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in this article, a straightforward procedure Is proposed for constructing s computationsl theory
for any neursl metwork model (l.e, dynamical system) that is known t0 be minimizing some
function durlog Information retrieval. Within this framework, computation in neural network
models Is viewed with respect to a MAP estimation (Van Trees, 1968) framework as opposed o
the classic Turing machine view of computation. A theory"cnnctermn( the Information
processing computations of a neural network model Is useful for several reasons. First, a
computational theory sliows one to compsre and contrast quite different neural network models
(algorithms) within the context of a unified theoretical framework. Second, since a computational
theory provides lndependent arguments which specily the unique computational goal of s network
model and why that computational gosl Is optimasl, the optimality of s given neural network can
be evaluated. Third, a computstional theory may provide useful insights into neursl network
analysis and design problems. And finally, a computational theory provides a convenlent and

concise language for describing the behavioral goals of a neural network model.

In particular, 8 MAP (maximum s posteriori) estimation spproach (e.g., Van Trees, 1068) (o
Information storage and retrieval forms the foundstions of the probabllistic computationsl
framework for neurs! network models that Is proposed In this article. Let I represent a retrievsi
cue (o some memory system. The goal of information te’tﬂe;;l Is to recall a vector 0. that is a
globsl maximum of the s posteriori density function p(OfI.A) where A speclﬂe; the density
function’s parameters. The goal of learning Is to find an A‘ that Is a global maximum of the a
posteriorl density function p(AIT.) where 'l‘. is a set of vectors that were taught Lo the model.

Less formslly, the goal of informstion retrieval Is to recall the most probable value of the

unknown information, wblle the goal of learning Is o scquire the most probable probabilistic laws

of the environment.

Note that a MAP estimation approach o Information processing Is consistent with basic
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axioms of ratlons! decision making (Henrlon, 1086; Savage, 1071; Van Trees, 1068), with the
symbolic loglc (Cox, 1946), snd ylelds minimum probabllity of error declisions (Van Trees, 1068).
Thus, In accordance with Marr’s (1982) framework, this article provides s computational theory
that states the goal of » neural network’s computation Is to solve the MAP estimation problem,

and cites formal arguments that indicate when such a goal Is uniquely sppropriate.

Some progress towards a computational theory of neural networks has recently been made
by several researchers. Smolensky (1986) has formally shown that a small class of stochastic
neural network models known as Boltzmann machines are searching for the most probable
interpretation of some Incoming information. Rumelbart, Smolensky, McClelland, and Hinton
(1986) have noted that many neural network models can dbe viewed as maximizing a “goodness®
measure but the quality and uniqueness of a glven goodness measure were not considered. Golden
(1987) (also see Golden, 1986b, snd Anderson, Golden, & Murpbhy, In press) have noted that a
class of deterministic auto-assoclative peural models are also searching for the most probabie

interpretation of their inputs.

Marroquin (1085) has argued for a description of the computational goals of a3 large class of
algorithms using the probabllistic framework of Markov random fields. Such flelds have been
successfully used In the engineering literature to develop both deterministic and stochastic
algorithms which bhave been applied to a varlety of practical problems (e.g., Cohen & Cooper,
1987; Geman & Geman, 1984). Nevertheless, a Markov Random Fleld (MRF) framework is too
restrictive for the Issues addressed in this article. The primary orleatation of this article iIs to
provide s computational level of description, following Marr (19082), of a broad class of neural

network models which includes MRF models as an important subclass.

/

Marr's (1082) framework for understanding the mind also includes two additionat levels of
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description: the algorithmic level snd the implementationsal level. The algorithmic level of
description specifies an sigorithm which Is designed to solve the problem specified by the
computational theory. As Rumeilbart snd McClelland (1985) bave noted, this is the level of
description that Is most. relevant to the perceptual/cognitive ?aycholo;lst since the behavior of
the algorithm and the behavior of people can be qu.lludvely compared st this level of
description. In particular, the fallures of a neural network algorithm can be compared to the

fallures of people in simple information processing tasks (e.g., McClelland & Rumelbhart, 1088).

The third level of description of Marr's theory Is the Implementational level where the
specific neural machinery used in the implementation of a given algorithm Is described In detall.
A neural network model is simply s dynamical system designed (o perform some information
processing task that possesses 3 neurally plausible intepretation. Neural networks typically
consist of a coliection of simple computing elements (suggestively referred to as units or neurons),

and a set of connection strengths that indicate how the activity level of one unit in the system

can Influence the activity level of another unii. Thus, neural models may also serve as a gulde for
exploring those aspects of the neurophysiology that are especially relevant to Information
processing. The books by Grossberg (1982), Hinton and Anderson (1977), Kohonen (1984), and
McClelland and Rumelhart (1986) provide useful Introductory reviews of past and current

research Involving neursl network models as Information storage and retrieval systems.

This article Is organized In the following manner. The (irst four sections introduce essential
potation, provide am overview of the proposed computational framework, and provide examples
regarding how thé framework can be applied to many of the existing connectionist models In the
literature. Following this Informal) presentation, the probabllistic computational framework Is

formally presented In section five.
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Both the Informal and formal presentations of the computational framework are organized
into three major sections. First, the important concepts of an environmental and assumed
probability density function (PDF) are Introduced. The environmental PDF specifies the
probabllity distribution of events in the environment, while the assumed PDF specifies the neural
model’s assumptions about the environmental PDF. Second, the problem of determining whether
8 model's assumed PDF can ever be made equivalent to a glven environmental PDF Is considered.
The third section illustrates how maximum likelibood estimation procedures can be used to
analyze and design learning sigorithms for networks whose assumed PDF's are known.

