson lasts an hour. Usually, the teacher solves some problems on the board with the class, then
the students solve problems on their own. If they need help, they ask the teacher, or they refer to worked
examples in the textbook. A textbook example consists of a sequence of captioned "snapshots” of a
problem being solved (see figure 1). Textbooks have very little text explaining the procedure, perhaps

because young children do not read well. Textbooks contain mostly examples and exercises.
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Figure 1: A typical textbook example.

2.2. Describing systematic errors with "bugs”

The observable output of the students’ learning process is their performance while solving exerciée
problems. Error data are a traditional measure of such performance. There have been many empirical
studies of the errors that students make in arithmetic (Buswell, 1926; Brueckner, 1930; Brownell, 1935;
Roberts, 1968; Lankford, 1972; Cox, 1975; Ashlock, 1976). A common analytic notion is to separate
systematic errors from slips (Norman, 1981). Systematic errors appear to stem from consistent
application of a faulty method, algorithm or rule. Slips are unsystematic "careless” errors (e.g., facts
errors, such as 7-3=5). Since slips occur in expert performance as well as student behavior, the common
opinion is that they are due to inherent "noise" in the human information processor. Systematic errors, on
the other hand, are taken as stemming from mistaken or missing knowledge, the pfoduct of incomplete or

misguided learning. Only systematic errors are used in testing the present theory. See Siegler and

Shrager (1984) for a developmental theory of addition slips.

Brown and Burton (1978) used the metaphor of bugs in computer programs in developing a precise,
detailed formalism for describing systematic errors. A student’s errors are accurately reproduced by
taking a formal representation of a correct procedure and making one or more small perturbations to it,
such as deleting a rule. The perturbations are called bugs. A systematic error is represented as a list of
one or more bugs. Bugs describe systematic errors with unprecedented precision. If a student makes no
slips, then his or her answers on a test exactly match the buggy algorithm’s answers, digit for digit. Bug

data are the main data for testing this theory.



Burton (1982) developed an automated data analysis program, called Debuggy. Using it, data from
thousands of students learning subtraction were analyzed, and 76 different kinds of bugs were observed
(VanLehn, 1982). Similar studies discovered 68 bugs in addition of fractions (Shaw et al., 1982), several
dozen bugs in simple linear equation solving (Sleeman, 1984), and 57 bugs in addition and subtraction of

signed numbers (Tatsuoka & Baillie, 1982).

It is important to stress that bugs are only a notation for systematic errors and not an explanation'. The
connotations of "bugs” in the computer programming sense do not necessarily apply. In particular, bugs
in human procedures are not always stable. They may appear and disappear over short periods of time,
often with no intervening instruction, and sometimes even in the middle of a testing session (VanLehn,

1982). Often, one bug is replaced by another, a phenomenon calied bug migration.

Mysteries abound in the bug data. Why are there so many different bugs? What causes them? What
causes them to migrate or disappear? Why do certain bugs migrate only into certain other bugs? Often a
student has more than one bug at a time--why do certain bugs almost always occur together? Da
co-occurring bugs have the same cause? Most importantly, how is the educational process involved in-

the development of bugs? One objective of the theory is to explain some of these bug mysteries.

Another objective is to explain how procedural skills are acquired from multi-year curricula. This
objective seems to require longitudinal data, where each student in the study is tested several times
during the multi-year period. Such data is notoriously difficult to acquire. Bug data are readily available
and nearly as good. The bug data discussed here were obtained by testing students at all stages in the
curriculum. Thus, the bug data are like between-subjects longitudinal data. Instead of testing the same
student at several times at different stages of his or her learning, different students at different stages are
tested just once. As will be seen later, such cross-sectional data can perform nearly as well as

longitudinal data in testing a learning theory, and yet they are much easier to collect.

3. An introduction to the model: Explaining Always-Borrow-Left

Most of the mental structures and processes proposed by the theory can be introduced and illustrated
by going through an explanation for a certain subtraction bug, called Always-Borrow-Left. Students with
this bug always borrow from the leftmost column in the problem no matter which column originates the

borrowing. Problem A below shows the correct placement of borrow’'s decrement. Problem B shows the



bug‘s placement.

5 2 5
A. 3 65 B. 3 615 C. 615
-1009 -1009 - 109
256 16 6 4 6

Always-Borrow-Left is moderately common. In a sample of 375 students with bugs, six students had this
bug (VanLehn, 1982). It has been observed for years (Buswell, 1926, pg. 173, bad habit number s27).

However, this theory is the first to offer an explanation for it.

The explanation begins with the hypothesis that students use induction (generalization of examples) in
learning where to place the borrow’s decrement. All the textbooks used by students in our sample
introduce borrowing using only two-column problems, such as problem C above. Multi-column problems,
such as A, are not used. Consequently, the student has insufficiént information to induce‘ an
unambiguous description of where to place the borrow’s decrement. The correct placement is in the
left-adjacent column, as in A. However, two-column examples are also consistent with decrementing the

left-most column, as in B. ' T

The next hypothesis of the theory is that when a student is faced with such an ambiguity in how to
describe a place, the student takes a conservative strategy and saves all the relevant descriptions. When
inducing from two-column problems (e.g., C), the student describes the borrow-from column as "a column

that is both left-adjacent to the current column and the left-most column in the problem.”

