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Abstract

Autonomous systems require the ability to plan effective courses of action under potentially uncertain or
unpredictable contingencies. Effective planning requires knowledge of the environment, and if the environment is
too complex or changes dynamically, goal-driven learning with reactive feedback becomes a necessity. This paper
addresses the issue of learning by experimentation as an integral component of PRODIGY, a flexible planning system
augmented with capabilities for execution monitoring and dynamic replanning upon receiving adverse feedback.
PRODIGY encodes its domain knowledge as declarative operators, and applies the operator refinement method to
acquire additional preconditions or postconditions for its operators when observed consequences diverge from
internal expectations. When multiple explanations for the observed divergence are consistent with the existing
domain knowledge, experiments to discriminate among these explanations are generated. Thus, experimentation is
demand-driven and exploits both the internal state of the planner and any external feedback received. A detailed
example of integrated experiment formulation in presented as the basis for a systematic approach to extending an
incomplete domain theory or correcting a potentially inaccurate one.1
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1. Introduction: The Need for Reactive Experimentation
Learning in the context of problem solving can occur in multiple ways, ranging from macro-operator formation

(Fikes, 1971, Minton, 1985, Cheng & Carbonell, 1986) and generalized chunking (Laird et a/, 1986), to analogical

transfer of problem solving strategies (Carbonell, 1983, Carbonell, 1986, 1986) and pure analytical or explanation-

driven techniques (Mitchell et aU 1986, DeJong & Mooney, 1986, Minton & Carbonell, 1987). All of these

techniques, however, focus on the acquisition of control knowledge to solve problems faster, more effectively, and

to avoid pitfalls encountered in similar situations. Newly acquired control knowledge may be encoded as preferred

operator sequences (chunks and macrooperators), improved heuristic left-hand sides on problem solving operators

(as in LEX (Mitchell et a/, 1983)), or explicit search-control rules (as in PRODIGY (Minton et a/, 1987)).

However important the acquisition of search control knowledge may be, the problem of acquiring factual domain

knowledge and representing it effectively for problem solving is of at least equal significance. Most systems that

acquire new factual knowledge do so by some form of inductive generalization2, but operate independently of a

goal-driven problem solver, and have no means of proactive interaction with an external environment (with the

exception of some learning work in robotics and the world modelers project (Carbonell & Hood, 1986)). When one

observes real-world learners, ranging from children at play to scientists at work, it appears that active

experimentation plays a crucial role in formulating and extending domain theories, whether everyday "naive" ones,

or formal scientific ones. Many actions are taken in order to gather information and learn whether or not predicted

results come to pass, or unforeseen consequences occur. Of course, experimentation can yield search control

preferences, as well as factual knowledge, as we see in our later example. The focus of this chapter is on experiment

formulation and analytical interpretation in the context of PRODIGY (Minton & Carbonell, 1987, Minton et a/, 1987),

an interactive planning system, rather than on empirical interpretation of results from pre-formulated experiments in

a single-pass learning-by-discovery approach typical of systems such as BACON (Langley et aU 1983) and ABACUS

(Falkenhainer & Michalski, 1986).

In order to endow a problem solver with the capability to experiment on the external world, we start by

interleaving planning and execution monitoring, so that external feedback is immediate. If the plan does not unfold

as expected (e.g., unforeseen interactions take place, actions have unexpected consequences, etc.) the system replans

dynamically using better-known methods, or suspends planning in order to determine the source of the discrepancy.

Here is where experimentation is triggered: divergence from expected results that interfere with carrying out a plan

for the active goal. The objective of the experiment is to augment the domain theory (e.g., record previously

unknown consequences, after determining what conditions are needed to bring them about), or to correct that

domain theory (e.g., deleting or altering the expected effects or applicability conditions of operators, in order to

force the internal model to accord with external reality). Experimentation is used to isolate the cause of each

discrepancy, and make the minimal modification possible to the internal model in order to establish external

consistency. Moreover, this metaprinciple of "cognitive inertia'* dictates that monotonic changes (adding new

information) be preferred over non-monotonic ones (changing previous information) if both are of equivalent scope.

reader is referred to the two recent machine learning books for several good examples of inductive methodologies and systems built upon
them (Michalski, Carbonell & Mitchell, 1983, Michalski, Carbonell & Mitchell, 1986).



 



2. Other Research in Learning by Experimentation
Machine Learning has not yet addressed centrally the topic of learning by active experimentation, although there

has been related work in scientific discovery and more recently some attempts to address directly the issue of

experimentation.