1 Environmental and Assumed PDFs
1.1 The Environmental PDF

Consider a neural network dynamical system, D.. whose state Is represented by a d-
dimensional state vector, X, where the ith element of X Is the activity level or state of the Ith
neural unfit in the system. Define a set, S'. whose elements are d-dimensional vectors. An

environmental PDF Is used to assign probabilities to subsets of S’ which indicate the relative

frequency that a particular set of d neural states Is externally imposed upon the d neural units by
the environment. Note that the environments!l PDF Is completely Independent of the dynamics of

the neural network, D..

1.2 The Assumed PDF

It It Is assumed that a glven neural network model Is using MAP estimation to recall

information, then the a posteriorli PDF that Is used by the network to compute a MAP estimate is

defined as the assumed PDF. Using the set S' assoclated with the environmental PDF, the
assumed PDF also assigns probabilities to subsets of S' but Is otherwise defined Independently of
the environment. A neural network’s assumed PDF embodies the network’s assumptions about

the environmental PDF.
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1.3 Using the Environmental and Assumed PDFs

Optimal learning and Inferencing using environmental and assumed PDFs Is now Hiustrated.
To teach s network model a particular environmental PDF, set the network’s assumed PDF equal
to the environmental PDF. The inferencing problem Is now cqnsldered. Let the veclor X“. be
an event that Is genersted according (o the environmental P.D!'. Now suppose the network's
assumed PDF Is equivalent to the environmental PDF, and suppose the network observes some
(but not all) of the elements of X . Define an error to occur when the model’s estimate of the
unobservable vector elements are not equal to the actual values of the elements of Xoh. With
this definition of error, 8 MAP estimate of the unobservable vector elements is the estimate that
minimizes the probabllity of error. Therefore, the Inferences made by the metwork when

computing s MAP estimate of Xoh using its assumed PDF minimite the network's probabliity of

error.

2 Constructing Assumed PDFs

3.1 The Fundamental Theorem

Let V(X) be an "energy” or additive dynamical system summarizing function for s neural

network model that decreases as a function of time when the model Is retrieving Information from
memory. Moreover, assume that V(X) provides a sufficlent amount of Information to uniquely
specily the assumed PDF. Glven these assumptions and a physical constrailnt regarding how
probabliities must be assigned to neural states, s “fundamental theorem” Is stated and proved
(following arguments by Smolensky, 1986) that says the assumed PDF for the network model is

given uniquely by:

p(X) = 2! exp|- V(X)) (1)

where Z is a known normalization constant. The notation expix] Indicates the exponential

function evaluated at x.

Computational Framework 8

2.2 Assumed PDFeso for Auto-Assoclative Neural Networks

Let a system of nonlinear differential equations indicate how the activity level of a
particular neuron Is modified as a function of the actlvity levels of the other neurons In the
system. If this nonlinear dynamical system maps some subset of points in the state space into

either an equllibrium point or » Himit cycle, then that dynamical system or auto-assoclative neural

network may be viewed as a categorization mechanism. Cohen and Grossberg (1983) have shown
how additive dynamical system summarizing functions for a large class of determlnistic auto-
assoclative neurs! networks In continuous-time may be constructed. Some popular speclal cases of
their theorem Include the contlopuous-time versions of the BSB model (Anderson et al, 1977),
Hopfield's two-state neural model (Hopfield, 1982), Hoplield's (1984) general analysis of auto-
assoclative networks of "semilinear® units, and the Interactive activation model (McClelland &

Rumelbhart, 1981).

Cohen-Grossberg networks sre shown Lo be sscent algorithms that are searching for a global
maximum of their assumed PDF given some initial state. Suppose now that the initial activity
levels over a subset of the neuronal units in the system are not permitted to change their value.

That Is, the activation psttern over this subset of units is clamped. Let X 4y Xg D€ the activity

+1

levels of the clamped units, and let L P be the activity levels of the remaining unclamped
units. It Is shown that a Cohen-Grossberg auto-assoclative network Is searching for the values

Xy X, that maximize the a posteriori density function, p(x....xm|

; x‘), which is derived from

xm+l"'

the network's assumed PDF, p(X). That Is, the network Is searching for the most probable

activation pattern over the unclamped units given some known activation pattern over the

clamped units.

In particular, for the Hoplield (1982) and the Brain-State-ln-a-Box (BSB) neural model

(Anderson, Sliverstein, Ritg, & Jones, 1977; Golden, 1986a), the assumed PDF iIs simply:
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p(X) = 2! expXTAX] (2)

where X Is 3 vector whose ith element Is the activity level of the [th unit In the system, Z Is a
known normalization constant, and the \Jth element of the A matrix is the connectlon strength
between the th and jth pnlu in the system. Note that (2; is also the assumed PDF for the
Boltzmann machine neural network model (Hinton & Sejnowskl, 1986) and the Harmony theory
neural network model (Smolensky, 10886). .
2.8 Assumed PDFs for Back-Propagation Neural Networks

Ab important algorithm for learning In deterministic neural networks of semilinear units Is
the back-propagation learning sigorithm of Rumelhart, Hioton, and Willlams (1086) (also see

Parker, 1985, and Le Cun, 1985, for related algorithms). A semilinear deterministic neuron’s

activation level, x‘(H-l), at time t+1 Is simply updated using the following equation:
x(t+1) = s'|§: IO (3)

where Sll | is s monotonically increasing and differentiable (l.e., sigmoidal) function, and Y is the

connection strength between the ith and jth neurons In the system.

Now consider & set of semilineasr neurons that are connected to one another in some
arbitrary manner through sppropriate selection of the coefficients ‘i.i' Now a}rsnge these
coefficients in a parameter vector, A. Let I be & vector whose [th element Is the activation level
of the ith laput unit. Let O be a vector whose jth element Is the activation level of the [th output
unit. The term visible unit Is used to refer Lo any unit that is either an inputl or an output unit.
The remalning elements In the system sre called the bidden units because these units only
interact with the input and output units and have no direct interactions with the environment.

