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What a Software Engineer Needs to Know: 
I. Program Vocabulary 

Abstract: Software development, like any complex task, requires a wide variety of 
knowledge and skills. We examine one particular kind of knowledge, the programming 
language vocabulary of the programmer, by gathering statistics on large bodies of code in 
three languages. This data shows that most of the identifiers in programs are either uses of 
built-in or standard library definitions or highly idiomatic uses of local variables. We interpret 
this result in light of general results on expertise and language acquisition. We conclude 
that tools to support the vocabulary component of software development are wanting, and 
this part of an engineer's education is at best haphazard, and we recommend ways to 
improve the situation. 

1 . Proficiency Requires Content Knowledge 

Proficiency in any field requires a large store of facts together with a certain amount of 
context about their implications and appropriate use. The learning of these facts can be 
organized so that useful subsets are learned first, followed by more sophisticated subsets. 

1.1. The Magic Number 70,000 ± 20,000 
Experts know a great deal. This is true across a wide range of problem domains; studies 
demonstrate it for medical diagnosis, physics, chess, financial analysis, architecture, 
scientific research, policy decision making, and others [Reddy 88, pp. 13-14; Simon 89, 
p.1]. This is not of itself surprising. What is perhaps not so obvious is that the knowledge 
includes not only analytic techniques but also very large numbers of facts. 

An often-quoted measure of factual knowledge is that an expert in any field must know 
50,000 chunks of information, where a chunk is any cluster of knowledge sufficiently 
familiar that it can be remembered rather than derived. Furthermore, in domains where 
there are full-time professionals, it takes no less than ten years for a world-class expert to 
achieve that level of proficiency [Simon 89 pp.2-4]. 

A software engineer's expertise includes facts about computer science in general, 
software design elements, programming idioms, representations, and specific knowledge 
about the program of current interest and about the language, environment, and tools in 
which this program is implemented. We are concerned here with the meanings of the 
symbols or identifiers that appear in the program and that name functions, variables, types, 
or other entities of the program. 

1.2. The Content Component of Fluency 
Proficiency requires content and context as well as skills. In the case of natural language 
fluency, for example, Hirsch argues that in American education abstract skills have driven 
out content. Students are expected to learn general skills from a few typical examples, not 
from the "piling up of information"; intellectual and social skills are supposed to develop 
naturally without regard to the specific content [Hirsch 88]. However, says Hirsch, specific 
information is important at all stages. Not only are the specific facts important in their own 
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right, but they serve as carriers of shared culture and shared values. The accumulation of 
these shared symbols and their connotations supports the cooperation required for the 
complex undertakings of modern life. 

Hirsch provides a list of some five thousand words and concepts that represent the 
information actually possessed by literate Americans. The list goes beyond simple 
vocabulary to enumerate objects, concepts, titles, and phrases that implicitly invoke 
cultural context beyond their dictionary definitions. Whether or not you agree in detail with 
its composition, the list and accompanying argument demonstrate the need for 
connotations as well as denotations of the vocabulary. Similarly, a programmer needs to 
know not only a programming language but also the system calls supported by the 
environment, the general-purpose libraries, the application-specific libraries, and how to 
combine invocations of these definitions effectively. Moreover, he or she must be familiar 
with the global definitions of the program of current interest and the rules about their use. 

1.3. The Incremental Nature of Vocabulary 
Natural language fluency is a particularly interesting case of proficiency. One indicator of 
fluency is the size of working vocabulary. Vocabulary development involves acquisition of 
both expanding sets of general vocabulary and of specialized vocabulary appropriate to 
particular domains. In the case of programming language proficiency, the general 
vocabulary includes the words of the programming language, the system calls of the 
environment, and various general-purpose subroutine libraries. The specialized 
vocabulary includes subroutine libraries specialized to an application domain and the 
definitions written specifically for a particular program. 

1.3.1. General Vocabulary 
English language fluency is acquired in stages [Curtis 87]: 

1. H l never saw it before." 
2. "I've heard of it, but I don't know what it means." 
3. "I recognize it in context—it has something to do with ..." 
4. "I know it." 

The third stage provides a useful reading vocabulary—the ability to "get the gist" of a 
passage, but fourth-stage knowledge is required to write precisely. 

English vocabulary is acquired both through vocabulary drill and through reading in 
context; by analogy, a programmer might study specifications or code of library routines, or 
alternatively might read large amounts of code that uses the routines of the library in order 
to see how they are used in algorithmic context. For English language vocabulary the rate 
of vocabulary growth cannot be accounted for by direct vocabulary instruction; it appears 
that much vocabulary is acquired by encountering words multiple times in context [Nagy 
87]. 

Thorndike and Lorge [Thorndike 44] reported the frequency of occurrence of words in five 
large bodies of text. They found 1,069 words occurring at least 100 times per million 
words of text and another 952 occurring 50 to 99 times per million words of text. The 
number of words occurring at least once per million was 19,440; another 9,202 words 
occurred less than once per million but more often than four times per 18 million. Based 
on this list Thorndike and Lorge recommend for each grade level a number of words that 
students should learn as "a permanent part of their stock of word knowledge." Zipf, in his 
studies of languages, shows that in most natural languages the most common 100 words 
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account for 50% of total usage and the most common 1,000 words account for about 85% 
of the usage [Zipf 49]. 

Because of very different interpretations of what it means to "know" a word, measures of 
vocabulary size have large variance. Taking these and other factors into account, 
however, Nagy and Herman [Nagy 87] estimate that a high school graduate can be 
expected to know around 40,000 words, acquiring them at a rate of around 3,000 words 
per year. This is consistent with Simon's observation that an expert takes ten years to 
acquire 50,000 chunks. 