The BACON and GLAUBER systems (Langley et aU 1986) are able to discover qualitative or quantitative empirical

laws, focusing on the empirical interpretation of results from pre-formulated experiments. The authors have

proposed combining these systems, having GLAUBER provide BACON with some qualitative information about the

data, BACON would then be able to acquire data on its own by formulating experiments. FAHRENHEIT (Koehn &

Zytkow, 1986) designs limited experiments in terms of quantitative values of the experiment's parameters to

determine the scope of a law given by BACON.

Lenat's AM and EURISKO systems (Lenat, 1983) can be said to experiment, but in a limited sense. Both utilize

heuristics that change internal concepts which are then tested for "interestingness", but not necessarily for external

validity. In its symbiotic mode, however, EURISKO received feedback from the user (Doug Lenat), and was closer to

a full experimentation system.

In LEX, Mitchell uses a limited form of experimentation in to generate problems in symbolic integration that

formulate desirability conditions for when to select problem solving operators (Mitchell et al, 1983). His primary

experiment generation method is to compose a problem that would maximally reduce the version space of possible

desirable application conditions for the operator in question.

In some preliminary work, (Langley & Nordhausen, 1986) in the IDS system investigate experimentation in a

qualitative physics framework. Also in initial stages of investigation, Kulkarni and Simon (Kulkarni & Simon,

1987) are developing general and domain-dependent heuristics for scientific experimentation, and Shen (Shen,

1987) is developing similar methods for naive experimentation.

The ADEPT system (Rajamoney, 1986) is concerned with experimentation in domains with incomplete or

inconsistent theories. The domain knowledge is expressed in terms of qualitative physics. When a contradiction

arises in the process of explaining an observation, the system uses a set of beliefs to propose some hypotheses.

Several kinds of experiments are proposed to test these hypotheses. The design of an experiment is made following

an algorithm that depends on the type of experiment, and that algorithm determines the necessary pieces of

information associated with the experiment to be performed. Ultimately the system would design experiments that

allow the construction of explanations in EBL with incorrect domain theories.



 



3. Background: The Role of Experimentation in PRODIGY
The PRODIGY system (Minton et aiy 1987, Minton & Carbonell, 1987) is a general-purpose planner at CMU that

serves as the underlying basis for much machine-learning research. In essence, PRODIGY learns incrementally

through experience in solving increasingly more complex problems in a task domain, and gradually transitions from

naive student, to apprentice, to journeyman, and eventually (we hope) to domain expert Thus far we have

experimented successfully with a version of explanation-based learning (EBL) (Mitchell et al9 1986) that can learn

from failed instances (to avoid future failures that share the same underlying cause) and goal interactions, as well as

the standard EBL based on deductively provable generalization from positive instances. We are also studying the

role of case-based learning in PRODIGY, and are exploring interactive knowledge acquisition from a domain expert

who looks over the proverbial shoulder of the planning system, making concrete suggestions on the current plan

being synthesized, and occasionally providing more general advice.

Whereas experimentation in its broadest sense can be a very powerful and general learning method, here we

confine our study to a very concrete type of experimentation: operator refinement. In essence, we assume that the

domain knowledge is encoded as a set of declarative operators and inference rules.3 Presently, learning is confined

to the acquisition of new pre and post conditions for existing operators; which start as approximations of external

reality and are refined to match that reality whenever discrepancies occur between internal expectations and external

observation. Later we hope to extend the method to the acquisition of new domain operators.

Experimentation may be targeted at the acquisition of different kinds of knowledge, though augmentation of an

incomplete domain theory (via refinement of operators) is our current focus of attention:
• Experimentation to acquire and refine control knowledge. When multiple sequences of actions appear

to achieve the same goal, experimentation and analysis are required to determine which plan is the most
cost-effective or robust one, and to generalize and compile the appropriate conditions so as to formulate
the preferred plan in future problem solving instances where the same goal and relevant initial
conditions are present. Thus, experimentation may be guided towards producing far more effective use
of existing domain knowledge.

• Experimentation to augment an incomplete domain theory. Experiments may be formulated to
synthesize new operators, learn new consequences of existing operators or determine previously
unknown interactions among existing operators: Also, performing known actions on new objects in the
task domain in a systematic manner, and observing their consequences, serves to acquire properties of
these new objects and classify them according to pragmatic criteria determined by the task domain.
Thus, experimentation may be guided towards acquiring new domain knowledge from the external
environment

• Experimentation to refine an incorrect domain theory. No comprehensive theory is ever perfect, as
the history of science informs us, whether it be Newton's laws of motion or more ill-structured domain
theories embedded in the knowledge bases of expert systems. However, partially correct theories often
prove useful, and are gradually improved to match external reality (and are occasionally totally replaced
by a newer conceptual structure). Here we deal only with minor errors of commission in the domain
theory, which when locally corrected improve global performance. We believe automated knowledge
refinement is a very important aspect of autonomous learning not heretofore investigated in AI, and one
where success is potentially much closer at hand than the far more difficult and seldomly encountered
phenomenon of formulating radically new theories from ground zero. Thus, experimentation may be

3 An operator has a conjunctive set of left-hand-side conditions, which if satisfied in the world state permit the actions on the right hand side to
take place. Each operator is an atomic entity, so that all of iu consequences are expected to occur if the operator applies. (For instance, one
cannot apply the DRIVE-VEHICLE operator and achieve only the desired change in location; fuel consumption, heating the motor, passage of
time, etc will also take place.) Inference rules are identical to operaton except that they cause no overt actions to occur, they only change the
knowledge state of the planner.