Suppose that our student is given a diagnostic test at this point in the lesson sequence and that the
test contains borrowing problems of all kinds. Suppose the student is faced with solving problem D,
below.

D. 3635 E.
1009

- Ww

The student starts to borrow, gets as far as E, and is suddenly stuck. The student's description of where
to borrow from is ambiguous because there is no column that is both left-adjacent and the left-most
column. In the terminology of the theory, getting stuck while problem solving is called reaching an

impasse.

It is hypothesized that whenever students reach an impasse on a test, they engage in /local problem

solving. Local problem solving is just like classical puzzle solving (Newell & Simon, 1972) in that there is



an initial state, a desired final state, and state-change operators. Here, the initial state is being stuck, and
the desired final state is being unstuck. Unlike traditional problem solving, the state-change operators of
local problem solving don’'t change the state of the exercise problem. Instead, they change the state of
the interpreter that is executing the procedure. The operators do things like pop the stack of goals or
relax the criterion for matching a description to the exercise problem. They do not do things like writing
digits on the test paper. Because the local problem solver modifies the state of the procedure’s
interpretation, it is a kind of meta-level problem solving. The sequences of meta-level operators that
succeed in getting students unstuck are called repairs. Note that what is being repaired is, roughly
speaking, the impasse. Repairs do not change the procedure. To put it in terms of Newell's (1980)
problem space hypothesis, the procedure works in one problem space, and local problem solving works
in a second problem space that is "meta” to the base problem space. Returning to our stuck student,

three common repairs to the impasse are illustrated below.

2 5
F. 3 615 G. 3 615 H. 3 615
-1009 -1009 -10

9
6

In F, the student has relaxed the description of which column to borrow from by ignoring the restriction
that the column be left-adjacent to the current column. The remaining restriction, that the column be the
left-most column in the problem, has the student decrement the hundreds column, as shown in F. This is
one repair. It generates the bug Always-Borrow-Left. Another repair is shown in G. Here, the student has
relaxed the borrow-from description by ignoring the left-most requirement. The decrement is placed in the
left-adjacent column, yielding G. This repair generates a correct solution to the problem. In H, the student
has chosen to skip the borrow-from entirely, and go on to the next step in the procedure. This repair
generates a bug that is named Borrow-No-Decrement-Except-Last, because it only eXecutes a borrow-
from when it is unambiguous where to place the decrement, and that occurs only when the borrow
originates in the last possible column for borrow. To sum up, three different repairs to the same impasse

generate two different bugs and a correct version of subtraction.

It was mentioned earlier that students’ bugs are not like bugs in computer programs because students’
bugs are unstable. Students shift back and forth among bugs, a phenomenon called bug migration. The
theory’s explanation for bug migration is that the student has a stable underlying procedure, but that the
procedure is incomplete in such a way that the student reaches impasses on some problems. The

student can apply any repair she can think of. Sometimes she chooses one repair, and sometimes she



chooses others. The different repairs manifest themselves as different bugs. So bug migration comes
from varying the choice of repairs to a stable, underlying impasse. In particular, the theory predicts that
the three repairs just discussed ought to show up as a bug migration. In fact, they do. Figure 1 is a

verbatim presentation of a diagnostic test showing the predicted bug migration.

A//z’ a//a/ C 109 0/564 510/ F//G 9 00
4 3 .23 7 0 : 8 8 7 : 39 8 . 68 8
3 9 2 7 3 9 1 8 7 ~ 7 3 1 9 2 2 2
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Figure 2: Verbatim presentation of a test by subject 8 of class 17 showing three
repairs to the same impasse. On problems D, E and G, one repair generates
the bug Borrow-No-Decrement-Except-Last. (N.B. The subject does not always
use scratch marks to indicate borrowing.) On problems H and |, another
repair generates the correct borrow-from placement. On problems K, M, N, P,
Q, R and S, a third repair generates the bug Always-Borrow-Left. There are
slips on problems D, P, Q and S. On problem R, a second kind of impasse
occurs. While processing the hundred’s column, the subject tries to decrement
the zero in the ten thousand'’s column. A repair to this impasse ultimately
leads to the answer of 2 in the hundred’s column.

This discussion of the bug Always-Borrow-Left has illustrated many of the assumptions of the theory.
First, procedures are the result of generalization of examples, rather than, say memorization of verbal or
written recipes. The main evidence for this assumption is that there are accidental, visual characteristics
of the examples, viz. the placement of the decrement, that a non-example source of instruction, such as a
verbal recipe, would not mention. The appearance of these visual characteristics in the acquired

procedure is evidence that they were learned by induction (see VanLehn (1986) for a full defense of this

idealization).
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A second assumption is that learning occurs in the context of a lesson sequence, and that many bugs
are caused by testing students who are in the middle of the lesson sequence on exercise types that they
have not yet been taught how to solve. Perhaps such bugs should be welcomed as signs of a healthy
learning process that may eventuate in a correct understanding of the procedure. Such a view of bugs is
radically different from the traditional view, which considers bugs to be "bad habits" that need to be
remediated. On the other hand, the bad-habit view may be appropriate for older students, some of whom

have bugs long after the lesson sequence has been completed (VanLehn, 1982).

