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A Probabilistic Computational Franevork For

Neural Network Models

Richard N Golden

Learning Research an! Development Center
and
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Unliersltj of Pittsburgh

Abstract

Information retrieval In a "connectlonlst" or neural network Is viewed as computing the

most probable value of the Information to be retrieved with respect to a probability density

function. P. With a minimal number of assumptions, the "energy" function that a neural network

minimises during Information retrieval Is shown to uniquely specify P. Inspection of the form of P

Indicates the class of probabilistic environments that can be learned. Learning algorithms can be

analysed and designed by using maximum likelihood estimation techniques to estimate the

parameters of P. The large class of nonlinear auto-assoclatlve networks analyzed by Cohen and

Grossberg (1083). nonlinear associative multi-layer back-propagation networks (Rumelhart,

Hlnton. ft Williams, 1088), and certain classes of nonlinear multi-stage networks are analyzed

within the proposed computational framework.
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In tbb article, a straightforward procedure b proposed for constructing a computational theory

for any neural network model (I.e., dynamical system) that b known to be minimising some

function during Information retrieval. Within this framework, computation In neural network

modeb b viewed with respect to a MAP estimation (Van Trees. 1068) framework as opposed to

the classic Turing machine view of computation. A theory • characterising the Information

processing computations of a neural network model b useful for several reasons. First, a

computational theory allows one to compare and contrast quite different neural network models

(algorithms) within the context of a unified theoretical framework. Second, since a computational

theory provides Independent arguments which specify the unique computational goal of a network

model and why that computational goal b optimal, the optlmallty of a given neural network can

be evaluated. Third, a computational theory may provide useful Insights Into neural network

analysis and design problems. And finally, a computational theory provides a convenient and

concise language for describing the behavioral goab of a neural network model.

In particular, a MAP (maximum a posteriori) estimation approach (e.g., Van Trees, 1006) to

Information storage and retrieval forms the foundations of the probabilistic computational

framework for neural network modeb that b proposed In thb article. Let I represent a retrieval

cue to some memory system. The goal of Information retrieval b to recall a vector O that b a

global maximum of the a posteriori density function p(O|I;A) where A specifies the density

function's parameters. The goal of learning b to find an A that b a global maximum of the a

posteriori density function p(A|Tf) where Tf b a set of vectors that were taught to the model.

Less formally, the goal of Information retrieval b to recall the most probable value of the

unknown Information, while the goal of learning Is to acquire the most probable probabilistic laws

of the environment.

axioms of rational decision making (Henrlon. 1080; Savage. 1071; Van Trees. 1008), with the

symbolic logic (Cox. 1040). and yields minimum probability of error decisions (Van Trees. 1008)

Thus, In accordance with Marr's (1082) framework, this article provides a computational theory

that states the goal of a neural network's computation b to solve the MAP estimation problem,

and cites formal arguments that Indicate when such a goal b uniquely appropriate.

Some progress towards a computational theory of neural networks has recently been made

by several researchers. Smolensky (1080) has formally shown that a small class of stochastic

neural network modeb known as Bolttmann machines are searching for the most probable

Interpretation of some Incoming Information. Rumelbart, Smolensky, McClelland, and Illnton

(1080) have noted that many neural network models can be viewed as maximizing a "goodness"

measure but the quality and uniqueness of a given goodness measure were not considered. Golden

(1087) (also see Golden, 1080b, and Anderson. Golden, ft Murphy. In press) have noted that a

class of deterministic auto-assoclatlve neural models are also searching for the most probable

Interpretation of their Inputs.

Marroquln (1085) has argued for a description of the computational goals of a large class of

algorithms using the probabilistic framework of Markov random fields. Such fields have been

successfully used In the engineering literature to develop both deterministic and stochastic

algorithms which have been applied to a variety of practical problems (e.g., Cohen St Cooper,

1087; Geman ft Geman. 1084). Nevertheless, a Markov Random Field (MRF) framework Is too

restrictive for the Issues addressed In this article. The primary orientation of this article is to

provide a computational level of description, following Marr (1082), of a broad class of neural

network modeb which Includes MRF models as an Important subclass.

Note that a MAP estimation approach to Information processing b consistent with basic Marr's (1082) framework for understanding the mind also Includes two additional levels of
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description: the algorithmic level and the Implementation^ level. The algorithmic level of

description specifies an algorithm which Is designed to solve the problem specified by the

computational theory. As Rumelbart and McClelland (1085) have noted, this Is the level of

description that Is most, relevant to the perceptual/cognitive psychologist since the behavior of

the algorithm and the behavior of people can be qualitatively compared at this level of

description. In particular, the failures of a neural network algorithm can be compared to the

failures of people In simple Information processing tasks (e.g., McClelland & Rumelhart, 1086).

The third level of description of Marr's theory b the Implementation*! level where the

specific neural machinery used In the Implementation of a given algorithm Is described In detail.

A neural network model Is simply a dynamical system designed to perform some Information

processing task that possesses a neurally plausible Intepretatlon. Neural networks typically

consist of a collection of simple computing elements (suggestively referred to as units or neurons),

and a set of connection strengths that Indicate bow the activity level of one unit In the system

can Influence the activity level of another unit. Thus, neural models may also serve as a guide for

exploring those aspects of the neurophyslology that are especially relevant to Information

processing. The books by Grossberg (1082), Hlnton and Anderson (1077), Kohonen (1084), and

McClelland and Rumelhart (1080) provide useful Introductory reviews of past and current

research Involving neural network models as Information storage and retrieval systems.