 



guided at incremental correction of a domain theory.4

Our central concern is the development of a method to generate operational hypotheses (those that can be tested

through an external experiment) to account for unexpected divergence between predicted and observed

consequences. Experimentation is invoked when such a divergence prevents the formulation of a plan to solve the

problem at hand; thus "idle curiosity" is not our target. Moreover, the entire planning context is used to formulate

and guide the experiment, in order to focus on the most direct and economical way of inferring the missing

knowledge. Concessions must be made to other protected goals in the course of the experimentation: assuring safety

of the experimenter, not consuming a resource in the experiment that will be required to carry out the rest of the

plan, etc. Thus, experiment formulation, once invoked with the appropriate constraints, becomes itself a meta-

problem amenable to all the methods in the general purpose planner. The EBL method (or perhaps a similarity-

based method - SBL) may then be invoked to retain not just the result of the instance experiment, but its provably

correct generalization (or empirically appropriate one if SBL is used).

4. The Base-Level System: Knowledge Required for Planning
Consider an example domain of expertise: crafting a primary telescope mirror from raw materials (such as pyrex

glass, pure aluminum, distilled water, etc.) and pertinent tools (such as grinding equipment, aluminum vaporizers,5

etc.). The operators in the domain include: GRIND-CONCAVE, POLISH, ALUMINIZE, and CLEAN. A complete

domain theory would include, in addition to these four operators themselves, knowledge of:
• all the relevant preconditions for each operation to proceed successfully,

• all the consequences of applying each operator (stated as changes to the global world state),

• and all the objects to which these operators may be applied to achieve the desired effects (for instance,
wood may be ground into a concave shape, but the result would not be an optical-quality telescope
mirror).

In addition to the domain theory, an optimal-performance system needs to know control rules (hard and fast ones,
as well as heuristic ones). These rules perform the following tasks:

• When multiple goals are present, determine which goals to work on first - or which ones to work on at
all. For instance, if the goals is-polished and is-ground-concave are both present, it is better to work on
the latter first so as not to undo polishing by later grinding. Similarly, if the goal of reduce-weight of
the glass and is-ground-concave are both present, it may prove unnecessary to do more than grind, as
that reduces weight as a side-effect of grinding away some of the glass in the process of making it
concave. Such interactions have been investigated before, albeit if not in a very systematic manner
(Sacerdoti, 1977, Carbonell, 1981, Wilensky, 1983). Here we are focusing on an integrated architecture
to acquire knowledge of plan interactions through observation of the consequences of its actions on the
external environment, and when necessary through focused experimentation.

• When multiple operators may be chosen in order to make progress towards the active goal, determine
which one(s) to apply. This is the standard role of a heuristic evaluation function (Nilsson, 1971), but

4We note that a totally incorrect theory, requiring wholesale reconceptualization, will not be addressed by our incremental methods. Such a
paradigm shift, as Kuhn would call it (Kuhn, 1977), requires a different approach, one along the lines of the more futuristic work in Machine
Discovery (Langley tt ai, 1983, Lenat, 1983).

5 Aluminum is placed on the primary reflecting surface of a glass mirror blank by placing the blank in a vacuum chamber and passing a strong
current through a thin pure aluminum strip, which then vaporizes and is deposited evenly, several molecules thick, on the glass surface to produce
optical-quality mirrors. For simplicity in our discussion, these details of the aluminizing process are suppressed, as are internal details of the
grinding and polishing processes. Hence, though the domain we have chose is very much a real one, we discuss it at suitable level of abstraction
and simplification.



 



we propose to do the selection by compiling explicit symbolic reasoning, rather than a-priori numerical
metrics. The notion of learning operator preferences in the context of an active goal was the central task
of LEX (Mitchell et aiy 1983), and is one of the major effects of chunking and universal subgoaling in
SOAR (Laird et aU 1986). At one end of the spectrum one can view a string of purely deterministic
preferences as equivalent to a linear macro-operator (Fikes, 1971, Minton, 1985, Cheng & Carbonell,
1986), and at the other extreme as guiding search in preferential directions based on past experience.