Another set of assumptions involves the notions of interpretation, impasses and repairs. A particularly
important hypothesis is that repairs occur at the meta-level and change only the state of the
interpretation. This hypothesis predicts the existence of bug migration. In fact, this prediction was made
before any evidence of bug migration had been found (Brown & VanLehn, 1980). The surprising success
of this forecast and the fact that it is an almost unavoidable consequence of the hypothesis provide strong

support for the theory.

4. The stable bug problem

Although some students’ behaviors can be characterized as bug migrations, other students appear to
have the same bug throughout a test. When such students are tested again two days later, they often
have the same bug (VanLehn, 1982). Some students even show the same bug when tested twice six
months apart (VanLehn, 1982). Such data encourage the interpretation that some students have learned
their bugs. That is, their bugs have become a part of the knowledge structure they use to encode their
procedure. Such relatively permanent bugs are called "stable” in order to differentiate them from bugs the

may exist only for a short time, then migrate/change into other bugs’.

Stable bugs present a problem for RT1. Repairs do not modify the core procedure, but instead modify
the state of the interpreter that is executing the core procedure. After a repair has been accomplished
and the interpreter is running again, there is no trace of the effects of repair on the core procedure. Bug

migrations are explained by assuming that the students apply different repairs at different occurrences of

"The proportion of students whose errors are due to stable bugs varies significantly with the grade level. In one study, 49% of the
third graders had stable subtraction bugs, vs. 27% of the fourth graders and 13% of the fifth graders (VanlLehn, 1982). The variation
is due to the fact that more older children know the correct algorithm: 19% of the third graders were bug-free, vs. 39% of the
fourth-graders and 60% of the fifth-graders.
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the impasse. In order to explain a stable bug, one must assume that the student chooses to apply the

same repair every single time the impasse occurs. Intuitively, this seems quite unlikely.

One way to explain stable bugs within the RT1 framework is to assume that the set of possible repairs
is different for different individuals. Some students may only know about one repair, so they always
choose that repair at an impasse. They will appear to have a stable bug. However, this hypothesis has
difficulties. There are stable bugs that can only be generated by assuming that the students have two
different impasses, and that the student repairs the first one with one repair, and the second one with a
different repair. Students with such bugs must know at least two repairs, yet they consistently choose the
same one at each choice point. Assuming that different students have different repairs does not help

explain such multi-impasse stable bugs.

4.1. The Patch Hypothesis

As another potential explanation of stable bugs, one could augment RT1 by assuming that there.is
some memory‘of previous episodes of impasses and repairs. Stable bugs are generated by assumirg
that the student recognizes the impasse as one that has occurred before, and recalls the repair thét' w;.ls
selected before and employed successfully. To perform such recall, the student must have some
memory of the impasse and the repair. That is, the student's knowledge of the skill must consist of a set
of impasse-repair pairs in addition to the core procedure. Such pairs are called patches (Brown &
VanlLehn, 1980). Thus, if the students have a stable bug, then they have a patch for that impasse. If they

don’t have a patch, then the impasse may cause bug migrations.

There are problems with the hypothesis that the student’s knowledge consists of patches as well as the
core procedure. First, it seems inelegant and unparsimonious. Patches are, essevntially, condition-action
rules. The condition is a description of particular interpreter states (i.é., a certain kind of impasse). A
patch’s action is some modification to make to the interpreter’s state. The core procedure is also made up
of condition-action rules. The only differences between patches and the core procedure’s rules is that the
rules’ conditions can test the external problem states (i.e., the state of a partially completed subtraction
problem) and the rules’ actions can modify the external problem state. That is, the patches operate
exclusively on the interpreter’'s state, while core procedure’s rules operate on the external problem state
as well. Nonetheless, there are more similarities than differences between patches and rules. It would be

parsimonious to combine them.
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The second problem with patches is that they must be somewhat abstract in order to function properly.
In order for the patch to apply to multiple occurrences of an impasse, it must be a description of the
interpreter’s state. Thus, if a patch is acquired from, say, the first occurrence of an impasse, then the
condition half of the patch must be abstract. It must not mention details of the interpreter state that are
idiosyncratic to this particular occurrence, such as the values of digits in the problem. Similarly, the
repairs must also be abstract descriptions of the modifications that were performed to the interp.reter's
state. Consequently, acquiring a patch is not simply a matter of storing a state and a state-change.

Rather, patch acquisition requires non-trivial abstraction.