This article b organised In the following manner. The first four sections Introduce essential

notation, provide an overview of the proposed computational framework, and provide examples

regarding how the framework can be applied to many of the existing connectlonlst models In the

literature. Following thb Informal presentation, the probabilistic computational framework Is

formally presented ID section five.

Computational Framework 6

Both the Informal and formal presentations of the computational framework are organized

Into three major sections. First, the Important concepts of an environmental and assumed

probability density function (PDF) are Introduced. The environmental PDF specifies the

probability distribution of events In the environment, while the assumed PDF specifies the neural

model's assumptions about the environmental PDF. Second, the problem of determining whether

a model's assumed PDF can ever be made equivalent to a given environmental PDF Is considered.

The third section Illustrates how maximum likelihood estimation procedures can be used to

analyse and design learning algorithms for networks whose assumed PDFs are known.

1 Environmental and Assumed PDFs

1.1 The Environmental PDF

Consider a neural network dynamical system. Df, whose state Is represented by a d

dimensional state vector, X where the lib element of X Is the activity level or state of the Ith

neural unit In the system. Define a set, S . whose elements are d dimensional vectors. An

environmental PDF b used to assign probabilities to subsets of S which Indicate the relative

frequency that a particular set of d neural states Is externally Imposed upon the d neural units by

the environment. Note that the environmental PDF b completely Independent of the dynamics of

the neural network, Da.

1.2 The Assumed PDF

If It b assumed that a given neural network model Is using MAP estimation to recall

Information, then the a posteriori PDF that Is used by the network to compute a MAP estimate is

defined as the assumed PDF. Using the set S associated with the environmental PDF, the

assumed PDF also assigns probabilities to subsets of S but Is otherwise defined Indeprndently of

the environment. A neural network's assumed PDF embodies the network's assumptions about

the environmental PDF.
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1.9 Using the Environmental and Assumed PDF*

Optimal learning and Inferenclnf using environmental and assumed PDFs Is now Illustrated.

To teach a network model a particular environmental PDF, set the network's assumed PDF equal

to the environmental PDF. The Inferenclng problem to now considered. Let the vector Xokg be

an event that to generated according to the environmental PDF. Now suppose the network's

assumed PDF to equivalent to the environmental PDF, and suppose the network observes some

(but not all) of the elements of X . . Define an error to occur when the model's estimate of the

unobservable vector elements are not equal to the actual values of the elements of X . . With

this definition of error, a MAP estimate of the unobservable vector elements to the estimate that

minimizes the probability of error. Therefore, the Inferences made by the network when

computing a MAP estimate of Xokf using Its assumed PDF minimise the network's probability of
okf

error.

2 Constructing Aifumed PDFs

9.1 The Fundamental Theorem

Let V(X) be an "energy" or additive dynamical system summarizing function for a neural

network model that decreases as a function of time when the model to retrieving Information from

memory. Moreover, assume that V(X) provides a sufficient amount of Information to uniquely

specify the assumed PDF. Given these assumptions and a physical constraint regarding how

probabilities must be assigned to neural states, a "fundamental theorem" to stated and proved

(following arguments by Smolensky, 1980) that says the assumed PDF for the network model Is

given uniquely by:

p(X) - Z1 exp|- V(X)1 (1)

where Z to a known normalization constant. The notation exp|x] Indicates the exponential

function evaluated at x.

Computational Framework 8

2.9 Assumed PDFs for Auto-Assoclatlve Neural Networks

Let a system of nonlinear differential equations Indicate how the activity level of a

particular neuron Is modified as a function of the activity levels of the other neurons In the

system. If this nonlinear dynamical system maps some subset of points In the state space Into

either an equilibrium point or a limit cycle, then that dynamical system or auto-associative neural

network may be viewed as a categorization mechanism. Cohen and Grossberg (1083) have shown

how additive dynamical system summarizing functions for a large class of deterministic auto-

assoclatlve neural networks In continuous-time may be constructed. Some popular special cases of

their theorem Include the continuous-time versions of the BSB model (Anderson et al , 1077).

Hop field's two-state neural model (Hopfleld, 1082). Hopfleld's (1084) general analysis of auto-

assoclatlve networks of "semlllnear" units, and the Interactive activation model (McClellaod £

Rumelhart, 1081).

Cohen-Grossberg networks are shown to be ascent algorithms that are searching for a global

maximum of their assumed PDF given some Initial slate. Suppose now that the Initial activity

levels over a subset of the neuronal units In the system are not permitted to change their value.

That Is. the activation pattern over this subset of units Is clamped. Let * m 4 , *d be the activity

levels of the clamped units, and let x,...x be the activity levels of the remaining undamped

units. It Is shown that a Cohen-Grossberg auto-assoclatlve network Is searching for the values

x,...x that maximize the a posteriori density function. p(x, x |x 4 , x.). which is derived from
I Ifl I m W T I Q

the network's assumed PDF, p(X). That Is, the network Is searching for the most probable

activation pattern over the undamped units given some known activation pattern over the

clamped units.