• When multiple objects may be chosen on which to apply the operators, determine which one(s) to
select. Again, these can be categorical (polishing and aluminizing the wrong surface of a mirror will
never yield desired results) or preferential (choosing a fast rough-grinding tool, vs choosing a slow
fine-grinding one, vs choosing both - the former for rough shaping, followed by the latter for fine
adjustment). Preferences may be stated in terms of achieving higher quality plans (more efficient ones
to execute, or ones more likely to succeed), or in terms of minimizing planning effort (producing a
working solution quickly, even if it may be far from an optimal plan).

These decision points serve a dual role in PRODIGY: Learning control rules to make the right decisions (Minton et aly

1987), and providing the handle for the experimentation module to direct the problem solver when it must perform
actions to seek new knowledge before returning to the problem at hand.

5. Types of Knowledge Acquired
A domain theory of the world can be incomplete in several different senses:

• Factual properties of objects in the world could be missing (size, color, category, functional properties,
etc.)

• Entire operators could be missing - the planner may not know all its capabilities.

• Operators could be partially specified - the planner may know only some of their preconditions and
some of their consequences.

• Interactions among operators could be unknown, causing planning failures or planning inefficiencies.

Thus far we have worked on operator refinement addressing only the latter two categories of missing knowledge.

Learning control knowledge to cope with certain kinds of operator interactions in PRODIGY is discussed in (Minton

et at, 1987), and illustrated in our detailed example. Our methods for acquiring the missing pre and post conditions

of operators are summarized in the table below, and elaborated in the detailed example that follows. In essence,

plan execution failures trigger the experimentation and replanning process. Thus, each method is indexed by the

failure condition to which it applies, encoded as differences between expected and observed outcomes.



 



EXPECTED
OUTCOME

OBSERVED
BEHAVIOR

RECOVERY
STRATEGY

LEARNING METHOD
(EXPERIMENT GENERATOR)

all the known
preconditions
satisfied
earlier

at least one
precondition
is violated
at present

plan to
achieve
the missing
precondition

binary search on operator
sequence from establishment
of precondition to present,
adding negated precondition
as postcondition of the
culprit operator

all the known
preconditions

all the known
preconditions

but operator
fails to apply;
postconditions
remain undone

attempt to
plan without
this operator,
or failing
that, suspend
plan till the
experiment is
complete

compare present failure
to the last time operator
applied successfully,
generating in a binary
search intermediate world
descriptions to identify
the necessary part of the
state, adding it to the
operator preconditions

operator
applies and
all the
postconditions

at least one
postcondition
fails to be
satisfied

if the unmet
postcondition
is incidental
ignore it,
but if it is
a goal state
try different
operator(s)

compare to last time all
postconditions were met,
perform binary search on
world state to determine
necessary part to achieve
all postconditions - then
replace operator with two
new ones: one with the new
precondition and all the
postconditions, the other
with the new precondition
negated and without the
postcondition in question

6. Learning by Experimentation: A Detailed Example
Let us return to our telescope mirror example, and assume that we have only a partial domain theory and virtually

no control knowledge. How can PRODIGY through its attempts to solve the problem learn to plan better the next

time? Can learning be improved by formulating subtasks just for the sake of acquiring knowledge, in addition to

pursuing extemally-given tasks? Suppose we start with the following (greatly simplified) knowledge base:



 



OPERATORS PRECONDITIONS CONSEQUENCES

1) GRIND-CONCAVE(<obj>)

2) POLISH(<obj»

3) ALUMINIZE(<obj>)

4) CLEAN(<obj>)

ISA(<obj>, solid)

ISA(<obj>, glass)
IS-CLEAN«obj>)

IS-CLEAN(<obj>)
ISA(<obj>, solid)

ISA(<obj>, solid)

IS-CONCAVE(<obj>)

IS-POLISHED(<obj>)

IS-REFLECTIVE(<obj>)

IS-CLEAN(<obj>)

INFERENCE RULES:

1) IS-RErLECTIVE(<obj>) & IS-POLISHED(<obj>) --> IS-MIRROR(<obj>)

2) IS-MIRROR(<obj>) & IS-CONCAVE(<obj>) — > IS-TELESCOPE-MIRROR(<obj>)

Given the operators and inference rules above, let us suppose that the goal of producing a telescope mirror arises,

and we have a glass blanks and a wood pieces to work with, none of them with clean or polished surfaces, PRODIGY

starts backchaining by matching the goal state against the right hand side of operators and inference rules,

concluding that in order to make a telescope mirror it should first make a mirror, and then make its shape concave.