1.3.2. Technical Vocabulary 
Johansson [Johansson 75] compares the word frequency of scientific English with that of 
other kinds of written English. Comparing the thousand most common words in a sample 
of 14,581 words of scientific English with the thousand most common words in a sample of 
50,406 words of general English, he found that about a third of the words were different, 
and that the differences occurred mainly in the second 500 words (ranked by frequency). 
It is not unreasonable to expect the phenomenon of a domain-specific vocabulary to 
appear in software engineering as well. 

1.3.3. Growth of General and Technical Vocabulary 
General vocabulary is acquired incrementally, largely during the school years. Imagine 
this acquisition as the mastery of increasing sets in a hierarchical, even graded, set of 
vocabulary lists. The specialized vocabulary of any particular field (be it hobby or 
profession) requires learning more new words and new definitions for old words. This 
specialized vocabulary component both overlaps the general vocabulary (i.e., words that 
are usually advanced become basic) and adds new words that are absent or rare in the 
general vocabulary. 

Figure 1: Vocabulary Families 
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1.4. Engineering Design Requires Content Knowledge 
Engineering design problems differ in a number of significant ways; one of the most 
significant is the distinction between routine and original design. Routine design involves 
solving problems that resemble problems that have been solved before; it relies on 
reusing large portions of those prior solutions. Original design, on the other hand, 
involves finding creative ways to solve novel problems. The need for original design is 
much rarer than the need for routine design, so routine design is the bread and butter of 
engineering practice. 

Most engineering disciplines capture, organize, and share design knowledge in order to 
make routine design simpler. Handbooks and manuals are often the carriers of this 
organized information [Marks 87, Perry 84]. 

Software development in most application domains tends to be more often original than 
routine—certainly more often original than would be necessary if we concentrated on 
capturing and organizing what is already known. One path to increased productivity is 
identifying applications that should be made routine and developing appropriate support. 
The current emphasis on reuse [Biggerstaff 89] emphasizes capturing and organizing 
existing knowledge. Indeed, subroutine libraries—especially libraries of operating system 
calls and general-purpose mathematical routines—have been a staple of programming for 
decades. But this knowledge cannot be useful if programmers don't know about it or 
aren't encouraged to use it, and library components require more care in design, 
implementation, and documentation than similar components that are simply embedded in 
systems. 

The usual response to the problem of knowing what library definitions are available is 
improved indexing, classification, and search mechanisms. We suggest that these, like 
English dictionaries, are useful for recording little-used portions of the vocabulary and 
precise definitions of the core vocabulary. However, just as natural language fluency 
requires instant recognition of a core vocabulary, programming fluency should require an 
extensive vocabulary of definitions that the programmer can use familiarly, without regular 
recourse to documentation. 

1.5. Software Development Requires Content Knowledge 
Software must be understood by its creators and by its maintainers. Understanding 
software requires several qualitatively different kinds of knowledge: 

• general knowledge about software 
• general knowledge about the application domain 
• the ability to use the language, operating system, methodology, and other 

software tools 
• the requirements and motivation of the system 
• the specific vocabulary of the particular software system, including knowledge 

and notation for: 
- the overall software architecture 

interface protocols and interchange representations 
- algorithms and data structures 
- the code 
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This knowledge accounts for part of the 50,000 chunks of an expert's knowledge. 

Most of these topics have been discussed at length, and many are included in a computer 
science curriculum. However, the ability of a programmer to read or write a program 
depends critically on his or her degree of mastery of the vocabulary of the program—that 
is, the meanings of the collection of variable names, reserved words, function names, and 
other lexical tokens that make up the program. This vocabulary includes constructs of 
several kinds: 

1. built-in constructs of the language: reserved words, operators, syntactic 
connectors, etc. 

2. names of standard library constructs, including functions and procedures, types, 
and data structures (including libraries for the application domain) 

3. the shared vocabulary of this piece of software, for example as captured in the 
system dictionary / 

4. literals whose meaning is guaranteed to be given by the lexical token itself 
5. local variables whose meaning is usually obvious from local context and is of 

no consequence in other parts of the program 

Note that the vocabulary of the program is different from the programmer's vocabulary for 
programming, which includes many words that do not appear directly in a program. 

The first three sorts of constructs should be part of the working vocabulary of any 
programmer who is to develop or modify the software. The third sort must be learned 
specifically for each system, but the first two are shared among many systems. 

To see how significant the first two sorts of constructs are in the programming vocabulary, 
we examined a collection of programs to discover the distribution of "words" (i.e., lexical 
tokens) of each of these kinds. Our hypothesis is that linguistic analysis of program text 
can reveal the size and composition of the program vocabulary required of the developer 
or maintainer of a software system. 
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2. Empirical Observations: Vocabularies of 31 Programs 

2.1. Approach 
We examined 31 programs written in Ada, C, and Lisp. They ranged in size from 24 to 
40,539 lines, with a mean of 5,947, and amounted in all to 184,351 lines. We counted the 
five kinds of constructs described in Section 1.5, counting them as built-in symbols, 
common library symbols, system-specific (user-defined) symbols with widespread use, 
literals, and purely local user-defined symbols using syntactic criteria to distinguish the 
classes. We counted both the number of distinct symbols and the number of uses of 
symbols. We did not distinguish among functions, subroutines, modules, types, and other 
sorts of identifiers except to the extent that such distinctions simplified the automatic data 
collection. Since we are interested in the program vocabularies rather than natural 
language, comments were stripped from the programs before making the counts. 

2.2. Summary 
Table 1 summarizes the data collected for these 31 programs and Figure 2 shows 
relations among vocabulary and usage of the five categories of symbols in the three 
languages. Overall, we found that built-in words and library names account for a small 
fraction of a program's discrete vocabulary but a very large share of the actual text. 
System-specific symbols and literals, however, constituted a somewhat larger fraction of 
the vocabulary than of actual use. 