In particular, for the Hopfield (1082) and the Brain State In-a Box (BSB) neural model

(Anderson, Sllversteln, Rltz, ft Jones, 1077; Golden. 1080a), the assumed PDF Is simply:
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p(X) - Z ' exp(XTAX) (2)

wbere X to a vector whose Itb element b tbe activity level of the lib unit In the system, Z b a

known normalisation constant, and tbe ||tb element of tbe A matrix b the connection strength

between the |th and |tb units In tbe system. Note that («/ b also the assumed PDF for tbe

Boltimann machine neural network model (Hlnton ft Sejnowskl, 1080) and ibe Harmony theory

neural network model (Smolensky, 1086).

l.S Assumed PDFs for Back-Propagation Neural Networks

An Important algorithm for learning In deterministic neural networks of semlllnear units b

the back-propagation learning algorithm of Rumelhart, Hlnton, and Williams (1080) (also see

Parker, 108S, and Le Cun, 108S, for related algorithms). A semlllncar deterministic neuron's

activation level, x^t+l), at time t+1 to simply updated using ibe following equation:

S,|E (3)

where S.| | to a monotonlcally Increasing and differentiate (I.e., slgmoldal) function, and â . Is ibe

connection strength between the lib and Jib neurons In the system.

Now consider a set of semlllnear neurons thai are connected to one another In some

arbitrary manner through appropriate selection of the coefficients a .̂. Now arrange these

coefficients In a parameter vector, A. Lei I be a vector whose lib element Is tbe activation level

of tbe lib Inpui unit. Lei O be a vector whose Itb element b tbe activation level of the lib output

unit. The term visible unit b used to refer to any unit that b either an Input or an output unit.

The remaining elements In tbe system are called the hidden units because these units only

Interact with ibe Input and output units and have no direct Interactions with tbe environment.

nonlinear associative vector-valued function # A such that during Information retrieval O—

where the parameter vector, A, specifies the connection strength values.

The back-propagation learning algorithm b a gradient descent algorithm that can be used

to modify the parameter vector A such that a parameter vector A b found that minimises:

(4)

where the pair IOJ.IJJ b tbe Ith association io be learned by the system, the summation Is taken

over all such pairs, and Pt(O|,Ij) b the probability thai tbe lib association occurs In the system's

environment. Note that an Important neurally plausible special case of the back-propagation

algorithm b the Wldrow-Hoff learning rule. Tbe Wldrow-Hoff rule, In turn. Is a generalization of

the Hebblan learning rule when the vectors In the environmental PDF are orthogonal. Good

reviews of these learning rules may be found In Anderson et al. (1077; In press). Kohonen (1084).

and Sutton and Bario (1081).

Because the back-prop •gallon learning algorithm Is minimising a mean square error cost

function, a natural additive dynamical system summarltlng function associated with Information

retrieval for a constant Input vector, 1. Is:

V(O) - |O - • A | I | | t . (5)

Using (S) In conjunction with tbe fundamental theorem, the assumed PDF for an associative

back-propagation network b shown to have tbe following form:

For convenience, let the complete configuration of the network be specified by some highly (exp |- |O (0)



Computational Framework II

Thus, associative back-propagation networks are algorithms that compute the most probable d-

dlmenslonal output vector, O. for a given Input vector, I, where the PDF Is given by (0). Or

more precisely, these networks retrieve the MAP estimate associated with the a posteriori density

In («).

The mean square error function In (4) Is most appropriate when the output vector, O, Is a

continuous vector-valued variable. When the elements of O are binary-valued, H In ton (1087) has

suggested an appropriate variant of the back-propagation learning algorithm which searches for a

parameter vector A such that the following function of A b maximised.

E |O
j

+ (I - (7)

where |O,.I.) Is the Jib association, o., Is the lib element of O., and Pj(A,I) Is the Ith element of

#A(I). It Is also assumed that the range of the slgmoldal functions associated with the semllinear

units In the system Is such that 0 < p,(A.I) < I.

The natural additive dynamical system summarising function associated with (7) during

Information retrieval Is therefore:

V(O) + (i . O|) LOG|1 - (8)

where the Ith element of O, o., can only take on the values of sero or one, and 0 < Pj(A.I) < 1.

Note that a global minimum of V(O) over the discrete state space occurs whenever o( = I If

p,(A,I) > 0.5 and o, — 0 If p,(A.I) < 0.5. The assumed PDF for V(O) In (8) Is found using the

fundamental theorem to be:

Computational Framework 12

P(O|I) = [I |o,p,(A.I) + (1 - o,) |l - p/A. (©)

Finally note that p^A.I) may be Interpreted as P(o.-"l|I) If It Is assumed that the element*

of O are statistically Independent.

9.4 Assumed PDFs for Multi-Stage Neural Networks

The fundamental theorem Is also applied to a large class of serial multiple stage neural

networks where a "stage" In this class of networks might be an auto-associative network ( e g , a

BSB neural network model) or a multi-layer associative network (e.g., an associative back-

propagation neural network model). The concept of a serial multiple stage network Is Introduced,

and a multi-stage network theorem Is presented. The multi-stage network theorem Justifies

adding the dynamical system summarltlng functions associated with each stage In the network to

form a dynamical system summarizing function for the entire multi-stage network.

As an example of a possible application of the multi-stage network theorem, Schneider and

his colleagues (Schneider & Detweller, 1087; Schneider ft Mumme, 1087) have been developing a

multiple stage neural network architecture for modelling controlled and automatic processing

which they refer to as CAPI. This architecture Is characterized by a set of auto-assoclatlve

memory systems whose outputs are channeled through linear associative memory systems. The

vector-valued outputs of these associative memory systems are then summed. More formally, the

critical dynamics of one version of the CAPI system during the Information retrieval process can

be represented by the following system of difference equations:

Xj(t + At) (10)

C-l
Xc(t + At) = E »|AJC|(t)

In
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where X, Is the state vector associated with the |th dynamical subsystem, 8 Is a vector-valued

slgmoldal function, a. to a scalar, and A- and Mj are matrices.