For convenience, let the complete configuration of the network be specified by some highly
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nonlinear assoclative vector-valued function OA such that durlag Information retrieval O=¢ Alll

where the parameter vector, A, specifies the connection strength values.

The back-propagation learning algorithm Is s gradient descent sigorithm that can be used

to modify the parameter vector A such that s parameter vector A. is found that minimlizes:
F P(O,I) |O,- 'A“lu’ (1)

where the pair IO‘.lll is the jth assoclation to be learned by the system, the summation Is taken
over all such pairs, and P.(Ol,ll) is the probabllity that the ith assoclation occurs ln the system’s
environment. Note that an Important neurally plausible speclal case of the back-propagation
algorithm Is the Widrow-Hoff learning rule. The Widrow-Hoff rule, In turn, Is a generalization of
the Hebbian learning ruie when the vectors in the environmental PDF are orthogonal. Good
reviews of these learning rules may be found In Anderson et al. (1977; in press). Kohonen (1984),

and Sutton and Barto (1081).

Because the back-propagation learning sigorithm Is minlmiting a mean square error cost

function, s natural additive dynamical system summariting function assoclated with information

retrieval for s constant input vector, 1, Is:

V(O) = |0 - ¢, ' (5)

Using (5) In conjunction with the fundamental theorem, the assumed PDF for an assoclative

back-propagation network Is shown to have the following form:

pO[I) = (exp |- |O - #,(DfY) 7 #4/* (0)
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Thus, assoclative back-propagstion networks are algorithms that compute the most probable d-

dimensionsl output vector, O, for & given Input vector, I, where the PDF |s given by (6). Or
more precisely, these networks retrieve the MAP estimate assocjated with the a posterior! density

t

in (0).

The mean square error function In (4) Is most appropriate when the output vector, O, Is a
continuous vector-valued variable. When the elements of O are binary-valued, Hinton (19087) has
suggested an appropriate variant of the back-propagation learning algorithm which searches for a

parameter vector A’ such that the following function of A Is maximized.
? {3 P (O,L) lo, LOGIp (A1)l + (1 - 0, JLOG[1 - p(A.L)]] 7

where IOj.ljl is the jth association, o, Is the |th element of O’, snd p(A.I) Is the jth element of
OA(I). It Is also assumed that the range of the sigmoidal functions assoclated with the semilinear

units In the system Is such that 0 < p(A]) < 1.

The natural additive dynamicsl system summarizing function assoclated with (7) duriog

information retrieval is therefore:
V(O) = - LioLOGIp(A.D)] + (1 - o) LOG1 - p(A.D)] (8)

where the ith element of O, o, csn only take on the values of zero or one, and 0 < p'(A.l) <1
Note that a globsl minimum of V() over the discrete state space occurs whenever o =11
p'(A.l) > 05snd o, =0 i p|(A.l) < 0.5. The assumed PDF for V(O) In (8) Is found using the

fundamentsal theorem to be:

Computational Framework 12

PO[I) = l‘l lop(AD) + (1-0) 1 - p(AD)). , (9)

Finally note that p‘(A.l) may be Interpreted as P(o‘wﬂl) If It Is assumed that the elements

of O are statistically independent.

2.4 Assumed PDFs for Multl-Stage Neural Networks

The fundamental theorem Is also applied to a large class of serial multiple stage neural
networks where a "stage” In this class of networks might be an suto-assoclative network (e.g., a
BSB neural network model) or a muitl-layer assoclative network (e.g.., an associative back-
propagation neural network model). The concept of a serial multiple stage network Is latroduced,
snd s muiti-stage network theorem Is presented. The multi-stage network theorem Justifies
adding the dynamical system summarizing functions assoclated with each stage in the network to

form a dynamical system summarizing function for the entire multi-stage network.

As an example of a possible application of the mulitl-stage network theorem, Schnelder and
his colleagues (Schnelder & Detweller, 1987; Schoelder & Mumme, 1987) have been developing a
multiple stage neural network architecture for modelling controlled and automatic processing
which they refer to as CAPL. This architecture Is characterized by a set of auto-assoclative
memory systems whose outpuls are cbhanneled through linear a.ssoclatlv‘e. memory systems. The
vector-valued outpuls of these associstive memory systems are then summed. More (ormally, the
critical dynamics of one version of the CAP1 system during the Information retrieval process can

be represented by the following system of difference equations:

x1(t + AL) = SIM'X‘(!.)I (10)
C~l
Xt + Ay = ‘);; s, AX(t)
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where X’ is the state vector associated with the jth dynamical subsystem, B Is a vector-valued

sigmoldal function, l, Is » scalar, and A’ and M’ are matrices.

\

An additive dypamical system summariting function, V(X), for the CAP1 system

represented In (10) may be constructed using the multi-stage network theorem. In particular,

VX, ... X)) = V(X)) + v,(x,) + ... 4 Vc_'(x‘“) + vc(x. e Xo) (11)

where V(X,) = - x"upq for1 <1<C-1,

and where V (X, ... X) = g PG - a‘ij]l’.

Note that for the mulitl-stage network theorem to be strictly applicable, dynamical system
summarizing functions for the suto-associators and linear assoclators must be found, and matrices
must be constructed that eliminate local minima. Multi-stage networks of the form of (10) can be
constructed that meet these requirements. Unfortunately, hpwever. for the multi-stage network
theorem to be strictly applicable to the CAP1 system It Is also necessary to show that the state of
an auto-associative subsystem actuall;y reaches (and not simply “approaches®) a global minimum
of that subsystem’'s summarizing function. Such anpalyses are currently unavallable aithough
extensive ex{erlence with simulations of the suto-associative BSB model indicates that the
equilibrium polants in this model are usually always reached. With this caveat, an assumed PDF
for the system can be constructed by applying the fundamental theorem (o the dynamical system

summarising function in (11).
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3 Compatible Assumed and Environmental PDFs
Can s given neural model whose assumed PDF is a function of some set of parameters ever
acquire complete knowledge of its probabliistic environment!? To answer this question, simply set
the assumed PDF equal to the environmental PDF and "solve” for the parameters of the assumed
PDF. If the resuiting system of equations does not bave a solution, then that Implles the neural
model can never learn the environmental PDF. |If a solutlon exists, then the assumed and

environmental PDFs are compatible. Note the similarity of this type of argument o proofs

suggested by Minsky and Papert (1969) or Hinton (1981) that indicate a perceptiron can not solve
the exclusive-or problem. The arguments in this sectlon, however, are applicable to many
nonlinear neural networks (as well as perceptrons) slthough the resulting conclusions about the

performance of these systems are weaker.