Number of systems 
Lisp C Ada 

Number of systems CO
 11 12 

Total size (lines) 68,415 47,991 67,945 
Average size (lines) 8,552 4,363 5,662 
Range (lines) 317-40,539 926- 11,240 24- 19,648 
Average size (# symbols) 19,435 13,623 12,429 
Average vocabulary (# distinct symbols) 2,245 820 715 
Average usage rate (size/vocabulary) CO

 7 16. 5 17, 4 

Distinct instances (vocabulary size) 
N % N % N % 

Distinct instances (vocabulary size) 
N % 

Built-in symbols 469 3.0% 64 0.9% 115 1.9% 
Common library symbols 498 3.2% 256 3.6% 28 0.5% 
System-specific symbols 2,693 17.4% 1,414 19.6% 2,394 40.1% 
Literals 7,394 47.7% 2,640 36.7% 1,030 17.3% 
Purely local symbols 4,434 28.6% 2,824 39.2% 2,404 40.3% 

Occurrences in the program 
Built-in symbols 46,208 29.7% 53,546 35.7% 62,559 41.9% 
Common library symbols 7,227 4.6% 6,429 4.3% 4,492 3.0% 
System-specific symbols 23,342 15.0% 10,785 7.2% 34,353 23.0% 
Literals 28,106 18.1% 20,778 13.9% 11,600 7.8% 
Purely local symbols 50,598 32.5% 58,311 38.9% 36,147 24.2% 

Table 1: Summary Statistics 
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Figure 2: Overall Distribution of Symbols in Vocabulary (rows 1-3) 
and Usage (rows 4-6) 

In summarizing the statistics from Tables 3 through 5, which present individual programs, 
the vocabulary size (that is, the count of instances) for each language was determined by 
taking unions of the vocabularies of the individual data cases. Since duplicates are 
counted when occurrences are tallied, the summaries for this portion of the data are the 
sums of the counts in the individual data cases. 

The symbols in programs are of three kinds: 
• Meaning is lexically obvious: The literals include numbers, quoted strings, and 

other symbols whose meaning (i.e., value) is given by their spelling. They 
account for 17% to 48% of the vocabulary but only 8% to 18% of the program 
text. In most cases essentially no effort is required to interpret them, though 
format strings in C and Lisp can be exceptions, as can the special syntax for 
literals that must be mapped to particular machine representations. 

• Meaning is syntactically obvious: Purely local symbols have no meaning that 
persists over large scopes within the program. They account for 29% to 40% of 
the vocabulary and 24% to 39% of the program text. They are more heavily 
represented in the text of the Lisp programs than in the vocabulary for those 
programs, but the opposite is true for Ada—local symbols make up a drastically 
larger portion of the vocabularies than of the program text. The same is true to a 
lesser extent for C. Initial examination of the use of these variables indicates 
that they are often used idiomatically, with the syntactic template of the idiom 
carrying the meaning. Typical uses include: 
- temporary location for storage of an intermediate result of a computation, 

especially one that is used several times 
- accumulation of sum, product, or count 
- loop control 
- auxiliary pointer used to traverse a data structure 
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- status flag (boolean) 
- formal parameter 
Thus these local symbols often have semantics rather like pronouns; that is, 
they take on meaning from context, the meaning is easily understood within that 
context, and there is no reason to understand them outside their context of use. 
We did not distinguish semantically different (independently declared) uses in 
this study. 
Meaning cannot be derived from local context The meanings of symbols in the 
remaining three categories must be learned, looked up, or derived. Call this the 
learnable vocabulary of the program. In the programs studied, symbols of this 
vocabulary are represented about twice as heavily in use as they are in the 
complete vocabulary; in C and Lisp they account for about 24% of the 
vocabulary and 47 to 49% of the uses and in Ada they account for 42% of the 
vocabulary and 68% of the uses. The contribution of each of the categories to 
the learnable vocabulary is interesting. Table 2 compares the distribution of 
distinct instances (Vocab) to occurrences (Occur) of the symbols in the learnable 
vocabulary. 

Lisp C Ada 
Vocab Occur Vocab Occur Vocab Occur 

Count 3,660 76,777 1,734 70,760 2,537 101,404 
Within the learnable vocabulary: 

% Built-in 12.8% 60.2% 3.7% 75.% 4.5% 61.7% 
%Common library 13.6% 9.4% 14.8% 9.1% 1.1% 4.4% 
%System-specific 73.6% 30.4% 81.5% 15.2% 94.4% 33.9% 

Table 2: Learnable Vocabulary 

This follows the pattern of English, in which the core vocabulary (the thousand 
most common words) accounts for 85% of the total text. 

Expectedly, the built-in symbols are used much more heavily than any other group. Less 
obviously, the common library symbols are more heavily used than the system-specific 
symbols. Although these symbols make up but a small fraction of the Ada vocabulary, 
their rate of usage approximates that of the built-in symbols of Lisp. The ratio of frequency 
in the text to frequency in the vocabulary (from Table 2) is given in Table 3. 

Lisp C Ada 

Built-in 4.7 20.6 13.5 
Common library 0.7 0.6 4.0 
System-specific 0.4 0.2 0.4 

Table 3: Uses per Symbol in Learnable Vocabulary 

We also note the relatively low number of symbols relative to the number of lines. On 
average Lisp programs have 2.3 symbols/line, C programs have 3.1 symbols/line, and 
Ada programs have 2.2 symbols/line. This is not explained by comments, because 
comments were removed before collecting the data. It is partly explained by blank lines 
used for readability, by many lines consisting simply of a subroutine call with one 
parameter, and, for C and Ada, by grouping symbols such as begin and end. This result is 
consistent with Knuth's [Knuth 71] finding that lines of Fortran text were quite sparse and 
that expressions were quite simple. 
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2.3. Details for Lisp Programs 
Table 4 presents the statistics for 8 Lisp programs amounting to some 68,000 lines of 
code. The distribution of symbols among categories is shown for the vocabulary in Figure 
3 and for overall usage in Figure 4. For Lisp, we defined the constructs of interest as 
follows: 

• Built-in symbols : any of the 827 functions, macros, variables, or types defined 
in Steele's Common Lisp manual [Steele 84] 