»

An additive dynamical system summarising function, V(X), for the CAPl system

represented In (10) may be constructed using the multi-stage network theorem. In particular,

V(X, + Vf(X,) + ... + (11)

where for 1 < 1 < C-l,

and where

Note that for the multi-stage network theorem to be strictly applicable, dynamical system

summarizing functions for the auto-assoclatora and linear assoclators must be found, and matrices

must be constructed that eliminate local minima. Multi-stage networks of the form of (10) can be

constructed that meet these requirements. Unfortunately, however, for the multi-stage network

theorem to be strictly applicable to the CAPl system It Is also necessary to show that the state of

an auto-associative subsystem actually reaches (and not simply "approaches") a global minimum

of that subsystem's summarising function. Such analyses are currently unavailable although

extensive experience with simulations of the auto-associative BSB model Indicates that the

equilibrium points In this model are usually always reached. With this caveat, an assumed PDF

for the system can be constructed by applying the fundamental theorem to the dynamical system

summarising function In (11).

3 Compatible Assumed and Environmental PDFs

Can a given neural model whose assumed PDF Is a function of some set of parameters tv?r

acquire complete knowledge of Its probabilistic environment To answer this question, simply set

the assumed PDF equal to the environmental PDF and "solve" for the parameters of the assumed

PDF. If the resulting system of equations does not have a solution, then that Implies the neural

model can never learn the environmental PDF. If a solution exists, then the assumed and

environmental PDFf are compatible. Note the similarity of this type of argument to proofs

suggested by Mlnsky and Papert (1009) or Hlnton (1081) that Indicate a perceptron can not solve

the excluslve-or problem. The arguments In this section, however, are applicable to many

nonlinear neural networks (as well as perceptrons) although the resulting conclusions about the

performance of these systems are weaker.

The concept of compatible PDFs can be used to construct rigorous arguments that Justify

specific neural network model learning schemes. For example, a necessary condition for an

environmental PDF with K global maxima to be compatible with a particular assumed PDF Is

that K global maxima of the assumed PDF exist which correspond to the K global maxima of the

environmental PDF. The assignment of global minima of an energy function to stl.nulus set

members that are to be learned by Cohen-Grossberg auto-associative neural networks has been

suggested by several research groups. Anderson and his colleagues have used this procedure to

train the BSB model (Anderson et a!., 1977. In press; Golden. 1980a. 1980b, 1987) Hopflrld

(1982) used this procedure to train his auto-assoclatlve network of two-state neurons. Rumrlhart

et al. (1980) and Plaut, Now Ian, and Hlnton (1980) have used this procedure to train auto-

assoclatlve networks of semlllnear units.

A compatibility test for networks of two*state neurons Is also derived. The test Is based on

Inspecting the rank of a particular matrix whose construction Is dependent upon both thr



stimulus set and the neural network architecture. The matrix b called the compatibility matrix

because It Indicates whether the assumed PDF of a specific neural network model to compatible

with anj environmental PDF defined with respect to a specific stimulus vector set. To Illustrate

the construction and use of compatibility matrices, consider an environmental PDF that assigns

non-iero probabilities to the vectors:

The ]th row of the compatibility matrix for a BSD model which stores only second-order

correlations to:

!*•*!

where x. Is the Jth element of X,. The complete compatibility matrix to therefore:

0
0
1

0
1
0

1
0
0

The rank of the compatibility matrix In this case to three which to equal to the number of

rows of the matrix, so the assumed PDF to compatible with any environmental PDF defined with

respect to the stimulus set.

The general procedure for constructing a compatibility matrix for a stimulus set of M d-

dlmenslonal vectors, (X|..JCM), to now described. Define the vector-valued function, F(C). to

have the following row vector form:

F(C) ••• |Cj I* ••• I • • • *** (12)

where c( to the lib non-iero element of C. To find the function F(C) for a given dynamical

system, rewrite the network's additive dynamical system summarlilng function as a dot product

of the parameter vector, A, and F(X • X^). This can always be done using arguments provided

by Desag (1074) (also see Anderson et al.. In press). Note that the dimensionality, d . of A Is less

than or equal to 24t. For example, dft < d(d-l)/2 for the assumed PDF In (2). Then.

WT - |F(X, - Xj*. F(X, (13)

where WT denotes the transpose of the M - I by dg dimensional compatibility matrix, W.

4 Design and Analysis of Learning Algorithms using ML Estimation

According to the computational framework presented here, the goal of learning Is to

compute the most probable values (I.e., MAP estimates) of the parameters of the assumed PDF

given a set of observations of values (I.e., training vectors) of a random variable generated by

some stationary environmental PDF. Given negligible prior knowledge about the assumed PDF's

parameters relative to the number of environmental observations, the MAP estimation problem
•

reduces to the computationally tractable Maximum Likelihood (ML) estimation problem (e.g.. Van

Trees. 1908).

Learning In eonnectlonlst systems Is formulated In terms of ML estimation as follows. An

environmental PDF to used to generate N values of some random vector-valued variable. The

network Is given these N vectors as a tralolog sequence of length N, and then searches for those

parameters of the assumed PDF that maximize a likelihood function A parameter vector of the

assumed PDF which Is a global maximum of the likelihood function makes the event of observing

the training sequence most probable. To compute the likelihood function, the network must

assume that the vectors In the training sequence are Independent and Identically distributed
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( l i d ) according to the assumed PDF. Maximum likelihood estimation yields efficient, unbiased

estimates for sufficiently long training sequences (Van Trees, IOCS). Finally, note that when the

environmental PDF Is not stationary, a ML estimation approach Is usually not appropriate

although analyses of learning In non-stationary environments are still possible (Grossberg, 1087;
)

Macchl ft Eweda.1083).