The concept of compatible PDFs can be used to construct rigorous arguments that justify
specific neural network model learning schemes. For example, 8 necessary conditlon for an
environmental PDF with K globsl maxima to be compatible with s particular assumed PDF is
that K global maxims of the assumed PDF exist which correspond to the K global maxima of the
environmental PDF. The assignment of global minima of an energy function to sti.nulus set
members that are to be learned by Cohen-Grossberg auto-assocliative neural networks has been
suggested by several research groups. Aanderson and his colleagues have used this procedure to
train the BSB model (Anderson et al., 1977, in press; Golden, 1086a, 19860, 1987). Hoplield
(1982) used this procedure to train his suto-associative network of two-state neurons. Rumelhart
et al. (1986) and Plaut, Nowlan, and Hioton (1986) bave used this procedure to train auto-

assoclative networks of semlilinear units.

A compatibillity test for networks of two-state neurons is siso derived. The test is based on

Inspecting the rank of s particular matrix whose construction Is dependent upon both the



stimulus set and the neurs! network architecture. The matrix Is called the compatibility matrix

because it lndicates whether the assumed PDF of s specific neural aetwork model Is compatible
with any environmental PDF defined with respect to a specific stimulus vector set. To lilustrate

the construction and use of compatidbliity matrices, consider an environmental PDF that assigns

non-zero probsbilities Lo the vectors: N

x.-(l()l) X,=(©011) X,=(110) X, =(000)

The |th row of the compatidbility matrix for a BSB model which stores only second-order

correlations Is:

where x, Is the jth element of x, The complete compatibllity matrix Is therefore:

)
0 0 1
0 ) 0
1 0 0

The rank of the compatibliity matrix In this case Is three which Is equal to the number of
rows of the matrix, so the assumed PDF ls compatible with any environmentsal PDF d_ellned with

-

respect to the stimulus set.

The genersl procedure for constructing a compatibllity matrix for s stimulus set of M d-
dimensional vectors, (X'..X‘.). Is now described. Define the vector-valued function, F(C), to

bave the following row vector form:

d
F(C) == ley, €g0 . € €€ oy €€ . €€ Cp . CECL, .. ..l;l‘ c) (12)

where ¢, Is the ith non-zero element of C. To find the function F(C) for a given dynamical
system, rewrite the network’s additive dynamical system summarizing function as s dot product
of the parameter vector, A, and F(X - X,,). This can always be done using arguments provided
by Besag (1974) (slso see Anderson et al, (n press). Note that the dimensionality, d.. of A Is less

than or equal to 24! For example, d. < d(d-1)/2 for the assumed PDF in (2). Then,

WT = [FOX, - X,)T. FOX, - X7, . FOX,, - X)) (13)

where WT denotes the transpose of the M -1 by d . dimensional compatibllity matrix, W.
4 Design and Analysis of Learning Algorithms using ML, Estimation
According to the computational (ramework presented here, the goal of learning Is o

compute the most probable values (L.e., MAP estimates) of the parameters of the assumed PDF

given s set of observations of values (l.e., tralning vectors) of a random variable generated by
some stationary environmental PDF. QGiven negligible prior knowledge about the assumed PDF's
parameters relative to the number of environmental observations, the MAP estimation problem
reduces to the computationslly t;utnblc Maximum Likelihood (ML) estimation problem (e.g.. Van

Trees, 10068).

Learning ln connectionist systems Is formulated in terms of ML estimation as follows. An
environmental PDF is used Lo generate N values of some random vector-valued variable. The
network Is given these N veclors as a tralnlng sequence of length N, and then searches for those

parameters of the assumed PDF that maximize a llkelihood function. A parameter vector of the

assumed PDF which is a globa)l maximum of the likellhood function makes the event of observing

the training sequence most probable. To compute the likellhood function, the petwork must

sssume that the vectors In the training sequence are Independent and ldentically distributed
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(1.1.4.) saccording to the assumed PDF. Maximum likellhood estimation yleids efliclent, :nblased
estimates for sulliclently long tralning sequences (Van Trees, 1968). Finally, note that when the
environmental PDF Is not stationary, a ML estimation approsch Is usually not appropriate
sitbough analyses of learning In non-stationary environments ?te still possible (Grossberg, 1987;

Macchl & Eweds, '1983).