• Common library symbols: symbols neither defined as part of Common Lisp nor 
provided by the program 

• System-specific symbols: 
- functions and macros defined by the program 
- symbols declared in an export statement 

• Literals: numbers, quoted strings, character constants, symbols preceded by a 
quotation mark, keywords, and sharp macros 

• Purely local symbols: local variables, special variables, and parameters 

These programs were obtained from projects in the Carnegie Mellon University School of 
Computer Science. They cover a variety of applications and system functions; some are 
clients of others. They are: 

• hemlock.lisp: the Hemlock text editor 
• inter.lisp: graphics interactor package; uses kr.lisp and opal.lisp 
• kr.lisp: frame-based knowledge representation system 
• lapidary.lisp: object-oriented graphics editor; uses inter.lisp, opal,lisp, and 

kr.lisp 
• opal.lisp: object-based graphics system; uses kr.lisp 
• ops.lisp: Common-Lisp implementation of OPS-5 
• profile.lisp: Lisp performance profiling tools 
• psgraph.lisp: generates PostScript diagrams of arbitrary graphs 

Common Lisp is remarkable for its large body of built-in operators. These originated as 
personal libraries for older Lisps. As time passed, some consensus emerged on the most 
commonly used functions, and these became system libraries. At that time the Lisp 
community developed a cultural expectation that a programmer would learn a system 
library as part of learning the language. Common Lisp took the next step toward 
unification and standardization and incorporated several hundred functions directly in the 
language. Further, even though these functions are incorporated in the language, Lisp 
programs remain heavy users of external libraries. 

The pattern of usage of functions and variables is rather different for Lisp than for C and 
Ada. Lisp emphasizes the use of functions rather than variables and much smaller local 
scopes. The joint effect of these two factors is to generate relatively larger numbers of 
functions which are known outside local scopes; in our statistics, this increases the usage 
rate of system-specific symbols. 



Size (lines) 
hemlock.lisp inter.lisp kr.li sp lapidary.lisp 

Size (lines) 40,539 5,197 2,419 11,400 
Size (# lexical tokens) 89,851 13,063 3,928 23,959 
Vocab (# distinct tokens) 10,034 2,121 516 2,221 

N % N % N % N % 
Distinct instances (vocabulary size) 

N % 

Built-in symbols 410 4.1% 135 6.4% 134 26.0% 151 6.8% 
Common library symbols 307 3.1% 97 4.6% 0 0.0% 107 4.8% 
System-specific symbols 1,502 15.0% 190 9.0% . 101 19.6% 293 13.2% 
Literals 5,188 51.7% 1,232 58.1% 120 23.3% 1,071 48.2% 
Purely local symbols 2,627 26.2% 467 22.0% 161 31.2% 599 27.0% 

Occurrences in the program 
599 27.0% 

Built-in symbols 27,524 30.6% 3,327 25.5% 1,566 39.9% 5,709 23.8% 
Common library symbols 835 0.9% 1,299 9.9% 0 0.0% 4,132 17.2% 
System-specific symbols 18,421 20.5% 828 6.3% 586 14.9% 977 4 .1% 
Literals 13,647 15.2% 3,646 27.9% 269 6.8% 7,301 30.5% 
Purely local symbols 29,424 32.7% 3,963 30.3% 1,507 38.4% 5,840 24.4% 

opal.l isp ops.l isp profile.lisp psgraph.lisp 
Size (lines) 3,594 4,457 317 492 
Size (# lexical tokens) 9,323 13,488 551 1,318 
Vocab (# distinct tokens) 1,087 1,525 190 263 

N % N % N % N % 
Distinct instances (vocabulary size) 

Built-in symbols 154 14.2% 153 10.0% 79 41.6% 51 19.4% 
Common library symbols 98 9.0% 0 0.0% 11 5.8% 0 0.0% 
System-specific symbols 218 20.1% 382 25.0% 16 8.4% 6 2.3% 
Literals 365 33.6% 266 17.4% 44 23.2% 131 49.8% 
Purely local symbols 252 23.2% 724 47.5% 40 21.1% 75 28.5% 

Occurrences in the program 
75 28.5% 

Built-in symbols 2,239 24.0% 5,028 37.3% 262 47.5% 553 42.0% 
Common library symbols 946 10.1% 0 0.0% 15 2.7% 0 0.0% 
System-specific symbols 870 9.3% 1,598 11.8% 45 8.2% 17 1.3% 
Literals 2,167 23.2% 806 6.0% 83 15.1% 187 14.2% 
Purely local symbols 3,101 33.3% 6,056 44.9% 146 26.5% 561 42.6% 

Table 4: Statistics on Lisp programs 
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2.4. Details for C Programs 
Table 5 presents the statistics for 11 C programs amounting to about 48,000 lines of code. 
The distribution of symbols among categories is shown for the vocabulary in Figure 5 and 
for overall usage in Figure 6. For C, we defined the constructs of interest as follows: 

• Built-in symbols : the 64 operators and keywords of the C language 
• Common library symbols: C library functions, macros, variables, or types as 

defined by all the .h files in the default directory for such definitions (/usr/include 
and /usr/include/sys); there are 3,743 such symbols on our system 

• System-specific symbols: 
- user-defined functions, macros, variables, or types which are declared in 

.h files which are part of the program 
- any name explicitly mentioned in an extern statement 
- procedures or functions defihed in the program 

• Literals: numbers and quoted strings 
• Purely local symbols: everything else 

These programs, obtained from projects in the CMU School of Computer Science, cover a 
variety of applications and system functions. Except for the last four, they are largely self-
contained and have relatively few high-level exports. This distinguishes them from the 
Lisp and Ada sets. They are: 

• avietest.c: a collection of short test programs for testing the Mach operating 
system 

• chinese.c: an interactive intelligent tutoring system for Chinese 
• dynload.c: a dynamic loader for C programs 
• fscript.c: a graphical window system 
• mololo.c: a cartographical database and mapping system; it is monolithic and 

has no .h files 
• rfr.c: a collection of very short performance test programs, standalone programs 

without .h files 
• sec: a frame-based knowledge representation system 
• descartes.c: a research prototype user interface construction system 
• airlog.c, ckbook.c, crostic.c: example clients that use descartes.c 

Despite C's relatively small built-in vocabulary, over 75% of the uses of words in the 
learnable vocabulary were of built-in words. The basic syntax of the language clearly 
contributes to this effect, but in comparison to Lisp it does not appear to be offset as much 
as one might expect by Lisp's large collection of built-in functions. Indeed, this may be the 
reason Lisp's occurrence rate of 60% is close to Ada's of 62%. 