In most connection 1st learning schemes, only a finite number of vectors are taught to the

model. This suggests that the environmental PDF that generates the elements of the training

sequence may be viewed as a discrete PF. If the length of the training sequence Is sufficiently

large, then the logarithm of the likelihood function to shown to converge to the asymptotic

likelihood function. E(A). when the environmental PF to discrete following Informal arguments by

Frleden (1083, 1085) and Wise (1080). Thus, optimal (ML) learning algorithms for neural

networks whose assumed PDFs are known and which are functioning In environments

characterised by discrete PDFs can be designed with standard optimisation techniques (e.g.,

Luenberger. 1084) by maximising E(A) with respect to A. The asymptotic likelihood function,

B(A), to computed using the assumed PDF of the network, pQCA), and the environmental PF,

Pa(X). as follows:

B(A) - ^ Pt(X,) LOO (M)

where Xj Is the Ith element of the training set which occurs with probability Pt(X.).

In the limit, gradient ascent upon the logarithm of the likelihood function Is shown to be

equivalent to gradient descent upon the cross-entropy function (Kullback, I0S0; Shannon, 1003)

or gradient ascent upon the asymptotic likelihood function. Thus, because the neural network

learning algorithms for the Bolttmann machine (H In ton ft Sejnowskl, 1080) and Harmony theory

Computational Framework

(Smolensky, 1080) are gradient descent algorithms that minimise the cross-entropy function, these

algorithms are also maximum likelihood estimation algorithms that are estimating the parameters

of their assumed PDFs. Moreover, the back-propagation learning algorithm, using either the

assumed PDF In (0) or (0) to shown to be a gradient ascent algorithm th*t maximizes the

asymptotic likelihood function as well. Thus, the associative back-propagation learning algorithm

Is also a maximum likelihood estimation algorithm. Such analyses are Illustrative of bow learning

algorithms for networks whose assumed PDFs are known can be analysed and designed by simply

examining their asymptotic likelihood functions.

5 Formal Presentation of the Computational Theory

The following notation to used to specify probability density functions unless otherwise

stated. Let P(x < X) be the probability that the continuous random variable x Is less than the

constant X The continuous probability density function. p(X), associated with x Is defined as

p(X) — dP(x < X)/dX.

If x Is a discrete random variable whose Ith value, Xj, to assigned a probability. P(X.), then

the discrete probability density function associated with X can still be expressed using DIrac delta

functions as follows:

p(X) P(X,) «X - X,)

Note that the function P(X) specifies a probability fupctlo^, PF, which assigns a probability

to a particular value of x. while the function p(X) to the probability density function associated

with the random variable x.
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6.1 The Fundamental Theorem

In thb section, using a series of arguments analogous to those of Smolensk/ (1080), a

fundamental theorem concerning the uniqueness of the assumed PDF for a given network model

will be proved.

Definition of a dynamical system summarlilng function. Let # denote a type of stochastic

or deterministic convergence (e.g., Cauchy. In probability, almost sure). Let Df denote a

stochastic or deterministic dynamical system with state X(t) € Sj where Sj b a state vector

space. Let V(X) be a real scalar-valued function of X Let X € S4 such that

V* — V(X#) <£ V(X) for all X € S r The function V(X(t)) b a dynamical system summarising

function (d.s.s.f.) of type o If and only If V(X(t)) -• V as t -• oo In the sense specified by o.

Definition of an additive d.s.s.f. Let the jth element of a d-dlmenslonal vector X be the

activation level of the jth neuron In some neural network, D#. Let X be partitioned Into two

sub vectors such that X — (X-JCg) where Ihe subnetwork, a|V of m neurons whose state b

specified by the in-dimensional vector X | b physically unconnected with the subnetwork, o f, of

d-m neurons whose state b specified by the d-m dimensional vector X>. Let Vfc(X) denote a

d.s.s.f. that maps a k-dlmenslonal vector Into a real number. Then, an additive d.s.s.f.

has the property that

)f the network's assumed PDF, p. In particular, p =- G(V^) where G Is a continuous and

differentiate function. In addition. If Df consists of two physically unconnected subnetworks

with additive d.s.s.f.s V (X.) and V. (XJ as defined In (15), then p -= G(V ) and

p, _ — G(V. ) where p_ and p. _ are the assumed PDFs for the two subnetworks.
•-HI 41*111 ! • V*M1

Neural network Independence property. Let V^(X) be an additive d.s.s.f. for a neural

network, Df, with assumed PDF, p. Given that D§ consists of two physically unconnected

lubnetworks with additive d.s.s.f.s Vm(X |) and V4 JX^ as defined In (IS) whose assumed PDFs.

PM and p. , are constructed according to the sufficient Information postulate, then p = p P. .
M •*ni in 4-fn

Definition of an assumed PDF. An assumed PDF. p(X). of a dynamical system. D§, defined

with respect to an additive d.s.s.f., V(X), of type a has the sufficient Information and neural

network Independence properties. In addition. - LOG|p(X)| b a d.s.s.f. for Dg of type a as well.

A Fundamental Uniqueness Theorem for Constructing Assumed PDFs. Given an additive

(J.s.s.f., V(X), which b defined with respect to some dynamical system. Df. and state vector space,

Sj, the assumed PDF for D0 b uniquely given by:

P(X) - Z 'exp<-V(X)) (10) •

V4(X) 4 J (15)

when Oj and o f are physically unconnected for at least one value of m.

Sufficient Information property. Let V^(X) be an additive d.s.s.f. for a neural network, D .