Then seeing how to make a mirror, it concludes that it should make it reflective and then polish it (by matching

IS-MIRROR against the right hand side of the second inference rule). Let us assume for now that PRODIGY correctly

selected the glass blank (it was listed first) as the starting object. Now it must apply the operator ALUMINIZE to

the glass, which requires that it be a solid (see figure 6-1 for the object hierarchy), and that it be clean. The first

precondition is satisfied (glass is a solid), and the second one requires applying the CXEAN operator, which

succeeds because any solid thing may be cleaned. These successes enable the ALUMINIZE operator to apply

successfully, and go on to the next goal in the conjunctive subgoal set: IS-POLISHED (see figure 6-2). Thus far,

there have been no surprises and no learning, just locally successful performance.

SUBSTANCE

SOLID LIQUID

MALLEABLE TOOL FUEL LUBRICANT

WOOD GLASS WATER OIL

Figure 6-1: Fragment of object "isa" hierarchy
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However, whereas PRODIGY believed that the POLISH operator preconditions were satisfied (it believes in

temporal persistence of states, such as IS-CLEAN, unless it leams otherwise), the environment states the contrary:

the glass is not clean. The first learning step occurs in the attribution of this state change to one of the actions that

occurred since the state IS-CLEANED was brought about. Since there was only one intervening operator invocation

(ALUMINIZE), it infers that a previously unknown consequence of this operator is -IS-CLEAN (meaning retracting

IS-CLEAN from the current state). If there had been many intermediate operators, specific experiments to perform

some but not other steps would have been required to isolate the culprit operator. After applying the CLEAN

operator once more, it again attempts to POLISH, but the operator does not result in the expected state IS-

POLISHED. This means that either it is missing some knowledge (some other precondition for POLISH is

required), or its existing knowledge is incorrect (IS-POLISHED is not a consequence of POLISH). Always

preferring to believe its knowledge correct unless forced otherwise, it prefers to examine the former alternative.

But, how can it determine what precondition could be missing?

GOAL: IS-TELESCOPE-MERROR

IS-MIRROR IS-CONCAVE

GRIND-CONCAVE

IS-REFLECTIVE IS-POLISHED

AKUMIN

IS-CLEAN IS-SOLID IS-CLEAN IS-GLASS -IS-REFLECTIVE

CLEAN CLEAN

IS-SOLID IS-SOLID

Figure 6-2: Initial planning attempts generating experiments to determine
new preconditions and operator-precedence rules

Well, time to foimulate an experiment: Are there other objects on which it could attempt the POLISH operation?



 



The only possibilities are un-aluminized dirty glass blanks and dirty wood blanks. Only glass can be polished (see

the precondition table), and all the glass blanks are identical to each other, but different from the current object in

that they are both dirty and unaluminized, so it choses a glass blank. After cleaning it, the POLISH operator

succeeds, and once again it must establish a reason for the operator succeeding this time, but failing earlier: the only

difference is the glass not being aluminized. Thus a new precondition for POLISH is learned as a result of a simple

directed experiment: -IS-REFLECT! VE(<OBJ>), meaning that once coated with aluminum, the substrate substance

cannot be polished.

Now back to the problem at hand. In order to POLISH the glass it must unaluminize it, but there is no known

operator that removes aluminum.6 So the IS-POLISHED subgoal fails, and failure propagates to the IS-MIRROR

subgoal, with the cause of failure being that the IS-REFLECTIVE prevented POLISH from applying. Here there is

a goal interaction7 that can be solved by reordering the interacting components:

If the cause of failure of one conjunctive subgoal is a consequence of an operator in an earlier subgoal in
the same conjunctive set, try reordering the sub goals.

That heuristic succeeds by POLISHing before ALUMINIZing. Having obtained success in one ordering and failure

in another, the system tries to prove to itself that this ordering is always required, and succeeds by constructing the

proof: ALUMINIZE will always produce IS-REFLECTIVE which blocks POLISH, and since there are no other

known ways to achieve IS-POLISHED, failure is guaranteed. The present version of PRODIGY is capable of

producing such proofs in failure-driven EBL mode (Minton & Carbonell, 1987). Thus, a goal-ordering control rule

is acquired for this domain: always choose POLISH before ALUMINIZE, if both are in the same conjunctive goal

set and both apply to the same object.