The programming culture of C is very much tied up with unix shell programming as well. 
We did not examine shell scripts; that would make an interesting extension of the study. 
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Size (lines) 
Size (# lexical tokens) 
Vocab (# distinct tokens) 

Distinct Instances (vocabulary 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

Occurrences in the program 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

Size (lines) 
Size (# lexical tokens) 
Vocab (# distinct tokens) 

Distinct Instances (vocabulary 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

Occurrences in the program 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

av ietest .c 
4,187 

14,401 
513 

N % 
size) 

46 9.0% 
45 8.8% 
58 11.3% 

167 32.6% 
197 38.4% 

5,764 40.0% 
1,413 9.8% 

299 2.1% 
687 4.8% 

6,238 43.3% 

mololo.c 
11,240 
40,082 

1,376 
N % 

size) 
45 3.3% 
24 1.7% 

173 12.6% 
492 35.8% 
642 46.7% 

15,304 38.2% 
1,459 3.6% 

664 1.7% 
5,410 13.5% 

17,245 43.0% 

Size (lines) 
Size (# lexical tokens) 
Vocab (# distinct tokens) 

Distinct Instances (vocabulary size) 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

Occurrences in the program 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

Chinese, c 
5,248 

12,249 
1,395 

N % 

57 
35 

276 
657 
370 

3,166 
419 

2,659 
1,629 
4,376 

rfr. 
1,199 
4,103 

341 
N 

48 
31 
19 
88 

155 

1,764 
214 

57 
602 

1,466 

4.1% 
2.5% 

19.8% 
47.1% 
26.5% 

25.8% 
3.4% 

21.7% 
13.3% 
35.7% 

% 

14.1% 
9.1% 
5.6% 

25.8% 
45.5% 

43.0% 
5.2% 
1.4% 

14.7% 
35.7% 

dynload.c 
1,328 

357 
425 

N % 

59 
43 
50 

105 
168 

1,548 
292 
185 
247 

1,485 

13.9% 
10.1% 
11.8% 
24.7% 
39.5% 

41.2% 
7.8% 
4.9% 
6.6% 

39.5% 

sc . 
2,598 
5,583 

516 
N 

46 
15 

151 
105 
199 

1,788 
145 

1,067 
390 

2,193 

% 

8.9% 
2.9% 

29.3% 
20.3% 
38.6% 

32.0% 
2.6% 

19.1% 
7.0% 

39.3% 

airlog.c ckbook.c crost ic.c 
2,344 926 1,126 
5,278 2,574 2,694 

563 222 403 
N % N % N % 

35 6.2% 31 14.0% 39 9.7% 
68 12.1% 31 14.0% 64 15.9% 

102 18.1% 25 11.3% 45 11.2% 
220 39.1% 46 20.7% 132 32.8% 
138 24.5% 89 40.1% 123 30.5% 

1,571 29.8% 761 29.6% 786 29.2% 
632 12.0% 401 15.6% 429 15.9% 
622 11.8% 141 5.5% 252 9.4% 
581 11.0% 284 11.0% 269 10.0% 

1,872 35.5% 987 38.3% 958 35.6% 

fscript .c 
9,867 

43,590 
1,930 

N % 

61 
78 

296 
534 
961 

16,402 
688 

2,081 
9,658 

14,761 

3.2% 
4.0% 

15.3% 
27.7% 
49.8% 

37.6% 
1.6% 
4.8% 

22.2% 
33.9% 

descartes.c 
7,928 

15,538 
1,377 

N % 

53 
50 

364 
481 
429 

4,692 
337 

2,758 
1,021 
6,730 

3.8% 
3.6% 

26.4% 
34.9% 
31.2% 

30.2% 
2.2% 

17.8% 
6.6% 

43.3% 

Table 5: Statistics on C Programs 
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Figure 6: C Usage 

2.5. Details for Ada Programs 
Table 6 presents the statistics for 12 Ada programs amounting to nearly 68,000 lines of 
code. The distribution of symbols among categories is shown for the vocabulary in Figure 
7 and for overall usage in Figure 8. For Ada, we defined the constructs of interest as 
follows: 

• Built-in symbols: the 147 reserved words, attributes, operators, predefined 
types, exceptions, and pragmas of the Ada language 

• Common library symbols: any symbol defined in one of the following packages: 
TextJO, System, Calendar, string_pkg, string_scanner, and stringjists 

• System-specific symbols: symbols defined in the specification part of a 
package, except for formal parameters to subroutines 
Literals: numbers and quoted strings 

• Purely local symbols: other symbols, primarily local variables, and a few user 
types 

1 6 
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The programs, obtained from the Ada Repository [Conn 87], cover a variety of applications 
and system functions. They are: 

• abstractions.ada: a collection of abstract data structures (binary trees, etc) 
• ada-sql.ada: files associated with the Standard Ada DBMS Interface (Ada/SQL) 
• alsptypes.ada: an Al data types package (list processing and the like) 
• expert.ada: a backward-chaining expert system 
• adafair85.ada: a collection of testbench programs for the Ada Fair 1985 
• benchada.ada: a collection of performance benchmarks 
• benchdhry.ada: an Ada version of the Dhrystone testbench 
• benhtools.ada: a short compilation testbench 
• benmath.ada: a tiny mathematical benchmark program 
• bgt.ada: a collection of performance/compilation benchmarks 
• piwga51.ada: timing tools for performance measurement of the benchmarks 
• piwga831.ada: a different version of the timing tools 