A value of the function Vj provides a sufficient amount of Information to specify the unique value

provided Z_ / exp(~V(X)) dX b finite. (17)

where the Integral In (17) b taken over all elements of S which Is a subset of the dynamical

system state space, S..

Proof of the Fundamental Theorem. First note, If an event X b such that p(X) must equal



tero, tben It b necessary to eliminate X from tbe set S . Now, consider tbe case where D

consists of two physically unconnected subnetworks wltb additive d.s.s.f.s Vn(Xa) and ^4.mO^)

whm v
k 0 0 maps a k-dlmenslonal

vector X Into a scalar. Now by tbe neural network Independence property,

as defined In (16). Let V, — v
n 0C, ) ' M d l e l v

t "

p(X) « PCX,JC,) - POC,) PCX,) - G(V§) O(Vf)

By tbe sufficient Information property. p(X) — O(Vj(X)) — O(V | + Vf).

Thus. G(V, + Vf) - G(V |) G(Vt)

, - O(Vf)

dG(V§ + V f)/dV f - G(V§) dG(Vf)/dV1

O(V§) - Z '

Because tbe right hand side of (18) to continuous and differentiate, this solution Is unique

by Plcards Tbeorem (Simmons. 1072). Now since LOG|p(X)| — -LOG|Z 'cxp|V(X)/T|. T must

be positive so that as V(X) decreases, -LOG|p(X)) also decreases as required by tbe definition of

an assumed PDF. Also note that V(X) to an additive d.s.s.f. If and only If V(X)/T Is an additive

d.s.s.f. Thus, tbt parameter T affecU the uniqueness of p(X) In a trivial manner and can be set

equal to unity without any loss In generality. Finally, since I p(X) dX — I. Z to uniquely

determined by (17).

Q.E.D.

6.2 Assumed PDFs for Auto-AssocUtlYe Neural Networks

Tbe following tbeorem represents a synthesis of some of tbe results presented In Coben and

GroBsberg (1083). Additional results concerning this class of dynamical systems bave also been

obtained by Cohen and Grossberg (1083).

Equating tbe left band sides of the above two equations, dividing by tbe strictly positive

G(V|)G(VJ). and forming an equivalent relationship Is tbt form of an ordinary differential

equation wltb -1/T as tbt separation constant we obtain:

G(Vg) - -

dG(V|)/dV| - - G(Vf)/T

Equation 18 can tbes be solved to obtain a particular solution as follows.

(18)

Coben and Grossberg Tbeorem. Consider tbe large class of continuous-time neural network

models defined by:

dNx,/dt - E (10)

where x( Is the activation level of tbe lib muron In tbe d-neuron system. t.(x.) Is an arbitrary

function of x. such that > 0 for all x( In some set Sj. Th(~ function S.(x.) Is a continuous.

differentiate, monotonlcally Increasing function of all xfc In S .̂ Tbe function b,(xt) Is an

arbitrary continuous function of x( for all x( In Sj. Tbe coefficient \ k = \ f for all I and k.

/ dG(V |)/G(V |) - / -dV (/T + C Let V(X)
A d

(20)
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where X Is a d-dlmenslonal rector whose lib element Is x(, and S*J(UJ) Is the derivative of S.(u)

with respect to u, and evaluated at u(.

The function V(X) Is an additive d.s.a.f. provided that V Is continuous and has continuous

first partial derivatives, and an equilibrium point, X , exists such that X Is a global minimum of

V(X). Moreover, X must be a unique global minimum of V(X) with respect to some subset. R ,

of the state vector space, Sj.

Proof. The first part of the proposition follows Immediately from direct application of the

fundamental uniqueness theorem. The case where units m+1 d are clamped Is now considered

In this case, the original system of d differential equations as represented In (10) reduces to a

system of m differential equations of the following form because units m + l . d are clamped:

dx,/dt (22)

Separating the clamped terms from the undamped terms In (22) we have:

Proof. First note that V Is additive. Moreover, Cohen and Grossberg (1083) note that

dV(X)/dt < 0. Since V Is continuous, has continuous first partial derivatives, and possesses a

unique global minimum at X with respect to R , V Is a Llapunov function (Luenberger, 1070)

with respect to R . Therefore, for a given c > 0, both an X(0) € R and i t > 0 exist such that

for all t > t*. pQt) - X# | < t.

Q.E.D.

Proposition. Let Df be a Cohen-Grossberg network of the form of (10) when none of the

units are clamped which Is defined with respect to a dynamical state space, S.. Let S be a

subset of S4. Let V(X) be the d.s.s.f. associated with (10) and defined In (20). If the Integral In

(17) over S Is finite, then the assumed PDF. p(X) = p(x§. .x^), of the Coben-Grossberg network

Is uniquely given by (10) and (17) with respect to V(X) and S . Moreover, an assumed PDF for

the network when units m+l...d are clamped Is

V (21)

where ..x,) - f p(y,• .ym.xm>l...x,) dy,. .dym

dydt

where xm+r-Xj are constants. The d.s.s.f. for (22) Is obtained using the Cohen-Grossberg

Theorem as follows:

v<*. *J / du« £
n jfii

Now noting that E / Ea, kSk(xfc) S,(u() du, = E E a, kSk(xk)|S|(x|) - S,(0)|

where S.(0) Is a constant, the following expression Is obtained for V(x(...xm):

V( X | . .xm) - E du§ 3C Ea . k Sk(xfc)S.(x.)