Now, once again, back to the problem at hand. The system tries again and succeeds in producing a mirror, but

now needs to make it concave. The only operator to make IS-CONCAVE true is GRIND-CONCAVE. Its only

precondition is that the object be solid, and so it applies. At this point the system checks whether it finally has

achieved the top-level goal IS-TELESCOPE-MIRROR, and discovers (much to its dismay, were it capable of

emotions), that all its work on POLISHing and ALUMINIZing has disappeared. The only operator that applied

since the mirror was polished and aluminized was GRIND-CONCAVE, and so it learns two new consequences for

GRIND-CONCAVE: -IS-POLISHED and -IS-REFLECTIVE. No explicit experiment was needed as only one

operator (GRIND-CONCAVE) could have caused those changes. At this point PRODIGY would spawn off the

subgoal to make the concave glass back into a mirror, and all that it learned when making the flat glass into a mirror

applies (POLISH before ALUMINIZE, etc.) producing the plan more efficiently. Finally, the top level goal of

IS-TELESCOPE-MIRROR is achieved.

The learning system, however, is seldom quiescent, and though global success was achieved, some states (IS-

MIRROR, IS-REFLECTIVE, IS-POLISHED, IS-CLEAN) had to be achieved multiple times. Retrospective

examination of the less-than-optimal solution suggests that another goal reordering heuristic applies:

its domain knowledge were greater, it would know that grinding would remove aluminum and well as changing the shape and removing
surface polish. In fact, this knowledge is acquired later in the example, as an unfortunate side effect of attempting to make a flat mirror into a
concave one by grinding it.

7Sussman would call it a "clobber-brother-subgoal" interaction in HACKER (Sussman, 1973).
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/ / a result of a subgoal was undone when pursuing a later subgoal in the same conjunctive set, try
reordering these two subgoals.

So, PRODIGY goes off and tries the experiment of achieving IS-CONCAVE before achieving IS-MIRROR, resulting

in a more efficient plan.8 A proof process would again be invoked to determine whether to make it a reordering

rule, concluding that it is always better to achieve IS-CONCAVE first The chart below, summarizes the new

knowledge acquired (in italics) as a result of the problem solving episodes, experiments, and proofs. Such is the

process of fleshing out incomplete domain and control knowledge through experience and focused interaction with

the task environment Although in the example all the preconditions are consequences learned are negated

predicates, the same process applies to acquiring simple atomic predicates. However, the process of acquiring

logical combinations of atomic predicates is significantly more complex.

OPERATORS PRECONDITIONS CONSEQUENCES

1) GRIND-CONCAVE (<obj>) ISA(<obj>, solid) IS-CONCAVE (<ob j»
~IS-POUSHED(<obj>)
~IS-REFLECTrVE(<obj>)

2) POLISH(<obj>) ISA(<obj>, g lass) IS-POLISHED(<obj>)
IS-CLEAN(<obj>)
~IS-REFLECTIVE( <obj>)

3) ALUMINIZE (<ob j>) IS-CLEAN (<ob j>) IS-REFLECTIVE (<ob j>)
ISA(<obj>, s o l i d ) ~IS-CLEAN(<obj>)

4) CLEAN(<obj>) ISA(<obj>, so l id) IS-CLEAN(<obj>)

INFERENCES:

1) IS-REFLECTIVE (<obj>) & IS-POLISHED (<obj» —> IS-MIRROR(<obj>)

2) IS-MIRROR (<obj» 6 IS-CONCAVE (<obj» - - > IS-TELESCOPE-MIRROR(<obj»

NEWLY ACQUIRED CONTROL RULES for SUBGOAL ORDERING:

1) Select IS-POUSHED(<obj>) before IS-REFLECTIVE(<obj>) if both are
present in the same conjunctive subgoal set.

2) Select IS-CONCAVE(<obj>) before IS-MIRROR(<obj>) if both are
present in the same conjunctive subgoal set.

8In general we are measuring relative efficiency by requiring fewer total steps and no repeated subgoals. In the instance case we have a
stronger condition: the leaf-node actions of the more efficient plan constitute a proper subset of the leaf-node aaions of the previous less efficient
plan.
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7. The Current Implementation
The operator refinement strategy has been implemented in a subset of PRODIGY augmented with an execution

monitoring component We plan to integrate both execution monitoring and experimentation into the full PRODIGY

system shortly. To handle operator and object hierarchies, we are representing operators and other domain

knowledge using Framekit (Carbonell & Joseph, 1986), a frame-based knowledge representation system.

The planner, execution monitor, and experiment proposer combine three sources of dynamic knowledge:
• The state of the plan being developed and its partial execution.

• PRODIGY'S expectations of the current status of the external world.

• The observed status of the external world, including divergences from expectations as determined by
the execution monitor.

Since PRODIGY is not yet connected to an external robot or to the world modelers simulation environment

(Carbonell & Hood, 1986), execution monitoring proceeds by interrogating the user about aspects of the external

state it deems relevant These aspects consist of expected changes brought about by the application of operators.

For instance, the system checks that expected consequences of operators have come to pass, but not that all

supposedly persistent states have remained untouched. Problems in the latter category come to light only when a

presumably satisfied precondition to a later operator is found to be violated by the execution monitor. Then, the

experimentation process is invoked to identify which of the candidate intervening actions could be the culprit

operator, augmenting its postconditions so that next time the additional change to the external is recorded and

expected.