The most striking difference between the Ada programs and the C programs is Ada's much 
lower usage rate for purely local symbols: 24% as against C's 39%. This is coupled to a 
higher usage rate for system-specific symbols: 23% for Ada but only 7% for C. The cause 
of the difference appears to be the extensive structuring of Ada programs via explicit 
package specifications. This is accompanied by a distribution of learnable vocabulary in 
which just under 5% of the symbols (the built-in vocabulary) account for 62% of the text 
(much like Lisp) and 94% of the symbols (the system-specific vocabulary) account for 34% 
of the text (a comparable rate of use per symbol as Lisp). This raises the following 
questions: 

• What support should be made available for programmers to learn and 
understand the increased vocabulary of system-specific symbols? 

• Would C programs that have been structured according to the discipline 
supported by Ada have statistics more like the C set or the Ada set? 

• Should all the names in the Ada specifications really be exported? 
If this indicates a trend for future software, what tools will be required to help 
programmers cope with the system-specific vocabulary? 

The Ada programs used substantially fewer library entries than did the Lisp and C 
programs. Two possible reasons come to mind: 

• Ada is a relatively young language, and the community has not yet had time to 
reach consensus on what the shared libraries should be and to develop those 
libraries. 

• The programs were obtained from a public repository, and the authors may 
have felt inhibited from assuming very much about the environment in which 
the code might subsequently run. This effect is, of course, magnified by the 
former. 

The current emphasis on software reuse is especially strong in the Ada community. It will 
be interesting to see how any development of a component market affects the effective 
vocabulary of working programmers. 

Because of the difference in application domains, it would be more likely for system data 
dictionaries to be available for the Ada programs than for the other programs. If data 
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dictionaries had been available, it would have been useful to compare them to the list of 
symbols classified as system-specific vocabulary. That would be a useful extension of this 
study. 

Size (lines) 
Size (# lexical tokens) 
Vocab (# distinct tokens) 

abstractions.ada 
1,781 

25,883 
1,484 

N 
Distinct Instances (vocabulary size) 

Built-in symbols 85 
Common library symbols 20 
System-specific symbols 658 
Literals 227 
Purely local symbols 494 

Occurrences in the program 
Built-in symbols 11,941 
Common library symbols 247 
System-specific symbols 7,117 
Literals 1,050 
Purely local symbols 5,528 

% 

5.7% 
1.3% 

44.3% 
15.3% 
33.3% 

46.1% 
1.0% 

27.5% 
4.1% 

21.4% 

Size (lines) 
Size (# lexical tokens) 
Vocab (# distinct tokens) 

Distinct Instances (vocabulary 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

Occurrences in the program 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

adafair85.ada 
8,553 

18,251 
1,167 

N % 
size) 

103 
14 

560 
374 
116 

7,690 
1,459 
6,868 
1,622 

612 

8.8% 
1.2% 

48.0% 
32.0% 

9.9% 

42.1% 
8.0% 

37.6% 
8.9% 
3.4% 

Size (lines) 
Size (# lexical tokens) 
Vocab (# distinct tokens) 

Distinct Instances (vocabulary size) 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

Occurrences in the program 
Built-in symbols 
Common library symbols 
System-specific symbols 
Literals 
Purely local symbols 

benmath 
24 

137 
19 
N 

.ada 

9 
0 
7 
2 
1 

91 
0 

22 
12 

47 
0 

36 
10 

% 

.4% 

.0% 

.8% 

.5% 

.3% 

66 
0 

16 
8 

12 8 

4% 
0% 
, 1 % 
,8% 
.8% 

ada-sql .ada 
19,648 
51,626 

2,066 
N % 

alsptypes.ada 
6,278 

12,203 
603 

N 

87 
21 

842 
109 

1,007 

21,544 
713 

13,349 
3,546 

12,474 

4.2% 
1.0% 

40.8% 
5.3% 

48.7% 

41.7% 
1.4% 

25.9% 
6.9% 

24.2% 

benchada.ada 
2,330 
6,534 

405 
N % 

67 
8 

57 
106 
167 

2,406 
371 
398 

1,047 
2,312 

16.5% 
2.0% 

14.1% 
26.2% 
41.2% 

36.8% 
5.7% 
6.1% 

16.0% 
35.4% 

bgt.ada 
2,436 
6,601 

436 
N % 

65 
10 

140 
130 
258 

4,161 
781 

3,342 
408 

3,511 

% 

10.8% 
1.7% 

23.2% 
21.6% 
42.8% 

34.1% 
6.4% 

27.4% 
3.3% 

28.8% 

benchdhry.ada 
571 

1,224 
201 

N % 

53 
5 

36 
38 
69 

472 
60 

213 
120 
359 

26.4% 
2.5% 

17.9% 
18.9% 
34.3% 

38.6% 
4.9% 

17.4% 
9.8% 

29.3% 

piwga51.ada 
4,701 

12,502 
918 

63 14.4% 
8 1.8% 

87 20.0% 
155 35.6% 
123 28.2% 

3,059 46.3% 
206 3.1% 
843 12.8% 
868 13.1% 

1,625 24.6% 

N 

80 
12 

145 
198 
483 

5,260 
279 

1,037 
1,407 
4,519 

% 

8.7% 
1.3% 

15.8% 
21.6% 
52.6% 

42.1% 
2.2% 
8.3% 

11.3% 
36.1% 

expert .ada 
1,048 
2,127 

22 
N 

63 
9 

29 
37 
87 

887 
78 

270 
154 
738 

% 

28.0% 
4.0% 

12.9% 
16.4% 
38.7% 

41.7% 
3.7% 

12.7% 
7.2% 

34.7% 

benhtools.ada 
353 
745 
190 

N % 

49 
7 
5 

54 
75 

242 
67 
19 
82 

335 

25.8% 
3.7% 
2.6% 

28.4% 
39.5% 

32.5% 
9.0% 
2.6% 

11.0% 
45.0% 

piwga831 .ada 
4,189 

11,318 
862 

N 

80 
12 

140 
181 
449 

4,806 
231 
875 

1,284 
4,122 

% 

9.3% 
1.4% 

16.2% 
21.0% 
52.1% 

42.5% 
2.0% 
7.7% 

11.3% 
36.4% 

Table 6: Statistics on Ada Programs 
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3. Implications for Education and Practice 