In most connectionist learning schemes, only a finite number of vectors are taught to the
model. This suggests that the environmental PDF that generates the elements of the tralning
sequence may be viewed as a discrete PF. If the length of the training sequence Is sufficlently
large, then the logarithm of the likellhood function Is shown to converge to the asymptlotic

likelihood function, E(A), when the environmental PF Is discrete following lnformal arguments by

Frieden (1983, 1985) and Wise (1986). Thus, optimal (ML) learning ailgorithms for neural
networks whose assumed PDFs are kpown snd which asre functioning In environments
characterized by discrete PDFs can be designed with standard optimization techniques (eg.,
Luenberger, 1984) by maximising E(A) with respect to A. The asymptotic likelibood function,
E(A), Is computed using the assumed PDF of the network, p(X:A), and the environmental PF,

P.(X). as follows:
E(A) = £ P (X) LOG [p(X;A) (14)
where x‘ Is the th element of the training set which occurs with probability P'(Xi).

in the Uimit, gradient ascent upon the logarithm of the likelihood function Is shown to be
equivalent to gradient descent upon the cross-entropy function (Kullback, 1959; Shannon, 1963)
or gradient ascent upon the asymptotic likellhood function. Thus, because the neural network

learning sigorithms for the Boltzmann machine (Hinton & Sejoowskl, 19086) and Harmony theory
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(Smolensky, 1986) are gradient descent algorithms that minimize the cross-entropy function, these
algorithms are also maximum likellbood estimation algorithms that are estimating the paramelers
of their assumed PDFs. Moreover, the back-propagation learning algorithm, using either the
assumed PDF in (6) or (9) Is shown to be a gradient ascent sigorithm that maximizes the
asymptotic likelihood function as well. Thus, the associative back-propagation learning algorithm
Is also & maximum likellhood estimation sigorithm. Such analyses are lllustrative of bow learning
algorithms for networks whose assumed PDFs are known can be analyzed and designed by simply
examining thelr asymptotic likelihood functions.
8 Formal Presentation of the Computational Theory

The following notation Is used to specify probabllity deasity functlons unless otherwise

stated. Let P(x < X) be the probability that the continuous random variable x Is less than the

constant X. The continuous probabllity density function, p(X), associsted with x Is defined as

p(X) = dP(x < X)/dX.

If x Is a discrete random varlable whose [th value, x‘ Is assigned a probablility, P(X_.), then

the discrete probabllity density function associsted with X can still be expressed using Dirac delta

functions as follows:

p(X) = X POX) X - X)).

Note that the function P(X) specifies a probabllity functiog, PF, which assigns a probabllity

to » particular value of x, while the function p(X) Is the probabllity density function assoclated

with the random variable x.
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6.1 The Fundamental Theorem
Is this section, using a serles of arguments analogous o those of Smolensky (1086), a
fundamental theorem concerning the uniqueness of the assumed PDF for a given network model

will be proved.

Definition of s dynamical sysiem summarizing function. Let ¢ denote s type of stochastic

~or deterministic convergence (e.g., Cauchy, In probabllity, almost sure). Let D. denote »

stochastic or deterministic dynamical system with state X{(t) € s‘ where 8‘ is s state vector
space. Let V(X) be a resl scalar-valued function of X. Let X'es o Such that

V' o= V()(') < V(X) for all X € S, The function V(X(¢)) is & dynamical system summarlzing

function (d.s.s.f.) of type o If and only i V(X(t)) — v’ 23 { —» oo In the sense specified by o.

Definition of an additive d.s.s.f. Let the |tb element of s d-dimensional vector X be the

sctivation level of the |th neuron in some meural network, D.. Let X be partitioned into two
subvectors such that X == (X X)) where the subuetwork, a,, of m neurons whose state Is
specified by the m-dimensional vector x, is physically unconnected with the subnetwork, a, of
d-m neurons whose state is specified by the d-m dimensional vector x, Let Vt(X) denote a
d.s.s.l. thal maps 3 k-dimensionsl vecltor Into a real number. Thea, an additive dssf. V ‘(X)

bas the property that

V00 = V0K, + V, 0K} (15)

when o, and a, are physically unconnected for at least one value of m.

Sulficient Information property. Let V ‘(X) be an additive d.s.s.f. for s neural network, D_.

A value of the function V 4 provides a sufficient amount of informsation to specify the unique value
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o the petwork's assumed FDF, p. Io particular, p = G(V‘) where G Is 8 continuous and
differentiadble function. In additiop, f D. consists of two physically unconnected subnetworks
with additive d.s.s.l.s V.'(X.) snd V ‘_m(x,) as defloed In (15), thea p = G(V_ ) and

Pom ™ G(V ‘.n) where P snd Py M€ the assumed PDF's for the two subnetworks.

Neural network Independence property. Let V (X) be sn sdditive dss.f. (or a neural

aetwork, D.. with assumed PDF, p. Given that D_ consists of two physically unconnected
subnetworks with additive d.s.s.l.s Vm(x.) snd V ‘--(X’) as defined in (15) whose assumed PDFs,

-

P and p am' M€ constructed according to the sufliclent Informsation postulate, then p —= PoPd.m:

Definition of an assumed PDF. An assumed PDF, p(X). of s dynamical system, D,, defined

with respect to an additive d.s.s.f., V(X), of type o has the sufficient information and neural

network Independence properties. In addition, - LOG|p(X)| Is s d.s.s.l. for D, of type o as well.

A Fundamental Uniqueness Theorem for Constructing Assumed PDFs. Given an sdditive

d.s.s.1., V(X), which Is dellned with respect to some dynamical system, D " snd state vector space,

S & the assumed PDF for D. is uniquely given by:

p(X) = ZYexp(-V(X)) (10)

provided Z == / exp(-V(X)) dX is finite, (17)

where the integral In (17) is taken over all elements of s' which Is a subset of the dynamical

system state space, S ¢

Proof of the Fundamental Theorem. First note, If an event X Is such that p(X) must equal




gero, then It Is necessary to eliminate X from the set S , Now, consider the case where D.
consists of two physically unconnected subnetworks with additive d.s.s.ls V_(X') and V *.(X,)
as defined In (15). Let V, = V-(X.). and let Vg = v “(x,) where V.(X) maps a k-dimensional

vector X lnto s scalar. Now by the neural network independence property,

PX) = p(X,X,) = B(X,) P(X,) = G(V,) G(V,)

By the sufficlent information property, p(X) = G(V ‘(X)) - G(V, + V,).
Thus, G(V, + V,) = G(V,) G(V,)
dG(V' + V')/dV. = G(V’) dG(V.)/dV.

dG(V, + V,)/dV, = G(V.) dG(V’)/dV’

Equating the left band sides of the above two equations, dividing by the strictly positive
G(V.)G(V'). and forming an equivalent relationship In the form of an ordinary differential

equation with -1/T as the separation constant we oblain:

[4G(V,)/4V,) / G(V,) = -1/T
dG(V,)/dV, = - G(V,)/T (18)

Equation 18 can thea be solved to oblain a particular solution as follows.