A third, more technical problem with patches is that they do not interface well with the pattern matching
component of the interpreter. In order to represent descriptions of the external problem state, the
procedure employs patterns. Such patterns are just like the usual ones found in, for instance the
conditions of production rules. They consist of sets of relations whose arguments are variables or
constants. In order to employ such patterns, the interpreter must have a pangrn matcher. The matcher
tries to fit the pattern to the representation of the external problem state. If the pattern matches, then thé
objects matched by the variables are often "read" and become a part of the interpreter’s state. We saw-
an instance of this earlier, in the discussion of the bug Always-Borrow-Left. A pattern is used to represent
the idea that the place to borrow from is (1) the left-most column in the problem, (2) a column that is
adjacent to the column that is the current focus of attention, and (3) a column that is left of the current
focus of attention. Speaking very approximately, the pattern for this concept employs three relations, one
for each of the constraints listed above. It has two variables: one for the current focus of attention, and

one for the column to be borrowed from. The following is an informal presentation of the pattern:

(Is-leftmost-column New-focus) &
(Is-adjacent-to New-focus Current-focus) &
(Is-left-of New-focus Current-focus)

If the pattern matches, the object that is matched to the New-focus variable, namely a particular column in
the problem, becomes the focus of attention for the borrow-from subgoal. The bug Always-Borrow-Left is
generated when this pattern fails to match. Such mismatching occurs when borrowing originates in the
units column of problems with more than two columns. In such problems, there is no column that meets
all three constraints. The bug is generated when the second one is relaxed, allowing the pattern to match
and picking out the left-most column of the problem as the focus of attention for borrowing-from. This
causes the student to borrow from the left-most column, which is exactly what the bug Always-Borrow-

Left does.
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If the patch hypothesis is correct, then it should be possible to build a patch for Always-Borrow-Left.
The impasse half of the patch can be quite simple. It can achieve the appropriate degree of abstraction by
merely referring to the pattern. The description in the condition-half of the patch would read: "The pattern
that fetches the borrow-from column does not match.” However, there are problems implementing the
repair-half of the patch. The following paragraphs present three possible implementations, all of which

fail.

The repair could also be expressed in terms of the pattern. It needs to say something like "relax the
second relation of the pattern.” However, if this is taken literally, it means actually modifying the pattern
by removing the second relation from it. Such modifications change the procedure itself. This makes it
hard to explain bug migration--one would have to assume that the relaxation repair puts the deleted

relations back, for instance.

A second possibility for the Always-Borrow-Left patch involves interrupting the pattern matching
process. In order to accomplish the requisite relaxation, the repair would have to interrupt the patte;rn
matcher right when it was about to apply the second constraint of the pattern, and somehow causé tt:xe
pattern matcher to skip over that relation. Expressing this repair as a patch is difficult. It would require a
precise specification, at the theoretical level, of a pattern matching algorithm, thus embroiling the theory in

a layer of irrelevant detail.

A third option for the Always-Borrow-Left patch is to include a revised pattern that has all the relations
except the second one. The interpretation of this description is for the local problem solver to perform
pattern matching using this pattern, and substitute the results into the interpreter’s state just as if the
original pattern had been matched. This option works, usually. However, it has'the flaw that on some
occasions, the pattern stored in the patch does not match. This causes an impasse inside the local
problem solver. That is, there can be an impasse while a person is trying to fix another impasse. The
local probiem solver is running "meta” to the interpreter, trying to repair the interpreter’s impasse. We
could assume that there is a meta-meta level, where another local problem solver runs, trying to repair
the impasse that occurred inside the meta-level local problem solver. Such "towers" of meta-level
interpreters have begun to appear in Al (Smith, 1982), but their properties are largely unexplored at this
time. Itis probably best to avoid postulating such multi-level architectures of students until they are better

understood computationally.
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To sum up: there are three methods, for representing the repair-half of the patch: (1) modifying the core
procedure by deleting a relation from the pattern, (2) having the repair cause the pattern matcher to
ignore the relation, and (3) storing a substitute pattern in the patch and matching it from inside the local
problem solver. Because all these methods have defects, it seems that patches cannot represent the
stability of bug that, like Always-Borrow-Left, depend on pattern relaxation in their repairs. This is just one
problem with the patch hypothesis. The others, mentioned earlier, are its lack of parsimony,. since

patches are quite similar to rules, and the fact that non-trivial abstraction is required for patches to be

acquired.

4.2. Representing Stable bugs with mal-rules

The new version of the theory, RT2, takes the position that there are no patches. The student's
knowledge of the skill consists only of a procedure. In order to represent stable bugs, the core procedure
has "mal-rules®." Mal-rules are identical in format and function to the core procedure’s regular rules. The
difference is only that they cause the student to answer incorrectly, rather than correctly. Furthermore,
RT2 assumes that mal-rules are acquired by the same learning mechanism as regular rules. Regular-
rules are acquired by induction of the teacher’'s examples. Mal-rules are acquired by induction from the
"mal-examples” produced by local problem solving. If a student does not induce a mal-rule from the
mal-example, pehaps because he did not attend to the mal-example, then bug migration may occur.

Thus, stable bugs occur when mal-rules are induced, and unstable bugs occur otherwise.

Mal-rules are a much more parsimonious solution to the stable bug problem than patches. They are
identical to rules, and they are acquired by the same mechanism as rules. Thus, mal-rules escape the

first objections raised against patches.