V(X|. . x j - V(X| .x4) + C - V(X) + C

where C Is a constant. The assumed PDF associated with V(x....x ) Is:
• m
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r .xm)| — Z ' exp|-V(X) - C)

where p(x A , . .x .) to a non-tero normalization constant obtained by Integrating over S .
flt+l #J p

S.8 Assumed PDFs for Back-Propagation AssoclatWe Networks

Q.E.D.

Proposition. Let the dimensionality of O be equal to d. Given the additive d.s.s.f. In (S),

the corresponding assumed PDF, p(O|I), to uniquely given by (6) where the set S (refer to (17)) to

taken as the entire d-dlmenslonal real vector space.

Proof. Direct substitution of (S) Into (10) and (17) yields (0). Note that the Integral In (17)

exists and to equal to *''* because (0) to a multlvarlate Gaussian density function with mean #A(1|

and covarlance matrix equal to the Identity matrix multiplied by 1/2.

Q.E.D.

Proposition. Let the dimensionality of O be equal to d. Given the additive d.s.s.f. In (8),

the corresponding assumed PDF, p(O|I). to uniquely given by (0), with S (refer to (17)) consisting

of the entire set of d-dlmenslonal vectors whose elements are either equal to tero or one.

Proof. Direct substitution of (8) Into (10) and (17) yields (0). Note that Z equate unity for

the d.s.s.f. In (8) since the Ith element of O can only take on the values of tero or one, and

0 < P^A.1) £ l.

S.4 Assumed PDFs for Serial Multi-Stage Neural Networks

Q E D

Definition of a serial multi-stage network. Let S be a d-dlmenslonal state vector space that

to partitioned Into C subspaces S(...SC such that If X € S, then X can be partitioned Into C

subvectors such that X =•= (X§ X^,) where the dimensionality of Xj € S, to d§. Thus, d = E d.

A serial multistage network defined with respect to S to a set of C deterministic dynamical

systems where the state of the Ith system Is a d-dlmenslonal vector, Xj € Sj. The state, X.(t), of

the Ith dynamical system at time t Is updated according to:

X(t + At)

where t{ Is some vector-valued function.

(23)

Definition of a conditionally stable subnetwork. Let Dg be a serial multi-stage network with

respect to the state space S which Is partitioned Into the subspaces S§ Sr> and subvectors

X | . .X t ; . The Ith subnetwork (I.e., dynamical system) to conditionally stable If and only If there

exists subvectors X. € S., J «= 1.1, a function Vt(X( .... Xj). and an Increasing sequence

t \ l1. ... t\ ... such that (a) VjQC .̂ ... X,*) < VjOC,. ... Xj) for all XJ € SJf J = l ... I, and

M(b) If for all t £ lM . Xj(t) for .1-1. then X,(t) = X,* for all t > t1.

Multi-Stage Network Theorem. Let Dg be a serial multi-stage network with respect to the

state space S which to partitioned Into the subspaces S(...SC> and subvectors X ( . JCC. If all C

subnetworks of Dg are conditionally stable with respect to the functions VJ(X| .... X.) (1=1...C),
O

then V(X) = E V,(Xit ... X.) to an additive d.s.s.f. for D .

Proof. Let X. 6 S.. J—1...I have the property that V.(X, . ... X ) < V.(X,. ... X ) for all

X. € S., J—1...I. For subnetwork I, a t1 exists such that for all t > t1, X§(t) = X* since V^XjJ

to only a function of X ( by the definition of a serial multl-s.age network, and the premise of

condition (b) In the definition of conditionally stable Is trivially satisfied. For subnetwork I. a

t1 > tM exists such that If for all t > tM . X^t) = X^ for J = l ...II, then X(t ) = X*

for all t > t1 (since subnetwork I to conditionally stable). By Induction then, a t c exists such that

for all t > tc , XXt) «= X. for J= l C where X ( ... X c Is a global minimum of
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V(X) « L V.(Xt> ... X.) To show that V(X) Is additive note that If all C subnetworks are

C
Independent, then V(X) = E V.(X).

Q.ED.

Corollary. Given the additive d.s.s.f., V(X), constructed using the multi-stage network

theorem, the assumed PDF for the multi-stage network Is uniquely given by (10) and (17),

provided the Integral In (17) Is finite.

6.6 Compatible Assumed and Environmental PDF*

Definition of Compatible PDFs. Let an environmental PDF, pc(X), and an assumed PDF,

p (X;A) be defined over some set of state vectors known as S where A specifies the parameters

of pft(X;A). The PDFs p#(X) and p%(X;A) are compatible with respect to S If and only If an A

exists such that p^(X;A) — p((X) for all X In S .

The Compatibility Test for Networks of Two-State Units. Let each member of the set 7 of

environmental PFs assign non-zero probabilities to each of the M d-dlmenslonal vectors of S

where each vector X € S consists of binary-valued elements. Let P f t(XA) be an assumed PF of

a specific neural network model with the parameter vector A. If the rank of the M - I by dft

dimensional compatibility matrix (which Is defined In (13)) equals M - 1, then any environmental

PF, P.(X). In 7 Is compatible with P (X;A) with respect to S .

Derivation of the Test. If Q#(X) Is an arbitrary function, then any environmental PF,

P»(X), In 7 can be equlvalently expressed by a PF, P (X), as:

exp|Qf(X))

where X,^ € Sp. *nd
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Also any assumed PF, PJXA) . may be equJvalently expressed as follows (Resag. 1974.

Anderson et al., In press) when the elements of X are binary-valued.