/ dG(V,)/G(V,) = / dV,/T +C

G(V.) - Z"expl-V'/’l‘l

Because the rlgh't hand side of (18) Is continuous and differentiable, this solution Is unique
by Plcard’s Theorem (Simmons, 1972). Now since -LOG|p(X) = -LOG(Z 'exp|- V(X)/T). T must
be positive 50 that as V(X) decreases, -LOG[p(X)] also decreases as required by the definition of
an assumed PDF. Also note that V(X) is an additive d.5.s.f. If and only Iif V(X)/T Is an additive
d.s.s.f. Thus, the parameter T affects the uniqueness of p(X) in a trivial manner and can be set .
equal to unity without any Ioa's In generality. Finally, since / p(X) dX = 1, Z Is uniquely

determined by (17).
Q.ED.

5.2 Assumed PDFs for Auto-Assoclative Neural Networks
The following theorem represents a synthesis of some of the resuits presented in Cohen and
Grossberg (1983). Additional results concerning this class of dynamical systems bave also been

obtained by Cohen and Grossberg (1083).

Cobhen and Grossberg Theorem. Conslder the large class of contlnuous-time neural network

models defined by:
. d
dx,/dt = g(x){b(x,) - E;‘ust"‘t" (19)

where X, is the activation level of the th ncuron in the d-neuron system, z‘(xi) is an arbitrary
function of X, such that ;'(x') > 0 for all X, in some set S . Th( function S.(xt) is a continuous,
differentiable, monotonically lncreasing function of sll x, in 8‘. The function b‘(x‘) Is an

arbitrary continuous function of X, for all x, nS ¢ The coellicient lu = & for ail | and k.

d % 4 d
Let V(X) = - b(u)S’ +(1/2 S 20
et V(X) l.? (u) S updu, + (/DL L o), 5(x)8,(x,) (20)
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where X is a d-dimensional vector whose jth element is X, and S'i(u‘) is the derivative of S‘(u)
with respect o u, and evaluated at u.
A
?
The function V(X) is an additive d.s.s.f. provided that V Is continuous and has continuous
first partial derivatives, and an equliibrium polint, X‘. exists such that x‘ is a global minimum of

V(X). Moreover, X. must be a unique global minimum of V(X) with respect to some subset, R'.

of the state vector space, S e

Proof. First note that V Is additive. Moreover, Cohen and Grossberg (1983) note that
dv(X)/dt < 0. Since V Is continuous, has continuous first partial derivatives, and possesses a
unique global minimum at X' with respect to R’, V Is 8 Lispunov function (Luenberger, 1979)
with respect to R Therefore, for a given ¢ > 0, both an X{(0) € R. and » v > O exist such that

foralit >t X(¢) - x'| <e
Q.E.D.

Proposition. Let D' be a Cohen-Grossberg network of the form of (19) when none of the
units are clamped which is defined with respect to a dyntinlcal state space, S ¢ Let S, be a
subset of S,. Let V(X) be the d.s.s.f. associated with (19) and dellned in (20). If the integral in
(17) over S' is finite, then the assumed PDF, p(X) = p(xl...x ‘). of the Cohen-Grossberg network
is uniquely given by (16) and (17) with respect to V(X) and S'. Moreover, an assumed PDF for

the network when units m+1...d are clamped is
p(x'...xmlxm“...x‘) = P, X)X %) (21)

where p(x.."...x‘) == / p(y....ym.xm“...x‘) dy....dy“

Computational Framework 24

Proof. The first part of the proposition follows immediately from direct application of the
fundamental uniqueness theorem. The case where units m+1...d are clamped Is now considered.
In this case, the origlnal system of d differential equations as represented in (19) reduces to a

system of m dlilferential equations of the following form because units m+1...d are clamped:

d
dx'/dt == z‘(xl)lbi(x‘) - E.‘l.lsk(xl)l (22)

Separating the clamped terms from the unclamped terms in (22) we have:

d m
dx;/dt = g(x)[b(x) - La S,(x,)- La, S, (x,)
Wapngy Kef

where Xt Xe 8F€ constants. The d.ssf. for (22) is obtained using the Cohen-Grossberg

+1

Theorem as follows:

mw o, 4 E m
Vixg.x) = - & / [b(u,) - g:‘:s.(x.ns',(u‘) du; + (/DL L, | 50x)5,(x))
[

o ww b
m Xd md
Now noting that T / La ,S,(x,) S (v) du, = L L a5, (x,)S{x,) - S{0)
in 4 l'mo'g HY .'hoi

where Si(O) is a constant, the following expression Is obtained for V(x....xm):

d X d 4
V(x,..x_)=- .E b(u,)S"(u)) du, + (/2L Z:.ai ¢ Su(x,)S(x) + C
»l 1 el
®

V(x'...xn) = V(x'...x‘) +C=VX)+ C

where C Is a constant. The assumed PDF assoclated with V(x....xm) Is:
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p(x....xnlxn“...x‘) = 7! exp|-V(x,..x )| = Z! expl-vV(X) - C) = XY/ PAx,, %)

where p(xm X ‘) is » non-zero normalization constant obtained by Integrating over S'.
Q.E.D.

6.3 Assumed PDFs for Back-Propagation Assoclative Networks

Proposition. Let the dimensionslity of O be equal to d. Glven the additive d.ss.f. in (5),

the corresponding assumed PDF, p(Oll). is uniquely given by (6) where the set 8' (refer Lo (17)) Is

taken as the entire d-dimensional real vector space.