Both general studies of expertise and our data on particular programs indicate that a large 
body of facts is important to a working professional. We turn now to the question of how 
software engineers should acquire this knowledge, first as students and subsequently as 
working professionals. 

Generally speaking, there are three ways to obtain a piece of information you need: you 
can remember it, you can look it up, or you can derive it. Each of these incurs costs of 
three kinds (over and above the cost of developing the knowledge itself): general 
overhead to the profession for creating the infrastructure that organizes the knowledge, 
initial cost for each professional to learn how to use the knowledge, and the direct cost 
each time the knowledge is used in practice. These costs have different distributions: 

Infrastructure Initial Learning Cost of Use 
Cost Cost in Practice 

Memory low high low 
Reference high low medium 
Derivation medium-high medium high 

Memorization requires a relatively large initial investment in learning the material, which is 
then available for instant use. Reference materials require a large investment by the 
profession for developing both the organization and the content; each individual student 
must then learn how to use the reference materials and take the time to do so as a working 
professional. Deriving information may involve ad hoc creation from scratch, it may involve 
instantiation of a formal model, or it may involve inferring meaning from other available 
information; to the extent that formal models are available their formulation requires a 
substantial initial investment. Students first learn the models, then apply them in practice; 
since each new application requires the model to be applied anew, the cost in use may be 
quite high. 

Each professional's allocation of effort among these alternatives is driven by what he or 
she has already learned, by habits developed during that education, and by the reference 
materials available. At present, general-purpose reference material for software is scarce, 
though documentation for specific computer systems, programming languages, and 
applications may be quite extensive. Even when extensive documentation is available, 
however, it may be under-used because it is poorly indexed or because software 
developers have learned to prefer fresh derivation to use of existing solutions. 

Our concern here is with program vocabulary—that is, with the symbols of a program and 
their meaning. Access to information about these symbols is primarily through memory 
and through reference materials, though inference of meaning plays a significant role for 
local variables. Accordingly, we examine ways to improve access to the programming 
vocabulary with each of these mechanisms: memory for vocabulary acquisition, reference 
materials and tools for access, and derivation of meaning from context. We also address 
the implications for programming productivity. 
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3.1. Memory for Vocabulary Acquisition 

3.1.1. How Vocabulary is Learned 
For natural language, there is a strong correlation between vocabulary knowledge and 
reading comprehension. Both are in turn correlated with general background knowledge 
of the subject matter of the text. This background knowledge is an organized, interrelated 
structure, not an unstructured collection of facts; knowing where a word fits into this 
structure is an essential part of understanding it. It follows that simple drill in vocabulary 
does not contribute much to reading comprehension. Vocabulary instruction that 
emphasizes how new words fit into prior knowledge is useful, as is vocabulary instruction 
that .presents new words in the context of a story. Further, vocabulary instruction can be 
made more effective by requiring students to manipulate words in varied ways, to 
encounter new words frequently while they are being taught, and to look for uses of the 
new words outside the classroom. Wide reading leads to expanded vocabulary, which in 
turn leads to better reading comprehension [Nagy 87, Beck 87] . 

3.1.2. Recommendations: Read a Good Program, Write a Good 
Program 

Elementary software engineering education emphasizes problem solving with the use of a 
programming language, design of algorithms and data structures, and specification and 
analysis of programs. There is considerable emphasis on the synthesis of new programs, 
some emphasis on useful design elements, and very little emphasis on the libraries and 
system calls available to the programmer. It is rare indeed for students to be expected to 
read significant passages of code that they did not themselves write. The theme is 
reasoning and design technique, not specific detailed knowledge of many different 
programs. 
Our data on real programs of significant size indicates that professional software 
developers need substantial familiarity with the vocabulary of identifiers that appear in 
programs. The Ada data, in particular, suggests that a very small built-in vocabulary 
accounts for a large fraction of the program text and indeed of the text whose meaning is 
not obvious from context. Natural language vocabulary studies suggest that software 
developers should, as students, receive systematic education in this vocabulary. 

Specifically, we recommend: 
• Reading well-written programs that illustrate the concepts being taught and the 

supporting libraries and system calls in applications that the students can 
understand. (This would probably benefit other aspects of the education as 
well.) 

• Studying the meanings of the external symbols of these programs. 
• Using the system reference manuals and library documentation as dictionaries 

to support learning the meanings of the symbols, but not as a substitute for 
actual retention of meanings for the important symbols. 

• Reinforcing this reading by expecting the correct use of the libraries and system 
calls in programming assignments. 



3.2. Reference Materials and Tools for Access 

3.2.1. The Role of Reference Materials 
Not all material can or should be memorized; the choice among memory, reference, and 
derivation depends on the amount of use a piece of information will receive as well as on 
the cost of developing and learning it. Thus there will always be a use for reference 
materials. As noted above, most engineering disciplines rely heavily on such materials, 
especially in the form of handbooks. These handbooks organize large bodies of 
information into a form that is genuinely accessible to the practicing engineer. This 
accessibility depends not only on the structure of the material in the handbook, but also on 
the incorporation of the conceptual structure in the early education of the engineer. 