8. The General Operator-Refinement Method
If the system is given complete and correct knowledge, it uses a standard problem solving approach. In particular,

it employs means-ends analysis to select an operator. Then the system subgoals for every precondition of the

operator that is not matched in the current state. Once all the preconditions are matched, the planner updates the state

with the postconditions of the operator.

With incomplete knowledge, however, the system continually monitors the outside world to check for any

discrepancy with the internal state. When a discrepancy arises, standard problem solving has to be modified as

follows:



 



12

THE OPERATOR REFINEMENT METHOD

For every operator O selected

for every precondition P of operator O
ifState(P) *World(P)9

then One of the operators previously applied
since P was established has a
previously unknown postcondition.

1) Select candidate operators. The candidate
operators are ail that were applied between
the last time that P was checked in the World
and the current check.

2) Identify responsible operator Formulate
experiments by selecting an operator in a
binary search over the candidate operators,
applying it and then checking P in the World. If as a
result of an experiment with operator O£, P is
unexpectedly changed in the World, P is a new
postcondition of OE.

3) Add P as a new postcondition of operator OE.

for every postcondition P of operator O
if State(P) * World(P)

then

if 3 Q precondition of O such that State(Q) * World(Q)
then One of the operators previously applied

since Q was established should have had a

CASE1

postcondition affecting Q. CASE 2

1) Select candidate operators. The candidate
operators are all that were applied between
the last time that Q was checked and the current check.

2) Identify responsible operators. Formulate
experiments by selecting an operator in a
binary search over the candidate operators.
Each experiment will consist of applying one of the
operators and then check Q in the World. If as a
result of an experiment with operator OE Q is
unexpectedly changed in the World, Q is a new
postcondition of OE.

3) Add Q as a new postcondition of operator OF.
if V preconditions Q of O State(Q) = World(Q)
then A precondition of operator O might be missing.

1) Select candidate preconditions. The candidate
set is formed with all the differences between
any state in which O was applied successfully
and the current state (unsuccessful application of O).

2) Identify missing precondition. Formulate
experiments using a binary search over the set of
candidate preconditions and choose the predicate
R that the results show to be the significant
difference as the new precondition of O.

3) Add R as a new precondition of operator O.

CASE 3

9Sute(P) is a predicate that checks if P is part of the internal sute of the planner or not. Worid(P) checks the same but for the outside world.
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In all of the above cases, the system attempts to recover and fix the plan, using the new information learned. In

addition we use the following heuristics for cases of goal interaction and plan optimization:

If the cause of failure of one conjunctive subgoal is a consequence
of an operator in an earlier subgoal in the same conjunctive set,
try reordering the subgoals.

If a result of a subgoal was undone when pursuing a later
subgoal in the same conjunctive set, try reordering these two subgoals.

9. Concluding Remarks: Beyond Simple Experimentation
More comprehensive learning could occur by attempting to generalize the newly acquired preconditions and

consequences to other sibling operators in the operator hierarchy (see figure 9-1). For instance, the newly learned

consequences of destroying a polished or aluminized surface apply not just to GRIND-CONCAVE, but to any

GRIND operation (such as GRIND-CONVEX, GRIND-PLANAR). However, these consequences do not apply to

other RESHAPE operations such as BEND, COMPRESS, etc. The process to determine the appropriate level of

generalization again requires experimentation (or asking focused questions to a human expert). For instance,

observing the consequences of GRIND-PLANAR on a previously aluminized mirror, provides evidence that all

GRINDs behave alike with respect to destroying surface attributes, and observing the consequences of bending a

polished reflective glass tube without adverse effects on surface attributes prevents generalization above GRIND.

OPERATOR

OBJECT-PREP MOVE

SURFACE-PREP GRIND

POLISH PAINTALUMINIZE GRIND- GRIND- GRIND- PUSH CARRY
PLANAR CONCAVE CONVEX

Figure 9-1: Fragment of operator "isa" hierarchy

In addition to proposing experiments to guide generalization, we are starting to investigate tradeoffs between

experimentation and resource consumption (minimizing the latter, while maximizing the information gained from

the former), and tradeoffs between experimentation and other goals such jeopardizing safety of the robot or person

conducting the experiment Moreover, the experimentation methods so far have focused only on operator refinement

(both application conditions and consequences), but not on acquiring new operators, new features of the domain, or

new meta-ievel control structures. Our ultimate aim is to develop a set of general techniques for an AI system to

acquire knowledge of its task domain systematically under its own initiative, starting from a partial domain theory
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and little if any a-priori control knowledge. The impact of this work should be felt in robotic and other autonomous

planning domains, as well as in expert systems that must deal with a potentially changing environment of which

they cannot possibly have complete and accurate knowledge beforehand.
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Appendix: Annotated Program Trace
We include here a trace of our program. The example is the same as in section . The initial state is:

(initial-state ((is-glass glass 1)
(is-solid glass 1)
(is-planar glass 1)
(is-glass glass2)
(is-solid glass2)
(is-planar glass2)
(is-wood woodl)))

and the goal is (is-telescope-mirror glass 1).
The trace gives several pieces of information about every operator O:

• When the operator is selected: "Trying operator O".