Proof. Direct substitution of (5) into (16) and (17) ylelds (6). Note that the integral In (17)

i/

exists and Is equal to 5°/° because (6) Is 3 multivariate Gaussian density function with mean ¢ Am

and covariance matrix equal to the Identity matrix multiplied by 1/2.
Q.E.D.

Proposition. Let the dimensionality of O be equal to d. Given the additive d.s.s.l. In (8),

the corresponding assumed PDF, p(O]l), is uniquely given by (9), with S. (refer to (17)) consisting

of the entire set of d-dimensional vectors whose elements are either equal to tero or one.

Proof. Direct substitution of (8) Into (16) and (17) ylelds (9). Note that Z equals unity for
the d.s.s.l. in (8) since the ith element of O can only take on the values of zero or one, and

0< pAD < 1.
Q.E.D.

5.4 Assumed PDFs for Serlial Multi-Stage Neural Networks

Definition of a serial mulitl-stage network. Let S be a d-dimensional state vector space that

Is partitioned Into C subspaces S,...S. such that If X € S, then X can be partitioned into C
subvectors such that X = (X,.. X_) where the dimensionality of X, € S, is d,. Thus, d = L d,

A gerial muitl-stage network delined with respect to S Is a set of C deterministic dynamical
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systems where the state of the |th system is a dl-dlmensloml vector, x, € S‘. The state, Xi(t). of

the ith dynamical system at time ¢ Is updated according to:

)C.(t + At) = ri(x.m..Jg(c)) (23)

where fl is some vector-valued function.

Definition of a conditionslly stable subnetwork. Let D, be a serial multl-stage network with

respect to the state space S which iIs partitioned into the subspaces S....SC, asnd subvectors

xl..xc. The ith subnetwork (l.e., dynamical system) Is conditionally stable Iif and only If there

exists subvectors X; € S‘, } = 1...\, a function V|(X' X‘), and sn Increasing sequence
o such that () VXL LX) € VX . X) for all X, €S, )=1 ... 1, and
() If for all ¢ > ¢+, X(t) = x,' for J=1..41, then X,(t) = X, for alt ¢ > ¢\

Muiti-Stage Network Theorem. Let D be a serlal multl-stage network with respect to the

state space S which is partitioned Into the subspaces s....s and subvectors X...Xc. it al) C

c!
subnetworks of D, are conditionally stable with respect to the functions V‘()(l X..) (1=1...C),

C
then V(X) = L V(X,. ... X)) Is sn additive d.ss.f. for D,.
v

Proof. Let X; € S’. j==1...1 have the property that V‘(X.'. X..') < V‘(X', )C') for all

X € S’.'jal...l. For subnetwork 1, s t! exists such that for all t > !, X'(t) = X * slnce Vl(X.)

J

is only » function of X' by the definition of s serial multl-s,age network, and the premise of

| -

 condition (b) in the definition of conditionally stable Is trivially satisfied. For subnetwork |, a

t! > tH exists such that if forallt > t“. X‘(t) = X; for J=1...I-1, then x'(t) = )g
foralit 2 ¢ (since subnetwork | is conditionally stable). By induction then, a tC exists such that

for ali ¢t > €, x‘(t) - X; for }==1...C where Xl. Xc' is a global minlmum of
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C
V(X) = L v(X,, ... X)). To show that V(X) Is additive note that If all C subnetworks are
¥39
C
independent, then V(X) = L v(X).

Q.E.D.
Corollary. Given the additive d.s.s.f., V(X), constructed using the muitl-stage network
theorem, the assumed PDF for the multi-stage network Is uniquely given by (16) and (17),

provided the Integral in (17) Is finite.

6.6 Compatible Assumed and Environmental PDFs

Definition of Compatible PDFs. Let an environmental PDF, p.(X). snd an assumed PDF,
p'(X;AV) be defined over some set of state vectors known as S' where A specifies the parameters
of p.(X;A). The PDFs p .(X) and p‘(X;A) are compatible with respect to S’ if and only If an A

exists such that p‘(x;A) = p.(X) for sll X In S'.

The Compatibllity Test for Networks of Two-State Units. Let each member of the set 7 of

environmental PFs assign non-zero probabllitles to each of the M d-dimensional vectors of S’
where each vector X € S’ consists of binary-valued elements. Let P.(X;A) be an assumed PF of
a specific neural network model with the parameter vector A. If the rank of the M - 1 by d.

dimensional compatibility matrix (which Is defined in (13)) equsis M - 1, then any environmental

PF, PE(X). in 7 Is compatible with P.(X;A) with respect to 8'.

Derivation of the Test. If Q.(X) Is an arbitrary function, then any environmental PF,

PE(X). In 7 can be equivalently expressed by a PF, P.(X). as:

P(X) = Pg(X,,) explQ,(X) (24)

where x" € S'. and Q.(x“) = 0.
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Also any assumed PF, P.(X;A). may be equivalently expressed as follows (Besag, 197¢4;

Anderson et al,, in press) when the elements of X are binary-valued.

P (XA) = explQ(XA) / Z, (25)

where Q.(X;A) = F(X - x“)A, the row vector function, F(C), Is defined o (12), and A is a

column vectlor of dimension d..