Another objection was that patches couldn’t represent stable pattern-relaxation bugs. This objection is
also taken care of by the mal-rule hypothesis. To illustrate how, consider the bug Always-Borrow-Left
again. In the normal course of events, students are first taught borrowing with two-column problems.
Later they are taught how to solve three-column borrow problems. Recall that after the first lesson, the

pattern is over constrained:

°Derek Sleeman coined the term "mal-rule” for his method of describing bugs in an objective, theoretically neutral fashion.
Although the mal-rules of RT2 are interpreted as lying at a deeper, more psychologically plausible level, the use of the term seems
just as descriptive of how the rules function.
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(Is-leftmost-column New-focus) &
(Is-adjacent-to New-focus Current-focus) &
(Is-left-of New-focus Current-focus)

The second borrowing lesson shows that when borrowing originates in the units column of three-column
problems, it is the tens column that one borrows from. The learning mechanism utilizes such examples to

eliminate the first relation from the pattern. That is, the learning mechanism does pattern relaxation.

If, on the other hand, mal-examples had been presented ‘where the hundreds column was borrowed
from, then pattern relaxation would delete the second relation. Such mal-examples can be generated
when the learner is tested between the first and second lessons on borrowing. The over-constrained
pattern will causes impasses, and the repair of those impasses generates the mal-examples. On this
account, stable bugs like Always-Borrow-Left seem to be caused, ironically, by learning from one’s

mistakes.

5. Learning occurs at impasses

The introduction of this chapter promised a description of a fine-grained learning process. Although the
responsibilities of the learning process have been increased, by including the generation of mal-rules as
well as rules, the large-grained description of the learning process has not yet been refined. This section

ventures a finer-grained description.

If learning occurs as a result of local problem solving, then the learning processes is likely to be
interwoven with the local problem solving process. The main hypothesis is that inductive learning occurs
at impasses. The "at" is used here in twb senses. Learning occurs only when an impasse occurs. |f
there is no impasse, there is no learning®. The second sense of learning "at* impasses is more subtle.
When an impasse occurs, the student is "at" some place in the procedure. That is,' the interpreter for the
procedure is reading some part of the control structure of the procedure. The hypothesis is that the
control location of the impasse is the place where the newly learned piece of procedure will be inserted.
That is, if the control structure is visualized as layed out spatially, say as a tree, then the hypothesis that
learning occurs "at" impasses takes on a spatial interpretation: the spatial location of the impasse is the

place where the new subprocedure will be attached to the existing procedure. So, the hypothesis has two

3Knowledge compilation may occur without impasses, but that is not the kind of learning that the theory describes. The theory
aims to describe initial learning, or knowledge communication. Also, even if there is an impasse, learning may not occur. For
instance, the student may not attend to the instruction at that time. Thus, the claim can be restated more precisely as: If there is
knowledge communication learning, then it occurs at impasses.
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independent aspects: (1) learning occurs "at" impasses in the temporal sense, and (2) learning occurs

"at" impasses in the control stucture sense.

First, let's examine the implications of the temporal aspect. According to RT1, the only activity that
occurs in response to impasses is repair. The goal of repair is merely to get the interpreter past the
impasse in any way possible. In particular, repair is not concerned with answering the problem correctly.
Consequently, repairs rarely modify the interpretation is such a way that the problems are .solved
correctly. However, the impasse-driven learning hypothesis is intended to explain the acquisition of
reqular rules as well as mal-rules. To do this, the theory must be amended to allow other activities in
reponse to impasses. Once the history of this research is reviewed, it will be easy to see what those

activities should be.

The bug data that initiated the theory were collected in testing situations. The students were asked to
answer problems without help from their teacher, friends or textbooks. If they got stuck, they would have
to rely on their own knowledge to get unstuck. Thus, they repaired. However, students are not always in
test taking situations when they solve problems. Often, they solve practice exercises in class or at home‘.'
In such situations, help is permitted. Indeed, students are encouraged to ask for help if they get stuck.

So, the second kind of activity that may occur at impasses is receiving help.

Help seems to be the source of information that allows correct rules to be learned at impasses. For
instance, suppose that a student gets stuck while doing seat work. He raises his hand. His teacher
comes over. He asks, "l got to here and got stuck. What am | supposed to do next?" The teacher shows"
him what to do, saying, "You do this, and then this, then this." This short sequence of actions is just what
the student needs. Not only does it get him around the impasse, but it is an examplé of a new subskill.
The student may abstract the actions, leaving behind details that are specific to the particular problem
that is being solved, such as the numerical values of the digits. The abstracted actions become a new
subprocedure, which the student can attach to his existing procedure. Thus, correct rules can be
acquired by the same mechanism that acquires mal-rules, provided that there is some way of obtaining

help at impasses.