In the case of the program vocabulary, reference material must help support both 
reading—the recognition vocabulary—and writing—the generation vocabulary. (These 
correspond to the third and fourth stages of language acquisition described in Section 
1.3.1.) Each needs its own support, and the support should be on-line. 

3.2.2. Recognition Vocabulary Supports Maintenance 
The simpler of these two problems is support for the reading vocabulary. When reading a 
program it is often enough to know the approximate meaning of a symbol; it is frequently 
not necessary to know special restrictions on use, error conditions, etc. Fortunately, this is 
the aspect of the vocabulary task most important for software maintainers. Even when 
tracking down a bug, it is necessary to read portions of the program to establish context 
before examining precise usage of the constructs that may be implicated in the bug. 

Prototype tools already exist to help readers of natural language prose; these tools allow 
the reader to point at a word and ask for help. The response may be simple delivery of a 
dictionary definition; more helpfully, the response may depend on the context in which the 
word is used and thus provide an explanation appropriate to the content. 

Similar tools have also been built for software, for example in Smalltalk [Goldberg 80] and 
Cedar [Teitelman 84]. They allow such operations as pointing at a built-in symbol to get 
standard "help" text or pointing at a user-defined symbol to see the definition of that 
symbol. It should not be difficult to fetch elements of a data dictionary in the same way. 
Note that scope rules and overloading introduce subtleties in the implementation of these 
tools. 

The ability to look up the definition of a symbol quickly does not eliminate the need to 
know the meanings of a core vocabulary without recourse to tools. It can, however, help 
with the learning of the core vocabulary and support the use of symbols too rare to 
deserve a place in the core vocabulary. 

3.2.3. Generation Vocabulary is Needed for Development 
Writing is quite a bit harder than reading. First, the reader is presented with a word to 
recognize, whereas the writer must generate an appropriate word for the intended 
meaning. Second, the reader need only recognize a meaning in context, whereas the 
writer must select a word that not only carries the intended meaning but also satisfies 
restrictions on the use of the word and avoids possible ambiguities. This problem is even 
more difficult in software development where, as in mathematics, a symbol may have quite 
detailed or complex restrictions on use. 
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There is by now a quite large body of code stored in libraries or otherwise available for 
reuse. In practice, the reuse of this code is inhibited by the programmer's difficulty in 
discovering what is there (generation of vocabulary) and in understanding the code's 
restriction on use (test of applicability). There may, for example, be mismatches between 
the library representation and the program's, between the range of values supported by 
the library and that needed by the program, and so on. The indexing and organization 
tasks that are already on the agenda for software reuse will help establish a basis for tools 
to help with the generation vocabulary. In addition, development of libraries is not unlike 
the invention of vocabulary: it is difficult to anticipate what vocabulary will actually turn out 
to be useful. 

3.2.4. Recommendations: Know Where (and How) to Look it Up 
The data reported here shows that many programs have a substantial vocabulary of 
system-specific definitions that both developers and maintainers must know. Although the 
most common of these should be mastered by anyone who will work extensively with the 
system, reference tools could help with the remainder. Specifically, we recommend: 

• Expanding the development of readers' assistant tools for accessing a system's 
data dictionary and for looking up definitions of user-defined symbols. 

• Augmenting the definition-retrieval tools to explain syntax and usage. 
• Continuing the work on indexing and retrieval for software libraries, with 

emphasis on techniques that will work for libraries with thousands or tens of 
thousands of entries. 

• Teaching the conceptual structure of the discipline assumed by these tools as 
part of early computer science education. 

3.3. Derivation of Meaning from Context 
Unlike natural language vocabulary, where the meaning of a word can often be inferred 
from its spelling and a general knowledge of similar words of the language, programming 
language vocabulary is usually dominated by words with arbitrary spelling. This is neither 
necessary nor desirable in the long run. However, programmers should know two ways of 
inferring meaning from context. 

First, naming conventions are often used to indicate the meaning of an identifier. 
Mnemonic naming is the most-cited example of this, but perhaps more useful are the 
systematic inflections of a root name to indicate common predicates and operations, such 
as the -P suffix in Lisp to indicate a predicate. Conventions about parameter order can 
also be helpful. 

Second, 25-40% of identifiers in programs are purely local. They are used idiomatically 
as loop counters, as temporary variables, list-tracers, formal parameters, and so on. 
There is no reason to remember the meanings of these variables for any longer than it 
takes to read the page of program text on which they appear; they have the same 
intellectual standing as pronouns. Programmers should learn these patterns as an aid to 
recognizing the meanings of these variables from context. 

3.3.1. Recommendations: When in Rome, Talk As the Romans Do 
Contextual understanding depends on shared conventions between readers and writers. 
A first step is to make these explicit and teach them. Specifically, we recommend: 

Identifying common idioms for use of local variables and cataloging them. 
• Extending the tools for reading programs to understand these idiomatic usages. 
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3.4. Implications for Productivity 
Productivity of software developers is a matter of national concern. The lessons from 
studies of expertise indicate that practitioners with more chunks of factual knowledge are 
more proficient. We conjecture that there is a correlation between programming 
productivity and fluency in the basic vocabulary of the software, both through 
memorization and through facile use of reference tools. 

3.4.1. Recommendations: Try It, You'll Like It 
The proposition that explicit efforts to learn the vocabulary of a program pay off in 
productivity should be tested in both development and maintenance environments. 
Specifically we recommend three experiments with the following general character: 

• As a group of maintainers takes over a piece of software, convert some of the 
initial training of part of the group to carefully designed exercises in acquiring 
the vocabulary of the software system. Then compare the effectiveness of these 
maintainers with the effectiveness of maintainers trained in the usual way. 

• Provide a set of program explanation tools to a group of software developers, 
measuring their effectiveness before and after adoption of these tools. 

• Compare the rate at which students learn to program with and without 
deliberate attempts to expand their programming vocabularies by reading good 
programs, studying libraries, and using existing libraries in programming 
exercises. 
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