• When a precondition P is checked in the internal state and external world: "Checking for
precondition P".

• When all the preconditions have been matched: "All preconditions checked, the operator O is being
applied".

• When a postcondition P is being checked in the internal state and in the external world: "Checking
for postcondition P".

Every time a precondition or a postcondition is checked, the results of the checks with the internal state of the
planner and the external world are shown. The system itself finds the information about the internal status, but
the user has to provide the result of the check with the external world

Only the interesting parts of the trace have been included. It has been commented at some points to make it more
readable.
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(goal-state (is-telescope-mirror glass 1))

Trying operator (is-telescope-mirror glass 1)

Checking for precondition (is-miiror glassl)
Internal State: n Simulated World: n

Trying operator (is-mirror glassl)

;;; Solving the subgoal (is-reflective)

Trying operator (polish glassl)

Checking for precondition (is-clean glassl)
Internal State: y Simulated World: n ;;; CASE 1

*** Experimentation triggered
*** New postcondition: (not (is-clean glassl))
*** Candidate operators: ((aluminize))

The postcondition (not (is-clean glassl))
is being added to the operator aluminize

;;; Solving (is-clean glassl)

All preconditions checked,
the operator (polish glassl) is being applied

Checking for postcondition (is-polished glassl)
Internal State: n Simulated World: y ;;; CASE 3

;;; Discrepancy between state and world (Case 2)

Checking again for precondition (is-glass glassl)
Internal State: y Simulated World: y

Checking again for precondition (is-clean glassl)
Internal State: y Simulated World: y

*** Experimentation triggered
*** Operator (polish)
*** Differences between current state and
*** Polish-Successfiil-State46: ((is-reflective))
•*• Would (polish) work if (not (is-reflective glassl))?
*** Simulated result of the experiment: y
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The precondition (not (is-reflective glassl))
is being added to the operator polish

Retrying operator (polish glassl)

Checking for precondition (is-glass glassl)
Internal State: y Simulated World: y

Checking for precondition (not (is-reflective glassl))
Internal State: n Simulated World: n

;;; There is no operator to achieve the goal (not (is-reflective glassl)).
;;; At this point the system hypothesizes that there is a goal interaction
;;; and applies the corresponding heuristic.

New goal preference: Prefer is-polished over is-reflective

;;; Since the system doesn't know how to make glassl not reflective,
it restarts the process with the glass that looks more like
glassl, which is glass2.* • •

;;; The subgoal is-mirror is solved again, but this time considering
the new goal preference rule and using the refined operators.
Then the subgoal is-concave is solved.

•..

» • •

All preconditions checked,
the operator (is-telescope-mirror glass2) is being applied

Checking for postcondition (is-telescope-mirror glass2)
Internal State: y Simulated World: n ;;; CASE 2

Checking again for precondition (is-mirror glass2)
Internal State: y Simulated World: n

Checking again for precondition (is-concave glass2)
Internal State: y Simulated World: y

Checking again for precondition (is-reflective glass2)
Internal State: y Simulated World: n

Checking again for precondition (is-polished glass2)
Internal State: y Simulated World: n

*** Experimentation triggered
*** New postcondition: (not (is-reflective)
*** Candidate operators: ((grind-concave))

The postcondition (not (is-reflective glass2))
is being added to the operator grind-concave
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*** New postcondition: (not (is-polished))
*** Candidate operators: ((aluminize) (grind-concave))

The postcondition (not (is-polished glass2))
is being added to the operator grind-concave

;;; The subgoal is-mirror is solved again,
;;; and the system can finally make a telescope mirror.

Operator (is-telescope-mirror glass2) successfully applied

Success!!

(plan ((clean glass!)
(polish glass!)
(aluminize glass2)
(is-mirror glass2)
(grind-concave glass!)
(clean glass!)
(polish glass!)
(aluminize glass!)
(is-mirror glass2)
(is-telescope-mirror glass2)))

Non optimal plan:

;;; The system applies the plan optimization heuristic:

New goal preference: Prefer grind-concave over is-mirror

End of trace.



 