The actual method of delivering help is probably of secondary importance. The student can obtain help
by comparing his solution to his friend’s solution. The comparison isolates a subsequence of actions

ilustrating the new subprocedure just as effectively as asking the teacher, but it may cost the student
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some effort to make the comparison. With slightly more effort, the student could generate a subsequence
by drawing a "near" analogy to a worked problem in the textbook (Anderson, Farrell, & Saurers, 1984).
The student may even be able to generate the subsequence from a "far” analogy, given a little coaching
from the teacher (Resnick & Omanson, 1987). For instance, some teachers might have the student think
of the problem’s base-ten numerals as piles of pennies, dimes and dollars. Under the teacher’s prodding,
the student maps the impasse over to the monetary representation, solves the impasse there without
violating principles of fair exchange (i.e., always change a dime for ten pennies), then maps those
monetary manipulations back into paper-and-pencil actions in the written representation. Since the
impasse was solved correctly in the monetary representation, the written analog of that solution should be
a correct subsequence of actions. The point is that there are a variety of ways that a written action
subsequence may be obtained. Demonstration, comparison, near analogy, and far anaiogy are only a few

of the many possible ways, although they may be the most common ones.

As soon as one discovers that there are several kinds of inputs to a cognitive process, one wonders
whether those differences make aﬁy difference. Does it matter whether the student receives help via
individualized demonstrations, vs. comparison, etc. The simplest hypothesis is that it is the subsequence
of actions that determines the contents of the subprocedure, and not the source for that subsequence of
actions. If two methods of obtaining help yield the same subsequence of actions for the impasse, then

the subprocedure that the student induces should be the same.

Like most simple hypotheses, this one is likely to be only half right, at best. The various methods of
obtaining help may require different cognitive resources, and that may affect the inductive learning
process. For instance, suppose far analogy takes longer and requires more problem solving of the
student than attending to the teacher's demonstration. The heavier demands of far analogy could interfer
with the retention of the interpreter’s state at the time of the impasse. This may decrease or perturb
inductive learning, because retaining (or reconstructing) the interpreter's state is necessary for
determining where to attach the new subprocedure. This interference could be considered, however, a

second order or "performance” factor.

The second aspect of the hypothesis that learning occurs "at" impasses concerns the place where the
new subprocedure will be attached to the existing procedure. The hypothesis is that the attachment point
will be the same as the location of the interpreter at the occurrence of the impasse. The notion of location

is complicated by the fact that the student’s procedures have a hierarchical control structure. That is, the
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procedure has goals, which call subgoals, which call sub-subgoals and so on. There may even be
recursion: a goal calling itself. Consequently, at the time of an impasse, there may be a whole stack of
goals pending. However, it is the lowest goal, the one that is a subgoal of all the others, that is suffering
from the impasse.® This has implications for where new subprocedures will be attached, given the
hypothesis that subprocedures are attached at the place in the goal structure where the impasse
occurred. Roughly speaking, new subprocedures will tend to be attached low in the goal tree. This

prediction is a necessary implication of the hypothesis.

It is also a true prediction for the data available now. In order to predict the locations of subprocedure
attachments, as inferred from the arithmetic bug data, RT1 had an ad hoc hyppthesis, called the lowest-
parent hypothesis (VanLehn, 1983a). It simply stipulated that new subprocedures be attached as low as
possible in the goal hierarchy. This hypothesis is no longer needed. The attachment points are predicted

from an independently motivated hypothesis, viz., that learning occurs at impasses.

6. Implications for remediation

One of the most obvious facts about arithmetic is that remediation of bugs tends to work. Many
students have arithmetic bugs when tested in the early grades (e.g., 49% in the third grade). The
proportion decreases with grade level. The proportion of adults with bugs is much smaller. Apparently,
students’ bugs are being remediated somewhere in the educational process. The question addressed in
this section is how this remediation takes place. Section 4.2 discussed how mal-rules are learned, and
section 5 discussed how regular rules are learned. This section speculates about how regular, correct

rules may be learned when they have to compete with mal-rules that were learned earlier.

Suppose a student enters a remedial session with a stable bug. The stability of the bug indicates that
a mal-rule was learned during some prior episodes of local problem solving. Those impasses no longer
occur because the mal-rule circumvents them. Consequently, the student can work all the relevant

problems without reaching an impasse. As mentioned earlier, if there are no impasses, there is no

4Here is an informal proof that only the lowest goal can be stuck: Suppose that some goal other than the lowest goal is stuck.
This means that there is some subgoal of it that is pending but not stuck. But if that lower goal is not stuck, then it can continue until
it succeeds or fails. In either case it would be removed from the stack of pending goals. So the only goals left in the stack when
interpretation is forced to stop are the stuck goal and all the goals that depend on its compietion in order for them to complete, i.e.,
the supergoals of the stuck goal. In short, it is always the lowest goal on the stack that is the current locus of control when an
impasse occurs.
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learning. Yet, remediation works. How can the hypothesis be reconciled with the facts?