P,(XA) = exp|Qa(X;A)| / Z% (25)

where QJ&A) — F(X -

column vector of dimension d .

the row vector function. F(C), Is defined In (12). and A Is a

Now note If Q (X^A) — Q OC) for all X € S . X ^ ] L , then P (XJL) = P (X) for all

X 6 Sp since Z^1 must equal P j .0^) for / P%(XA) dX = I. Therefore, the PF. Pa(X;A). Is

compatible with Pf(X) If an A exists such that the system of n = M - 1 linear equations:

Q#(X,) - Qa(X,;A) for 1 < I < n (20)

Is consistent for any Qt(X) where X, € S . Xj ^ X^. For convenience, (20) can be rewritten as:

WA (27)

where the lib element of q Is Q/X,). and the n by da dimensional compatibility matrix. W. Is

defined In (13). Let R(W) = n (thus n < d j . and form a new d -dimensional square matrix. Y.

whose first n rows are W and whose remaining rows are selected such that Y has rank d Lot r

be a d^-dlmenslonal vector whose first n elements are q. and whose remaining d - n elements are

arbitrary. Now since Y Is Invertlble It Is always possible to find at least one parameter vector. A,

for a given r vector using the formula A *= V ' r .

Q.E.D.
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6.6 ML Estimation Applications to Learning Algorithms

To simplify notation, the function pOCA) should be considered a PF when x Is a discrete

random variable and a PDF when x Is a continuous random variable In this section of the paper

unless otherwise stated.

Definition of a likelihood function. Let a set, Tg, consist of the n state vectors {XV..X*}.

The likelihood function. Lm(A), associated with Tf Is defined as:

Lemma 1. Given < K < oo for any X,, If for any I. and M < oo.

aj(n) -* Lj as n -» oo, then E a^n) fCX,;A) — E

Proof. A D D ^ N exists such that |a,(n) - Lj < c/K.

uniformly as n -» oo

But ^ ) ! < |a,(n) - < \*m - LjK < |«/K)K =* i for n > N

L,(A) - j j pOCA) (28)

where p(XA) Is an assumed PDF or PF.

Definition of an ML estimate. If LB(A#) £ La(A) for all permissible values of A. then A Is

an ML estimate associated with L (A) In (28).

Definition of an asymptotic likelihood function. Let P#(X) be an environmental PF. and let

p(X;A) be an assumed PDF or PF. The asymptotic likelihood function. E(A). Is:

B(A) — E P.(X) LOG

Definition of a cross-entropy function. The cross-entropy function. XE(A), Is:

M
XB(A) - E P.OC,) LOG {P k - E(A) (30)

where P,(X) to the environmental PF, P(XA) to the assumed PF, E(A) Is the asymptotic

likelihood function, and k Is not dependent upon A

Now note that since a^n) fQ^^A) -» L{t(X^tA) uniformly as n -» oo.

E a,(n) uniformly as n -• oo.

Q.E.D.

Proposition. Let pOCA) be either a discrete PF or continuous PDF of a neural network

model with parameter vector A Let LJA) be defined In (28) with respect to T which Is a set of

n l i d . random vectors associated with PF P#(X) Define the stochastic sequence of Independent

random functions, e^A), Indexed by n such that e^(A) — (l/n)LOG|LjA)| Let B(A) be defined

as In (2«). (I) If |LOG |p(X;A)|| < C < oo. as n -• oo. e^(A) uniformly converges almost surely

to E(A). (II) If \V LOG |p(XA)|| < C < o o , a sn~»oo . V e^A) uniformly converges almost

surely to V E(A) where all gradients are taken with respect to A

Proof. First note eB(A) — (l /n) LOG |Lt(A)| = (l /n) Lr,G |JJ p(i^:A)\

where the random variable x* — Xj with probability p(X.^V). Therefore.

e,(A) - (l/n) LOG n pocAr^h - E- E |n(n)/n| LOG \P(X.JL)\
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where n{(n). n = 1, 2. ... Is a stochastic sequence of Independent Binomial random variables with

mean nPc(X|). Because n((n)/n -» ^CXj) almost surely as n -* oo by the strong law of large

numbers for any X,, E (n§/N) LOO (pQC,^) uniformly converges to E P/Xj) LOG|p(X.;A|

almost surely by Lemma 1 since |LOG

argument.

< C. The proof of (II) Is based upon a similar

Q.ED.

Proposition. Let the PDF, p(O|I) defined In (0) be the assumed a posteriori PDF for a

given neural network, and the network may have any prior knowledge of the likelihood of I

represented by the assumed prior PDF, p(I). which Is not a function of the parameter vector A.

Then E(A) = k - E P ^ O , , ! , ) |O§ - #A(I,)|f where k Is not dependent upon A.

Proof. Substituting for In (20) yields:

B(A) - E P#(X,) exp(|O| - ^ ty f

B(A) - <- d/2) LOG |») + E P.CO,.!,) LOG|p(I)| - E P/O,.!,) |O, - #A(I.||»

where Pt(O|tIj) and p(I) are not functions of A.

Q.E.D.

Proposition. Let the PDF, p(O|I) defined In (0) be the assumed a posteriori PDF for a given

neural network, and the network may have any prior knowledge of the likelihood of I represented

by the assumed prior PDF, p(I). which Is not a function of the parameter vector A. Then

E(A) - k + E E P/O,.!,) k^ + (1 - ow) LOG|1 - p^A.!.)
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where k Is not dependent upon A, and oj f Is the 1th element of the |th output vector, O.

Proof. Substituting p(Oj.Ij) « for p(X.;A) In (29) yields:

B(A) - k + E P /O^lp E LOG |Oj, (1 - O jJ) ( I -

where k Is a constant. Also note that since o. « 0 or o. « I,

LOG o.,) LOG

Q.E.D.
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