Now note If Q.(X;A) = Q'()() forsll X € S’, X o£ )Q' then P.(X;A) = P.(X) for all
X € S' since Z." must equal PE(XM) for / P.(X;A) dX = 1. Therefore, the PF, P.(X;A). Is

compatible with P.(X) if an A exists such that the systemof o0 = M - 1 linear equations:

QX)=Q (X A)for1 <1< n (26)

Is consistenl for any QQ(X) where X| € S'. X‘ 9t )CM For convenlence, (26) can be rewritten as:

q= WA (27)

where the jth element of q Is Q.OQ). and the n by d_ dimensional compatibllity matrix, W, is
defined In (13). Let R(W) = n (thus n < d ). and form a new d_-dimensional square matrix, Y,
whose (irst n rows are W and whose remalning rows are seiected such that Y has rank d . Letr
be a d.-dlmenslonsl vector whose first n elements are q. and whose remaining d. - n elements are
arbitrary. Now since Y Is invertible It Is slways possible (o find at least one parameter vector, A,

for s given r vector using the formuls A = Y'r.
QED.
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6.6 ML Estimation Applications to Learning Algorithms
To simplify notation, the function p(X;A) should be considered a PF when x Is 8 discrete

random variable and a PDF when x Is a continuous random varlable In this section of the paper

unless otherwise stated.

Definition of a likellhood function. Let a set, T,, consist of the n state vectors (X'.X"}.

The likellhood function, L.(A). associated with T Is defined as:

n
L (A) = [] »X:A) (28)

where p(X;A) is an assumed PDF or PF.

Definition of an ML estimate. If L.(A.) - L.(A) for sll permissable values of A, then A'ls

an ML estimate assocliated with L.(A) in (28).

Definition of an asymptotic likelihood function. Let P.(X) be an environmental PF, and let
p(XC;A) be an assumed PDF or PF. The asymptotic likellbood function, E(A), ls:

M .
BA) = L P (X)) LOG [p(X;A)l (29)
™ :

Definition of & cross-entropy function. The cross-entropy function, XE(A), Is:

M
XE(A) = L P (X)) LOG [P (X)/P(X;A)| = k - E(A) (30)

where P.(x) is the environmental PF, P(X;A) Is the assumed PF, E(A) Is the asymptotic

likelihood function, and k Is not dependent upon A.
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Lemma 1. Given [{QC:A)| < K < oo for any X, If for any |, snd M < oo,

™M M
s(n) — L, as n — oo, then r s(n) I(X‘;A) - ¥ L‘I(X‘;A) uniformly ss n — oo.
ist

1 L1}

Proof. An n > N exists such that |t‘(n) R L‘I < ¢/K.
But [a(n) - LYOC:A)| £ |a(n) - LJINOX:A) < Is, - LIK < [¢/K]K = ¢forn > N.
Now note that since 3,(n) (X:A) — LJ(XI:A) uniformly as n — oo,

M
E si(n) I(X|;A) - EL‘I('X‘;A) uniformily as n - oo.
(3 1]
QED.

Proposition. Let p(X:A) be either a discrete PF or contlnuous PDF of a neural network
model with parameter vector A. Let L.(A) be defined In (28) with respect to T, which Is a set of
n i.1.d. random vectors assoclated with PF P.(X). Define the stochastic sequence of independent
random functlons, e.(A). indexed by n such that e.(A) = (1 /n)LOG(L.(A)I. Let E(A) be defined
as In (29). (1) It JLOG [P(X:A))] < C < 0o, as n — oo, e (A) uniformly converges almost surely
to E(A). (1) 11 |V LOG |p(X;:A)})] < C < 00, as b ~ o0, V cN(A) uniformly converges almost

surely to V E(A) where all gradients are taken with respect to A.

n
Proof. First note e (A) = (1/n) LOG |L (A)] = (1/0) LG (][] p(x:A)

Ll

where the random varlable x/ == X‘ with probabliity p(xl;A). Therefore,

M
e (A) = (1/0) LOG [[] pX;A)h = 'Elni(n)/nl LOG [p(X;:A)l
Ist ] ]
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where n‘(n). n=1,2 ..1sa stochastic sequence of lndependent Binomlal random variables with

mean nP.(X‘). Because n(n)/n — P.(X.) almost surely as b — co by the strong law of large
M M

bers for an . n,/N) LOG ; uniformly converges to ) P LOG A

numbers for sny X ?;:‘ (n,/N) (KA ly ’ ( L X) IPQC:A)

slmost surely by Lemma 1 since |LOG lp(x‘;A)I < C. The proof of (1l) Is based upon s similar

argument.
Q.E.D.

Proposition. Let the PDF, p(O|I) defined in (6) be the sssumed a posteriori PDF for a

given neural network, and the network may have any prior knowledge of the likelthood of }
represented by the assumed prior PDF, p(I), which Is not a function of the parameter vector A.

Then E(A) = k - f‘:P.(O'.l') O, - OA(li)l’ where k Is pot dependent upon A.
Proof. Substituting p(O, 1) = p(O'IIl)p(li) for p(X::A) in (20) yields:
B(A) = E P,0X) LOGIP(E) exp(-10, - &, ") / 54/%
E(A) = (- 4/2) LOG [x] + 2.2 P{O,1) LOGINDI - X P(O,1) |O, - ¢,

where P.(Ol.l‘) and p(I) are not functions of A.
Q.E.D.

Proposition. Let the PDF, p(O|l) defined In (9) be the assumed a posteriori PDF for a given
neural network, and the network may have any prior knowledge of the likelihood of I represented
by the assumed prior PDF, p(I), which Is not s function of the parameter vector A. Then

E(A) =k + }E}E PO, 1) Io, LOGIp(A.L) + (1 - 0, ) LOGI1 - p(AL)]
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where k Is not dependent upon A, and o“ Is the ith element of the Ith output vector, O..
. J
Proof. Substituting p(Oj.lj) = p(Ojllj)p(lj) for p(X‘.;A) in (29) ylelds:
E(A) = k + {: P(O,I) Ii: LOG o), p{AL) + (1- 0,0 (1 - p(AL)).
where k Is 8 constant. Also note that since o“ = 0 or o“ = |,

LOG fo;; p(AL) + (1 -0, ) (1 - p(AL)) = 0, LOG IP(AL) + (1 -0,) LOG [1 - p(A.L).
QED
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