The simplest reconciliation is to assume that remediation occurs when the teacher stops the student
just as the student makes a wrong move in the problem solving process. For instance, the teacher may
be carefully watching the student do a borrow, and interrupts just as the student has placed a scratch
mark where no scratch mark should occur. Suppose further that the student interprets the teacher’s
interruption in a similar fashion to an impasse. The student observes the subsequence of actions that the
teacher suggests, abstracts them, and plugs them into the existing procedure as a new subprocedure.
Treating interruptions in tutorial situations as impasses could extend the theory to cover remediation.
Such interruptions are rare events, which explains why stable bugs are often found. However, if we
postulate that such remediation is effective when it does occur, and that tutorial efforts persist for years,

then the assumption also explains why stable bugs eventually disappear.

However, there is a small problem. Typically, the teacher’s interruption occurs just after the first
incorrect action inétead of before it. Yet, that action is the result of a mal-rule which is running in place ;of
the impasse. We want the new subprocedure to be placed where the impasse used to occur, just 'as‘ if
the instruction had been delivered then instead of now. This would cause the new subprocedure to be
attached correctly. However, the teacher’s interruption is too late. The impasse-place has been passed.
In principle, the student could be asked to reason backwards in order to locate the impasse-place.
However, a better remediation technique may be to have the student solve the same problem again (or a
very similar one) and interrupt just before the incorrect action. This interruption would at the impasse
place, or at least much closer. This is, of course, a testible suggestion concerning the effectiveness of

two remediation strategies.

There is a more significant problem with the kind of remediation p}oposed so far. Suppose the
interruption is completed, and the student has installed the new subprocedure at the impasse place.
There is already another subprocedure attached there, the mal-rule. It was generated in response to that
impasse. So both the rule (subprocedure) and mal-rule are attached at the same impasse place.
Subsequently, when the student comes to that place in solving a problem, how will the student know
whether to execute the rule or the mal-rule? Since both were constructed in order to handle the same
impasse, both will be applicable. All other things being equal, the student will pick the rule half the time
and the mal-rule the rest of the time. This predicts a new kind of instability, where buggy problem solving

alternates with correct problem solving.
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There is annecdotal evidence that this prediction might be close to the mark. The evidence concerns
the spontaneous reappearance of bugs after their supposed remediation. Teachers have noted that when
students with bugs are shown the correct procedure in a remedial session, they pick it up easily. They can
solve dozens of problems successfully in the session. Apparently, they have learned the correct
procedure. However, when tested again several weeks later, they are either back to using their old buggy
procedure, or they are alternating between their old buggy procedure and the correct procedure, It is
common to heard anecdotes about this phenomenon. Resnick and Omanson (1987) have carefully
documented several cases of such bug regkession in a study designed to investigate new remediation
strategies. Bug regression occurred despite the fact that the remediation was particularly thorough.
Nonetheless, Resnick and Omanson report that' 60% of the students reverted to using their buggy

procedures for answering written subtraction problems when tested about four weeks later.

Bug regression makes intuitive sense, given the cognitive process sketched above. Suppose the
student has enough context during the remediation session to differentiate the newly learned rule from
the mal-rule, which was learned some time ago. The similarity between the learning context and thé |
application context allows the student to reliably differentiate the correct rule from the older rule, and
thereby apply the new rule throughout the remediation session. However, at a later testing session, the
context during the session may not be similar enough to the remediation session that the student can
recall which rule is the one to use. This would cause the student to be uncertain which rule was correct;
they might alternate rules in order to maximize their test score. Another possibility is that the mal-rule
was learned during a testing session. The present context, another testing session, may be more similar
to the context in which the mal-rule was learned than the context in which the correct rule was learned.
This may cause the student use the mal-rule exclusively. Thus, depending on when the mal-rule was
learned, the students may either apply the buggy procedure exclusively, or they may alternate between
the correct procedure and their buggy one. The predictions of impasse-driven learning are in accord with

the phenomenon of bug regression.

7. General Discussion

Many cognitive theories of learning have hypothesized that learning was some kind of automatic
phenomenon. Mental activity leaves a trace that somehow makes it easier to perform that activity the
next time. Automatic learning has been the dominate paradigm for the last few decades of psychology, if

not longer. Particular examples of this kind of learning for skill acquisition are Anderson’s (1983) ACT"
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theory and Anzai and Simon's (1979) theory of learning by doing. These theories feature automatic
learning of new material (i.e., task-specific productions) by repeated usage of older material (i.e., weaker,

more general productions).

Automatic learning theories have begun to draw fire from computer scientists who have noted that the
lack of control over what is learned causes the system to acquire vast quantities of useless knowledge
(Minton, 1985). For instance, Roger Schank (1982) has rejected automatic learning as a totally
impossible way to acquire common sense knowledge about, e.g., how to dine in a restaurant. He points
out that most mundane thinking is so banal and disconnected that to remember it all would be pointless
and a poor model of our introspective experience of learning. To put it in a phrase, automatic learning

would generate mental clutter.

Impasse-directed learning does not generate mental clutter. Learning only occurs when the current
knowledge base is insufficient. Moreover, it is not just any incompleteness that causes learning. The
incompleteness must be relevant enough to the person’s affairs that it actually generates an impass;e.
The person’'s problem solving must require a piece of knowledge that isn’t there. Consequently,‘oﬁe
learns only when there is a need to learn. Mental clutter is avoided, and only pertinent knowledge is

acquired.

7.1. Related modeils of skill acquisition

Impasse-directed learning is a species of failure-driven learning. Failure-driven learning is a common
theoretical idea in the learning literature. For instance, in Wexler and Culicover's (1980) theory of
language acquisition, whenever the learning model can’'t understand a sentence, it randomly deletes a
rule from its grammar, or it makes a change in an existing rule by randomly choosihg from a small class of
legal perturbations. Their theory is typical of a class of learning theories where negative reinforcement of
an internal kind causes a more-or-less random change in the learner’'s knowledge. Impasse-driven
learning is more specific than these theories in that it postulates exactly what kinds of negative
reinforcement cause learning (i.e., impasses) and exactly what kinds of changes the learner makes to its
knowledge. The impasse-driven learning hypothesis is a new member of the class of failure-driven

learning theories.

The idea of impasse-driven learning is central to the SOAR architecture (Laird, Rosenbloom, & Newell,

1986). SOAR is a production system. When SOAR reaches an impasse, it does some problem solving at
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the meta-level. As it returns from that problem solving, it automatically builds a new production rule whose
conditions are exactly the-conditions pertaining at the impasse and whose actions are the results of the
meta-level problem solving that was just completed. If ever those conditions occur again, the production
will fire, thus saving SOAR the effort of reaching an impasse and resolving it at the meta-level. SOAR’s

authors call this kind of learning "chunking” and the productions built this way are called chunks.

Soar's authors claim that chunking is the only kind of learning that people do. However, this claim is not
very restrictive, because the SOAR architecture allows arbitrary meta-level problem solving at impasses.
The chunking mechanism saves the resuits, but the programmer can generate those results any way she
wants by writing the appropriate problem solving into SOAR’s meta-level. RT2 will be more specific than
that. The theory will describe in detail the meta-level problem solving qua learning that occurs at

impasses.

The impasse-dfiven learning hypothesis has appeared in the literature on formal theories of natural
language acquisition. Robert Berwick (1985) has developed a theory of how English syntax is learned.
His theory is strikingly similar to RT2, despite the fact that the two theories were developed-
independently. Berwick assumes that a person has a grammar and a parser. The grammar and parser
are analogous, respectively, to the procedure and interpreter postulated by RT2. As internal state,
Berwick's parser employs a stack and some other temporary structures. These have analogs in RT2 as
well. In Berwick's theory, the parser can get stuck because no grammar rules apply (the analog of
reaching an impasse in RT2). One of four actions is taken. All four actions modify only the parser’s
internal state just like repairs would. Two of Berwick’s four "repairs” have nearly exact analogs to the
repairs found in RT2. So the architecture postulated by Berwick for understanding English is nearly

isomorphic to the one we have arrived at for following procedures.

Berwick goes on to state his version of the impasse-driven learning hypothesis: grammar rules are
induced when the parser gets stuck. Which rules are induced depends on external information, namely, a
perceptually given understanding of the sentence. To put it intuitively, if the child can’t understand a
sentence, she figures out what it meant from context, then invents a rule that would both get her parser
unstuck and be consistent with the sentence’s meaning. This process is analogous to the one we
postulate, except that the typical learner may appeal to a blackboard, a Dienes Blocks algorithm (given an
implementation of Resnick and Omanson’s suggestion) or some other source of information about the

skill, rather than inferring its meaning from context.
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7.2. Summary

Impasse-driven learning has been put forward as a conjecture about how students learn procedural
skills. It employs the meta-level architecture proposed by Repair Theory. It postulates additional
processes that run at the meta-level. When an impasse occurs, the student can either repair or seek help;
both processes run at the meta-level and fix the problem of being at the impasse. When the impasse is
fixed, the student can choose either to abstract the actions taken to resolve it, or not. In general, inducing
a new subprocedure from the actions taken at the impasse will result in either a correct subprocedure, if

help was sought, or a buggy subprocedure, if repair was used.

Impasse-driven learning seems to make the right sort of predictions about bugs and their stability. It
predicts that bugs can migrate as well as be stable over long periods. It predicts that remediation of bugs

will appear effective at the end of the remediation session, but that bugs will tend to reappear over time.

Impasse-driven learning also seems to correctly predict the shape of cognitive structures that are built
by learning. It predicts that new subprocedures will be attached as deeply as possible in the goal-subgaal

hierarchy of the student’s procedures.

Impasse-driven learning is a form of failure-driven learning. Failure-driven learning has traditionally
been advanced as more cognitively economical than automatic learning, its traditional opponent
hypothesis, in that it predicts that new knowledge is acquired only when there is a need for that
knowledge. Automatic learning tends to generate mental clutter--cognitive structures of little or no

relevance to subsequent thinking.

Impasse-driven learning seems to have great potential generality. It has been investigated in a
powerful general learning system, SOAR (Laird, Rosenbloom, & Newell, 1986). It has been shown
capable of learning English grammar (Berwick, 1985). The future of this hypothesis seems quite bright

indeed.
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